Retour aux activités
Séminaire du GERAD

Optimal Design of Renewable Energy Certificate markets: A Principal-Agent Mean Field Game Approach

iCalendar

6 oct. 2022   11h00 — 12h00

Dena Firoozi Professeure adjointe, Département de sciences de la décision, HEC Montréal, Canada

Dena Firoozi

Séminaire en format hybride au local 4488 du GERAD ou Zoom.

Principal agent games are a growing area of research which focuses on the optimal behaviour of a principal and an agent, with the former contracting work from the latter, in return for providing a monetary award. While this field canonically considers a single agent, the situation where multiple agents, or even an infinite amount of agents are contracted by a principal are growing in prominence and pose interesting and realistic problems. Here, agents form a Nash equilibrium among themselves, and a Stackelberg equilibrium between themselves as a collective and the principal. We apply this framework to the problem of implementing Renewable Energy Certificate (REC) markets, where the principal requires regulated firms (power generators) to pay a noncompliance penalty which is inversely proportional to the amount of RECs they have. RECs can be obtained by generating electricity from clean sources or purchasing on the market. The agents react to this penalty and optimize their behaviours to navigate the system at minimum cost. In the agents' model we incorporate market clearing as well as agent heterogeneity. For a given market design, we find the Nash equilibrium among agents using techniques from mean field games. We then use techniques from extended McKean-Vlasov control problems to solve the principal (regulators) problem, who aim to choose the penalty function in such a way that balances environmental and revenue impacts optimally. We find through these techniques that the optimal penalty function is linear in the agents' terminal RECs.

Joint work with Arvind Shrivats and Sebastian Jaimungal.

Olivier Bahn responsable

Lieu

Séminaire hybride au GERAD
Zoom et salle 4488
Pavillon André-Aisenstadt
Campus de l'Université de Montréal
2920, chemin de la Tour
Montréal Québec H3T 1J4 Canada

Axes de recherche

Applications de recherche