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Abstract

Descent methods for combinatorial optimization proceed by performing a sequence of local changes on an initial

solution which improve each time the value of an objective function until a local optimum is found. Several meta-

heuristics have been proposed which extend in various ways this scheme and avoid being trapped in local optima. For

example, Hansen and Mladenovic have recently proposed the variable neighborhood search method which has not yet

been applied to many combinatorial optimization problems. The aim of this paper is to propose an adaptation of this

new method to the graph coloring problem.

� 2003 Published by Elsevier B.V.
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1. Introduction

Let S denote the set of solutions of a combi-

natorial optimization problem. For a solution

si 2 S let NðsiÞ denote the neighborhood of si which
is defined as the set of neighbor solutions in S ob-

tained from si by performing a local change on it.

A descent method usually visits a sequence

s0; . . . ; sn of solutions, where s0 is an initial solu-

tion, sn is a local optimum, and siþ1 2 NðsiÞ,
8i ¼ 0; . . . ; n� 1. In recent years, local search

techniques have been proposed which extend this

scheme in order to get out of local optima. These
techniques (e.g. tabu search [16,17], simulated an-
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nealing [22], GRASP [8], adaptative multi-start [2])

have led to much improved results for many

combinatorial problems. Hansen and Mladenovic

have recently [18,23] proposed a new optimization

technique called variable neighborhood search
(VNS for short). The main idea of this new method

is to use various neighborhoods during the search.

Given an incumbent s, a neighbor solution s0 is
generated according to one of these neighbor-

hoods, and a local search is then applied to s0 in
order to obtain a local optimum s00. If s00 is better
than s, then s00 becomes the new incumbent; oth-

erwise, a different neighborhood is considered in
order to try to improve upon solution s. This

process is repeated until no neighborhood leads to

an improvement of the incumbent.

Given a graph G ¼ ðV ;EÞ with vertex set V and

edge set E, and given an integer k, a k-coloring of G
is a function c : V ! f1; . . . ; kg. The value cðxÞ of
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a vertex x is called the color of x. The vertices with
color r (16 r6 k) define a color class, denoted Vr.
If two adjacent vertices x and y have the same

color r, vertices x and y are called conflicting ver-

tices, the edge ½x; y� is called a conflicting edge, and

r is called a conflicting color. If there is no con-

flicting edge, then the color classes are called stable

sets, and the k-coloring is said legal. The graph

coloring problem (GCP for short) is to determine
the smallest integer k (called chromatic number of

G) such that there exists a legal k-coloring of G.
The aim of this paper is to propose an adaptation

of the VNS to the GCP.

The paper is organized as follows. In Section 2,

we review some famous heuristic methods for

graph coloring. We then present in Section 3 the

basic VNS as well as some possible extensions.
The proposed adaptation of the VNS method to

the GCP is described in Section 4, and computa-

tional experiments are reported in Section 5.
2. Heuristic methods for graph coloring

The GCP is an NP-hard problem [12]. Exact
solution methods have been developed by several

researchers (e.g. [3,4,24]) but all these exact

methods can only be applied to problems of rel-

atively small size (no more than 100 vertices).

This certainly explains why many heuristic

methods have been proposed for getting an upper

bound on the chromatic number of a graph. A

survey of the most famous heuristic graph col-
oring methods can be found in [25]. The simplest

ones are construtive methods which color each

vertex in turn with the smallest possible color.

The quality of the resulting coloring strongly

depends on the order in which the vertices are

scanned. A well-known such constructive method

is the DSATUR algorithm [3], which is based on

a dynamic ordering of the vertices: the next vertex
to be colored is the one having the largest number

of different colors already assigned to its adjacent

vertices.

Given a fixed integer k, we consider the opti-

mization problem, called k-GCP, which aims to

determine a k-coloring of G such that the number

of conflicting edges is minimized. If the optimal
value of the k-GCP is zero, this means that G has a
legal k-coloring. The chromatic number of G can

be determined by first computing an upper bound

(for example by means of a constructive method)

and then solving a series of k-GCPs with decreas-

ing values of k until no legal k-coloring can be

obtained. This strategy will be called the partition

approach since each k-GCP aims to determine a

partition of the vertex set V of G into a fixed
number k of stable sets. For a fixed integer k, and a

k-coloring c, let f ðcÞ denote the number of con-

flicting edges induced by c. Many local search

methods have been proposed for minimizing f .
For example, a tabu search is described in [19], and

simulated annealing algorithms can be found in

[5,20]. Genetic algorithms and hybrid methods

have also been successfully applied to this problem
(e.g. [6,9,13]).

