Retour aux activités
Séminaire informel de théorie des systèmes (ISS)

Restless bandits: Indexability, Whittle index computation and learning


9 juil. 2021   10h15 — 11h15

Nima Akbarzadeh Université McGill, Canada

Nima Akbarzadeh is a Ph.D. candidate in electrical and computer engineering at McGill University. He received the B.Sc. degree in electrical and computer engineering from Shiraz University, Iran, in 2014, the M.Sc. in electrical and electronics engineering from Bilkent University, Turkey, in 2017. He is a recipient of 2020 FRQNT PhD Scholarship. His research interests include stochastic control, reinforcement learning and multi-armed bandits.

Nima Akbarzadeh

Lien pour le webinaire
Nº du webinaire : 910 7928 6959
Code secret : VISS

Restless bandits are a class of sequential resource allocation problems concerned with allocating one or more resources among several alternative processes where the evolution of the process depends on the resource allocated to them. In 1988, Whittle proposed an index heuristic for restless bandit problems which has emerged as a popular solution approach due to its simplicity and strong empirical performance. The Whittle index heuristic is applicable if the model satisfies a technical condition known as indexability. We present two general sufficient conditions for indexability and identify simpler to verify refinements of these conditions for fully-observable models and a class of indexable models for the partially-observable ones. We show that a generalization of the adaptive greedy algorithm computes the Whittle index for all indexable restless bandits. Finally, we discuss a learning problem in restless bandits when the dynamics of all processes are unknown initially. The learning algorithm uses a Thompson sampling approach to estimate the unknown parameters and uses estimated Whittle index to choose actions. We provide an upper-bound on the regret with respect to an oracle who knows the true parameters.

Peter E. Caines responsable
Aditya Mahajan responsable
Shuang Gao responsable
Yaroslav Salii responsable


Montréal Québec

Organisme associé

Centre for intelligent machines (CIM)

Axes de recherche

Application de recherche