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Abstract

Evolutionary algorithms (EA) are optimisation techniques inspired from natural evolution processes. They handle a

population of individuals that evolve with the help of information exchange procedures. Each individual may also

evolve independently. Periods of co-operation alternate with periods of self-adaptation. We de®ne a terminology and

give a general framework for the description of the main features of any particular evolutionary algorithm. Such a

description does not provide, nor does it replace, algorithm pseudo-codes. The aim is to develop tools that may help

understanding the ``philosophy'' of such methods. Ó 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The techniques used to solve di�cult combi-
natorial optimisation problems have progressively
evolved from constructive methods to local search
techniques, and ®nally to population-based algo-
rithms. We draw a parallel between this evolution
and the development of information exchange
technologies. To illustrate this parallel, consider a
researcher who is asked to solve a di�cult opti-
misation problem.
· If he works alone and is not aware of any previ-

ous research linked to his problem, he will prob-
ably develop a constructive method. He will try

to reproduce and to code in a systematic way
what he would have done by hand.

· Assuming now that the researcher has read a pa-
per devoted to the solution of his problem, he
will take advantage of this previous work by
generating a solution using the known tech-
nique. He will then concentrate his e�orts in try-
ing to improve this solution by means of a local
search method.

· If our researcher has an easy access to libraries
and to Internet, he can make a survey of the nu-
merous existing methods that have been pro-
posed for the solution of his problem. He can
then generate a population of solutions by
means of known constructive or local search
methods. New solutions can easily be obtained
by combining the best parts of the best solutions
in the population, and improvement techniques
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can be applied to each solution resulting from
such combinations. By alternating combination
periods with improvement periods, he will get
a population-based method.
Population-based methods are very popular

nowadays. They provide good solutions since any
constructive method can be used to generate the
initial population, and any local search technique
can be used to improve each solution in the pop-
ulation. But population-based methods have the
additional advantage of being able to combine
good solutions in order to get possibly better ones.
The basic idea behind this way of doing is that
good solutions often share parts with optimal so-
lutions.

Population-based methods are also called evo-
lutionary algorithms (EAs). Many scienti®c papers
have already been devoted to the design of new
EAs or to the adaptation of a particular EA to a
di�cult combinatorial optimisation problem.
Nevertheless, there is no clear de®nition of what
an EA is. When researchers involved in this ®eld
are asked to de®ne EAs, they give all kinds of
answers. Some of them think that EAs are genetic
algorithms. Others de®ne EAs as solution tech-
niques that handle an evolving population of
solutions, and they therefore consider genetic
algorithms as a particular EA.

The ®rst answer does not take into account
known population-based methods, such as ant
systems, scatter search or adaptive memory algo-
rithms. The second answer can be embarrassing.
Indeed, assume that a local search technique is
applied to two di�erent solutions of a problem,
and that these two processes are regularly inter-
rupted in order to allow an exchange of informa-
tion between both almost independent searches.
While such an algorithm handles a population of
two solutions (and can therefore be considered as
an EA), it is probably closer to two independent
runs of a local search technique.

This lack of precise de®nition creates some
confusion in the OR community. For example,
more and more OR papers are entitled ``A genetic
algorithm for ...'' (Beasley and Chu, 1996; Chu
and Beasley, 1996; Falkenauer and Delchambre,
1992; Fleurent and Ferland, 1996; Levine, 1994;
Thangiah et al., 1991; Yamada and Nakano,

1992). Some of these papers use a local search
technique as mutation operator, create o�spring
solutions by means of elaborated encodings and
crossover operators, and use diversi®cation strat-
egies in order to avoid a premature convergence of
the algorithm. We would rather de®ne such an
algorithm as an EA that includes an improvement
algorithm for intensifying the search in some re-
gions of the search space, as well as a diversi®ca-
tion strategy that helps escaping a region of
attraction in this search space.

Another drawback of this looseness of termi-
nology is that very similar solution methods may
have completely di�erent names, depending on the
preferences of the author. The risk of such a sit-
uation is that identical concepts are rediscovered
several times under di�erent names. This happened
for example with basic ingredients of scatter search
which have been rediscovered as new concepts that
help improving a basic genetic algorithm.