Another approach for solving the GCP is to

successively build the stable sets of a legal k-col-
oring by repeatedly identifying a maximal stable

set in G and removing it from the graph. With this

strategy, the GCP is reduced to the solution of

successive maximal stable set problems. Various

efficient heuristic methods have been proposed for
finding a large stable set in a graph (e.g. [10,11,

14]). The partition approach can be combined with

this strategy by first removing stable sets until the

remaining graph G0 has no more than a given

number of vertices, and then applying the partition

approach on G0. Such combined methods are de-

scribed for example in [9,19]. Nowadays, the most

efficient heuristic method for the GCP is due to
Galinier and Hao who have proposed an hybrid

method that combines a genetic algorithm with a

tabu search [13].
3. Description of the VNS method

Let N ðtÞ ðt ¼ 1; . . . ; tmaxÞ denote a finite set of
neighborhoods, where N ðtÞðsÞ is the set of solutions
in the tth neighborhood of s. Most local search

methods use only one type of neighborhood, i.e.

tmax ¼ 1. The basic VNS [18,23], which is described

in Table 1, tries to avoid being trapped in local

minima with the help of more than one neigh-

borhood.



Table 1

The basic VNS

1. Initialisation

– Determine an initial solution s
– Set t ¼ 1

2. Repeat the following until a stopping condition is met

2.a Shaking. Generate a point s0 at random from the tth neighborhood of s ðs0 2 N ðtÞðsÞÞ
2.b Local search. Apply some local search method with s0 as initial solution; let s00 be the so obtained local optimum

2.c Move or not. If s00 is better than the incumbent s, move there (i.e. set s ¼ s00), and continue the search with N ð1Þ (i.e. set t ¼ 1);

otherwise set t ¼ ðtmod tmaxÞ þ 1
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The stopping condition of a VNS may be, for
example, an upper bound on the CPU time, a

maximum number of iterations, or a maximum

number of iterations between two improvements

of the incumbent. Observe that a solution s0 gen-
erated in step 2.a is obtained by randomly choos-

ing it in the tth neighborhood. This way of doing

may avoid cycling which might occur if any de-

terministic rule was used. The local search method
used in step 2.b can be a simple descent method, or

a more powerful technique such as a tabu search

or a simulated annealing.

The above basic VNS can be viewed as a de-

scent algorithm since the incumbent s is modified

only if the local optimum s00 obtained in step 2.b is

better than s. Without much additional effort, it is

possible to transform this basic VNS into a de-

scent–ascentmethod: in step 2.c set also s ¼ s00 with
some probability even if s00 is worse than the in-

cumbent. Another possible variant of the basic

VNS is to choose solution s0 in step 2.a as the best

solution in a subset of neighbors randomly gen-

erated in N ðtÞðsÞ.
4. Adaptation of VNS to the k-GCP

In order to solve the GCP, we have decided to

follow the partition approach. For a fixed k, we
consider as a solution to the problem any k-col-
oring c. By denoting Er the collection of edges of G
with both endpoints in Vr, the objective function f
is defined as the total number of conflicting edges,
i.e. f ðsÞ ¼

Pk
r¼1 jErj: The initial solution generated

in step 1 of the VNS algorithm is randomly chosen

among all possible solutions.
We stop the VNS algorithm when MaxVNS it-
erations have been performed without improving

the incumbent s. We have set MaxVNS ¼ jV j. Pre-
liminary experiments have shown that a larger

value for MaxVNS does not lead to a significant

improvement of the algorithm. As local search

method in step 2.b we use the Tabucol algorithm

described in [19] which is a tabu search that fol-

lows the partition approach. Given a solution s,
Tabucol generates a neighbor solution s0 by

changing the color of a conflicting vertex. This

means that a conflicting vertex x in a color class Vr
is moved to a new color class Vj, and the pair ðx; rÞ
is introduced in the tabu list (i.e. vertex x cannot be
moved back to Vr for some iterations). Tabucol is

stopped when Maxtabu consecutive moves have

been performed without improving the best solu-
tion found so far. A large value for Maxtabu in-

duces a large CPU time for the VNS algorithm,

while a too low value does not offer enough time to

Tabucol to improve on s0. Here again, preliminary

experiments have shown that Maxtabu ¼ 10 � jV j is
a good compromise. Also, we have chosen value

10 for the length of the tabu list.

