Back to activities
Dynamic Games and Applications Seminar

Fuzzy fractional-order model of the novel coronavirus: The impact of delay strategies on the pandemic dynamics model with nonlinear incidence rate


Jan 28, 2021   11:00 AM — 12:00 PM

Massimiliano Ferrara Mediterranea University of Reggio Calabria, Italy

Massimiliano Ferrara

Presentation on YouTube

In this paper, a novel coronavirus infection system with a fuzzy fractional differential equation defined in Caputo’s sense is developed. By using the fuzzy Laplace method coupled with Adomian decomposition transform, numerical results are obtained for better understanding of the dynamical structures of the physical behavior of COVID-19. Such behavior on the general properties of RNA in COVID-19 is also investigated for the governing model. Due to non-availability of the vaccination, delay strategies such as social distancing, travel restrictions, extension in holidays, use of face-mask, and self- quarantine are the effective treatment to control the pandemic of coronavirus. So, we proposed the delayed susceptible-exposed- infected-recovered model with nonlinear incidence rate to study the effective role of delay strategies. For this analysis, we discussed three types of equilibria of the model such as trivial, coronavirus free and coronavirus existence with delay term. The local and global stabilities are investigated by using well-posed notation, Routh Hurwitz criterion, Lyapunov function, and Lasalle invariance principle.

Georges Zaccour organizer
Can Baris Cetin organizer
Utsav Sadana organizer


Online meeting
Montréal Québec

Associated organizations

Research Axis

Research application