The aim of this paper is to propose a termi-
nology that should help describing the ``philoso-
phy'', the main features of any particular EA. We
®rst give in Section 2 the general scheme of an EA.
This framework includes known solution tech-
niques such as genetic algorithms, scatter search,
ant systems and adaptive memory algorithms. In
order to di�erentiate between all these EAs, we list
in Section 2 some key elements that may help de-
scribing the philosophy of each particular EA. The
proposed terminology is illustrated in Section 3
where we give the pseudo-code and the description
of the main features of ®ve known EAs. The last
section contains concluding remarks.

2. Main features of population-based methods

Population-based methods are iterative solu-
tion techniques that handle a population of indi-
viduals and make them evolve according to some
rules that have to be clearly speci®ed. At each it-
eration, periods of self-adaptation alternate with
periods of co-operation. Self-adaptation means
that the individuals evolve independently while co-
operation implies an exchange of information
among the individuals. The following scheme
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summarises a basic population-based method (see
Fig. 1).

Many di�erent algorithms can be described
within this framework. For example, the selection
and crossover operators of genetic algorithms can
be seen as co-operation procedures while the
mutation operator is part of the self-adaptation
process.

For comparing two di�erent EAs, we need to
determine the main features that characterise each
particular EA. These main features are described
below. Most of them are also brie¯y described in
Cal�egari et al. (1999). In order to illustrate the
various forms that these features can take, we will
consider several EAs that have been proposed for
the solution of the k-Colouring Problem and the
Vehicle Routing Problem. In the k-Colouring
Problem, the objective is to colour the vertices of a
graph with a given number k of colours in such a
way that no two adjacent vertices have the same
colour. The Vehicle Routing Problem is to specify
the routes of a ¯eet of vehicles delivering goods to
clients. The objective is to minimise the total
length of the routes, while taking vehicle capacities
into account.

2.1. Description of the individuals

While local search techniques iteratively try to
improve a single solution, EAs handle a popula-
tion of individuals. These individuals are not nec-
essarily solutions of the considered problem. They
may be parts of a solution. They can even repre-
sent any kind of object with the property that there
exists a procedure which is able to transform these
objects into solutions of the considered problem.

To illustrate this concept, consider ®rst the
Vehicle Routing Problem. Most EAs that have
been proposed for the solution of this problem

de®ne individuals as (possibly infeasible) solutions
of the problem. However, Taillard (Golden et al.,
1997; Rochat and Taillard, 1995) has recently
proposed an EA in which individuals are de®ned
as vehicle routes. Speci®c procedures have been
designed for creating a feasible solution by com-
bining di�erent vehicle routes. As second example,
we mention the ant system described in Zu�erey
and Hertz (1997) for the k-Colouring Problem.
Individuals are de®ned as coloured ants that move
along the edges of the graph, and a procedure has
been developed for generating a colouring of a
graph on the basis of the location of the ants on
this graph. A similar model has been proposed in
Kuntz and Snyers (1994) for a graph partitioning
problem.

While individuals can be pieces of solutions
that have to be gathered in order to create a
complete solution, individuals can also represent
sets of solutions. This is the case, for example, in
island-based genetic algorithms (Cant�u-Paz, 1995)
where solutions are grouped together in order to
form islands of solutions. During the co-operation
periods of this EA, each island makes available
any information contained in it. Solutions can
move from one island to the other. In the self-
adaptation periods, each island is modi®ed inde-
pendently by means of a basic genetic algorithm in
which individuals are solutions of the considered
problem.

The de®nition of the link between individuals
and solutions of the considered problem gives in-
dication about the levels at which information
exchange occurs.

2.2. Evolution process

The population of an EA iteratively evolves
according to some speci®c rules. At each iteration,
new individuals are created and it has to be de-
cided which ones will enter the population.
Moreover, individuals must be thrown out of the
population in order to avoid a continuous expan-
sion of the population. From one iteration to the
next, the population can be totally changed in that
sense that only new individuals are kept in the
population. Such a strategy is called generationalFig. 1. General scheme of a population-based method.