In the three next subsections we describe the
various neighborhoods used in our adaptation of

the VNS method to the k-GCP. These neighbor-

hoods can be divided into three groups:

• the vertex neighborhoods which change the color

of some conflicting vertices,

• the class neighborhoods which change the color

of some or all vertices of a conflicting color,
• the non-increasing neighborhoods which change

the color of some vertices without increasing the

total number of conflicting edges.
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4.1. Vertex neighborhoods

We describe below five neighborhoods which

modify the incumbent s by changing the color of

some conflicting vertices.

(1) The basic neighborhood: From a solution s
we generate a neighbor solution in N ð1ÞðsÞ as fol-

lows. We randomly choose a conflicting vertex x
and move it from its current color class to the best

possible other one (i.e. the new color class for x is

chosen among those having the smallest number of

vertices adjacent to x). Such a move may create

new conflicting vertices. We successively apply i
such changes on s to obtain a neighbor solution s0.
On the one hand, a low value for i induces a

neighbor solution s0 which is very close to s. On the
other hand, a large value for i will create a

neighbor solution s0 which is very different from s,
and the generation of a neighbor solution can

therefore be seen, in this case, as a restart. We have

decided to randomly choose i in f10; . . . ; ið1Þmaxg,
where ið1Þmax depends on the number IVNS of it-

erations which have been performed without

improving the incumbent s as follows: we set
ið1Þmax ¼ 100 each time the incumbent s is improved

(i.e. when IVNS is set equal to 0), and we linearly

decrease ið1Þmax down to the value 20 which is reached

when IVNS ¼ MaxVNS. Such a choice means that we

perform large changes on the incumbent s when

IVNS has a small value, while small changes are

preferred when s has not been improved for a

long time. The idea behind this choice is to per-
form a kind of diversification each time s is im-

proved, and to gradually switch to intensification

when IVNS increases. The upper and lower bounds

on ið1Þmax (as well as on ið2Þmax; . . . ; i
ð5Þ
max defined below)

result from preliminary experiments. Notice also

that we have imposed a lower bound of value 10

on i. The reason is that we use the basic neigh-

borhood for moving to a new region of the solution
space, while the task of Tabucol (which uses i ¼ 1)

is to carefully explore this new region. Notice that

when generating a neighbor of s, we take care of

not changing the color of a vertex more than

once.

(2) The chain neighborhood: From a solution s
we generate a neighbor solution in N ð2ÞðsÞ as fol-

lows. We first randomly choose a conflicting vertex
x (called origin vertex) and move it into the best
possible other color class Vj. Since s is a local op-

timum, this move will create new conflicting ver-

tices in Vj. We then choose at random a new

conflicting vertex y 2 Vj and assign to it the best

possible new color l. This second move will

probably create new conflicts in Vl in which case

we assign the best possible color to a new con-

flicting vertex in Vl. This sequence of changes is
executed as long as possible, taking care of not

changing the color of a vertex more than once. We

repeat this process by performing successively i
such sequences of changes, with i origin vertices,

where i is randomly chosen in f1; . . . ; ið2Þmaxg. The
upper bound ið2Þmax on i decreases gradually from 20

to 5 when IVNS increases from 0 to MaxVNS.

(3) The grenade neighborhood: From a solution
s we generate a neighbor solution in N ð3ÞðsÞ as

follows. We first randomly choose a conflicting

vertex x (called grenade) and we move it into the

best possible other color class Vj. We then se-

quentially move each new conflicting vertex from

Vj into the best possible other color class. This

process is repeated with i different grenades, where
i is randomly chosen in f1; . . . ; ið3Þmaxg. The upper
bound ið3Þmax on i decreases gradually from 40 to 1

when IVNS increases from 0 to MaxVNS.

