
Journal of Heuristics, 5, 145–158 (1999)
c© 1999 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

A Taxonomy of Evolutionary Algorithms
in Combinatorial Optimization

PATRICE CALÉGARI, GIOVANNI CORAY, ALAIN HERTZ,∗DANIEL KOBLER AND PIERRE KUONEN
Swiss Federal Institute of Technology, Department of Mathematics and Computer Science, CH-1015 Lausanne,
Switzerland
email: Patrice.Calegari@epfl.ch, Giovanni.Coray@epfl.ch, Alain.Hertz@epfl.ch, Daniel.Kobler@epfl.ch,
Pierre.Kuonen@epfl.ch

Abstract

This paper shows how evolutionary algorithms can be described in a concise, yet comprehensive and accurate
way. A classification scheme is introduced and presented in a tabular form called TEA (Table of Evolutionary
Algorithms). It distinguishes between different classes of evolutionary algorithms (e.g., genetic algorithms, ant
systems) by enumerating the fundamental ingredients of each of these algorithms. At the end, possible uses of the
TEA are illustrated on classical evolutionary algorithms.

Key Words: evolutionary algorithms, genetic algorithms, taxonomy

Introduction

One of the goals of our research project is to extract the fundamental ingredients of well-
known Evolutionary Algorithms (EA), such as Genetic Algorithms (GA), scatter search (SS)
and ant systems (AS), in order to study the role of these ingredients and their importance.
Another goal of the project will be to take this study as a basis in order to analyze the best
ways of implementing such algorithms on parallel machines.

This paper presents an attempt to classify EAs. A new scheme relying on a table, called
the Table of Evolutionary Algorithms(TEA), is introduced. The TEA does not provide,
nor does it replace, algorithm pseudo-codes. It merely informs about the algorithm’s key
elements. The primary goal of the TEA is to compare the principles of EAs, as opposed to
comparing their performances. It should never be forgotten that its aim is not to explain the
details of a given algorithm. It may however be used to describe algorithm classes, or to
compare the characteristics of two algorithms a priori considered to be different. The paper is
organized as follows. Section 2 introduces the main ingredients of EAs and Section 3 shows
how these ingredients can be interpreted at different levels. Then, Section 3.2 describes the
TEA classification. In Section 4 some very typical EAs are described using the TEA. At
the end, concluding Section 5 discusses possible evolution trends for the proposed classifi-
cation scheme.

∗Author to whom all correspondence should be addressed.

146 CALÉGARI ET AL.

1. Background and motivation

At the beginning of EA history, there was no ambiguity about what GAs were (Holland
(1975)). Later, however, different ingredients were added to enhance GAs’ performances,
leading to algorithms which substantially differ from their original principles (Davis (1991),
Goldberg (1989)). These algorithms are still often named GAs. Moreover, it is common to
find a GA described with the same pseudo-code as an EA in the literature (Heitk¨otter and
Beasley (1997)). Although the difference between these two classes of algorithms is usually
explained, it seems that the distinction is often not clear. One of the risks such a situation
leads to is that identical things are made several times under different names. This is the
reason why, despite the existing ad hoc tutorials, a systematic means of describing the main
ingredients of EAs in a short-hand way is a challenging task to investigate.

An example of the risk mentioned above is given by scatter search and GAs. As ex-
plained in (Glover (1994)), a number of evolutions of GAs used for solving optimization
problem were basic elements of the initial scatter search framework, and have therefore
been ‘rediscovered’.

In the literature, works very often focus on the efficiency, or the utility, of some kind
of operators (like crossover in GA for example (Spears and DeJong (1991), Syswerda
(1989))). In our opinion, the important points concerning the structure of the algorithms are
too often ignored. This could be schematized by saying that the interest is more brought to
the implementation of the EAs than to the mechanisms of the algorithm itself. For example,
in order to understand the ‘philosophy’ of an algorithm, the fact of using or not using a
mutation operator in a GA may appear more important than the way it is done.

2. Main ingredients of an EA

A first step is to identify what are the fundamental ingredients that determine the charac-
teristics of EAs.

