Sébastien Le Digabel

Retour

Cahiers du GERAD

65 résultats — page 2 de 4

, , et

This work introduces StoMADS, a stochastic variant of the mesh adaptive direct-search (MADS) algorithm originally developed for deterministic blackbox optim...

référence BibTeX
, et

The performance of deep neural networks is highly sensitive to the choice of the hyperparameters that define the structure of the network and the learning pr...

référence BibTeX
, et

Computational speed and global optimality are a key need for pratical algorithms of the OPF problem. Recently, we proposed a tight-and-cheap conic relaxation...

référence BibTeX
, et

In demand-response programs, aggregators balance the needs of generation companies and end-users. This work proposes a two-phase framework that shaves the ag...

référence BibTeX
, et

Smart homes have the potential to achieve efficient energy consumption: households can profit from appropriately scheduled consumption. By 2020, 35% of all h...

référence BibTeX
, , , et

In the recent years, the development of new algorithms for multiobjective optimization has considerably grown. A large number of performance indicators has...

référence BibTeX
, et

The optimal reactive power dispatch (ORPD) problem is an alternating current optimal power flow (ACOPF) problem where discrete control devices for regulating...

référence BibTeX
, et

Smart homes have the potential to achieve optimal energy consumption with appropriate scheduling. It is expected that 35% of households in North America an...

référence BibTeX
, , , et

The parallel space decomposition of the Mesh Adaptive Direct Search algorithm (PSD-MADS proposed in 2008) is an asynchronous parallel method for constrained ...

référence BibTeX
, et

We consider the maximum k-cut problem that involves partitioning the vertex set of a graph into k subsets such that the sum of the weights of the...

référence BibTeX
, et

The mesh adaptive direct search (MADS) algorithm is designed for blackbox optimization problems for which the functions defining the objective and the constr...

référence BibTeX
, , et

We investigate surrogate-assisted strategies for global derivative-free optimization using the mesh adaptive direct search MADS blackbox optimization algorit...

référence BibTeX
, et

The classical alternating current optimal power flow problem is highly nonconvex and generally hard to solve. Convex relaxations, in particular semidefinite,...

référence BibTeX
, , et

Locally weighted regression combines the advantages of polynomial regression and kernel smoothing. We present three ideas for appropriate and effective use...

référence BibTeX
, , et

The Mesh Adaptive Direct Search algorithm (MADS) is an iterative method for constrained blackbox optimization problems. One of the optional MADS features i...

référence BibTeX
, , et

Les problèmes d'optimisation de boîtes noires sont souvent contaminés par du bruit numérique, et les méthodes de recherche directe telles que l'algorithme de...

référence BibTeX
, et

We present a new derivative-free trust-region (DFTR) algorithm to solve general nonlinear constrained problems with the use of an augmented Lagrangian m...

référence BibTeX
, , et

We study derivative-free constrained optimization problems and propose a trust-region method that builds linear or quadratic models around the best feasible ...

référence BibTeX
, , et

An augmented Lagrangian (AL) can convert a constrained optimization problem into a sequence of simpler (e.g., unconstrained) problems, which are then usual...

référence BibTeX
, et

Nous considérons le problème de la k-coupe maximale qui consiste à partitionner l'ensemble des sommets d'un graphe en k sous-ensembles tels que l...

référence BibTeX