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Abstract

This is a review article on lattice methods for multiple integration over the unit
hypercube, with a variance-reduction viewpoint. It also contains some new results and
ideas. The aim is to examine the basic principles supporting these methods and how
they can be used effectively for the simulation models that are typically encountered
in the area of Management Science. These models can usually be reformulated as in-
tegration problems over the unit hypercube with a large (sometimes infinite) number
of dimensions. We examine selection criteria for the lattice rules and suggest crite-
ria which take into account the quality of the projections of the lattices over selected
low-dimensional subspaces. The criteria are strongly related to those used for select-
ing linear congruential and multiple recursive random number generators. Numerical
examples illustrate the effectiveness of the approach.

Keywords: Simulation, Variance Reduction, Quasi-Monte Carlo, Low Discrepancy,
Lattice Rules

Résumé

Nous survolons les méthodes de réseaux pour l’intégration multiple sur l’hypercube
unitaire, avec un point de vue axé sur la réduction de variance. L’article contient aussi
quelques nouvelles idées et nouveaux résultats. L’objectif est d’examiner les principes
de base de ces méthodes et de voir comment on peut les utiliser pour simuler les modèles
rencontrés couramment en sciences de la gestion et en recherche opérationnelle. On
peut habituellement reformuler les problèmes d’estimation dans ces modèles comme des
problèmes d’intégration d’une fonction sur l’hypercube unitaire en un grand nombre de
dimensions (parfois infini). Nous examinons des critères de sélection pour les règles de
réseaux et suggérons des critères qui tiennent compte de la qualité des projections des
réseaux sur des sous-espaces choisis de faible dimension. Les critères sont fortement
liés à ceux utilisés pour sélectionner des générateurs pseudo-aléatoires basés sur des
récurrences linéaires. Des exemples numériques illustrent l’efficacité de la méthode.
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1 Introduction

The purpose of most stochastic simulations is to estimate the mathematical expectation of
some cost function, in a wide sense. Sometimes the ultimate aim is optimization, but the
mean estimation problem nevertheless appears at an intermediate stage. Since randomness
in simulations is almost always generated from a sequence of i.i.d. U(0, 1) (independent and
identically distributed uniforms over the interval [0, 1]) random variables, i.e., by generating
a (pseudo)random point in the t-dimensional unit hypercube [0, 1)t if t uniforms are needed,
the mathematical expectation that we want to estimate can be expressed as the integral
of a function f over [0, 1)t, namely

µ =
∫

[0,1)t

f(u)du. (1)

If the required number of uniforms is random, one can view t as infinite, with only a finite
subset of the random numbers being used. The reader who wants concrete illustrations of
this general formulation can look right away at the examples in Section 10.

For small t, numerical integration methods such as the product-form Simpson rule,
Gauss rule, etc. (Davis and Rabinowitz 1984), are available to approximate the integral (1).
These methods quickly become impractical, however, as t increases beyond 4 or 5. For
larger t, the usual estimator of µ is the average value of f over some point set Pn =
{u0, . . . ,un−1} ⊂ [0, 1)t,

Qn =
1
n

n−1∑
i=0

f(ui). (2)

The integration error is En = Qn − µ. In the standard Monte Carlo (MC) simulation
method, Pn is a set of n i.i.d. uniform random points over [0, 1)t. Then, Qn is an unbiased
estimator of µ with variance σ2/n, i.e., E[Qn] = µ and Var[Qn] = σ2/n, provided that

σ2 =
∫

[0,1)t

f2(u)du − µ2 < ∞, (3)

i.e., if f is square-integrable over the unit hypercube. When the variance is finite, we also
have the central limit theorem:

√
n(Qn − µ)/σ → N(0, 1) in distribution as n → ∞, so the

error converges in the probabilistic sense as |En| = Op(σ/
√

n), regardless of t. This error
can be estimated via either the central limit theorem, or large deviations theory, or some
other probabilistic method (e.g., Fishman 1996, Law and Kelton 1991).

But is it really the best idea to choose Pn at random? The Quasi-Monte Carlo (QMC)
method constructs the point set Pn more evenly distributed over [0, 1)t than typical random
points, in order to try reducing the estimation error |En| and perhaps improve over the
Op(1/

√
n) convergence rate. The precise meaning of “more evenly” depends on how we

measure uniformity, and this is usually done by defining a measure of discrepancy between
the discrete distribution determined by the points of Pn and the uniform distribution over
[0, 1)t. A low-discrepancy point set Pn is a point set for which the discrepancy measure
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is significantly smaller than that of a typical random point set. Discrepancy measures are
often defined in a way that they can be used, together with an appropriate measure of
variability of the function f , to provide a worst-case error bound of the general form:

|En| ≤ V (f)D(Pn) for all f ∈ F , (4)

where F is some class of functions f , V (f) measures the variability of f , and D(Pn)
measures the discrepancy of Pn. A special case of (4) is the well-known Koksma-Hlawka
inequality, for which D(Pn) is the rectangular star discrepancy and V (f) is the total varia-
tion of f in the sense of Hardy and Krause (see Kuipers and Niederreiter 1974 for details).
Other discrepancy measures as well as thorough discussions of the concepts involved can
be found in the papers of Hellekalek (1998) and Hickernell (1998a, 1998b).

The bad news is that the bounds provided by (4) turn out to be rarely practical, because
even though they are tight for the worst-case function, they are very loose for “typical”
functions and are usually too hard to compute anyway. The good news is that for many
simulation problems, QMC nevertheless reduces the actual error |En|, sometimes by large
amounts, compared with standard MC.

The two main families of construction methods for low-discrepancy point sets in prac-
tice are the digital nets and the integration lattices (Larcher 1998, Niederreiter 1992, Sloan
and Joe 1994). The former usually aim at constructing so-called (t, m, s)-nets. A low-
discrepancy sequence is an infinite sequence of points P∞ = {u0,u1, . . .} such that for
all n (or for an infinite increasing sequence of values of n; e.g., each power of 2), the point
set Pn = {u0, . . . ,un−1} has low discrepancy. In case of the rectangular star discrep-
ancy, this name is usually reserved to sequences for which D(Pn) = O(n−1(ln n)t). Ex-
plicit sequences that satisfy the latter condition have been constructed by Halton, Sobol’,
Faure, and Niederreiter. For the details, see Drmota and Tichy (1997), Niederreiter (1992),
Niederreiter and Xing (1998), Sobol’ (1998), Larcher (1998) and the references cited there.
A convergence rate of O(n−1(ln n)t) is certainly better than the MC rate Op(n−1/2) asymp-
totically , but this superiority is practical only for small t. For example, for t = 10 already,
to have n−1(lnn)t < n−1/2 for all n ≥ n0 one needs n0 ≈ 1.2 × 1039.

A lattice rule is an integration method that estimates µ by (2) and for which Pn is the
intersection of an integration lattice with the unit hypercube. We illustrate the idea with
the following special case. Consider the simple linear recurrence

xi = (axi−1) mod n, ui = xi/n, (5)

where 0 < a < n. This kind of recurrence, with a very large n, has been used for a long time
for constructing linear congruential random number generators (LCGs) (e.g., Knuth 1997,
L’Ecuyer 1998). In that context, common wisdom says that n should be several orders of
magnitude larger than the total number of random numbers ui that could be used in a
single experiment. Here, we take a small n and let Pn be the set of all vectors of t successive
values produced by (5), from all initial states x0, that is, Pn = {(u0, . . . , ut−1) : x0 ∈ ZZn},
where ZZn = {0, . . . , n − 1}. We know (e.g., Knuth 1997) that this Pn has a very regular
structure: It is the intersection of a lattice with the unit hypercube [0, 1)t. A lattice rule Qn

using this Pn was first proposed by Korobov (1959) and is called a Korobov lattice rule.
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Figure 1: All pairs (ui, ui+1) for the LCGs with
(n, a) = (101, 12) (left side) and (n, a) = (101, 51) (right side)
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Figure 1 (left) illustrates the lattice structure of the point set Pn for n = 101, a = 12,
and t = 2. The points are clearly more regular than typical random points. For a simulation
problem that requires only 2 random numbers (a baby example, of course), one can evaluate
the function f at the 101 points of Pn and take the average as an estimate of µ. This is a
simplified example of QMC by a lattice rule. Using a lattice does not guarantee that the
points are well-distributed in the unit hypercube. For instance, Figure 1 (right) shows Pn

again for t = 2 an n = 101, but a changed to 51. This new lattice structure is certainly
less attractive, because of the large gaps between the lines. In this case, the lattice rule Qn

would sample the function only on these 2 lines, whereas the one with a = 12 would sample
more evenly in the unit square.

Some questions that arise regarding QMC via lattice rules: What are proper selection
criteria for the lattice parameters? How do we bound or estimate the error En? Since error
bounds of the form (4) are not very practical, one can consider randomizations of Pn that
preserve its uniformity, while making En random with mean 0 and providing an unbiased
estimator for its variance. Selection criteria for lattice parameters can then be defined by
attempting to minimize the variance of En for “typical” functions f .