2.1. Population

EAs were designed to solve combinatorial optimization problems. The fundamental dif-
ference between EAs and traditional methods, such as iterative or constructive algorithms,
is that EAs handle a set of candidate solutions. In the context of EAs, this set is called a
populationand candidate solutions are calledindividuals. The population size can either be
constant or change during its evolution. The result of an EA is the best individual ever met
in the population. As for traditional combinatorial optimization algorithms, an objective
function, called herefitness function, makes it possible to associate with each individual a
fitness valuethat reflects its quality. Starting from an initial population of individuals (gen-
erated randomly or with a constructive algorithm), evolutionary methods try to improve
the quality of the individuals by making the population evolve. The evolution is usually
achieved using information exchanges between individuals in order to create new ones or
to modify existing ones. Individuals that exchange information are called theparentsand
newly created or modified individuals are called theoffspring. The exchange of information

A TAXONOMY OF EVOLUTIONARY ALGORITHMS 147

is realized by operators that usually depend on the considered EA. In GA this is done by
crossovertechniques (Holland (1975)). Offspring is created using information coming from
several individuals present in the current population. The number of parents participating to
the creation of an offspring is an important ingredient of an EA since it defines how much
information is merged at once. This number is simply called thenumber of parents. For
example, in GAs the number of parent is constant and equal to 2, but there exist other EAs
in which the number of parents can vary during the execution of the algorithm.

In addition to the parents, the creation of the offspring may also use some global informa-
tion about the history of the population. This information represents the context in which the
algorithm evolves, and is calledhistory of the population. This context is generally handled
by the population, and is updated with respect to the past of the population. Under the term
‘history of the population’ we consider information, taking into account the evolution, that
cannot be gathered by looking at the current state of the population, but would need the
historical account of the last generations. An example for this would be given by GAs in
which the probability that is associated with each operator would be updated by taking into
account the results obtained during the last couple of generations.

The information sourcesof an offspring are described by two ingredients, the number
of parents and the history of the population (represented by the presence/absence of the
abbreviationhPopulation).

2.2. Neighborhood

An important question concerning the exchange of information between individuals is to
determine which individuals are allowed to make exchanges. To answer that question, a
neighborhood function can be associated with the populationP. A neighborhood function
is:

N : P→ P(P)

whereP(P) is the set of the subsets ofP. The neighborhood function associates with
each individuale a subsetN(e) of P called its neighborhood. This relationship must be
symmetric:e1 ∈ N(e2) implies e2 ∈ N(e1). Such a neighborhood function can take the
form of a graph in which a vertex is associated to each individual and there is an edge
between two individualse1 ande2 if e1 ∈ N(e2).

An information exchange operator is applied to a subsetQ ⊆ P of parents such that
e1 ∈ N(e2) for each pair of individuals{e1, e2} in Q. If N(e)∪{e} = P ∀e∈ P, the operator
can be applied to any combination of individuals andP is said to beunstructured. Otherwise,
the population is said to bestructured. The most common structure is a grid.

2.3. Evolution of a population

Usually, the evolution of the population is achieved through a succession of evolution steps
calledgenerations. If the whole population can be changed from one generation to another,1

an evolution step is said to be agenerational replacement. If only a part of the population

148 CALÉGARI ET AL.

is changed from a generation to another, the evolution is said to besteady state. With the
use of parallel programming for the EAs,asynchronousevolution has appeared. In this last
case, each individual is continuously changed without checking whether the others are also
changed. For example in an asynchronous GA, the next individual that is to be replaced
by an offspring can still be used between the beginning and the end of the creation of the
offspring.

2.4. Solution encoding

There exist many ways to encode individuals. Even if chromosome-like strings are often
used, the encoding method is mainly determined by the information that should be ex-
changed by individuals. The kind of information that is exchanged is on a higher level,
whereas the way to do it (a crossover operator description, for example) may be considered
on a lower level. The information exchange operator, and its coding, will be determined
on the basis of the kind of information that has to be exchanged. However the kind of
information to exchange in order to have an efficient EA depends on the problem consi-
dered. Indeed, once one has decided what information is important to exchange, the basic
blocks of information, one can choose any encoding method and design the information ex-
change operator with respect to this encoding and the information blocks. Of course, some
pairs (encoding, information exchange operator) may be very inefficient on a computer, but
the choice of this pair is now only an implementation problem. Since encoding is highly
problem-dependent,2 this important feature will not be included in our general descriptive
table.

Nevertheless, the encoding method has an impact on the behavior of an algorithm. It is
important to describe these effects. Depending on the encoding method and the information
exchange mechanism, newly created or modified individuals can represent infeasible solu-
tions. An infeasible solution is a candidate solution that is not a solution to the considered
problem. In such a case, individuals representing the infeasible solutions can be repaired,
penalized, or killed. Individuals, that are repaired, are transformed so as to represent a so-
lution to the problem. The fitness value of penalized individuals acquires a penalty that can
depend on the distance between the candidate solution represented and a feasible solution.
Individuals that are killed are simply deleted, or replaced by other new individuals. It should
be noticed that some EAs can, by using convenient encoding and information exchange,
avoid the creation of infeasible solutions.

