Ingénierie (conception en ingénierie, conception numérique)
RetourCahiers du GERAD
199 résultats — page 1 de 10
Price-based strategies for mitigating electric vehicle-induced overloads on distribution systems
This paper first introduces a computationally efficient approach for conducting a time-series impact analysis of electric vehicle (EV) charging on the loadin...
référence BibTeXRisk averse constrained blackbox optimization under mixed aleatory/epistemic uncertainties
This paper addresses risk averse constrained optimization problems where the objective and constraint functions can only be computed by a blackbox subject to...
référence BibTeXEvolution of high throughput satellite systems: Vision, requirements, and key technologies
High throughput satellites (HTS), with their digital payload technology, are expected to play a key role as enablers of the upcoming 6G networks. HTS are mai...
référence BibTeXPLSR1: A limited-memory partitioned quasi-Newton optimizer for partially-separable loss functions
Improving neural network optimizer convergence speed is a long-standing priority. Recently, there has been a focus on quasi-Newton optimization methods, whi...
référence BibTeX
Historically, the training of deep artificial neural networks has relied on parallel computing to achieve practical effectiveness. However, with the increas...
référence BibTeX
We introduce an iterative solver named MINARES for symmetric linear systems \(Ax \approx b\)
, where \(A\)
is possibly singular.
MINARES is based on t...
The indefinite proximal gradient method
We introduce a variant of the proximal gradient method in which the quadratic term is diagonal but may be indefinite, and is safeguarded by a trust region. ...
référence BibTeXCorrigendum: A proximal quasi-Newton trust-region method for nonsmooth regularized optimization
The purpose of the present note is to bring clarifications to certain concepts and surrounding notation of Aravkin et al. (2022). All results therein contin...
référence BibTeX
We develop a trust-region method for minimizing the sum of a smooth term \(f\)
and a nonsmooth term \(h\)
, both of which can be nonconvex.
Each iteratio...
FluxNLPModels.jl and KnetNLPModels.jl: Connecting deep learning models with optimization solvers
Cet article présente <code>FluxNLPModels.jl</code> et <code>KnetNLPModels.jl</code>, des nouveaux modules Julia permettant à des réseaux de neurones, définis...
référence BibTeX
We present a Julia framework dedicated to partially-separable problems whose element function are detected automatically. This framework takes advantage of ...
référence BibTeX
This work considers stochastic optimization problems in which the objective function values can only be computed by a blackbox corrupted by some random noise...
référence BibTeX
This paper first presents a time-series impact analysis of charging electric vehicles (EVs) to loading levels of power network equipment considering stochast...
référence BibTeX
Dans cet article, nous étudions le problème de l'identification de système pour les systèmes linéaires à saut de Markov autonomes (MJS) avec des observations...
référence BibTeX
Cet article présente \(\texttt{Krylov.jl}\)
, un module Julia qui contient une collection de processus et méthodes de Krylov pour résoudre une variété de pr...
In multi-robot missions, relative position and attitude information between robots is valuable for a variety of tasks such as mapping, planning, and formatio...
référence BibTeX
Cette note fournit un contre-exemple à un théorème proposé dans la dernière partie de l'article Analysis of direct searches for discontinuous functions, Ma...
référence BibTeX
Motivated by our collaboration with one of the largest fast-fashion retailers in Europe, we study a two-echelon inventory control problem called the One-Ware...
référence BibTeX
This paper presents PDENLPModels.jl a new Julia package for modeling and discretizing optimization problems with mixed algebraic and partial differential equ...
référence BibTeX
Providing the right data to a machine learning model is an important step to insure the performance of the model. Non-compliant training data instances may l...
référence BibTeX