In the next section of this paper, we recall basic definitions and properties of lattices,
define lattice rules and their node sets Pn, and examine certain regularity and stationarity
properties that the projections of Pn over lower-dimensional subspaces may have. In Sec-
tion 3 we give error expressions and error bounds for lattice rules. In Section 4 we provide
a randomization scheme for a lattice rule, by a uniform rotation modulo 1, and derive
explicit expressions for the mean and the variance of the randomized estimator, which we
compare to the corresponding expressions for the MC estimator. We also discuss other
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randomization approaches. In Section 5 we describe an ANOVA decomposition of f into a
sum of lower-dimensional functions. The corresponding decomposition of the variance σ2

serves to define the concept of effective dimension of f . Selection criteria for lattice rules
are discussed in Section 6, where we recall some popular measures of discrepancy and pro-
pose a new figure of merit that takes into account the quality of certain low-dimensional
projections. This new criterion could also be used for selecting random number genera-
tors, as in L’Ecuyer (1999a). In Section 7 we discuss copy rules and explain why we do
not recommend them. A polynomial version of lattice rules is introduced in Section 8.
Techniques for smoothing the function f and for lowering the effective dimension are out-
lined in Section 9. In Section 10, we use randomized lattice rules as a variance reduction
technique for 3 simulation models for which t is small, medium, and infinite, respectively.
The method improves efficiency in all cases.

2 Integration Lattices

We start with a short review on lattices. The reader can find more in, e.g., Conway and
Sloane (1988) and Sloan and Joe (1994). The (integration) lattices discussed in this paper
are discrete subsets of the real space IRt, that contain ZZt (the integer vectors), and can be
expressed as

Lt =

⎧⎨
⎩v =

t∑
j=1

zjvj | each zj ∈ ZZ

⎫⎬
⎭ , (6)

where v1, . . . ,vt are linearly independent vectors in IRt which form a basis of the lattice.
The matrix V whose ith line is vi is the corresponding generator matrix of Lt. A lattice Lt

shifted by a constant vector v0 
∈ Lt, i.e., a point set of the form L′
t = {v + v0 : v ∈ Lt},

is called a grid , or a shifted lattice.
The dual lattice of Lt is defined as L∗

t = {h ∈ IRt : h · v ∈ ZZ for all v ∈ Lt}. The dual
of a given basis v1, . . . ,vt is the set of vectors w1, . . . ,wt in IRt such that vi · wj = δij

(δij = 1 if i = j, δij = 0 otherwise). It is a basis of the dual lattice. These wj ’s are the
columns of the matrix V−1, so they can be computed by inverting V.

The determinant of the matrix V is equal to the volume of the fundamental paral-
lelepiped Λ = {v = λ1v1 + · · · + λtvt : 0 ≤ λi ≤ 1 for 1 ≤ i ≤ t}, and is always equal
to the inverse of the density of points, independently of the choice of basis. It is called
the determinant of Lt. In other words, the average number of points per unit of volume is
1/ det(Lt) = 1/ det(V) = det(V−1). This number, called the density , is always an integer
and is equal to the number of points in every cubic box of volume 1 aligned with the axes.
The node set Pn = Lt ∩ [0, 1)t contains exactly n = 1/ det(Lt) points. A lattice rule (of in-
tegration) of order n for µ is a rule of the form (2) with {u0, . . . ,un−1} = Pn = Lt∩ [0, 1)t.
One can always write

Pn = {((j1/n1)v1 + · · · + (jr/nr)vr) mod 1 : 0 ≤ ji < ni for i = 1, . . . , r} , (7)

where the reduction modulo 1 is performed coordinate-wise, the vi’s are linearly indepen-
dent generating vectors, and n = n1 . . . nr. The smallest r for which this holds is called
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the rank of the lattice rule. Rules of rank r > 1 are recommended by Sloan and Joe (1994)
based on certain theoretical properties. In Section 7 we explain why we disagree with this
recommendation. Elsewhere, we restrict our attention to r = 1. For a rule of rank 1, we
have

Pn = {(j/n)v mod 1 : 0 ≤ j < n} (8)

for some vector v. As an important special case, for any LCG defined by (5), the set Pn =
{(u0, . . . , ut−1) : x0 ∈ ZZn} corresponds to a lattice rule of rank 1 with v = (1, a, . . . , at−1),
which is a Korobov rule, or a rule in Korobov form.

For a rule of rank 1, Pn can be enumerated in a straightforward way by starting with
u = 0 and performing n − 1 iterations of the form u = (u + v) mod 1. This requires
O(tn) additions modulo 1. If the rule is in Korobov form and if the corresponding LCG
has period length n− 1 (i.e., n is a prime number and ν = n− 1 is the smallest positive ν
for which aν mod n = 1), then Pn can be enumerated as follows: Start with x1 = 1 and
generate the sequence u1, u2, . . . , un+t−2 via (5). Along the way, enumerate u1, . . . ,un−1,
the overlapping vectors of successive values. Then add the vector u0 = 0. This requires
O(n+t) multiplications by a, modulo n, plus some overhead to shift the vector components
at each iteration, instead of O(tn) additions. The enumeration approach based on the LCG
recurrence still works when the LCG has several cycles, but one must run the LCG over
each of its cycles, and this becomes more cumbersome as the number of cycles increases.

For a given lattice Lt and a subset of coordinates I = {i1, . . . , id} ⊆ {1, . . . , t}, denote by
Lt(I) the projection of Lt over the d-dimensional subspace determined by the coordinates
in I. This projection is also a lattice, whose density divides that of Lt (there are exactly
det(Lt(I))/ det(Lt) points of Lt that are projected onto each point of Lt(I); in group
theory language, Lt(I) corresponds to a coset of Lt). Denote Pn(I) = Lt(I) ∩ [0, 1)d, the
corresponding projection of Pn. For reasons to be explained later, we would like to have not
only Pn evenly distributed over [0, 1)t, but also Pn(I) evenly distributed over its subspace,
at least for certain subsets I deemed important.

Sloan and Joe (1994) call a rank-1 lattice Lt projection-regular if all its principal pro-
jections, Lt({1, . . . , d}) for 1 ≤ d < t, have the same density as Lt. This property holds
if and only if det(Lt({1})) = det(Lt), and implies that the projection Pn(I) contains as
many distinct points as Pn whenever I contains 1. We call Lt fully projection-regular if
det(Lt(I)) = det(Lt) for any non-empty I ⊆ {1, . . . , t}, i.e., if each Pn(I) contains as many
distinct points as Pn. Projection-regularity is easily verified by computing the greatest
common divisors (gcd) between n and the coordinates of the generating vector v:

Proposition 1. A rank-1 lattice Lt with generating vector v = (v1, . . . , vt) is projection-
regular if and only if gcd(n, v1) = 1. It is fully projection-regular if and only if gcd(n, vd) =
1 for 1 ≤ d ≤ t.

Proof. The lattice is projection-regular if and only if the 1-dimensional projection
Pn({1}) contains n distinct points. If gcd(v1, n) = 1 and jv1 mod n = iv1 mod n, then
j − i must be a multiple of n, which implies that the points of Pn({1}) are all distinct. On
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the other hand, if gcd(v1, n) = ρ 
= 1, then for j − i = n/ρ, (j − i)v1 is a multiple of n, so
iv1 = jv1 mod n and therefore Pn({1}) contains no more than n/ρ points. This completes
the proof of the first part. For the second part, take a 1-dimensional projection over the
dth coordinate and use the same argument as in the first part to see that the points of
Pn({d}) are all distincts if and only if gcd(n, vd) = 1. This implies that the points of Pn(I)
are all distincts for any non-empty I. �

In particular, a Korobov rule is always projection-regular, since v1 = 1. It is fully
projection-regular if gcd(a, n) = 1, e.g., if n is prime and 1 ≤ a < n, or if n is a power
of 2 and a is odd. A general rank-1 rule is fully projection-regular, e.g., if n is prime and
1 ≤ vd < n for each d, or if n is a power of 2 and each vd is odd.

Korobov point sets, among others, have the property that several of their projections
Pn(I) are identical, so one can assess the quality of a large family of projections by ex-
amining only a subset of these projections. More specifically, we say that a point set Pn

is dimension-stationary if Pn({i1, . . . , id}) = Pn({i1 + j, . . . , id + j}) for all i1, . . . , id and
j such that 1 ≤ i1 < · · · < id ≤ id + j ≤ t. In other words, the projections Pn(I) of
a dimension-stationary point set depend only on the spacings between the indices in I.
Every Korobov rule for which gcd(a, n) = 1 is dimension-stationary. More generally, given
a recurrence of the form ξi = τ(ξi−1) where τ : Ξ → Ξ and Ξ is a finite set, if τ is in-
vertible and g : Ξ → [0, 1) then Pn = {u = (g(ξ0), . . . , g(ξt−1)) : ξ0 ∈ Ξ}, the set of all
(overlapping) output vectors over all the cycles of the recurrence, is a dimension-stationary
point set (Lemieux and L’Ecuyer 1999b). Recurrences of this form (with a very large Ξ)
are widely used for constructing pseudorandom number generators (e.g., L’Ecuyer 1994,
Niederreiter 1992). Their dimension-stationary property is an important advantage when
using them in a QMC context. This property does not hold in general for popular QMC
point sets such as (typical) (t, m, s)-nets with t > 0.

3 Integration Error for Lattice Rules

The Fourier expansion of f is

f(u) =
∑
h∈ZZt

f̂(h) exp(2π
√−1h · u),

with Fourier coefficients

f̂(h) =
∫

[0,1)t

f(u) exp(−2π
√−1h · u)du.