2.5. Individual history

As explained in Section 2.1, information about the history of the population may be stored
during the run of the algorithm. A similar information may exist at the individual level:
each individual has some evolving information that does not concern the problem being
solved but how the individual behaves in a certain situation (what is its mutation rate for
example). This information is history at an individual level, calledhistory of the individual,
and is represented byhIndividual. Here again, the history covers information that cannot be
determined by the current state of the individual.

A TAXONOMY OF EVOLUTIONARY ALGORITHMS 149

Notice that this notion also applies to a generational replacement algorithm. Indeed, the
history of a newly created individual is then defined on the basis of the history of its parents.
An example of such a history is given by the Evolution Strategies (B¨ack and Schwefel
(1993)).

2.6. Individual improving

A way to bring significant improvement in the results obtained by an EA is to use hill-
climbing or more advanced heuristic techniques at some stage of the computation (Glover
(1977)). Some EAs thus apply a more or less sophisticatedimproving algorithmon newly
created individuals. An improving algorithm is any change applied to a single indivi-
dual, without using information of other individuals, in order to improve its fitness value.
The improving algorithm can be a simple operation or a more sophisticated combinatorial
algorithm (e.g., tabu search, simulated annealing).3

2.7. Noise

One of the major problem encountered with combinatorial algorithms is the premature
convergence of the solution in a local optimum. In order to steer individuals away from
local optima, EAs introduce somenoisein the population. This noise can be generated by
randomly perturbing some individuals, like the mutation operator does in a GA for example.
The only requirement is that this noise has unexpected results on the fitness of an individual,
in the sense that it does not necessarily improve it.

In the case of the scatter search approach (and its path relinking generalization), a some-
what different philosophy is used to produce new individuals—for the purpose of moving
away from individuals that may cluster around local optima or some more complex region
of attraction. Instead of using noise to produce unpredictable outcomes, adiversification
strategyis used to systematically produce individuals that lie in new regions. The notion of
diversification derives from the tabu search literature, where it is contrasted with randomi-
zation. Rather than seeking unpredictability, diversification seeks to attain an objective that
implies a special form of order, such as maximizing a minimum weighted separation from
chosen collections of points previously generated. (For a fuller discussion of the diversifica-
tion concept, and its relation to the counterbalancing concept of intensification, see (Glover
and Laguna (1997))).

2.8. The basic TEA

In order to be aware of the principles of an EA compared to another EA, the ingredients
that characterize them must be easily readable. We therefore propose to create a one-row
table that allows such comparisons. The main idea of the table is to have one column per
ingredient developed in this section. At each position, an entry, that can be a number or
an abbreviate information, gives the necessary indication for the corresponding criteria.
Figure 1 shows such an empty table.

150 CALÉGARI ET AL.

Figure 1. The basic TEA.

(1) a ‘Yes’ or a ‘No’, depending if the size of the population is constant or not.
(2) a ‘Yes’ or a ‘No’, depending if the population is structured or not.
(3) the number of parents for each offspring (nothing if this number is not fixed). The

abbreviationhP is added to the number if the history of the population is used.
(4) one of the four abbreviations:nvr (when infeasible individuals can never appear),pen

(when the infeasible individuals are penalized),rep (when the infeasible individuals
are repaired) ordie (when the infeasible individuals are killed).

(5) a ‘Yes’ or a ‘No’, depending if the history of the individuals is used by the algorithm.
(6) a ‘Yes’ or a ‘No’, depending if an improving algorithm is applied to the individuals or

not.
(7) a ‘Yes’ or a ‘No’, depending if noise is used or not.
(8) one of the three abbreviations:gr (when generational replacement is used),ss(when

steady state is used) oras(when asynchronous mode is used).

For a first example, we use the very simple genetic algorithm described in Chapter 3 of
(Goldberg (1989)). The following scheme summarizes this algorithm:

determine an initial population P0 of p individuals (p even);
generation = 0;
repeat

generation = generation + 1;
while Pgeneration has less than p individuals

select indi1 and indi2 in Pgeneration−1;
(offsp1, offsp2)=crossover(indi1, indi2);
put offsp1 and offsp2 in Pgeneration;

endwhile
for each individual in Pgeneration do

mutation(individual);
endfor

until generation ≥ max generation.