(4) The firework neighborhood: From a solution

s we generate a neighbor solution in N ð4ÞðsÞ as

follows. We first randomly choose a conflicting

vertex x (called firework) and move it into the best

possible other color class Vj. We then consider

every new conflicting vertex as a grenade (see
above). This process is repeated with i different

fireworks, where i is randomly chosen in f1; . . . ;
ið4Þmaxg. The upper bound ið4Þmax on i decreases gradu-
ally from 30 to 1 when IVNS increases from 0 to

MaxVNS.

(5) The permutation neighborhood: From a so-

lution s we generate a neighbor solution in N ð5ÞðsÞ
as follows. We first randomly choose a conflicting
vertex and move it from its current color class Vr
into the best possible other color class Vj. Among

the new conflicting vertices in Vj, we choose one

having the smallest number of adjacent vertices in

Vr, and move it into Vr. We successively perform i
such permutations, where i is randomly chosen in

f1; . . . ; ið5Þmaxg. The upper bound ið5Þmax on i decreases
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gradually from 50 to 10 when IVNS increases from 0
to MaxVNS.

4.2. Class neighborhoods

In these neighborhoods, we modify a solution

by first selecting a conflicting color, and then

changing the color of some or all vertices having

that color. We propose below four such neigh-
borhoods. In what follows, we denote V � the color

class which contains the largest number of con-

flicting vertices, and p its number of vertices.

(6) The empty–refill neighborhood: From a so-

lution s we generate a neighbor solution in N ð6ÞðsÞ
as follows: we first empty V � by successively

moving each of its vertices into the best possible

other color class. We then refill V � by successively
choosing p other vertices (new conflicting vertices

when possible) and moving all of them into V �.

(7) The stable set neighborhood: From a solution

s we generate a neighbor solution in N ð7ÞðsÞ as

follows: we first randomly choose a conflicting

vertex x 2 V �, and create an ordered list L ¼
ðv1; . . . ; vjV jÞ of the vertices in V , where v1 ¼ x, the
p � 1 last elements of L are the vertices of
V � � fxg, and the elements v2; . . . ; vjV j�p cover the

remaining vertices of V (in a random order). We

then construct a maximal stable set W in a greedy

fashion, by scanning the ordered list L. Finally, we
move each vertex which is in V � but not in W into

the best possible other color class, and we move

into V � each vertex which is in W but not yet in V �.

(8) The empty class neighborhood: From a so-
lution s we generate a neighbor solution in N ð8ÞðsÞ
as follows: we first empty V � by successively

moving each of its vertices into the best possible

other color class. We thus obtain a partition of V
into k � 1 color classes. We then briefly apply the

Tabucol algorithm (Maxtabu is set equal to jV j) in
order to minimize the number of conflicts in these

k � 1 color classes (i.e. the addition of a vertex into
V � is considered as a tabu move).

(9) The tabu class neighborhood: From a solu-

tion s we generate a neighbor solution in N ð9ÞðsÞ as
follows. We first reduce V � to a stable set by se-

quentially moving each of its conflicting vertices

into the best possible other color class. We then

briefly apply the Tabucol algorithm to this solu-
tion (Maxtabu is set equal to jV j), while forbidding
any change on V � (i.e. the addition of a vertex into

V � and the removal of a vertex from V � are con-

sidered as tabu moves).

4.3. Non-increasing neighborhoods

In these neighborhoods, we generate a neighbor

solution by changing the color of some vertices,
but without increasing the total number of con-

flicting edges. This means that the neighbor solu-

tion s0 is such that f ðs0Þ6 f ðsÞ.
(10) The Culberson neighborhood [6,7]: From a

solution s ¼ ðV1; . . . ; VkÞ we generate a neighbor

solution in N ð10ÞðsÞ as follows. We first remove the

f ðsÞ conflicting edges in G. We thus get a partial

subgraph G0 for which the partition ðV1; . . . ; VkÞ
corresponds to a legal k-coloring c. We then con-

sider any permutation p of the k colors and any

ordering of the vertices such that vertex x is before
vertex y if pðcðxÞÞ < pðcðyÞÞ. We finally construct a

new k-coloring ðV 0
1 ; . . . ; V

0
k Þ of G0 by coloring each

vertex in turn with the smallest possible color. The

partition s0 ¼ ðV 0
1 ; . . . ; V

0
k Þ is a neighbor solution of

s with at most f ðsÞ conflicting edges. This process
is illustrated in Fig. 1.