Since f̂(0) = µ, the integration error for a general point set Pn can be written in terms of
this expansion as

En =
1
n

n−1∑
i=0

(f(ui) − µ)
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=
1
n

n−1∑
i=0

∑
0�=h∈ZZt

f̂(h) exp(2π
√−1h · ui)

=
1
n

∑
0�=h∈ZZt

f̂(h)
n−1∑
i=0

exp(2π
√−1h · ui), (9)

assuming that we can interchange the summations. In particular, if the Fourier expansion
of f is absolutely convergent, i.e.,

∑
h∈ZZt |f̂(h)| < ∞, then Fubini’s theorem (e.g., Rudin

1974) guarantees that the interchange is valid. Sloan and Osborn (1987) have shown that
if Pn is a lattice node set, i.e., Pn = Lt ∩ [0, 1)t, (9) simplifies to the sum of the Fourier
coefficients over the nonzero vectors of the dual lattice:

En =
∑

0�=h∈L∗
t

f̂(h). (10)

The proof consists in showing that

n−1∑
i=0

exp(2π
√−1h · ui) =

{
n if h ∈ L∗

t

0 otherwise
(11)

(Sloan and Joe 1994, Theorem 2.8). If we knew how to efficiently compute [estimate] the
Fourier coefficients of f for all h ∈ L∗

t , we could compute [estimate] the integration error,
but this is usually much too complicated in real-life applications.

The error expression (10) immediately suggests a discrepancy measure (or quality cri-
terion) of the form

D(Pn) =
∑

0�=h∈L∗
t

w(h) (12)

or
D′(Pn) = sup

0�=h∈L∗
t

w(h) (13)

for lattice rules, where the w(h) are arbitrary non-negative weights that decrease with the
“size” of h, in a way to be specified. Indeed, for well-behaved (smooth) functions f , |f̂(h)|
should tend to decrease with the size of h. (Later on in this section, we will arrive again
at the general form of criterion (12–13) by a different route, via a variance minimization
argument.) For example, w(h) can be a decreasing function of the norm of h, for some
choice of norm. The faster it decreases, the smoother the function (crudely speaking). The
specific form of w(·) should reflect our a priori assumptions about the class of functions
that we want to consider. An obvious worst-case error bound is then given by:

Proposition 2. Let F be the class of functions f such that |f̂(h)| ≤ Kw(h) for all
h ∈ L∗

t , h 
= 0, where K is a constant. Then for all f ∈ F , |En| ≤ KD(Pn).
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This proposition may look trivial. It can perhaps demystify some worst-case error
bounds given in the literature (e.g., Lyness and Sloan 1989, Sloan and Joe 1994). These
bounds are often special cases or variants of Proposition 2, with specific choices of w(·).

Hickernell (1998b) provides several error bounds of the form (4) based on variants of
(12). For instance, it is easily shown, using (10) and Hölder’s inequality, that (4) holds
with

(D(Pn))p =
∑

0�=h∈L∗
t

w(h)p (14)

and
(V (f))q =

∑
0�=h∈ZZt

(|f̂(h)|/w(h))q, (15)

for arbitrary p, q > 0 such that 1/p + 1/q = 1. If we take p = 2, w(h) =
∏

j∈I(h)(βj/|hj |)α

for some positive integer α > 0 and arbitrary positive weights β1, . . . , βt, where I(h)
denotes the set of nonzero coordinates of h, and we consider the class of functions f whose
periodic continuation f̄ (defined by f̄(u) = f(u mod 1) for u ∈ IRt) is continuous over
the entire space IRt and has mixed partial derivatives of order α or less that are square
integrable over [0, 1)t, then V (f) is finite over that class and can be written in terms of
the integrals of these mixed partial derivatives. Bounding the partial derivatives can then
provide a bound on the integration error, via (4). See Hickernell (1998b) for the details.
This upper bound motivates the criterion P̃α,p(Pn) to be discussed in Section 6.

From a practical viewpoint, these bounds and those given by Proposition 2 do not
resolve the problem of estimating the error, because they require explicit bounds Kw(h)
on the Fourier coefficients which must decay quickly enough so that D(Pn) < ∞, or we
need bounds on the mixed partial derivatives. Such bounds are almost never available.
To be on the safer side regarding the assumptions of Proposition 2, we may want to take
a w(·) that decreases more slowly, but then the error bounds tend to become too wide.
The situation is actually darker: The Fourier expansion of f can be absolutely convergent
only if the periodic continuation of f is continuous over the entire space IRt. For typical
simulation problems encountered in management science, the function f̄ is discontinuous
at the boundary of the unit hypercube, and often in the interior of the hypercube as well.

What we need is a different way of estimating the error. An attractive solution is to
obtain a probabilistic error estimator via independent randomizations of the point set Pn,
as described in the next section. Numerical analysts sometimes argue against probabilistic
error estimates because they are not 100% guaranteed , in contrast to the deterministic
bounds. We believe that estimates that we can compute are more useful than bounds that
are several orders of magnitude too wide, or that we cannot compute.

Another (highly heuristic) way of assessing the error is to repeat the integration with
a sequence of lattice rules that contain an increasing number of points (e.g., doubling n
each time), and stop when the approximation Qn seems to have stabilized. These lattices
can be embedded (i.e, Pn′ ⊂ Pn if n′ < n and if these are the node sets of two of these
lattice rules) or not. The problem with this approach is that the error often decreases
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in a non-monotone fashion, and may still be very large even if the value of Qn did not
change after we have doubled n. This would occur, for example, if important terms in the
error expression (10) correspond to values of h that belong to none of the dual lattices of
the node sets considered so far. For every fixed sequence of rules, it is easy to construct
examples for which this happens.

4 Random Shifts and Variance Expressions

A simple way of randomizing Pn without destroying its regular structure is to shift it
randomly, modulo 1, with respect to all of the coordinates, as proposed by Cranley and
Patterson (1976). Generate one point u uniformly over [0, 1)t and replace each ui in
Pn by ũi = (ui + u) mod 1 (where the “modulo 1” reduction is coordinate-wise). Let
P̃n = {ũ0, . . . , ũn−1}, Q̃n = (1/n)

∑n−1
i=0 f(ũi), and Ẽn = Q̃n − µ. This can be repeated m

times, independently, with the same Pn, thus obtaining m i.i.d. copies of the random
variable Q̃n, which we denote X1, . . . , Xm. Let X̄ = (X1 + · · · + Xm)/m and S2

x =∑m
j=1(Xj − X̄)2/(m − 1). We now have:

Proposition 3. E[X̄] = E[Xj ] = µ and E[S2
x] = Var[Xj ] = m Var[X̄].

Proof. The first part is quite obvious: Since each ũi is a random variable uniformly
distributed over [0, 1)t, each f(ũi) is an unbiased estimator of µ, and so is their average.
Sloan and Joe (1994) give a different proof in their Theorem 4.11. For the second part,
which seems new, it suffices to show that the Xj ’s are pairwise uncorrelated. Without loss of
generality, it suffices to show that Cov(X1, X2) = 0. Let u and u′ be the two independent
uniforms used to randomly shift the points to compute X1 and X2, respectively. Then, for
any i, � ∈ {0, . . . , n − 1}, ũi = (ui + u) mod 1 and ũ′

� = (u� + u′) mod 1 are independent
and uniformly distributed over [0, 1)t, so that Cov[f(ũi), f(ũ′

�)] = 0. Therefore,

Cov[X1, X2] =
1
n2

Cov

[
n−1∑
i=0

f(ũi),
n−1∑
�=0

f(ũ′
�)

]
=

1
n2

n−1∑
i=0

n−1∑
�=0

Cov[f(ũi), f(ũ′
�)] = 0.

�

It should be underlined that Proposition 3 holds for any point set Pn; it does not have
to come from a lattice. This variance estimation method, by random shifts modulo 1,
therefore applies to any kind of low-discrepancy point set. We also mention that Qn itself
is not an unbiased estimator of µ (it is not a random variable). Observe that Proposition 3
holds under weaker conditions than (10); the Fourier expansion of f need not be absolutely
convergent.

We now know how to estimate the variance, but this variance estimator says nothing
about how to determine our lattice selection criteria. Since X̄ is a statistical estimator of µ,
the natural goal is to minimize its variance, i.e., minimize Var[Q̃n]. The next proposition
expresses this variance in terms of the (squared) Fourier coefficients, both for a lattice
rule and for plain MC (for comparison). Tuffin (1998) gives a different proof of (17) (in
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the proof of Theorem 2) under the condition that the Fourier expansion of f is absolutely
convergent. This is a much stronger condition than the square integrability of f (i.e., finite
variance), and it rarely holds for real-life simulation models.

Proposition 4. If f is square-integrable, with the MC method (i.e., if Pn contains n
i.i.d. random points) we have

Var[Q̃n] = Var[Qn] =
1
n

∑
0�=h∈ZZt

|f̂(h)|2. (16)

For a randomly shifted lattice rule, we have

Var[Q̃n] =
∑

0�=h∈L∗
t

|f̂(h)|2. (17)

Proof. With MC, (16) follows from Parseval’s equality (Rudin 1974) and the fact that
f̂(0) = µ. For the randomly shifted lattice rule, if we define the function g : [0, 1)t → IR
by g(u) =

∑n−1
i=0 f((ui + u) mod 1)/n, we get

Var[Q̃n] = Var(g(u)) =
∑

0�=h∈ZZt

|ĝ(h)|2, (18)

by using the Parseval equality on g. The Fourier coefficients ĝ(h) are

ĝ(h) =
∫

[0,1)t

g(u)e−2π
√−1h·udu

=
∫

[0,1)t

(
1
n

n−1∑
i=0

f((ui + u) mod 1)

)
e−2π

√−1h·udu

=
1
n

n−1∑
i=0

∫
[0,1)t

f((ui + u) mod 1)e−2π
√−1h·udu

=
1
n

n−1∑
i=0

∫
[0,1)t

f(vi)e−2π
√−1h·(vi−ui)dvi

=
1
n

n−1∑
i=0

e2π
√−1h·ui

∫
[0,1)t

f(vi)e−2π
√−1h·vidvi

=
1
n

n−1∑
i=0

e2π
√−1h·ui f̂(h)

=
{

f̂(h) if h ∈ L∗
t

0 otherwise.
(19)
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In the last display, the third equality follows from Fubini’s theorem (Rudin 1974) because
f is square-integrable over the unit hypercube, the fourth one is obtained by making the
change of variable vi = (ui + u) mod 1, and the last one follows from (11). We can now
replace ĝ(h) by (19) in (18) and this yields the required result. �

The variance is smaller for the randomly shifted lattice rule than for MC if and only
if the squared Fourier coefficients are smaller “in the average” over L∗

t than over ZZt. The
worst case is when all the nonzero Fourier coefficients of f belongs to L∗

t . The variance of
Q̃n is then n times larger with the randomly shifted lattice rule than with standard MC.
Fortunately, for typical real-life problems, the variance is smaller with the lattice rule than
with MC.

