Back

G-2014-20

A space-discretized mixed-integer linear model for air-conflict resolution with speed and heading maneuvers

BibTeX reference

Air-conflict resolution is a bottleneck of air traffic management that will soon require powerful decision-aid systems to avoid the proliferation of delays. Since reactivity is critical for this application, we develop a mixed-integer linear model based on space discretization so that complex situations can be solved in near-real-time. The discretization allows us to model the problem with finite and potentially small sets of variables and constraints by focusing on important points of the planned trajectories, including the points where trajectories intersect. A major goal of this work is to use space discretization while allowing velocity and heading maneuvers. Realistic trajectories are also ensured by considering speed vectors that are continuous with respect to time, and limits on the velocity, acceleration, and yaw rate. A classical indicator of economic efficiency is then optimized by minimizing a weighted sum of fuel consumption and delay. The experimental tests confirm that the model can solve complex situations within a few seconds without incurring more than a few kilograms of extra fuel consumption per aircraft.

, 23 pages

Publication