(11) The subgraph neighborhood [15]: From a

solution s ¼ ðV1; . . . ; VkÞ we generate a neighbor

solution in N ð11ÞðsÞ as follows. We first sequentially

remove conflicting vertices from G in order to

obtain a maximal induced subgraph G0 of G
without any conflicting edge. We then permute the

colors in G0 according to the permutation p which
minimizes the number of conflicting edges having

one endpoint in G0 and one outside G0. This best

permutation is obtained by solving a bipartite

weighted matching problem (also called assignment

problem) [1]. More precisely, consider the complete

bipartite graph B ¼ ðN1 [ N2;AÞ where N1 ¼ N2 ¼
f1; . . . ; kg, and the cost Cij of the edge ði; jÞ 2 A
linking i 2 N1 with j 2 N2 is equal to the number of
edges linking a vertex of color i outside G0 to a

vertex of color j in G0. Let M be a perfect matching

of minimum cost in B. The total cost of the edges

in M corresponds to the number of conflicting

edges in the k-coloring obtained from s by as-

signing color j to a vertex of color i in G0 if and

only if the edge linking i 2 N1 to j 2 N2 belongs to
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M . Many polynomial algorithms have been pro-

posed for the solution of the bipartite weighted

matching problem (see for example [1]). This

process is illustrated in Fig. 2.

4.4. Comparison of the neighborhoods

In order to analyze the efficiency of each pro-

posed neighborhood, we have implemented eleven

different VNS algorithms, each one using a single

neighborhood (i.e., tmax ¼ 1). As mentioned in [13],

differences between efficient algorithms can not be
observed on instances of small size (with less than

300 vertices). The comparison of the neighbor-

hoods has therefore been performed on nine in-

stances of medium size. We have first generated

four random graphs with 500 vertices and edge

density 0.5, denoted R500.1, R500.2, R500.3 and

R500.4. We have then taken the five following

instances from [21].

• Two flat graphs: flat300.28 and flat300.26. They

both have 300 vertices and a known chromatic

number (28 and 26, respectively).
• Two Leighton graphs: le450.15c and le450.15d.

They both have 50 vertices and a known chro-

matic number 15.
• One random graph: DSJC500.5 with 500 verti-

ces, edge density 0.5, and with unknown chro-

matic number.

Notice that each one of these nine instances

defines in reality a set of k-GCPs with different

values of k. In the second line of Table 2, we

indicate the value of k for which we try to find a
legal k-coloring. Then, for each neighborhood,

we give the average number of conflicting edges

obtained after 4 runs of the VNS algorithm (with

the fixed k of the second line), using only the

considered neighborhood. In the last line we

give, for comparison, the average results ob-

tained with Tabucol, also after 4 runs on each

instance. To get comparable CPU times we have
stopped each run of Tabucol after MaxVNS�
Maxtabu ¼ 10 � jV j2 iterations without improve-

ment of the best solution obtained so far. Bold

numbers indicate that the considered VNS algo-

rithm has found solutions which are in
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Table 2

Comparison of the neighborhoods

Instance

R500.1 R500.2 R500.3 R500.4 DSJC500.5 le450.15c le450.15d flat300.28 flat300.26

k 49 49 49 49 49 15 15 31 31

Chain 2.5 4 3.75 3.25 4.5 0 0 1.75 0

Firework 1.75 5 4.5 4 4 0 0 2.25 0

Grenade 2 4.5 3.25 3.75 4.25 0 0.25 1.5 0

Permutation 1.75 5.5 4.5 3.5 6 0.25 2 2 0

Basic 2 5.5 5 7.75 8 83.75 46 2.5 0

Stable set 2.5 4.5 3.75 3 5.5 2.5 1 2.5 1.25

Empty–refill 2.5 3.5 5.5 3.75 4.25 2 0 2 1

Empty class 2.5 3 5.25 3.75 4.75 11.5 16.75 1.25 0

Tabu class 7 9.75 9.25 10 13 26.5 17.75 6 4.75

Culberson 8 12.5 17.5 10.75 13.25 162.25 163.5 7.25 6.25

Subgraph 12.5 16.25 14 16.5 16.75 160.75 168 8 6.75

Tabucol 1.75 6 8 3.5 9 162.25 160.75 2.5 1.5
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average at least as good as those produced by

Tabucol.