Heuristic arguments now enter the scene. A reasonable assumption, similar to the
one discussed just after (12–13), is that for well-behaved problems the squared Fourier
coefficients should tend to decrease quickly with the size of h, where the size can again be
measured in different ways. Small h’s correspond to low-frequency waves in the function
f , and are typically more important than the high-frequency waves, which are eventually
(for very large h) undetected even by standard MC because of the finite precision in the
representation of the real numbers on the computer. The small coordinates in h also
correspond to the most significant bits of the ui’s, which are usually the most important.
This argument leads us to the same general discrepancy measure as in the previous section,
namely (12–13). So we are back to the same question: How do we choose w?

Proposition 2 can be rephrased in terms of the variance. This is of course a trivial
result, but an important point to underline is that for a given function w such that the
sum in (12) converges, the class F ′ in the next proposition is generally much larger than
F in Proposition 2.

Proposition 5. Let F ′ be the class of functions f such that |f̂(h)|2 ≤ Kw(h) for all
h ∈ L∗

t , h 
= 0, where K is a constant. Then for all f ∈ F ′, Var[Q̃n] ≤ KD(Pn).

There are other ways of randomizing Pn than the random shift. Some of them guarantee
a variance reduction, but destroy the lattice structure, and do not perform as well as
the random shift of Pn for most typical problems, according to our experience. Two of
these methods are stratification and latin hypercube sampling (LHS). One can stratify by
partitioning the unit hypercube as follows. For a given basis of Lt, let Λ be the fundamental
parallelepiped defined in Section 2, and let Λi = (Λ + ui) mod 1 for each ui ∈ Pn. These
Λi, 0 ≤ i < n, form a partition of [0, 1)t. For each i, generate a random point ũi uniformly
in Λi and adopt the estimator Q̃n defined as before, but with these new ũi’s. Since this
is stratified sampling (Cochran 1977), it follows immediately that Var[Q̃n] is smaller with
this scheme than with standard MC (or equal, if f is constant over each Λi). Implementing
this requires more work than MC and than the random shift of Pn. LHS, on the other hand,
constructs the points ũi = (ũi,1, . . . , ũi,t) as follows. Let ui,1 = i/n for i = 0, . . . , n − 1,
and let (u0,s, . . . , un−1,s) be independent random permutations of (0, 1/n, . . . , (n − 1)/n),
for s = 2, . . . , t. (This is equivalent to taking the node set of a lattice rule and, for each
s, randomly permuting the sth coordinate values of the n points. Such a randomization
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completely destroys the lattice structure, except for the unidimensional projections.) Then,
let ũi,s = ui,s + δi,s/n for each (i, s), where the δi,s are i.i.d. U(0, 1). The estimator is again
Q̃n. Its variance never exceeds n/(n − 1) times that of MC (Owen 1998), and does not
exceed the MC variance under the sufficient condition that f is monotone with respect to
each of its coordinates (Avramidis and Wilson 1996). In the one-dimensional case (and for
each one-dimensional projection), LHS is equivalent to the stratification scheme described
a few sentences ago. For s > 1, however, the s-dimensional projections are not necessarily
well distributed under LHS.

Observe that we did not assume t ≤ n anywhere so far. Taking t  n means that the
LCG (5) will cycle several times over the same sequence of values of ui. However, with
the randomly shifted lattice rule this is not a problem because the randomization takes
care of shifting the different coordinates differently, which means that the ũi do not cycle.
Section 10.3 gives an example where we took t  n.

Rather than analyzing the variance of a randomized lattice for a fixed function, some
authors have analyzed the mean square error (MSE) over a space of random functions f .
This MSE is equal to the mean square discrepancy, for an appropriate definition of the
discrepancy. See, e.g., Woźniakowski (1991), Hickernell (1998b), Hickernell and Hong
(1999).

5 Functional ANOVA Decomposition

The functional ANOVA decomposition of Hoeffding (Hoeffding 1948, Efron and Stein 1981,
Owen 1998) writes f as a sum of orthogonal functions, where each function depends on a
distinct subset I of the coordinates:

f(u) =
∑

I⊆{1,...,t}
fI(u),

where fI(u) = fI(u1, . . . , ut) depends only on {ui, i ∈ I}, fφ(u) ≡ µ (φ is the empty
set),

∫
[0,1)t fI(u)du = 0 for I 
= φ, and

∫
[0,1)2t fI(u)fJ(v)dudv = 0 for all I 
= J . For any

positive integer d,
∑

|I|≤d fI(·) is the best approximation (in the mean square sense) of f(·)
by a sum of d-dimensional (or less) functions. The variance decomposes as

σ2 =
∑

I⊆{1,...,t}
σ2

I =
∑

I⊆{1,...,t}

∑
0�=h∈ZZt

|f̂I(h)|2,

and for a randomly shifted lattice rule, one has

Var[Q̃n] =
∑

I⊆{1,...,t}

∑
0�=h∈L∗

t

|f̂I(h)|2, (20)

where for I 
= φ, σ2
I =
∫
[0,1)t f2

I (u)du is the variance of fI , the f̂I(h) are the coefficients of

the Fourier expansion of fI , and f̂I(h) = 0 whenever the components of h do not satisfy:
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hj 
= 0 if and only if j ∈ I. In this sense, the ANOVA decomposition partitions the
vectors h according to the “minimal” subspaces to which they belong, i.e., according to
their sets of non-zero coordinates.

We say that f has effective dimension at most d in the truncation sense (Caflish,
Morokoff, and Owen 1997, Owen 1998) if

∑
I⊆{1,...,d} σ2

I is near σ2, in the superposition
sense (Caflish, Morokoff, and Owen 1997, Owen 1998) if

∑
|I|≤d σ2

I is near σ2, and in the
successive-dimensions sense if

∑
I⊆{i,...,i+d−1}, 1≤i≤t−d+1 σ2

I is near σ2. The first definition
means that f is almost d-dimensional (or less), while the others mean, in a different sense,
that f is almost a sum of d-dimensional functions. High-dimensional functions that have
low effective dimension are frequent in simulation applications. In many cases, the most
important sets I are those that contain either successive indices, or a small number of
indices that are not too far apart. This fact combined with the expression (20) for Var[Q̃n]
suggests discrepancy measures of the form (12) or (13), but where the sum (or the sup)
is restricted to those h that belong to the subspaces determined by the sets I that are
considered important. We propose selection criteria along these lines. In Section 9, we
mention ways of changing f in order to reduce its effective dimension without changing its
expectation.

Example 1. For a concrete illustration, consider the 3-dimensional function f(u1, u2, u3)
= 2u1u2+3u2

3+u2. The Fourier coefficients of the ANOVA components are f̂{1}(h1, 0, 0) =√−1/(2πh1) if h1 
= 0, f̂{2}(0, h2, 0) =
√−1/(πh2) if h2 
= 0, f̂{3}(0, 0, h3) = 3[

√−1/(2πh3)
+ 1/(2π2h2

3)] if h3 
= 0, f̂{1,2}(h1, h2, 0) = −1/(2π2h1h2) if h1h2 
= 0, and f̂I(h) = 0 for
every other case. The total variance is σ2 = 56/45 and it can be decomposed as the sum of
σ2
{1} = 1/12, σ2

{2} = 1/3, σ2
{3} = 4/5, and σ2

{1,2} = 1/36 (the other σ2
I ’s being 0). Here, the

unidimensional ANOVA components f{3}(u3) = 3u2
3 − 1 and f{2}(u2) = u2 − 1/2 account

for about 64% and 27% of the total variance, respectively.

6 Selection Criteria for Lattice Rules

We came up with the general selection criteria (12) and (13). It now remains to choose
w, and to choose between sum and sup. Two important factors to be considered are: (1)
the choice should reflect our idea of the typical behavior of Fourier coefficients in the class
of functions that we want to consider and (2) the corresponding figure of merit D(Pn)
or D′(Pn) should be relatively easy and fast to compute, so that we can make computer
searches for the best lattice parameters. Several choices of w and the relationships between
them are discussed, e.g., by Hellekalek (1998), Hickernell (1998b), Niederreiter (1992) and
in the references given there.