A. Hertz, D. Kobler / European Journal of Operational Research 126 (2000) 1±12 3



replacement. On the other hand, a steady-state
evolution means that only part of the population
can be modi®ed between two consecutive itera-
tions.

Most EAs work with populations of ®xed size
p, and it is usually decided that the p best indi-
viduals survive for the next iteration. The popu-
lation size may however also vary during the
search process. Consider for example a population
containing old individuals as well as newly gener-
ated ones. Deciding which one will be kept in the
population for the next iteration can be done on a
random basis. Such a probabilistic decision pro-
cess produces unpredictable outcomes, and one
can prefer to decide that an individual stays in the
population if its value (measured by some func-
tion) is close enough to the best value in the
population (for example, within 5%).

It is important to mention that EAs are parallel
in essence. This certainly explains why implemen-
tations of EAs on parallel computers are thor-
oughly investigated. Parallel programming allows
asynchronous evolution. In such a case, each indi-
vidual is continuously modi®ed (independently or
by means of information exchanges) without
checking whether changes have already been per-
formed on the other individuals.

2.3. Neighbourhood structure

Two individuals in the population are not
necessarily allowed to exchange information dur-
ing the co-operation phase. Indeed, it can be
speci®ed that each individual is associated with a
subset of individuals which may transmit infor-
mation about their value, their contents, etc. In
such a case, the population is said to be structured.
This structure can be summarised by a neigh-
bourhood function N that assigns a proper subset
of the population to each of its members.

By de®ning this function N in such a way that,
for every individual i, N�i� [ fig is equal to the
whole population, one gets an unstructured popu-
lation where each individual may communicate
with each other.

Structured populations have been used in many
adaptations of EAs to particular optimisation

problems. The most common structures are rings
(Laszewski, 1991; Gordon and Whitley, 1993;
M�uhlenbein, 1989), grids (Manderick and Spies-
sens, 1989), and even more complex ones such as
hypercubes (Tanese, 1989).

2.4. Information sources

When an individual i has a large set N�i� of
neighbours with which he is allowed to commu-
nicate, this does not mean that he will take
advantage of all this large amount of available
information. He will perhaps choose only one
neighbour at random that will co-operate with him
in order to create a new individual. This occurs in
genetic algorithms where o�spring individuals are
created on the basis of only two parent individuals.
However, the number of individuals that co-
operate in order to create new ones may be larger
than two. This is the case in a scatter search. In-
deed, this optimisation technique does not impose
a limit of two on the number of individuals that
may be linearly combined.

In the same spirit, the adaptive memory algo-
rithm proposed in Rochat and Taillard (1995) for
the Vehicle Routing Problem does not impose any
restriction on the number of vehicle routes that
may contribute to the creation of a new solution.
This EA considers each vehicle route as an indi-
vidual. The combination of some vehicle routes
leads to the creation of a solution which is im-
proved by means of a local search technique. This
improved solution is then redecomposed into ve-
hicle routes that are considered as candidates for
entering the population.

Notice that when a set of individuals are co-
operating in order to create a new one, this does
not mean that each of these individuals transmits
information. For example, unilateral exchanges
occur in an island-based genetic algorithm (Cant�u-
Paz, 1995; Gordon and Whitley, 1993). Indeed,
this EA de®nes individuals as sets of solutions
called islands. These islands are located on a di-
rected ring, and they regularly transmit their best
solution to their successor. Hence, when two in-
dividuals co-operate, one of them gives the infor-
mation while the other is appropriately modi®ed.

4 A. Hertz, D. Kobler / European Journal of Operational Research 126 (2000) 1±12



In such a case, only one parent has been used to
modify an individual.

On the contrary, the whole population may
contribute to the creation of a new individual.
Even more, all populations encountered during the
previous iterations may take part to this infor-
mation exchange. In such a case, the creation of
new individuals is said to be based on the history
of the population. By history, we mean informa-
tion that cannot be obtained through the analysis
of the individuals in the current population. A
historical account of the populations of the pre-
vious iterations is needed for making such an
information available. Ant systems are strongly
based on this concept since the pheromone trail
used to guide the ants is a kind of summary of
what happened since the beginning of the search
process.