Notice first that for each instance, except
R500.1, we have been able to improve on Tabucol

results by using a VNS approach. Table 2 clearly

shows that the chain, firework and grenade neigh-

borhoods are the best ones among the vertex
neighborhoods, while the stable set, empty–refill

and empty class neighborhoods are the best among

the class neighborhoods. The non-increasing
neighborhoods are not competitive at all. Con-

sidering the above results, we have decided to use

only these six best neighborhoods. Tests on larger

instances have confirmed that the five rejected
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neighborhoods do not help improving the perfor-
mance of the VNS algorithm.

4.5. The proposed VNS algorithm

We have combined the six best neighborhoods

N ð2ÞðsÞ, N ð3ÞðsÞ, N ð4ÞðsÞ, N ð6ÞðsÞ, N ð7ÞðsÞ and N ð8ÞðsÞ
to obtain the proposed VNS algorithm which is

described in Table 3. Since the algorithm stops
when the incumbent has not been improved for

MaxVNS ¼ jV j iterations, we change from a

neighborhood to another one when jV j=6 itera-

tions are performed with a same neighborhood

without improving s. The order in which the six

neighborhoods are considered can influence the

quality of the solution produced by the VNS al-

gorithm. We have tested the six following permu-
Table 3

The proposed VNS for the k-GCP

1. Initialisation

1.a Randomly generate a k-coloring of G
1.b Set IVNS ¼ 0 and t ¼ 1

1.c Consider a permutation p of f2; 3; 4; 6; 7; 8g

2. Repeat until IVNS ¼ jV j
Set ItVNS ¼ ItVNS þ 1

2.a Shaking. Generate a random solution s0 in N ðpðtÞÞ

2.b Local search. Apply Tabucol to s0 and stop when 10 � jV j h
Let s00 be the so obtained local optimum

2.c Move or not. If s00 is better than s, then set s ¼ s00, t ¼ 1 a

Table 4

Comparison of the orderings

Instance

R500.1 R500.2 R500.3 R500.4

k 49 49 49 49

Chain 2.5 4 3.75 3.25

Firework 1.75 5 4.5 4

Grenade 2 4.5 3.25 3.75

Stable set 2.5 4.5 3.75 3

Empty–refill 2.5 3.5 5.5 3.75

Empty class 2.5 3 5.25 3.75

p1 2.5 3.75 4.5 2.5

p2 1.5 4.5 3 2.25

p3 2 3 5.25 3.75

p4 3.5 4.5 2.75 2.25

p5 2 3.5 3.75 1.75

p6 2.25 3.25 5.25 3.75
tation of f2; 3; 4; 6; 7; 8g (among the 720 possible
ones):

• vertex first, class second permutations: p1 ¼
2; 3; 4; 6; 7; 8, p2 ¼ 4; 3; 2; 8; 7; 6;

• class first, vertex second permutations: p3 ¼
6; 7; 8; 2; 3; 4, p4 ¼ 8; 7; 6; 4; 3; 2;

• alternating permutations: p5 ¼ 2; 6; 3; 7; 4; 8, p6 ¼
6; 2; 7; 3; 8; 4.

The six permutations have been tested on the

nine instances described in Section 4.4. The results

are reported in Table 4. We first recall in the first

lines the results obtained using only one neigh-

borhood. The best average number of conflicting

edges is indicated with bold numbers. We then

report the results obtained by combining the six
ave been performed without improving the best known solution.

nd IVNS ¼ 0; otherwise, set t ¼ t þ 1 if IVNS is a multiple of djV j
6
e

DSJC500 le450.15c le450.15d flat300.28 flat300.26

49 15 15 31 31

4.5 0 0 1.75 0

4 0 0 2.25 0

4.25 0 0.25 1.5 0

5.5 0.25 2 2 0

4.25 2 0 2 1

4.75 11.5 16.75 1.25 0

3.25 0 0 2.5 0

5 0 0 2.25 0

4.25 0 0 2.25 0

5.75 0 0 2.75 0

5 0 0 2.25 0

5.75 0 0 0.75 0
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neighborhoods. Bold numbers indicate that the
considered permutations has produced solutions

which are in average at least as good as those

obtained using only one kind of neighborhood.

