
An IP-based swapping algorithm for the
metric dimension and minimal doubly
resolving set problems in hypercubes

Alain Hertz

Polytechnique Montréal and GERAD, Canada

alain.hertz@gerad.ca

March 13, 2017

Abstract

We consider the problems of determining the metric dimension and the min-
imum cardinality of doubly resolving sets in n-cubes. Most heuristics developed
for these two NP-hard problems use a function that counts the number of pairs
of vertices that are not (doubly) resolved by a given subset of vertices, which
requires an exponential number of distance evaluations, with respect to n. We
show that it is possible to determine whether a set of vertices (doubly) resolves
the n-cube by solving an integer program with O(n) variables and O(n) con-
straints. We then demonstrate that small resolving and doubly resolving sets
can easily be determined by solving a series of such integer programs within a
swapping algorithm. Results are given for hypercubes having up to a quarter of
a billion vertices, and new upper bounds are reported.

1 Introduction

Consider a connected undirected graph G, and let d(u, v) be the distance between
vertices u and v in G. A vertex x resolves two vertices u and v if d(x, u) 6= d(x,w). A
subset W of vertices resolves G if every two vertices in G are resolved by some vertex
of W . The metric dimension of G, denoted β(G), is the minimum cardinality of a
resolving set for G. The problem of determining the metric dimension of a graph was
introduced independently by Slater [12] and by Harary and Melter [5]. It arises in
many areas, including robot navigation [6], telecommunication [1] and chemistry [4].

Cáceres et al. [2] have introduced the notion of doubly resolving sets : vertices
x and y doubly resolve vertices u and v if d(u, x) − d(u, y) 6= d(v, x) − d(v, y). A
subset W of vertices doubly resolves G if every two vertices in G are doubly resolved
by two vertices of W . The minimum cardinality of a doubly resolving set for G is

1

2

denoted Ψ(G). Clearly, every doubly resolving set is a resolving set, which implies
β(G) ≤ Ψ(G) for all graphs G.

Determining β(G) and Ψ(G) are NP-hard problems, as proved in [6] and [8], re-
spectively. In this paper, we focus on n-cubes for which the computation of β(G)
and Ψ(G) is particularly challenging, due to the exponential growth of the number of
vertices, with respect to n. Various heuristics and metaheuristics have been developed
for computing β(G) and Ψ(G) in n-cubes, including greedy algorithms [11], genetic
algorithms [7, 8], variable neighborhood search [9] and particle swarm optimization
[10]. They all use an objective function f(W) which counts the number of pairs of
vertices that are not (doubly) resolved by a given subset W of vertices. Hence, W is
a (doubly) resolving set if and only if f(W) = 0. Determining f(W) requires O(22n)
comparisons of distances, which is time consuming for large values of n. Instead of
computing f(W), we rather determine whether f(W) in strictly positive by solving an
integer programming problem (IP for short) with O(n) variables and O(n) constraints.
We show that small (doubly) resolving sets can easily by generated by solving a series
of such IPs.

The next section contains basic definitions and properties on β(G) and Ψ(G) in
hypercubes. The IP model is described in Section 3, while a swapping heuristic based
on repeated solutions of such IPs is proposed in Section 4. Computational experiments
are reported in Section 5.

2 Definitions and properties

For a positive integer n, let Qn be the n-dimensional hypercube, also called n-cube,
with vertex set {0, 1}n. The Hamming distance d(x,y) between two vertices x =
(x1, . . . , xn) and y = (y1, . . . , yn) is the number of integers i such that xi 6= yi. A
graph can be associated with Qn by linking two vertices x and y with an edge if and
only if d(x,y) = 1. In what follows, we use βn (instead of β(Qn)) and Ψn (instead
of Ψ(Qn)) for the minimum cardinality of a resolving and doubly resolving set in
Qn. For x = (x1, . . . , xn) in Qn, we denote x̄ = (1 − x1, . . . , 1 − xn) its opposite (or
complement). Also, for two vertices x = (x1, . . . , xs) ∈ Qs and y = (y1, . . . , yt) ∈ Qt,
we denote xy the vertex (x1, . . . , xs, y1, . . . , yt) in Qs+t. For example, for x ∈ Qn, x(0)
is the vertex of Qn+1 obtained from x by adding 0 as nth component. The following
interesting upper bound on βn was proved in [2].

