Sébastien Le Digabel
RetourCahiers du GERAD
65 résultats — page 2 de 4
This work introduces StoMADS, a stochastic variant of the mesh adaptive direct-search (MADS) algorithm originally developed for deterministic blackbox optim...
référence BibTeXHyperNOMAD: Hyperparameter optimization of deep neural networks using mesh adaptive direct search
The performance of deep neural networks is highly sensitive to the choice of the hyperparameters that define the structure of the network and the learning pr...
référence BibTeX
Computational speed and global optimality are a key need for pratical algorithms of the OPF problem. Recently, we proposed a tight-and-cheap conic relaxation...
référence BibTeX
In demand-response programs, aggregators balance the needs of generation companies and end-users. This work proposes a two-phase framework that shaves the ag...
référence BibTeX
Smart homes have the potential to achieve efficient energy consumption: households can profit from appropriately scheduled consumption. By 2020, 35% of all h...
référence BibTeX
In the recent years, the development of new algorithms for multiobjective optimization has considerably grown. A large number of performance indicators has...
référence BibTeX
The optimal reactive power dispatch (ORPD) problem is an alternating current optimal power flow (ACOPF) problem where discrete control devices for regulating...
référence BibTeX
Smart homes have the potential to achieve optimal energy consumption with appropriate scheduling. It is expected that 35% of households in North America an...
référence BibTeX
The parallel space decomposition of the Mesh Adaptive Direct Search algorithm (PSD-MADS proposed in 2008) is an asynchronous parallel method for constrained ...
référence BibTeX
We consider the maximum k
-cut problem that involves partitioning the vertex set of a graph into k
subsets such that the sum of the weights of the...
The mesh adaptive direct search (MADS) algorithm is designed for blackbox optimization problems for which the functions defining the objective and the constr...
référence BibTeX
We investigate surrogate-assisted strategies for global derivative-free optimization using the mesh adaptive direct search MADS blackbox optimization algorit...
référence BibTeX
The classical alternating current optimal power flow problem is highly nonconvex and generally hard to solve. Convex relaxations, in particular semidefinite,...
référence BibTeX
Locally weighted regression combines the advantages of polynomial regression and kernel smoothing. We present three ideas for appropriate and effective use...
référence BibTeX
The Mesh Adaptive Direct Search algorithm (MADS) is an iterative method for constrained blackbox optimization problems. One of the optional MADS features i...
référence BibTeXRobust optimization of noisy blackbox problems using the Mesh Adaptive Direct Search algorithm
Les problèmes d'optimisation de boîtes noires sont souvent contaminés par du bruit numérique, et les méthodes de recherche directe telles que l'algorithme de...
référence BibTeX
We present a new derivative-free trust-region (DFTR) algorithm to solve general nonlinear constrained problems with the use of an augmented Lagrangian m...
référence BibTeX
We study derivative-free constrained optimization problems and propose a trust-region method that builds linear or quadratic models around the best feasible ...
référence BibTeX
An augmented Lagrangian (AL) can convert a constrained optimization problem into a sequence of simpler (e.g., unconstrained) problems, which are then usual...
référence BibTeX
Nous considérons le problème de la k
-coupe maximale qui consiste à partitionner l'ensemble des sommets d'un graphe en k
sous-ensembles tels que l...