2.5. Infeasibility

Each EA is based on a precise de®nition of the
individuals. When combining information origi-
nating from a set of individuals, it may occur that
the new created object is not a feasible individual.
Consider for example two feasible colourings C1

and C2 of a graph G. A new colouring may be
obtained by randomly choosing in C1 or C2 the
colour to be assigned to each vertex of G. Such a
combination may lead to infeasible colourings in
which adjacent vertices have the same colour.

This concept can also be illustrated with the
Vehicle Routing Problem. If two feasible solutions
exchange some parts of their vehicle routes, it may
occur that clients are visited more than once, some
may be never visited, and vehicle capacity con-
straints may be violated. It is then important to
specify how infeasibility is dealt with.

As mentioned in Liepens and Potter (1991), at
least three strategies can be followed. A simple
way which has not proven to be successful is to
simply reject infeasible individuals obtained during
the co-operation phase. A second approach is to
accept infeasibility and penalise it in the function
that measures the quality of an individual. The
third alternative is to develop specialised combi-
nation procedures that can only create feasible

individuals. This last approach often uses a repair
procedure that transforms infeasible individuals
into feasible ones.

For example, consider a scatter search in which
individuals are integer vectors (Glover, 1977).
Linear combinations of integer vectors may pro-
duce infeasible individuals. In such a case, integer
values are obtained by means of a rounding pro-
cess that is applied on each component of the new
generated vectors.

2.6. Intensi®cation strategy

It has been observed that many EAs can sig-
ni®cantly be improved by using advanced im-
provement algorithms during the self-adaptation
phase. By improvement algorithm, we mean any
procedure that tries to improve the value of an
individual without using information originating
from other individuals. The use of an improve-
ment algorithm aims to intensify the search in
some regions of the search space. Embedding a
local search technique within an EA has proven to
be successful in many applications (Costa et al.,
1995; Fleurent and Ferland, 1996; Levine, 1994).
This is not surprising. Indeed, while the use of a
population of individuals ensures an exploration
of a large part of the search space, improvement
algorithms help to determine high quality indi-
viduals in identi®ed good regions of the search
space.

The success of an EA that does not use any
improvement algorithm can sometimes be ex-
plained by the transmission of pertinent informa-
tion during the co-operation phase. Indeed, for
certain problems, it is possible to relate the good
quality of an individual with a particular part of
the information contained in it. In such a case, new
individuals of good quality can easily be generated
by mixing adequate pieces of information from the
best known individuals. For example, it seems
reasonable to assume that good solutions of a
Vehicle Routing Problem have vehicle routes in
common with optimal solutions. Hence, the com-
bination of the vehicle routes of the best known
solutions may lead to the creation of even better
solutions. This can explain the success of EAs in
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which individuals are de®ned as vehicle routes
rather than feasible solutions of the Vehicle
Routing Problem.

The situation is more complicated for the k-
Colouring Problem. Indeed, it is di�cult to pre-
cisely locate the reason why a colouring of a graph
is better than another one. In such a case, im-
provement algorithms are necessary in order to
ensure the success of the considered EA.

2.7. Diversi®cation strategy

One of the major di�culties observed when
using EAs is the premature convergence of the
algorithm towards local optima. In order to steer
individuals away from local optima, a noise pro-
cedure may be used, that randomly perturbs the
individuals. Such a procedure modi®es each indi-
vidual independently, but contrarily to improve-
ment algorithms, it has unexpected results on the
value of an individual, in the sense that it does not
necessarily improve it. The most famous example
of noise procedure is the mutation operator in
genetic algorithms.

A di�erent philosophy can be used to move
away from individuals that may cluster around
complex regions of attraction. Instead of using
noise that produces unpredictable outcomes, a
diversi®cation strategy can be applied in order to
systematically generate new individuals that lie in
new regions. Scatter search uses such a diversi®-
cation strategy (Glover, 1994, 1977). The co-
operation mechanism is based on non-convex
combinations of vectors (i.e., individuals). Such a
strategy can therefore extrapolate beyond the
region spanned by the combined individuals.

2.8. Summary of the main features

To summarise the above concepts, consider any
EA designed for the solution of a particular opti-
misation problem. The ``philosophy'' of this EA
can be described by means of the following main
features.