The basic TEA associated with this algorithm is shown in figure 2.

A TAXONOMY OF EVOLUTIONARY ALGORITHMS 151

Figure 2. The basic TEA for a simple genetic algorithm.

3. Hierarchical ingredients

3.1. Further description levels

Ingredients that were described in the previous section concern the individual level. Some
other description levels may however be considered, in order to handle several populations,
or even sets of populations. This section shows how the notions explained in Section 2 for
the individual level can be understood at other description levels.

Usually, the notion of parents is only used when a new individual is created by combining
other individual information. However, this notion can be generalized to any exchange of
information. For example, consider the case where a population is split into sub-populations.
A sub-population obtained by selecting a collection of individuals from two sub-populations
I1 and I2 can be considered as the offspring, whileI1 and I2 can be considered as the
parents.

In fact, most of the ingredients of the previous section remain correct if ‘individual’ is
replaced by ‘sub-population’. With this in mind, the previous section can describe another
level of an algorithm using sub-populations. In order to look at an EA in this manner, one
must define what an elemente is and in what setsS these elements are grouped. At the
level considered, the EA works on a set of these elements. To illustrate what we mean,
we take again the well-known GAs, and more specifically an island-based GA (IGA). In
such an algorithm, at the lower level an elemente is an individual and individuals are
grouped to formislands(the setsS). Since the IGA works on each island independently,
we can consider a level of islands where an elemente is an island (the setSof the previous
level) and where these islands are grouped to form anarchipelago(the new setS). In the
case of the IGA, only one archipelago is considered, but we could imagine a process that
clusters archipelagi into ‘meta-archipelagi’. In such a case, we can still apply the same
reasoning as for the previous level. Therefore, the previous section remains valid almost
without modification for all levels. For instance, in the IGA case, the information exchange
operator, corresponding to the crossover operator at the individual level, can be migration
at the island level, as mentioned above. A definition for the ‘fitness’ of an island can be the
mean fitness of the individuals in this island. Thus, an improving algorithm can improve this
mean fitness (without using the other islands). The only ingredient of the previous section
that cannot be easily generalized to the upper level, is the feasibility of an element: it is

152 CALÉGARI ET AL.

not clear what an infeasible island can be. But the possibility is left for a suitable definition
needed in future developed EAs.

Even if they do not exist yet (as far as we know), EAs can be imagined with even more
levels. The IGA can for example be extended to a three-level algorithm, an archipelago-
model GA, in which there are several archipelagi. Algorithms with more than two levels do
not necessarily give better results, but they can enter in the above described framework.

A grouping concept whose function operates a bit differently from the function of islands
derives from creating clusters of individuals that share particular features (Glover (1977)).
This gives rise to strategies where ‘within cluster’ operations yield forms of intensification,
while ‘across cluster’ operations yield forms of diversification.

Since, as explained in Section 2.1, an individual represents a candidate solution to the
problem considered, we may say that the individual level is the basic level of an EA. In
that case, the level in which an element is a set of individuals can be seen as a level above
this basic level. More generally, if the elementse of a given levell are more elaborate than
the elementse′ of a levell ′, that is if the elementse′ are components of the elementse, the
level l can be considered as being higher thanl ′. But this can be extended to the other side
of the basic level. Let us for example consider a set of chunks of information, callede′, that
describe an individuale through the ‘state’ of this set. This implies the use of a procedure
to reconstruct a solution from the set of chunks (Rochat and Taillard (1995), Kuntz and
Snyers (1994), Zufferey and Hertz (1997)). In addition to the evolution of the individuals
e in a population, each of these sets of elementse′ (one set for each individual) may also
evolve as in an evolutionary algorithm. Thus the description of the EA may have a level
where the setsS′ of elementse′ are individuals (S′ =e).

3.2. The classification table

We are now ready to understand the complete classification table, based on the basic TEA
introduced in Section 2.8. In this extended table, one row is filled per description level. An
additional column is inserted on the left side in order to name the description level of each
row. Figure 3 shows such a table with two description levels.

Column (0) names a description level by making explicit the setSof elementseconcerned
in the corresponding row. For example, at the lower level in a IGA, ‘Island(Individual)’

Figure 3. TEA: the table for evolutionary algorithm classification.

A TAXONOMY OF EVOLUTIONARY ALGORITHMS 153

Figure 4. Example of the use of the1-feature.

would mean that in the first row the elementse are the ‘Individuals’ grouped into
‘Islands’.

