Christophe Tribes

Retour

Cahiers du GERAD

15 résultats — page 1 de 1

Solving optimization problems in which functions are blackboxes and variables involve different types poses significant theoretical and algorithmic challeng...

référence BibTeX

Benchmarking new optimization methods on test problems is essential for assessing their performance and tuning their parameters. Yet, few problems are avail...

référence BibTeX
, et

Benchmarking is essential for assessing the effectiveness of optimization algorithms. This is especially true in derivative-free optimization, where target ...

référence BibTeX
, , et

Multiobjective blackbox optimization deals with problems where the objective and constraint functions are the outputs of a numerical simulation. In this cont...

référence BibTeX
, , , , , , et

This work introduces solar, a collection of ten optimization problem instances for benchmarking blackbox optimization solvers. The instances present differ...

référence BibTeX
, , et

The fine-tuning of Large Language Models (LLMs) has enabled them to recently achieve milestones in natural language processing applications. The emergenc...

référence BibTeX
, , et

NOMAD is software for optimizing blackbox problems. In continuous development since 2001, it constantly evolved with the integration of new algorithmic...

référence BibTeX
, et

The performance of deep neural networks is highly sensitive to the choice of the hyperparameters that define the structure of the network and the learning pr...

référence BibTeX
, , et

We are interested in blackbox optimization for which the user is aware of monotonic behaviour of some constraints defining the problem. That is, when incr...

référence BibTeX
, et

The mesh adaptive direct search (MADS) algorithm is designed for blackbox optimization problems for which the functions defining the objective and the constr...

référence BibTeX
et

Despite the lack of theoretical and practical convergence support, the Nelder-Mead (NM) algorithm is widely used to solve unconstrained optimization proble...

référence BibTeX
, , et

Les problèmes d'optimisation de boîtes noires sont souvent contaminés par du bruit numérique, et les méthodes de recherche directe telles que l'algorithme de...

référence BibTeX
, et

Ce document décrit le logiciel NOMAD, une implémentation C++ de l'algorithme de recherche directe sur treillis adaptifs (Mads) pour l'optimisation sous cont...

référence BibTeX
, et

Blackbox optimization deals with situations in which the objective function and constraints are typically computed by launching a time-consuming computer ...

référence BibTeX
, , et

The Mesh Adaptive Direct Search (MADS) class of algorithms is designed for nonsmooth optimization, where the objective function and constraints are typical...

référence BibTeX