Paul Raynaud
RetourPublications
Cahiers du GERAD
sept. 2023
G-2023-41
PLSR1: A limited-memory partitioned quasi-Newton optimizer for partially-separable loss functions
PLSR1: A limited-memory partitioned quasi-Newton optimizer for partially-separable loss functions
Improving neural network optimizer convergence speed is a long-standing priority. Recently, there has been a focus on quasi-Newton optimization methods, whi...
référence BibTeX
août 2023
Historically, the training of deep artificial neural networks has relied on parallel computing to achieve practical effectiveness. However, with the increas...
référence BibTeX
juil. 2023
G-2023-25
FluxNLPModels.jl and KnetNLPModels.jl: Connecting deep learning models with optimization solvers
FluxNLPModels.jl and KnetNLPModels.jl: Connecting deep learning models with optimization solvers
Farhad Rahbarnia et Paul Raynaud
Cet article présente <code>FluxNLPModels.jl</code> et <code>KnetNLPModels.jl</code>, des nouveaux modules Julia permettant à des réseaux de neurones, définis...
référence BibTeX
mai 2023
We present a Julia framework dedicated to partially-separable problems whose element function are detected automatically. This framework takes advantage of ...
référence BibTeX