Historically, a standard choice for w has been w(h) = ‖h‖−α
π , a negative power of the

product norm ‖h‖π =
∏t

j=1 max(1, |hj |). With this w, D(Pn) in (12) becomes

Pα(Pn) =
∑

0�=h∈L∗
t

‖h‖−α
π ,
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a special case of (14). Hickernell (1998b) suggests generalizations of Pα(Pn), incorporating
weights and replacing the simple sum in (12) by an Lp-norm. This gives, for instance, the
quantity P̃α,p(Pn) defined by

(P̃α,p(Pn))p =
∑

0�=h∈L∗
t

(
βI(h)/‖h‖π

)αp
,

where p ≥ 1 and the constants βI are positive weights that assess the relative importance
of the projections Pn(I), i.e., the relative sizes of the σ2

I ’s in the ANOVA decomposition.
In the special case of product-type weights, of the form

βI = β0

∏
j∈I

βj ,

if α is even and p = 2, one can write

(P̃α,2(Pn))2 = −β2α
0 +

β2α
0

n

∑
u∈Pn

t∏
j=1

[
1 − (−4π2β2

j )α

2α!
B2α(uj)

]
.

where Bα(·) is the Bernoulli polynomial of degree α (e.g., Sloan and Joe 1994). This gives
an algorithm for computing P̃α,2(Pn) in time O(nt) when α is an even integer and Pn is the
point set of a lattice rule. This also means that (P̃α,2(Pn))2 can be interpreted in this case
as a worst-case variance bound for a class of polynomial functions with certain bounds
on the coefficients (Lemieux 1999 provides further details). Note that the DF ,α,p(P ) of
Hickernell (1999) corresponds to P̃α,p(Pn), and to (P2α(Pn))1/2 if p = 2 and βj = 1 for
all j, and is a particular case of the discrepancy D(Pn) in (4) and (14).

If the βj ’s are less than 1, then βI tends to decrease with |I|, which gives more im-
portance to the lower-dimensional projections of f . In particular, if βj = β < 1 for all j,
βI decreases geometrically with |I|. This means that all the projections fI over the same
number of dimensions |I| are assumed to have the same importance, and the importance
decreases with |I|. By taking βj = 1 for each j, we obtain the classical Pα(Pn), for which
all the projections are given the same weight. With equal weights, the low-dimensional
projections are given no more importance than the high-dimensional ones, and (unless t
is small) their contribution is diluted by the massive number of higher-dimensional pro-
jections. Sloan and Joe (1994) provide tables of parameters for lattices rules with good
values of P2(Pn) in t dimensions, for t up to 12.

If we take (13) instead of (12), with the same w and with α = 1, we get the inverse of
the Babenko-Zaremba index, defined as

ρt = min
0�=h∈L∗

t

‖h‖π, (21)

which has also been suggested as a selection criterion for lattice rules, but appears harder
to compute than P2(Pn). This ρt is the limit of P̃−1

1,p (Pn) as p → ∞. It has been used by
Maisonneuve (1972) to compute tables for up to t = 10.
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Another (natural) choice for w(h) is of course the Lp-norm to some negative power,
w(h) = ‖h‖−α

p , where ‖h‖p = (|h1|p + · · · + |ht|p)1/p. With α = 1 and the criterion (13),
D(Pn) becomes the inverse of the Lp-length of the shortest vector h in the dual lattice,
which is equal to the Lp-distance between the successive hyperplanes for the family of
parallel equidistant hyperplanes that are farthest apart among those that cover all the
points of Lt. For p = 1, ‖h‖1 (or ‖h‖1 − 1 in some cases, see Knuth 1997) is the minimal
number of hyperplanes that cover all the points of Pn. For p = 2 (the Euclidean norm), this
is the so-called spectral test commonly used for ranking LCGs (Hellekalek 1998, L’Ecuyer
1999b, L’Ecuyer and Couture 1997, Knuth 1997), and we use �t to denote the length of
the shortest vector in this case. Since the density of the vectors h in L∗

t is fixed, and since
we want to avoid the small vectors h because they are considered the most damaging,
maximizing �t makes sense.

The Euclidean length �t of the shortest nonzero vector h is independent of its direction,
whereas for the product norm (for ρt) the length of h tends to remain small when h is
aligned with several of the axes and increases quickly when h is diagonal with respect to the
axes. Entacher, Hellekalek, and L’Ecuyer (1999) have proved a relationship between �t and
ρt which seems to support the use of �t. It says (roughly) that a large �t implies a large ρt,
but not vice-versa (they provide an example where ρt

√
t = �tb

t−1 for an arbitrary b):

Proposition 6. One has ρ2
t ≥ �2

t − (t − 1). The reverse inequality is ρ
1/t
t

√
t ≤ �t.

Another important argument favoring �t is that it can be computed much more quickly
than ρt or Pα(Pn), for moderate and large n. Finally, tight upper bounds are available on
�t, of the form �t ≤ �∗t (n) = ctn

1/t, where the constants ct can be found in Conway and
Sloane (1988) and L’Ecuyer (1999b). One can then define a normalized figure of merit
�t/�∗t (n), which lies between 0 and 1 (the larger the better). A similar normalization can
be defined for the Lp-distance in general, using a lower bound on the distance provided
by Minkowski’s general convex body theorem (Minkowski 1911). Hickernell et al. (1999),
for example, use this lower bound to normalize the L1-distance between the successive
hyperplanes.

These quantities �t, ρt, Pα(Pn), etc., measure the structure of the points in the t-
dimensional space. In view of the fact that the low-dimensional projections often account
for a large fraction of the variance in the ANOVA decomposition in real-life applications, it
seems appropriate to examine more closely the structure of the low-dimensional projections
Lt(I). Let L∗

t (I) be the dual lattice of Lt(I), i.e., the projection of L∗
t over the subspace

determined by the indices in I, let �I be the Euclidean length of the shortest nonzero
vector h in L∗

t (I), and �s = �{1,...,s} for s ≤ t. This length is normalized by the upper
bound �∗|I|(n). Because �∗s(n) increases with s, the effect of the normalization is to be
more demanding regarding the distance between the hyperplanes when the cardinality of
I decreases. Assume that Lt is fully projection-regular and dimension-stationary. Then
we have �{i1,...,is} = �{1, i2−i1+1, ...,is−i1+1}, and it suffices to compute �I only for the sets I
whose first coordinate is 1.
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For arbitrary positive integers t1 ≥ · · · ≥ td ≥ d, consider the worst-case figure of merit

Mt1,...,td = min
[

min
2≤s≤t1

�s/�∗s(n), min
2≤s≤d

min
I∈S(s,ts)

�I/�∗|I|(n)
]

, (22)

where S(s, ts) = {I = {i1, . . . , is} : 1 = i1 < · · · < is ≤ ts}. This figure of merit takes into
account the low-dimensional projections and makes sure that the lattice is good not only
in t dimensions, but also in projections over s successive dimensions for all s ≤ t1 (usually
with t1 = t) and over non-successive dimensions that are not too far apart. This means,
to a certain extent, that we can use the same rule independently of the dimension of the
problem at hand. In contrast, lattice rules provided in previous tables are typically chosen
for a fixed t (i.e., different rules are suggested for different values of t, e.g., Sloan and Joe
1994).

The figure of merit Mt1 = min2≤s≤t1 �s/�∗s(n), obtained by taking d = 1, has been widely
used for ranking and selecting LCGs as well as multiple recursive generators (Fishman
1996, L’Ecuyer 1999a). Tables of good LCGs with respect to this figure of merit, and
which can be used as Korobov lattice rules, have been computed by L’Ecuyer (1999b)
for t1 = 8, 16, 32, for values of n that are either powers of 2 or primes close to powers
of 2. These rules are good uniformly for a range of values of s. In Lemieux and L’Ecuyer
(1999b), we suggested using d = 2 or 3 instead of d = 1, with t1 = · · · = td, and gave
examples where it makes an important difference in the variance of the estimator Q̃n. The
quantity Mt1,...,td is a worst case over (t1 − d) +

∑d
s=2

(
ts−1
s−1

)
projections, and this number

increases quickly with d unless the ts are very small. For example, if d = 4 and ts = t for
each s, there are 587 projections for t = 16 and 5019 projections for t = 32. When too
many projections are considered, there are inevitably some that are bad, so the worst-case
figure of merit is (practically) always small. As a consequence, the figure of merit can no
longer distinguish between good and mediocre behavior in the most important projections.
Moreover, the time to compute Mt1,...,td increases with the number of projections. There
is therefore a compromise to be made: We should consider the projections that we think
have more chance of being important, but not too many of them. We suggest using the
criterion (22) with d equal to 4 or 5, and ts decreasing with s, both for QMC and for
selecting random number generators.

Table 1 gives some values obtained by exhaustive search for the best multipliers a that
are primitive element modulo n, for the largest prime numbers n less than certain powers
of 2, in terms of the criterion Mt1,...,td for selected values of d, t1, . . . , td given in the table.
The last line of the table gives the number of projections considered by each criterion.
A star (*) adjacent to the criterion value means that this value is optimal (the best we
found) with respect to this criterion. For each parameter set (d, t1, . . . , td), we give an
optimal multiplier a, its optimal criterion value, and also its criterion value for the other
parameter sets. Some of the best rules with respect to M32 are bad with respect to the
criteria that look at projections over non-successive dimensions (e.g., for n = 8191 and
131071). The best ones with respect to M32,24,12,8 have a relatively good value of M32 and
are usually good also with respect to M32,24,16,12. Of course, since M32,24,16,12 looks at the
largest number of projections among the three criteria, the best LCGs with respect to this
criterion are never bad with respect to the two other criteria.
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Table 1: Best a’s with respect to Mt1,...,td for certain values of (d, t1, . . . , td) and n.

n a M32 M32,24,12,8 M32,24,16,12

1021 331 0.61872* 0.09210 0.09210
76 0.53757 0.29344* 0.21672

306 0.30406 0.26542 0.26542*
2039 393 0.65283* 0.15695 0.15695

1487 0.49679 0.32196* 0.17209
280 0.29807 0.25156 0.25156*

4093 219 0.66150* 0.13642 0.13642
1516 0.39382 0.28399* 0.20839
1397 0.40722 0.27815 0.27815*

8191 1716 0.64854* 0.05243 0.05243
5130 0.50777 0.30676* 0.10826
7151 0.47395 0.28809 0.28299*

16381 665 0.65508* 0.15291 0.14463
4026 0.50348 0.29139* 0.23532
5693 0.52539 0.26800 0.25748*