Property 2.1 βn ≤ βn−i + Ψi − 1 for all i = 1, . . . , n− 1, n ≥ 2.

The proof of this upper bound on βn is that if S resolves Qn−i, T doubly resolves
Qi, s ∈ S, and t ∈ T , then {sv : v ∈ T}∪ {at : a ∈ S} resolves Qn. Since β1 = 1 and
Ψ1 = 2 (which is easy to check), we get

βn ≤ min{Ψn−1, βn−1 + 1}. (1)

In particular, if W = {x1, . . . ,x|W |} is a known resolving set for Qn−1, it is easy
to construct a resolving set W ′ for Qn with |W ′| = |W | + 1. Indeed, let yj = xj(0),
j = 1, . . . , |W |, and let y|W |+1 = x1(1). Then W ′ = {y1, . . . ,y|W |+1} resolves Qn.

3

For example, since W = {(0, 0), (0, 1)} resolves Q2, W
′ = {(0, 0, 0), (0, 1, 0), (0, 0, 1)}

resolves Q3.
Similarly, knowing that W = {x1, . . . ,x|W |} doubly resolves Qn−1 implies that

W ′ = {xj(0) : 1 ≤ j ≤ |W |} resolves Qn. For example, since W = {(0), (1)} doubly
resolves Q1, W

′ = {(0, 0), (1, 0)} resolves Q2.
As noticed in [11], if W resolves Qn, then the set obtained from W by replacing

one of its element x by its opposite x̄ also resolves Qn. Also, it is easy to prove that
if W resolves Qn, then the set obtained by removing the kth component (1 ≤ k ≤ n)
to every vertex in W resolves Qn−1, which proves that βn ≥ βn−1. These observations
lead to the following property [3].

Property 2.2 If a resolving set W for Qn contains two vertices x and y such that
d(x,y) = 1 or d(x,y) = n− 1, then βn−1 ≤ |W | − 1.

Proof. Assume, W contains two vertices x and y such that d(x,y) = 1, and let k be
such that xk 6= yk. The setW ′ obtained by removing the kth component to every vertex
of W resolves Qn−1. Since (x1, . . . , xk−1, xk+1, . . . , xn) = (y1, . . . , yk−1, yk+1, . . . , yn),
W ′ contains at most |W | − 1 vertices, which proves that βn−1 ≤ |W | − 1.

If W contains two vertices x and y such that d(x,y) = n−1, then the set obtained
by replacing x by x̄ resolves Qn with d(x̄,y) = 1, and we have proved above that this
implies βn−1 ≤ |W | − 1.

As shown in [8], the following property if helpful when trying to identify doubly
resolving sets.

Property 2.3 A set W = {x1, . . . ,x|W |} doubly resolves Qn if and only if for every
pair u,v of distinct verties in Qn there exists an integer j ∈ {2, . . . , |W |} such that
d(u,x1)− d(u,xj) 6= d(v,x1)− d(v,xj).

In other words, among the pairs xj ,xk of vertices in W that doubly resolve u and
v, there is at least one such pair that contains x1.

Given two vertices x = (x1, . . . , xn) and y = (y1, . . . , yn) in Qn, we consider two
ways of computing d(x,y). The first one is purely algebraic and is based on the fact
that if b ∈ {−1, 0, 1} then |b| = b2. We therefore have :

d(x,y) =
n∑

i=1

|xi − yi| =
n∑

i=1

(xi − yi)2 =
n∑

i=1

xi(1− 2yi) +
n∑

i=1

yi. (2)

The second way is based on the solution of the following constrained maximization
problem, where x and y are given vectors, while the components of q are variables:

max
n∑

i=1

qi (3)

s.t. qi ≤ xi + yi ≤ 2− qi ∀i = 1, . . . , n (4)

qi ∈ {0, 1} ∀i = 1, . . . , n (5)

Clearly, d(x,y) is the optimal value of the above IP. Indeed, constraints (4) impose
qi = 0 when xi = yi, while qi can take value 0 or 1 when xi 6= yi. By maximizing∑n

i=1 qi, we therefore count the number of indices i such that xi 6= yi, which is exactly
the distance between x and y.