The TEA is filled like explained in Section 2.8 for the basic TEA, except that we
now consider sets and elements instead of populations and individuals. For example,
columns (2) and (5) are now filled with:

(2) a ‘Yes’ or a ‘No’, depending if the setS is structured or not.
(5) a ‘Yes’ or a ‘No’, depending if the history of the elementse is used by the algorithm.

In the case the corresponding ingredient has no sense at a given level, a division contains
the character ‘/’.

In standard EAs, the one-to-one relation between the levels of the algorithm and the rows
of the table is true. But this table is more flexible: several rows are possible for a given
level. For example, two different types of islands can be used and can be described by
a row named ‘Island1(Individual)’ and a row named ‘Island2(Individual)’, grouped with
‘Archipelago(Island1, Island2)’.

In order to improve the results, algorithms often use some kind of diversification in one
of the ingredients we have presented. For example, one can imagine that the size of the
population is constant most of the time, but that it is decreased from time to time and then
brought back to its original value. If taken literally, one should put a ‘No’ in the column
entitled “|S| = cst”. But since, the overall idea is to have a constant population, we propose
to associate ‘Yes’ with a special symbol1 (for Diversification) in this column. Figure 4
shows how to describe a population whose size is decreased every now and then. How
exactly the diversification is done can be commented beside the table.

4. Examples

This section presents five typical examples of EAs in pseudo-code, together with their TEA.

4.1. A classical genetic algorithm

We use again the simple genetic algorithm presented in Section 2.8, but consider the TEA
in its standard shape. The TEA associated with this algorithm is shown in figure 5.

154 CALÉGARI ET AL.

Figure 5. A simple genetic algorithm.

4.2. An island-based genetic algorithm

The second example is a steady-state island-based GA, that uses migration everym
generations:

determine k initial islands [P0, . . . , Pk−1];
generation = 0;
repeat

generation = generation + 1;
for each island i do

select indi1 and indi2 in Pi ;
(offsp1, offsp2)=crossover(indi1, indi2);
mutation(offsp1);
improve(offsp1);
mutation(offsp2);
improve(offsp2);
replace two individuals of Pi by offsp1 and offsp2;

endfor
if generation is multiple of m then

for each island i do
migrate the best individual of island Pi to island P(i+1)mod k;

endfor
endif

until stopping condition is met.

If we define the fitness of an island as the mean fitness of the individuals in this island,
then the TEA associated with this algorithm is shown in figure 6.

4.3. A scatter search

The third example is a basic scatter search (Glover (1994)) that can be summarized by the
following scheme:

A TAXONOMY OF EVOLUTIONARY ALGORITHMS 155

Figure 6. An island-based genetic algorithm.

Figure 7. A basic scatter search.

determine an initial set P0 of points;
i = 0;
repeat

i = i + 1;
determine a set Ti of points by linear combinations of points in Pi ;
transform the points in Ti to get a set Fi of feasible solutions;
improve the solutions in Fi to get a set Di of points;
select |P0| points in Pi−1 ∪ Di to form Pi ;

until stopping condition is met.

The TEA associated with this algorithm is shown in figure 7. Notice that the position in
TEA concerning the information sources is empty, since the number of parents used is not
fixed.

4.4. An ant algorithm

We now consider an ant algorithm. We only give here a sketch of such an algorithm, but
detailed description and definitions of the different terms can be found in (Colorni, Dorigo
and Maniezzo (1991), Colorni, Dorigo, and Maniezzo (1992)):

156 CALÉGARI ET AL.

Figure 8. An ant algorithm.

initialise the trails;
cycle = 0;
repeat

cycle = cycle + 1;
for each antdo

construct a solution sa using trails and visibility;
evaluate the objective function at sa;

endfor
update the trails;

until cycle ≥ max cycle.

The corresponding TEA is shown in figure 8. Notice that the only information source for
an ant is the history of the population (called trails in ant algorithms). Indeed, during the
construction of a solution, an ant does not use the solutions provided by some given ants, but
uses the objective function values obtained by the whole population during a certain number
of cycles. Notice that the absence of parents in the information exchange operator leaves the
notion of structured population undefined. This is why we have a ‘/’ in the corresponding
position of this TEA.