Individuals. The relation between the individu-
als and the considered problem must be speci®ed.

Individuals can be feasible or infeasible solutions
of a problem. They can be parts of solutions, sets
of solutions, or anything else.

Evolution process. The population can be of
®xed size or not. It must be speci®ed whether the
population evolves according to a generational
replacement or a steady state. In case of an im-
plementation of the EA on a parallel computer,
asynchronous evolution can occur.

Neighbourhood. Information exchange can be
based on a structured or unstructured population.
In the ®rst case, the special structure that is used
can be speci®ed (e.g., ring, grid, hypercube).

Information sources. The number of parents
needed to create new individuals must be speci®ed.
This number can be equal to any strictly positive
integer. New individuals can also be created on the
basis of the history of the population.

Infeasibility. The way infeasibility is dealt with
must be speci®ed. Infeasible individuals can be
rejected, penalised or repaired.

Intensi®cation. During the self-adaptation
phase, an improvement algorithm can be applied
to each individual in the population.

Diversi®cation. In order to avoid premature
convergence, a noise procedure can be applied to
each individual. A more elaborate diversi®cation
strategy can also be used.

We have listed the main features of EAs, as well
as possible forms that these features can take. The
list is of course not exhaustive. It should evolve in
concert with the possible evolution of EAs.

3. Illustration

We now illustrate the use of the above concepts
for the description of various EAs. It is important
to note that the main feature description is not a
substitute for the pseudo-code. They should really
both be given in order to have a complete summary
of the method, which neither does on its own.

3.1. Genetic algorithms

As ®rst example, we consider a basic genetic
algorithm as described in Davis, (1991) and
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Goldberg (1989). Genetic algorithms are inspired
by Biology and in particular by those biological
processes that allow populations of organisms to
adapt to their surrounding environment. Pioneer-
ing work on the development of this method date
back to the mid-1960s (Fogel et al., 1966; Holland,
1962; Rechenberg, 1965).

A genetic algorithm works with three operators
that are iteratively used in order to make the
population evolve. The selection operator decides
which individuals may survive in the population.
Good individuals have usually more chance to be
selected. In can be imposed that the best one will
survive. The crossover operator combines two in-
dividuals in order to create two new ones called
o�spring individuals. Selection and crossover occur
at the co-operation phase while the third operator,
called mutation, is applied at the self-adaptation
phase. The mutation operator introduces some
noise in the population in order to prevent pre-
mature convergence towards local optima.

A genetic algorithm with generational replace-
ment can be described either by the following
pseudo-code or by specifying the particular form
of each main feature, as shown in Fig. 2.

3.2. Scatter search

As second example, we consider the scatter
search proposed by Glover (1994, 1977). This EA

is a search strategy that systematically generates a
set of dispersed points from a chosen set of refer-
ence points. This is done by making linear combi-
nations of subsets of the current reference points.
Points resulting from such combinations are called
trial points. Instead of using only non-negative
linear combinations of points, as in the approaches
of Lagrangian and surrogate relaxations, scatter
search uses more general linear combinations that
include negative weights. Such combinations can
therefore produce points both inside and outside
the convex region spanned by the reference points.

While points correspond to feasible solutions
of the considered problem, trial points may vio-
late some constraints. These trial points are
therefore modi®ed by means of a repair procedure
that transforms them into feasible points. An
improvement algorithm is then applied on each
new point in order to try to generate points of still
higher quality. These improved points form the
set of dispersed points. The new set of reference
points that will be used at the next iteration is
selected among the current reference and dis-
persed points. This selection as well as the cre-
ation of trial points occur at the co-operation
phase while the repair procedure and the im-
provement algorithm are used at the self-adapta-
tion phase.

Fig. 3 contains the pseudo-code as well as the
description of the main features of a basic scatter
search.