4

3 An IP model

Given a subset W = {x1, . . . ,x|W |} of vertices of Qn, we are interested in determining
if W resolves Qn. This can be done by solving the following constrained maximization
problem:

max d(u,v) (6)

s.t. d(xj ,u) = d(xj ,v) ∀j = 1, . . . , |W | (7)

u,v ∈ {0, 1}n (8)

If W resolves Qn, then u must be equal to v, which implies d(u,v) = 0. Otherwise,
constraints (7) are satisfied by at least two distinct vertices u and v, which means
that d(u,v) > 0. Hence the optimal value is strictly positive if and only if W does
not resolve Qn. Using equations (1), we can rewrite (7) as

n∑
i=1

ui(1− 2xji) +
n∑

i=1

xji =
n∑

i=1

vi(1− 2xji) +
n∑

i=1

xji ∀j = 1, . . . , |W |

⇔
n∑

i=1

(1− 2xji)(ui − vi) = 0 ∀j = 1, . . . , |W |

Also, d(u,v) can be determined with the model (3)-(5), which means that one can
determine if W = {x1, . . . ,x|W |} resolves Qn by solving the following integer program:

max
n∑

i=1

qi (9)

s.t. qi ≤ ui + vi ≤ 2− qi ∀i = 1, . . . , n (10)
n∑

i=1

(1− 2xji)(ui − vi) = 0 ∀j = 1, . . . , |W | (11)

qi, ui, vi ∈ {0, 1} ∀i = 1, . . . , n (12)

The problem of determining if a set W = {x1, . . . ,x|W |} of vertices doubly resolves
Qn is similar. It follows from Property 2.3 that the optimal value of the following
constrained maximization problem is strictly positive if and only if W does not doubly
resolve Qn:

max d(u,v) (13)

s.t. d(u,x1)− d(u,xj) = d(v,x1)− d(u,xj) ∀j = 2, . . . , |W | (14)

u,v ∈ {0, 1}n (15)

Using equations (1), we can rewrite (14) as

n∑
i=1

2(xji − x1i)(ui − vi) = 0 ∀j = 2, . . . , |W | (16)

Hence, one can determine if W = {x1, . . . ,x|W |} doubly resolves Qn by solving the
integer program with objective (9) and constraints (10), (16) and (12).

5

4 An IP-based swapping algorithm

In order to determine small resolving sets for Qn, we show in this section that it is
possible to embed the integer program of the previous section in a swapping algorithm.
More precisely, assume we know a resolving set V for Qn−1. As shown in Section 2,
it is easy to construct a resolving set of size |V | + 1 for Qn. We try to determine a
resolving set W for Qn of size |W | = |V | by choosing an initial set W of |V | vertices in
Qn, and by repeatedly replacing a vertex x ∈ W with a vertex y /∈ W until W resolves
Qn, or a stopping criterion is met. In order to guide the search, vertex y is chosen so
that it resolves as few pairs of vertices in W as possible. Vertex y is determined by
solving the following constrained minimization problem:

min

|W |−1∑
j=1

|W |∑
k=j+1

pjk (17)

s.t. 1 ≤ d(xj ,y) ≤ n− 1 ∀j = 1, . . . , |W | (18)

− npjk ≤ d(xj ,y)− d(xk,y) ≤ npjk ∀1 ≤ j < k ≤ |W | (19)

pjk ∈ {0, 1} ∀1 ≤ j < k ≤ |W | (20)

y ∈ {0, 1}n (21)

Constraints (18) impose y /∈ W and ȳ /∈ W . Constraints (19) and (20) imply
pjk = 1 if and only if y resolves the pair xj ,xk of vertices. Using equations (1), we
can rewrite (18) and (19) as

1−
n∑

i=1

xji ≤
n∑

i=1

(1− 2xji)yi ≤ n− 1−
n∑

i=1

xji ∀j = 1, . . . , |W | (22)

− npjk ≤
n∑

i=1

(xji − xki)(1− 2yi) ≤ npjk ∀1 ≤ j < k ≤ |W | (23)

One can then combine the integer program of the previous section with the above
one to not only detect if W = {x1, . . . ,x|W |} resolves Qn, but also determine a vertex
y to add to W . The resulting maximisation problem reads as follows, and will be
called IPr