32749 9515 0.67356* 0.29319 0.13061
14251 0.50086 0.32234* 0.12502
8363 0.41099 0.29205 0.28645*

65521 2469 0.63900* 0.17455 0.06630
8950 0.55678 0.34307* 0.20965
944 0.39593 0.28813 0.26280*

131071 29803 0.66230* 0.03137 0.03137
28823 0.44439 0.33946* 0.15934
26771 0.54482 0.29403 0.29403*

No. of projections 31 141 321

7 Rules of Higher Rank

Rules of rank r > 1 have been studied by Sloan and Joe (1994) and the references given
there. A special case is the copy rule, constructed as follows. Divide each of the first r
axes of [0, 1)t in η equal parts, partitioning thus the unit hypercube into ηr rectangles of
equal volume. Take a rank-1 integration lattice whose node set has cardinality ν, rescale
its first r axes so that [0, 1)t is mapped to [0, 1/η)r × [0, 1)t−r, and make one copy of the
rescaled version into each rectangle of the partition. The node set thus obtained has car-
dinality n = νηr, and corresponds to a lattice rule called an ηr-copy rule. The interest for
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these rules stems from the fact that for a fixed value of n, the average value of Pα(Pn)
over ηr-copy rules is minimized by taking r = t and η = 2. Sloan and Joe (1994) made
computer searches for good rules in terms of Pα(Pn) and the best rank-t rules that they
found were generally better than their best rank-1 rules, for the same n. Our experiments
confirmed this (see our forthcoming Table 2). These results no longer hold, however, if
Pα(Pn) is replaced by another criterion, such as P̃α,p(Pn) with unequal weights. This is
especially true if the weights are chosen to make the low-dimensional projections more
important. For example, if β1 = · · · = βt = β and β is small enough, the optimal η is 1
(Hickernell 1998b).

The limitations of copy rules over low-dimensional projections are easily understood
by observing that the node sets of these rules are not projection-regular. For an ηr-copy
rule, if I = {i1, . . . , is} ⊆ {1, . . . , r}, the projection Pn(I) contains only n/ηr−s distinct
points. There are exactly ηr−s points of Pn projected onto each point of Pn(I). For
example, if n = 218 and r = t = 16, any unidimensional projection of Pn contains only 8
distinct points repeated 215 times each, any 2-dimensional projection contains 16 distinct
points repeated 214 times each, and so on. Such rules are certainly bad sampling schemes
in general if the low-dimensional projections of f account for most of the variance in its
ANOVA decomposition (e.g., if f is nearly quadratic). As another special case, if we take
r = t and ν = 1, so n = ηt, we obtain a rectangular rule, where Lt is the set of all
t-dimensional points whose coordinates are multiples of 1/η.

In Table 2, for t = 12, we compare the best 2t-copy rules found by Sloan and Joe (1994)
based on criterion P2(Pn) (those of rank 12 in the table, with the corresponding ν), and the
best rank-1 rules of corresponding orders that we found with criteria P2(Pn), S12 = �12/�∗12,
M12, and M12,8,6. For each rule, we give the total number of points n, the value of a, and
the value of each criterion. For copy rules, a formula for computing P2(Pn) is given by
Sloan and Joe (1994), page 107 and Hickernell (1998b), page 150. To compute �s/�∗s, we
use the fact that for a copy rule of rank t, �s = η�s(ν) and �∗s = cs(νηt)1/s = ηt/s�∗s(ν)
where �∗s(ν) and �s(ν) are the values of �∗s and �s for the rank-1 rule of order ν that has
been copied. This gives �s/�∗s = η1−t/s�s/�∗s(ν).

Our results agree with the theory of Sloan and Joe (1994): The copy rules of rank 12
have much better values of P2(Pn) than the best rank-1 rules. In additional experiments, we
found that by going from the best rank-1 rules to the best rank-t rules, the value of P2(Pn)
improves by a factor that increases with the dimension t. This factor is approximately 1.5
for t = 4, 3.2 for t = 8, and 6.5 for t = 12. The best copy rules of rank t = 12 in the table
also happen to have a very good value for S12 (sometimes better than the best rank-1 rule
with respect to S12). However, the copy rules perform very poorly with respect to M12

and M12,8,6, as expected, because their lower-dimensional projections are bad. It may be
interesting to note that if we compare the best rules of rank 1 with respect to P2(Pn) with
the best rules with respect to S12 in the table, the latter perform much better with respect
to the two criteria M12 and M12,8,6.
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Table 2: Copy Rules Versus Rank-1 Rules for t = 12

rank criterion ν n a P2(Pn) S12 M12 M12,8,6

12 P2(Pn) 3 12288 1 447* 0.8097* 0.0237 0.0237
1 P2(Pn) 12281 12281 3636 2930 0.6401 0.0863 0.0187
1 S12 12281 12281 86 3140 0.7574 0.4859 0.3684
1 M12 12281 12281 9948 3160 0.7012 0.6683* 0.1202
1 M12,8,6 12281 12281 657 3160 0.6402 0.6031 0.5804*

12 P2(Pn) 5 20480 2 268* 0.7759 0.0291 0.0184
1 P2(Pn) 20479 20479 11077 1730 0.6134 0.0728 0.0145
1 S12 20479 20479 54 1900 0.7760* 0.3512 0.3109
1 M12 20479 20479 14700 1900 0.7258 0.6915* 0.2085
1 M12,8,6 20479 20479 10741 1880 0.7258 0.5398 0.5398*

12 P2(Pn) 11 45056 3 121* 0.7266 0.0277 0.0124
1 P2(Pn) 45053 45053 4928 806 0.6293 0.2334 0.0613
1 S12 45053 45053 87 863 0.7707* 0.3722 0.3722
1 M12 45053 45053 26149 853 0.7266 0.6874* 0.1053
1 M12,8,6 45053 45053 5845 857 0.6293 0.5558 0.5542*

8 Polynomial Lattice Rules

The lattice rules discussed so far are based on integration lattices in IRt. This is not the
only possibility; one can define lattice rules based on lattices in other spaces. Consider
for example the space IF2[z] of polynomials with coefficients in IF2, the finite field with 2
elements (that is, each coefficient is either 0 or 1 and the arithmetic between the coefficients
is performed modulo 2; e.g., Lidl and Niederreiter 1986). Let P (z) =

∑k
j=0 ajz

k−j ∈ IF2[z]
be a polynomial of degree k, with ak = a0 = 1, and consider the linear recurrence

pi(z) = zpi−1(z) mod (P (z), 2), (23)

where

pi(z) =
k∑

j=1

ci,jz
k−j (24)

is a polynomial in IF2[z], and “mod (P (z), 2)” means the remainder of the polynomial
division by P (z), with the operations on the coefficients performed in IF2. We now have an
LCG in IF2[z], with modulus P (z) and multiplier z, which has a lattice structure similar
to that of usual LCGs (Couture, L’Ecuyer, and Tezuka 1993, Couture and L’Ecuyer 1999).
This LCG has maximal period 2k − 1 if and only if P (z) is a primitive polynomial over IF2

(Lidl and Niederreiter 1986). The dual lattice is the space L∗
t of multivariate polynomials

h(z) = (h1(z), . . . , ht(z)), where hs(z) =
∑�−1

j=0 hs,jz
j , hs,j ∈ IF2, � ∈ IN, and such that
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∑t
s=1 hs(z)zs−1 mod (P (z), 2) = 0. Define the “length” of h(z) by ‖h(z)‖ = 2�∗ where

�∗ = min{� ≥ 0 | hs,j = 0 for all j ≥ � and all s}.
To the polynomial pi(z), we associate the output value

ui =
L∑

j=1

yi,j2−j (25)

where L is a positive integer,

yi,j =
k∑

l=1

bj,lci,l mod 2, (26)

and the bj,l’s are fixed bits forming an L × k matrix B. The corresponding node set Pn is
the set of all vectors u = (u0, . . . , ut−1) obtained by taking each of the n = 2k possibilities
for p0(z) in (24). The bit matrix B should be chosen so that Pn has good uniformity
properties and is easy to enumerate. The node set Pn can be randomly shifted by adding
a (uniform) random point u modulo 1, as in Section 4. However, as pointed out to us
by R. Couture, the counterpart of the Cranley-Patterson rotation here is to perform a
bitwise exclusive-or between the binary expansions of u and each point of Pn. This yields
a randomly scrambled version of Pn, say P̃n. This randomization of Pn is much simpler
than the scrambling proposed by Owen (1997) for nets, and permits one to obtain simple
variance expressions. In particular, if we expand the function f as a Walsh series in base 2,
with coefficients f̃(h(z)) where h(z) runs over the set of multivariate polynomials defined
previously, the integration error with Pn and the variance of the estimator with P̃n are equal
to
∑

0�=h(z)∈L∗
t
f̃(h(z)) (if this series converges absolutely) and

∑
0�=h(z)∈L∗

t
|f̃(h(z))|2 (if f

is square-integrable), respectively (Couture, L’Ecuyer, and Lemieux 1999). This motivates
selection criteria for P (z) and B based on the idea of avoiding (again) short vectors h(z)
in the dual lattice, similar to what we discussed in Section 6.

The polynomial lattices defined via (23) are a special case of more general polynomial
integration lattices of higher rank which can be defined via a polynomial version of (7).
These polynomial lattice rules are in fact equivalent to the digital net constructions of
Niederreiter (1992), Sect. 4.4, also discussed by Larcher (1998).