Fig. 2. Description of a basic genetic algorithm with genera-

tional replacement. Fig. 3. Description of a basic scatter search.
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3.3. Ant systems

The third illustration is given by ant systems.
This search method is inspired by biological ob-
servations on the behaviour of ant colonies. In this
EA, simple agents, called ants, explore a region of
the search space and share information gathered
throughout their individual searches. Introduced
in 91 by Colorni et al. (1991, 1992), ant systems are
now widely used for the solution of various com-
binatorial optimisation problems (Colorni et al.,
1994; Costa and Hertz, 1997; Dorigo and Gam-
bardella, 1997; Gambardella and Dorigo, 1996;
Maniezzo et al., 1994).

In a basic ant system, each ant is a constructive
procedure that is able to generate a solution to
the considered problem. At each step of the
construction, each ant has to decide how to make
one more step towards the completion of a partial
solution. Such a choice is based on two factors.
The trace factor guides the ants to choices that
gave good results in earlier constructions. The in-
tensity of this factor informs the ants about the
quality of the solutions that have been generated
by making the corresponding choice. The desir-
ability factor guides the ants to choices which in-
duce the best value of a function that measures the
quality of a partial solution.

Once all ants have completed their construc-
tion, the trace factors are updated. A choice
that led to good solutions induces an increase of
the corresponding trace factor, while bad
choices induce a decrease of this factor. The
solutions constructed by the ants are further
submitted to an improvement algorithm. The
use of the trace factor occurs at the co-opera-
tion phase while the desirability factor and the
improvement algorithm are used at the self-ad-
aptation phase.

We give in Fig. 4 both the pseudo-code and the
description of the main features of a basic ant
system.

3.4. Adaptive memory algorithms

Taillard has recently developed an extension of
tabu search that allows automatic diversi®cation

and intensi®cation of the search process (Golden
et al., 1997; Rochat and Taillard, 1995; Taillard et
al., 1997). This new method, called adaptive
memory algorithm, can be considered as an EA
that works as follows. A central memory is in
charge of keeping track of the best components of
the solutions visited during the search. These
components are combined in order to create new
solutions. If these new solutions are not feasible,
they are submitted to a repair procedure. They are
then improved by means of a tabu search, or any
improvement algorithm. Finally, the components
of the new solutions are considered as candidates
that may be selected for replacing old components
in the central memory.

The improvement algorithm is used at the self-
adaptation phase while the combination procedure
and the selection process occur at the co-operation
phase.

During the ®rst iterations, the central memory
contains very di�erent components and the com-
bination procedure will therefore have the ten-
dency to create a diversity of new solutions.
Hence, diversi®cation occurs during the initial
steps. Then, the components contained in the
central memory will tend to be parts of a very
small set of solutions located in a limited number
of regions of the search space. The search process
moves therefore gradually from diversi®cation to
intensi®cation. This is clearly shown in Rochat
and Taillard (1995).

The pseudo-code and the description of the
main features of a basic adaptive memory algo-
rithm are given in Fig. 5.

Fig. 4. Description of a basic ant system.
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3.5. Island-based genetic algorithms

As already mentioned, EAs can deal with
individuals that do not necessarily correspond to
feasible solutions. Individuals can be parts of so-
lutions, sets of solutions, or any kind of informa-
tion that can be combined in order to create
feasible solutions.

Island-based genetic algorithms (Cant�u-Paz,
1995; Gordon and Whitley, 1993) illustrate the
case where individuals are sets of solutions. This
EA works at two di�erent levels. At the ground
level, individuals are de®ned as feasible solutions
of a problem. These individuals evolve by means
of a genetic algorithm. At the top level, individuals
are de®ned as sets of solutions, called islands, and
are located on a directed ring. Each island regu-
larly transmits its best solution to its successor on
the ring.

We give in Fig. 6 the pseudo-code and the
description of the main features of a steady-state
island-based genetic algorithm that uses an
improvement algorithm at the ground level.

3.6. A case study

We ®nally give the pseudo-code and the de-
scription of the main features of an EA that has
been proposed by Fleurent and Ferland (1996) for
the solution of the k-Colouring Problem. We show
how such a description can help understanding the
philosophy of the proposed algorithm.

Fleurent and Ferland propose to solve the
k-Colouring Problem by means of a steady state
genetic algorithm that uses a tabu search as im-
provement algorithm. Their EA is one of the best
known heuristic for the k-Colouring Problem. It is
described in Fig. 7.