1, with minimum value zr1:

max zr1 =
n∑

i=1

n2qi −
|W |−1∑
j=1

|W |∑
k=j+1

pjk (24)

s.t. qi ≤ ui + vi ≤ 2− qi ∀i = 1, . . . , n (10)
n∑

i=1

(1− 2xji)(ui − vi) = 0 ∀j = 1, . . . , |W | (11)

1−
n∑

i=1

xji ≤
n∑

i=1

(1− 2xji)yi ≤ n−1−
n∑

i=1

xji ∀j = 1, . . . , |W | (22)

− npjk ≤
n∑

i=1

(xji − xki)(1− 2yi) ≤ npjk ∀1 ≤ j < k ≤ |W | (23)

qi, ui, vi, yi ∈ {0, 1} ∀i = 1, . . . , n (25)

pjk ∈ {0, 1} ∀1 ≤ j < k ≤ |W | (20)

6

Since β1 = 1 and βn ≤ βn−1 + 1, we have βn ≤ n for all n ≥ 1, and resolving sets
of size n for Qn are easy to generate. We will therefore only consider sets W with
strictly less than n vertices, which means that the value of objective (17) is always
strictly smaller than n(n− 1)/2. As a consequence, the new objective (24) is strictly
positive if and only if at least one variable qi is strictly positive, which is equivalent
to say that W does not resolve Qn.

Let β̄n and Ψ̄n denote the best known upper bounds on βn and Ψn, respectively.
Let V be a resolving set for Qn−1 with |V | = β̄n−1 vertices. As explained above, we
try to determine a resolving set W of size |W | = |V | for Qn. It follows from Property
2.2 that if such a resolving set exists and β̄n−1 = βn−1, then 1 < d(x,y) < n − 1 for
all pairs x,y of vertices in W . We can therefore increase the left bound and decrease
the right one of equations (22) to obtain:

2−
n∑

i=1

xji ≤
n∑

i=1

(1− 2xji)yi ≤ n−2−
n∑

i=1

xji ∀j = 1, . . . , |W | (22’)

The resulting integer program, where (22’) replaces (22) will be called IPr
2, with

minimum value zr2.
When looking for doubly resolving sets, we replace equations (11) by (16). Since

every doubly resolving set is a resolving set, we also use equations (22’) instead of (22)
when trying to generate a doubly resolving set for Qn with β̄n−1 vertices. The integer
programs obtained by replacing (11) by (16) in IPr

1 and IPr
2 are called IPd

1 and IPd
2,

with minimum values zd1 and zd2 , respectively.
The vertex x that is removed from W and replaced by y in the swapping algorithm

is chosen at random. The following algorithm determines resolving sets for Qn with
n = nmin, . . . , nmax, assuming that a resolving set Wnmin−1 is known for Qnmin−1. For
example, for nmin = 2 we can set W1 = {(0)}.

Algorithm that generates resolving sets

Data: A resolving set Wnmin−1 for Qnmin−1;
Result: Resolving sets Wn for Qn, n = nmin, . . . , nmax;

1 for n = nmin to nmax do
2 Set W = {x(0) : x ∈ Wn−1};
3 Choose a vertex x ∈ Wn−1 at random, and set Wn = W ∪ {x(1)};
4 while zr2 > 0 and no stopping criterion is met do
5 Choose a vertex x ∈ W at random, and replace it with y;
6 end
7 if zr2 ≤ 0 then Set Wn = W ;

8 end

Instructions 2-3 build a set Wn with |Wn−1|+1 vertices by adding 0 as nth component
to every vertex in Wn−1, and by adding 1 as nth component to one vertex x ∈ Wn−1.
As observed in Section 2, Wn resolves Qn. The initial set W , with |Wn−1| vertices,
to which swaps are performed, contains all but the last vertex of Wn. Swapping
(instructions 4-6) occurs until a stopping criterion is met, or W resolves Qn. Vertex

7

y that replaces vertex x is determined by solving IPr
2 (i.e., the integer program with

equations (22’) instead of (22)) because we are trying to determine a resolving set for
Qn of size |Wn−1|. At the end of the while loop, instruction 7 sets Wn equal to W
only if the optimal value zr2 of the integer program is at most equal to 0, since this
indicates that W resolves Qn.