The dual lattice turns out to be useful for studying the following equidistribution prop-
erties. By partitioning the interval [0, 1) into 2� segments of equal length, we determine a
partition of the box [0, 1)t into 2t� cubic boxes of equal volume. For a given set of indices
I = {i1, . . . , is}, we say that the projection Pn(I) is s-distributed to � bits of accuracy if
each box of the partition contains exactly 2k−s� points of Pn(I). This means that if we look
at the first � bits of each coordinate of the points of Pn(I), each of the 2s� possible s�-bit
strings appears exactly the same number of times. (Of course, this requires s� ≤ k.) To
verify this property, it suffices to write a system of linear equations that express these 2s�

bits as a function of (c0,1, . . . , c0,k), and to check that these equations are independent, i.e.,
that the corresponding matrix has full rank, s�. The link with the dual lattice is that Pn(I)
is s-distributed to � bits of accuracy if and only if � ≤ L and no nonzero vector in L∗

s(I)
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has length 2� or less, where L∗
s(I) is the projection of L∗

t over the subspace determined by
I (Couture, L’Ecuyer, and Tezuka 1993). The property can thus be verified by computing
the length of the shortest vector in the dual lattice, i.e., by applying the spectral test in
the polynomial space (Couture and L’Ecuyer 1999).

To define a criterion, denote by 2�∗(I) the length of the shortest nonzero vector h(z) in
L∗

t (I). For positive integers d and t1 ≥ · · · ≥ td, let J (t1, . . . , td) be the class of subsets
I such that either I = {1, . . . , s} for s ≤ t1, or I = {i1, . . . , is} where 2 ≤ s ≤ d and
1 = i1 < · · · < is ≤ ts}. Define

∆(t1, . . . , td) = max
I∈J

max [0, min(L, �k/|I|�) − �∗(I)] . (27)

We say that the point set Pn is ME(t1, . . . , td) (where ME stands for maximally equidis-
tributed) if ∆(t1, . . . , td) = 0. This is an extension of the criterion used by L’Ecuyer (1996,
1999c), who selected combined Tausworthe random number generators (these generators
turn out to be a special case of (23)–(26)) based on the criterion ME(k). A related cri-
terion is that of a “(t, m, s)-net” (a (q, k, t)-net, in our notation), where one considers all
the partitions of [0, 1)t into rectangular boxes of dimensions 2−�1 , . . . , 2−�t (not only cubic
boxes), such that �1 + · · · + �t = k − q for some integer q. The set Pn is a (q, k, t)-net
in base 2 if each box of each of these partitions contains exactly 2q points (Niederreiter
1992 provides the details). The (q, k, t)-net property is much harder to check than the ME
property, especially when k is large and q is small, because it involves a large number of
partitions. Each box of the partition into

∏t
j=1 2�j rectangles contains exactly 2q points if

and only if L∗
t contains no vector (h1(z), . . . , ht(z)) 
= 0 such that hs,j = 0 for all j ≥ ls

and 1 ≤ s ≤ t. This condition can also be verified by expressing the �1 + · · · + �t bits that
determine in which rectangle the point falls as a linear combination of the bits of the initial
state, and checking if the corresponding matrix has full rank.

9 Massaging the Problem

When the function f is fixed, the goal is to find an integration lattice whose dual contains
the most important Fourier coefficients. Another way of gaining precision is to change f so
that its integral remains the same but its most important Fourier coefficients correspond
to vectors h that are smaller and/or belong to lower-dimensional projections.

A first way of achieving this is to improve the smoothness of f̄ , the periodic continuation
of f , by making nonlinear changes of variables of the form vs = φ−1

s (us), where φs : [0, 1) →
[0, 1) is smooth and increasing for each s. The integral becomes

µ =
∫

[0,1)t

g(v)dv

where g(v) = g(v1, . . . , vt) = f(φ1(v1), . . . , φt(vt))φ′
1(v1) · · ·φ′

t(vt). By choosing each φs

so that φ′
s(0) = φ′

s(1) = 0, the periodic continuation of g becomes continuous on the
hypercube boundary even if that of f is not. More generally, if the (d+1)th derivative of φ
vanishes on the hypercube boundary, the periodic continuation of g is guaranteed to have a
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continuous dth derivative on the boundary. For example, if φ(v) = v3(10−15v+6v2), then
both φ′ and φ′′ vanish at 0 and 1. These transformation techniques are further discussed
in Section 2.12 of Sloan and Joe (1994). These methods should not be applied blindly.
A transformation that improves smoothness at the boundary may substantially increase
σ2, the variance of f , e.g., by introducing oscillations inside the hypercube. Finding
appropriate φs’s can be hard in practice.

Other types of transformations work by reducing the effective dimension of the prob-
lem, by concentrating the variance in the ANOVA decomposition on the σ2

I ’s for which I
contains only a few small coordinates, or for which I contains only a few coordinates that
are close to each other, or something of that kind. That is, concentrating the variance on
the subspaces for which the projections Pn(I) are known to have very good uniformity.
These methods include the Brownian bridge technique for generating a Brownian motion,
special techniques for generating Poisson processes, methods based on principal compo-
nents analysis, and so on. We refer the reader to Fox (1999). Here we just briefly outline
the idea of the Brownian bridge method, which will be used in Section 10.2.

Suppose one has to generate the path of a standard Brownian motion {W (ζ), 0 ≤
ζ ≤ T} (with zero trend and variance constant of 1). The standard way is to discretize
the time by putting, say, ζi = iδ for i = 0, . . . , t, where δ = T/t, and then generate
Zi = (W (ζi) − W (ζi−1))/

√
δ, i = 1, . . . , t, which are i.i.d. N(0, 1) random variables. If the

standard normals are generated by inversion, this requires t uniforms. If the function f
is some sort of average over the entire trajectory of W , for instance, then the uniforms
used for the early part of the trajectory are slightly more important than those used
near the end, because their effect lasts longer. However, the first few uniforms can be
made much more important as follows. Generate first W (T ), a normal with mean 0 and
variance T . Then generate W (T/2), whose distribution conditional on W (0) and W (T ) is
normal with mean (W (0) + W (T ))/2 and variance T/4, according to the Brownian bridge
formula (Karatzas and Shreve 1988). By applying the technique recursively, one generates
successively W (T/4), W (3T/4), W (T/8), W (3T/8), and so on. The first few values are now
very important because they draw a rough sketch of the entire trajectory of W , whereas
the values generated later only make minor adjustments to the trajectory. Extensions of
this method lead to principal components analysis and other variants, which have been
applied successfully in the area of finance (e.g., Acworth, Broadie, and Glasserman 1997,
Morokoff 1998).

10 Examples

In the following examples, the random variables are always generated by inversion, so that
the dimension t for each problem is equal to the number of random variables that must
be generated in one simulation run. For all the examples, we use the lattice rules that
minimize the criterion M32,24,12,8 in Table 1.
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10.1 A Stochastic Activity Network

This example is taken from Avramidis and Wilson (1996). We consider a stochastic activity
network (SAN), represented by a directed acyclic graph (N ,A), where N is a set of nodes
which contains one source and one sink, and A is a set of arcs corresponding to activities.
Figure 2 gives an illustration. Each activity k ∈ A has a random duration Vk with dis-
tribution function Fk(·). Certain dummy activities represent precedence relationships and
have a duration of 0. We denote by N(A) the number of activities with nonzero duration,
N(P ) the number of directed paths from the source to the sink, and Cj ⊆ A the set of
activities forming the path j, for 1 ≤ j ≤ N(P ). The network completion time T is the
length of the longest path from the source to the sink.

1

2 4 7

3

6 9

5 8

   sink

source

Figure 2: Example of a SAN, taken from Avramidis and Wilson (1996)

We want to estimate µ = FT (x) = P [T ≤ x] for a given threshold x. With the standard
MC or QMC method, this problem has t = N(A) dimensions, since one uniform uk is
needed to generate each activity duration, via Vk = F−1

k (uk). One can write µ as the
integral

µ = FT (x) =
∫

[0,1)N(A)

N(P )∏
j=1

1

⎡
⎣∑

k∈Cj

F−1
k (uk) ≤ x

⎤
⎦ du1 . . . duN(A)

where 1 is the indicator function. Both the dimension of the problem and the variance
of the MC estimator can be reduced by applying conditional Monte Carlo (CMC), as
follows (Avramidis and Wilson 1996). Select a set of activities L ⊆ A such that each
directed path j from the source to the sink contains exactly one activity lj from L. This
set is called a uniformly directed cutset . The idea of QMC is to generate (by simulation)
only the durations of the activities in B = A \ L, and to estimate µ by the conditional
probability that T ≤ x given those durations. The dimension of the problem is now
reduced to t = N(B), where N(B) is the number of non-dummy activities in B. The CMC
(unbiased) estimator is
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Y = P [T ≤ x | {Vj , j ∈ B}] =
∏
l∈L

Fl

⎡
⎣ min
{j=1,...,N(P ):lj=l}

⎛
⎝x −

∑
k∈Cj\{lj}

Vk

⎞
⎠
⎤
⎦ .

The t required uniforms for each replication can now be generated either by standard MC
or by (randomized) QMC, e.g., via a lattice rule. Avramidis and Wilson (1996) proposed to
generate them via Latin Hybercube Sampling (LHS). Note that this setup and methodology
applies to estimate the expected length of the longest path in a network in general; it does
not have to be a SAN.