Notice first that the average number of conflicting

edges has been reduced for instances R500.1,

R500.3, R500.4, DSJC500 and flat300.28. It can

however be observed that no permutation clearly

appears as a winner. We have therefore decided to
choose a random permutation of f2; 3; 4; 6; 7; 8g at

point 1.c of the above VNS algorithm.
5. Comparisons between VNS and other methods

To further analyze the performance of the

proposed VNS algorithm, we have compared the
results it produces with those obtained by Tabucol

and the genetic hybrid algorithm (GH for short)

proposed by Galinier and Hao [13], which com-

bines a tabu search with a genetic algorithm. The

three algorithms have produced the same results

on all benchmark problems in [21], except on the

random graph DSJC1000.5 (with 1000 vertices

and edge density 0.5), on the flat graph flat1000.76

(with 1000 vertices and chromatic number 76), and

on the instances studied in Section 4. We therefore

only report results obtained on the nine instances

of Section 4, as well as on these two additional

graphs with 1000 vertices.

The proposed VNS algorithm as well as Tabu-

col have been run 4 times on each instance, and we

report in Table 5 the smallest k with which each
Table 5

Comparison between Tabucol, GH and our VNS method

Graph Tabucol VNS GH

DSJC500.5 51 49 48

DSJC1000.5 94 90 83

R500.1 50 49 –

R500.2 51 50 –

R500.3 51 50 –

R500.4 51 50 –

le450.15c 18 15 15

le450.15d 18 15 –

flat300.28 32 31 31

flat300.26 32 31 –

flat1000.76 93 89 83
algorithm had at least one successful run (a suc-
cessful run is one which finds a legal k-coloring for

the fixed k). The five results reported for GH are

taken from [13]. We do not know what can be

obtained by this algorithm on the 6 other in-

stances. In column best known we indicate the

smallest value of k for which a legal k-coloring has

ever been found by an algorithm [13]. Average

computational times for the VNS algorithm (over
the 4 runs) are given in the last column, for each

instance. Notice that Tabucol requires approxi-

mately the same CPU time since we stop each run

of Tabucol after MaxVNS �Maxtabu ¼ 10 � jV j2 it-

erations without improvement of the best solution

obtained so far. We have used a Silicon Graphics

Indigo2 machine (195 MHz, IP28 processor). To

get a point of comparison, we have run program
dfmax found at ftp://dimacs.rutgers.edu/pub/chal-

lenge/graph/benchmarks/volume/Machine/.

Our machine respectively needed 0.02, 0.69,

6.06, 37.65, 145.50 seconds to solve instances

r100:5:b, r200:5:b, r300:5:b, r400:5:b, r500:5:b, and
the Sun Sparc 10/Model 41 (using gcc and the

‘‘-O’’ optimization option) needed 0.04, 1.04, 9.06,

56.33, 218.69 seconds, respectively.
As can be observed, the VNS algorithm always

produces better results than Tabucol. Notice that

the VNS algorithm repeatedly uses Tabucol each

time it enters step 2.b. This clearly demonstrates

that the use of more than one neighborhood may

be very useful for escaping local optima. The VNS

algorithm is however not competitive with GH,

which means that a good exchange of information
Best known CPU time of VNS (minutes)

48 45

83 180

– 45

– 45

– 45

– 45

15 5

15 5

31 15

26 15

83 180

http://ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/volume/Machine/
http://ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/volume/Machine/
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among a population of solutions seems to be more
important than the use of several neighborhoods

on a unique solution.
6. Conclusion

We have developed an adaptation of the vari-

able neighborhood search method to the graph
coloring problem. Our VNS algorithm is however

not competitive with the hybrid algorithm GH

proposed by Galinier and Hao, which combines a

tabu search with a genetic algorithm, and which is

for the moment the best known coloring algo-

rithm. Their algorithm benefits from the advan-

tages of both solution approaches: while genetic

algorithms are well adapted for determining good
regions in the search space, local search techniques

have proven to be successful in determining high

quality solutions in identified good regions of the

search space. The next step for improving the re-

sults produced by the GH algorithm could be to

replace the tabu search used in GH by a VNS

method.
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