The algorithm that generates doubly resolving sets is similar to the previous one,
except that we don’t know how to build such a set having Ψ̄n−1 + 1 vertices. Given a
doubly resolving set V for Qn−1, let ∆ be a positive integer such that we are confident
to be able to generate a doubly resolving set of size |V |+∆ for Qn. We first generate a
set W with |V |+∆ vertices (instructions 2-5), and perform swaps until we get a doubly
resolving set (instructions 9-11). We then try to find a doubly resolving set with one
vertex less. This process is repeated until a doubly resolving set of size |Wn−1| for Qn

is found, or a stopping criterion is met. As explained above, swaps are performed by
solving IPd

2 if |W | = β̄n−1, and IPd
1 otherwise. The algorithm reads as follows.

Algorithm that generates doubly resolving sets

Data: A doubly resolving set Wnmin−1 for Qnmin−1; a positive integer ∆;
Result: Doubly resolving sets Wn for Qn, n = nmin, . . . , nmax;

1 for n = nmin to nmax do
2 Set W = {x(0) : x ∈ Wn−1};
3 for i = 1 to ∆ do
4 Randomly choose a vertex x of Qn not in W and add it to W ;
5 end
6 repeat
7 if |W | = β̄n−1 then s=2;
8 else s=1;
9 while zds > 0 and no stopping criterion is met do

10 Choose a vertex x ∈ W at random, and replace it with y;
11 end
12 if zds ≤ 0 then Set Wn = W and remove the last vertex of W ;

13 until zds > 0 or |W | = |Wn−1| − 1;

14 end

5 Computational experiments

We have run our algorithms on a 3 GHz Intel Xeon X5675 machine with 8 GB of RAM,
and all integer programs were solved using CPLEX (v12.2). The stopping criterion
in both algorithms was fixed to one million swaps, and we have set ∆ = 1 for the
generation of doubly resolving sets.

Experiments with a genetic algorithm and with a variable neighborhood search
(VNS) are reported in [7] and [9] for the metric dimension problem, with n = 8, . . . , 17.
Table 1 compares these previous results with ours. Columns ‘best’ contain the car-
dinality of the resolving sets obtained by each algorithm, while columns ‘t’ contain
computing times in seconds. For our algorithm, we also report the number of swaps
needed to generate the best resolving set. As mentioned in the previous section, the set

8

W of size |Wn−1|+ 1 built with instructions 2-3 resolves Qn, and is obtained without
any swap. Hence, if no resolving set for Qn of size |Wn−1| is found, we report no swap
and no computing time. We observe that, while we get the same upper bounds on βn
as in [9], ours are obtained much faster.

genetic [7] VNS [9] our algorithm
n best t best t best t swaps
8 6 17 6 1 6 <1 22
9 7 51 7 2 7 - -
10 7 113 7 18 7 1 25
11 8 258 8 48 8 - -
12 8 637 8 308 8 5 128
13 9 1378 8 1970 8 155 7954
14 9 2524 9 4841 9 - -
15 10 5414 9 31262 9 4886 119670
16 11 15321 10 66831 10 - -
17 11 34162 10 86400 10 895 5870

Table 1: Upper bounds on βn for hypercubes of dimension n = 8, . . . , 17.

Results for larger hypercubes of dimension n ≤ 22, obtained with a greedy algo-
rithm, are reported in [11], but without any computing time. Their algorithm failed
for n > 22 because of memory space problems. Upper bounds for larger hypercubes
are however derived from their best values. Table 2 compares these results with those
produced by our algorithm for n = 18, . . . , 28. As can be observed, we improve the
best known upper bound for βn by one unit for n = 23, . . . , 27.

greedy [11] our algorithm
n best best t swaps
18 11 11 - -
19 11 11 316 917
20 12 12 - -
21 12 12 5016 9949
22 13 13 - -
23 14 13 5225 4660
24 15 14 - -
25 15 14 4099 783
26 16 15 - -
27 16 15 75757 2995
28 16 16 - -

Table 2: Upper bounds on βn for hypercubes of dimension n = 18, . . . , 28.