Fig. 6. Description of a steady-state island-based genetic

algorithm.

Fig. 5. Description of a basic adaptive memory algorithm.

Fig. 7. Description of the EA proposed in Fleurent and

Ferland (1996) for the k-Colouring Problem.
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Some main features of this EA are described in
more details when compared to the previous ®g-
ures. For example, we have stressed that only two
individuals can evolve at each iteration while a tabu
search is used as improvement algorithm. Such a
precise description helps observing that most of the
success of this EA is due to the improvement
algorithm. The authors con®rm this fact. Their
method is in fact an extension of a tabu search that
assures a diversi®ed exploration of the search space.
This does not clearly appear in the pseudo-code.

We have also pointed out that the combination
procedure uses the graph structure and is therefore
far from the 1-point, 2-point and uniform cross-
overs typically used in genetic algorithms. While
the paper is entitled ``Genetic and hybrid algo-
rithms for graph colouring'', we think that the
method has almost nothing in common with a
basic genetic algorithm. Indeed, the authors use an
unusual crossover operator, while the mutation
operation is replaced by a tabu search. This is
exactly what we meant in the introduction when
we observed that many papers entitled ``A genetic
algorithm for ...'' describe extensions of genetic
algorithms that should be called evolutionary al-
gorithms or population-based methods.

Notice that we did not give any implementation
details in the description of the main features. We
had in mind to point out the key elements that
may help understanding the philosophy of the
proposed EA.

4. Final remarks

The main features described in Section 2 and
illustrated in Section 3 can be used as basic in-
gredients for a classi®cation scheme. For example,
Cal�egari et al. (1997) propose to represent any
particular EA in the following compact form:

�0���1��2���3��4��5���6��7��8��;

where each entry (i) 06 i6 8 has the following
contents.

For example, the basic scatter search described in
Fig. 3 can be summarised in the following compact
form:

�feasible solutions��YN� repN�YNss�:
Such a compact description can be compared to
the classi®cation schemes proposed in Blazewicz
et al. (1983), Blazewicz et al. (1993) and Graham
et al. (1979) for scheduling problems.

The current interest in EAs is more brought to
their implementation rather than to the algorith-
mic mechanism. We believe that the decision of
using or not a given ingredient is more important
than the design of the way this ingredient is
practically implemented. This is the reason why we
did not mention, for example, how individuals are
encoded. Once it has been decided which kind of
information will be exchanged during the co-
operation phase of an EA, then any encoding can
be chosen as long as it facilitates such exchanges.

Consider for example the k-Colouring Problem.
If the colour of each vertex is the information that
should be transmitted, then individuals can be
de®ned as strings whose components are the col-
ours of the vertices. Such a string-based encoding
has been used in Fleurent and Ferland (1996) for

(0) short description of the individuals
(1) Y if the population has a constant size, and N

otherwise

(2) Y if the population is structured, and N
otherwise

(3) number of parents if it is ®xed. The abbrevi-
ation hs is added to this number if the
evolution process uses the history of the
population

(4) nvr if infeasibility never occurs, pen if it is
penalised, rep if it is repaired, and die if
infeasible individuals are thrown out of the
population

(5) Y if each individual has some evolving infor-
mation attached to it that indicates how it
behaves in certain situations, and N otherwise

(6) Y if an improvement algorithm is used, and N
otherwise

(7) Y if a noise procedure is used, and N
otherwise

(8) gr in case of a generational replacement, ss in
case of steady state, and as if asynchronous
evolution occurs
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example. However, one might prefer to combine
colour classes. In such a case, each individual can
be encoded as a partition of the vertex set into
colour classes. Such an encoding has recently been
proposed by Falkenauer and Delchambre (1992)
and Falkenauer (1996).

As shown in Section 3.6, the description of the
main features of an EA can help understanding the
philosophy of the method. It can also serve to
better analyse the reasons that explain the good
performance of a particular EA. For example, an
EA that does not use any improvement algorithm
certainly owes its success to the information ex-
change process. On the other hand, if a powerful
local search technique is used as intensi®cation
strategy, the advantage of using a population-
based method should be clearly proved.
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