4.5. An emergent colonization algorithm

The last example illustrates the use of chunks of information. Consider thek-coloring
problem where the vertices of a graphG have to be colored with a given numberk of
colors, so that the number of edges having both endpoints with the same color is minimized.
The emergent colonization algorithm described in (Zufferey and Hertz (1997)) handles a
population of agents located on vertices ofG, each agent having a fixed color chosen in
{1, . . . , k}. At each iteration of the algorithm, two agents on adjacent vertices exchange their
position, according to some rules. Given a population of agents, a coloring ofG is obtained
by assigning to each vertexv the color that is the most frequent among the agents onv. For
more details, the reader is referred to (Zufferey and Hertz (1997)). The corresponding TEA
is shown in figure 9.

5. Conclusion

We present a new approach to Evolutionary Algorithms with the purpose of highlighting
the main distinguishing features of an EA and offering reflections about the way we see

A TAXONOMY OF EVOLUTIONARY ALGORITHMS 157

Figure 9. An emerging colonization algorithm.

meta-heuristics in general, and EAs in particular. We introduced a table (TEA: Table of
Evolutionary Algorithms) for the description of each typical algorithm. We illustrated how
existing EAs can be characterized using our TEA. The TEA has been designed in order
to be extensible to yet unknown classes of EAs. It makes explicit the hierarchical notion
of ‘level’ in EAs; therefore, the TEA can also be helpful for the design of new classes of
EAs. Indeed, by exploring many different ways to ‘fill out’ the TEA, one may discover new
classes of EAs by their descriptive characterization. In the end it should be stressed that the
TEA is not a static tool. In concert with the possible evolution of EAs, the TEA may evolve
in order to take into account new ingredients that will eventually become popular in EAs.

Acknowledgments

The research presented in this paper were done in the framework of the project LEOPARD
(parallel population-based methods for combinatorial optimization). It has been funded by
the Swiss National Science Fund (# 21-45070.95/1). We wish to thank Fred Glover for his
precious comments and advices on a previous version of this article, and also an anonymous
referee for helpful comments.

Notes

1. With the possible exception of one or two individuals of the population.
2. But it could be introduced in a problem-specific table for EAs.
3. In such case, authors use the term of hybrid algorithms.

References

Bäck, Th. and H.-P. Schwefel. (1993). “An Overview of Evolutionary Algorithms for Parameter Optimization,”
Evolutionary Computation1, 1–23.

Colorni, A., M. Dorigo, and V. Maniezzo. (1991). “Distributed Optimization by Ant Colonies.” In MIT Press (ed.),
First European Conference on Artificial Life, Bradford Books, pp. 134–142.

Colorni, A., M. Dorigo, and V. Maniezzo. (1992). “An Investigation of Some Properties of an Ant Algorithm.” In
R. Männer and B. Manderick (eds.),Second European Conference on Parallel Problem Solving from Nature.
Brussels: Elsevier Publishing, pp. 509–520.

Davis, L. (1991).Handbook of Genetic Algorithms. New York: Van Nostrand Reinhold.

158 CALÉGARI ET AL.

Glover, F. (1977). “Heuristics for Integer Programming Using Surrogate Constraints,”Decision Sciences8,
156–166.

Glover, F. (1994). “Genetic Algorithms and Scatter Search: Unsuspected Potentials,”Statistics and Computing4,
131–140.

Glover and M. Laguna. (1997).Tabu Search. Norwell, MA: Kluwer Academic Publishers.
Goldberg, D. (1989).Genetics Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley:

Publishing Company.
Heitkötter, J. and D. Beasley. (1997).The Hitch-Hiker’s Guide to Evolutionary Computation (FAQ for

comp.ai.genetic). URL:ftp://ftp.krl.caltech.edu/pub/EC/Welcome.html.
Holland, J. (1975).Adaptation in Natural and Artificial Systems. University of Michigan Press.
Kuntz, P. and D. Snyers. (1994). “Emergent Colonization and Graph Partitioning,”Third International Conference

of Adaptative Behavior. MIT Press, pp. 494–500.
Rochat, Y. and E. Taillard. (1995). “Probabilistic Diversification and Intensification in Local Search for Vehicle

Routing,”Journal of Heuristics1, 147–167.
Spears, W.M. and K. DeJong. (1991). “An Analysis of Multi-Point Crossover.” In G.J.E. Rawlins (ed.),Foundations

of Genetic Algorithms.Morgan Kaufmann, pp. 301–315.
Syswerda, G. (1989). “Uniform Crossover in Genetic Algorithms.” In J.D. Schaffer (ed.),Third International

Conference on Genetic Algorithms.Morgan Kaufmann, pp. 2–9.
Zufferey, N. and A. Hertz. (1997). “Coloration de graphes `a l’aide de fourmis.” Technical Report, EPFL, Lausanne,

Switzerland.