The best upper bounds for Ψn are obtained with a genetic algorithm [8] and a
variable neighborhood search [9]. Both algorithms have considered hypercubesQn with

9

n up to 17. Larger hypercubes could not be solved due to space and time limitations.
In Table 3, we reports these results and compare them to ours for n = 8, . . . , 21. As
can be seen, while we reach the best known upper bounds on Ψn for n ≤ 17, our
algorithm can generate upper bounds for larger dimensions.

genetic [8] VNS [9] our algorithm
n best t best t best t
8 7 14 7 1 7 <1
9 7 33 7 7 7 1
10 8 78 8 20 8 <1
11 8 196 8 141 8 5
12 9 403 8 896 8 577
13 9 980 9 2019 9 1
14 10 1940 9 13511 9 31745
15 10 4752 10 26505 10 3
16 11 10873 10 86400 10 52677
17 12 24356 11 86400 11 7
18 - - - - 11 3055
19 - - - - 12 18
20 - - - - 12 129080
21 - - - - 13 152

Table 3: Upper bounds on Ψn for hypercubes of dimension n = 8, . . . , 21.

6 Conclusion

We have shown that it is possible to determine if a given set of vertices (doubly) resolves
the n-cube by solving an integer program with O(n) variables and O(n) constraints.
By embedding such an integer program in a swapping algorithm, we have been able to
improve the best known upper bounds on the metric dimension and on the minimum
cardinality of a doubly resolving set in hypercubes having up to 268 million vertices.
The swapping algorithm is only an example of the possible use of the integer programs
of Section 3. Other more sophisticated techniques would possibly provide better results
in shorter times.

Acknowledgments

The author would like to thank Issoufou Abdou Amadou and Gilles Éric Zagré for
initiating the idea of solving an integer program to determine if a set of vertices
(doubly) resolves the n-cube. Special thanks go to Serge Bisaillon for his invaluable
help with the use of CPLEX.

10

References

[1] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihalak, and
L. Ram. Network discovery and verification. IEEE Journal on Selected Areas in
Communications, 24(12):2168–2181, 2006.

[2] J. Cáceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, C. Seara, and
D. R. Wood. On the metric dimension of cartesian products of graphs.

[3] M. Cangalovic̀. Private communication.

[4] G. Chartrand, L. Eroha, M. Johnson, and O. Oellermann. Resolvability in graphs
and the metric dimension of a graph. Discrete Applied Mathematics, 105:99–113,
2000.

[5] F. Harary and R. Melter. On the metric dimension of a graph. Ars Combinatoria,
2:191–195, 1976.

[6] S. Khuller, B. Raghavachari, and A. Rosenfeld. Landmarks in graphs. Discrete
Applied Mathematics, 70(3):217–229, 1996.

[7] J. Kratica, V. Kovac̆evic̀-Vujc̆ic̀, and M. C̆angalovic̀. Computing the metric di-
mension of graphs by genetic algorithms. Computational Optimization and Ap-
plications, 44:343–361, 2009.

[8] J. Kratica, M. C̆angalovic̀, and V. Kovac̆evic̀-Vujc̆ic̀. Computing minimal doubly
resolving sets of graphs. Computers & Operations Research, 36:2149–2159, 2009.

[9] N. Mladenovic̀, J. Kratica, V. Kovac̆evic̀-Vujc̆ic̀, and M. C̆angalovic̀. Variable
neighborhood search for metric dimension and minimal doubly resolving set prob-
lems. European Journal of Operational Research, 220:328–337, 2012.

[10] D. Murdiansyah and Adiwijaya. Computing the metric dimension of hypercube
graphs by particle swarm optimization algorithms. In T. Herawan, R. Ghazali,
N. Nawi, and M. Deris, editors, Recent Advances on Soft Computing and Data
Mining: Proceedings of the 2nd International Conference on Soft Computing and
Data Mining, Bandung, Indonesia, pages 171–178. Springer International Pub-
lishing, 2017.

[11] N. Nikolic̀, M. C̆angalovic̀, and I. Grujic̆ic̀. Symmetry properties of resolving sets
and metric bases in hypercubes. Optimization Letters, 2014. doi:10.1007/s11590-
014-0790-2.

[12] P. Slater. Leaves of trees. Congressus Numerantium, 14:549–559, 1975.