Table 3: Estimated variance reduction factors w.r.t. MC for the SAN example

n
Method t 4093 16381 65521
LHS 13 3.2 4.3 3.4
LR 13 6.2 4.2 24.5
MC+CMC 8 4.1 4.1 4.1
LHS+CMC 8 58 56 63
LR+CMC 8 268 839 3086

We performed experiments with the network shown in Figure 2, with the same set L and
the same probability laws of the activity durations as in Avramidis and Wilson (1996), to
compare MC, LHS, and a randomly shifted lattice rule (LR), with and without CMC. The
set L contains the 5 arcs that separate the nodes {1, 2, 3, 4, 5} from the nodes {6, 7, 8, 9}.
The dimension of the problem is thus t = 13 without CMC and t = 8 with CMC. We took
x = 90, which implies FT (x) ≈ 0.89. For LR, we used different number of points n, and m =
100 random shifts. We made mn i.i.d. replications for MC, for a fair comparison. Table 3
gives the estimated variance reduction factors with respect to the crude MC estimator.

The combination of LR with CMC (last line) is a clear winner here. Moreover, the
corresponding variance reduction factor increases almost linearly with n. Its computing
time is also less than MC for an equivalent total sample size, since both LR and CMC
reduce the work in addition to reducing the variance. The combination of LHS with CMC
reduces the variance by a non-negligible factor, but this factor is practically independent
of n. We performed other experiments with different values of x and with the other network
presented in Avramidis and Wilson (1996), and the conclusions were similar.

10.2 Pricing Asian Options

Consider the problem of pricing an asian option on the arithmetic average, for a single
asset whose value at time u is denoted by S(u). We assume the Black–Scholes model for
the evolution of S(·), with risk-free appreciation rate r, volatility σ, strike price K, and
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expiration time T . Under the so-called risk-neutral measure, S(·) obeys the Itô stochastic
differential equation

dS(ζ)/S(ζ) = rdζ + σdB(ζ)

where B(·) is a standard Brownian motion. (Details about this model can be found, e.g.,
in Duffie 1996.) The solution of this equation is

S(ζ) = S(0) exp
[
(r − σ2/2)ζ + σB(ζ)

]
.

The final value of the option is given by max(0, (1/t)
∑t

i=1 S(ti)−K), where ti = iT/t and
t is a fixed constant. The trajectory of B(·) can be generated as described in Section 9, by
generating t i.i.d. standard normals. The expected final value, which is the fair price that
we want to estimate, can in fact be written as the t-dimensional integral:

µ =
∫

[0,1)t

max

⎛
⎝0,

1
t

t∑
i=1

S(0) exp

⎡
⎣(r − σ2/2)ti + σ

√
T/t

i∑
j=1

Φ−1(uj)

⎤
⎦− K

⎞
⎠ du1 . . . dut,

where Φ(·) is the standard normal distribution.
To reduce the variance, one can use the selling price of the option on the geometric

average as a control variable (Kemna and Vorst 1990) as well as antithetic variates. Nu-
merical results combining these methods with shifted lattice rules are given by Lemieux
and L’Ecuyer (1998, 1999a). Glasserman, Heidelberger, and Shahabuddin (1999) also use
importance sampling (IS) and stratification (STR) to reduce the variance for this prob-
lem. IS and STR are used to generate the product Y = a · (Z1, . . . , Zt), where a is some
“optimal” vector and Z1, . . . , Zt are t i.i.d. standard normals. Each Zi is then generated
by conditioning on Y , so the problem thus becomes (t + 1)-dimensional.

We performed experiments to compare different combinations of the above methods,
and their coupling with shifted lattice rules. We denote by CMC the method that generates
the Zi’s by conditioning on Y , with a equal to the optimal drift vector for IS as suggested by
Glasserman, Heidelberger, and Shahabuddin (1999), and we apply IS and STR in exactly
the same way as these authors (this IS is always combined with CMC). When we combine
CMC with LR, we take a rule in t + 1 dimensions and use the first coordinate of each
shifted point to generate the product a · (Z1, . . . , Zt). The Brownian bridge technique is
denoted by BB.

Table 4 reports the estimated variance reduction factors with respect to MC, for certain
combinations of the methods. The parameters of the option are σ = 0.3, r = 0.05, K = 55,
T = 1 year and t = 64. Among the combinations given in the table (and all others that
we tried), the winner is CV+IS+CMC+LR. It improves over the MC+IS+CMC+STR
combination of Glasserman, Heidelberger, and Shahabuddin (1999) by a factor of approxi-
mately 4. One can also observe that CV+LR, which is very simple and easy to implement,
already does a decent job. Combining it with BB brings a significant improvement, and
adding IS brings another small gain. Our additional experiments with the pricing of Asian
options indicated that the effectiveness of CV generally decreases with K and with t,
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Table 4: Estimated variance reduction factors w.r.t. MC for the Asian-option example

n
Method 4093 16381 65521
MC+IS+CMC+STR 1495 1601 1603
CV+LR 703 620 597
BB+CV+LR 2488 4876 4958
BB+CV+IS+LR 3129 4790 5407
CV+IS+CMC+LR 6073 6206 6847

whereas the effectiveness of IS increases with K (as explained by Glasserman, Heidel-
berger, and Shahabuddin (1999)). Otherwise, the results were similar to those of Table 4.
L’Ecuyer and Lemieux (1999) report preliminary numerical experiments with polynomial
lattice rules for the present example.

10.3 A Single Queue

Consider an M/M/1 queue with arrival rate λ and service rate µ. We want to estimate
the steady-state probability p(k) that a customer has its sojourn time in the queue larger
than k, for some constant k. Simulation is unnecessary for this problem, since it is known
that p(k) = e−kµ(1−λ/µ). However, this simple example allows us to illustrate how lattice
rules can be used for infinite-horizon models and how it can be coupled with regenerative
simulation. Lindley’s equation tells us that

Ti+1 = Si+1 + max(0, Ti − Ai)

where Ti and Si are respectively the sojourn time and service time of customer i and Ai is
the interarrival time between customers i and i + 1. We assume that T0 = A0, so T1 = S1.
The discrete-time process {Ti, i ≥ 0} is a regenerative process with a regeneration epoch
at each index i for which Ti − Ai ≤ 0.

A first approach to estimate p(k) uses a large truncated horizon: Simulate a fixed
number of customers (say, N , where N is large) and take the average

1
N

N∑
i=1

1 (Ti > k) .

This can be replicated a certain number of times, independently, to estimate the variance
and compute a confidence interval. It we use 2 uniforms for each customer, one to generate
its arrival time and one for its service time, we have a 2N -dimensional integration problem,
for which we can use a 2N -dimensional lattice rule. (We run a truncated-horizon simulation
with each of the n points of the rule.) If we perform m independent random shifts of the
rule, we thus simulate a grand total of mnN customers. A second approach is to simulate a
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fixed number n of regenerative cycles, using one point from the lattice node set to simulate
each regenerative cycle. The dimension t of the problem, which is now twice the number
of customers in a cycle, is a random variable with mean 2/(1 − λ/µ). One can also view
the problem as infinite-dimensional, with all but a finite (random) number of the uniforms
being unused. Both the truncated horizon and the regenerative method provide biased
estimators of p(k). Here, we are not interested in this bias, but only in the variance
reduction obtained by applying randomly-shifted lattice rules.

We tried the truncated-horizon estimator on an example with parameter values λ/µ =
0.6, k = 10 and 20, and N = 5000 (so the number of dimensions is t = 10000). By
using the lattice rule of n = 1021 points, the variance was reduced by a factor ranging
between 5 and 10 compared with MC. Note that in this example we use nearly 10 times
the period length of the LCG (5) to generate each lattice point ui (i.e., t ≈ 10n). However,
as explained earlier, the coordinates ũi,j of ũi are not periodic, thanks to the random shift,
and the fact that t  n poses no difficulty. Moreover, for this model, customers that are far
apart in time are almost independent, which means that the important σI ’s in the ANOVA
decomposition are those for which id − i1 is small, assuming that I = {i1, . . . , id} where
i1 < · · · < id. In other words, this problem has an effective dimension much less than
2N in the successive-dimensions sense. This is especially true if the traffic intensity λ/µ
is small. The effective dimension increases with the traffic intensity, as does the average
length of the regenerative cycles. We also tried the regenerative method on this example,
with n = 1021, and obtained a variance reduction of approximately 3 compared with MC
when k = 10 and 2 when k = 20. With n = 65521 points, these factors increased to 3.5 and
2.2, respectively. The variance reduction is less important here than with the truncated-
horizon estimator: In the latter case, each simulation gives us a mean-value over many
cycles (instead of only one for the regenerative method), and this averaging introduces a
smoothness favorable to LR in the function f that corresponds to the integral of the form
(1) that we try to estimate.

11 Conclusion

QMC is most often associated with low-discrepancy point sets and sequences such as the
so-called (t, m, s)-nets and the sequences of Halton, Sobol’, Faure, and Niederreiter, where
the concept of discrepancy is in the sense of the rectangular star discrepancy, and where the
justification for QMC is based on the worst-case error bound provided by the Koksma–
Hlawka inequality (4). Lattice rules, which are an alternative to this framework, have
also been traditionally justified by worst-case error bounds. Viewing them as a variance
reduction tool seems more practical, however, as we have argued in this paper. Our
coverage of lattice rules is of course incomplete. For other viewpoints and results, we refer
the reader to the book of Sloan and Joe (1994) and the recent papers of Hickernell.

The criterion Mt1,...,td that we have proposed is not perfect, but it is convenient and it
provides rules that seem to work well in practice. We admit that the choice of d and of
the ts’s is arbitrary and that the corresponding function w in (13) cuts abruptly to zero
once we hit the subspaces (or projections) that are not considered by the criterion. An
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alternative would be to consider all subsets I for the minimization in (22), but to multiply
the constants �∗|I|(n) by some weights that decrease smoothly towards 0 with the size and
span of I (i.e., |I| and id − i1) so that the projections over coordinate sets with large size
or span will not be taken into account unless they are really very bad. This smoother
scheme could be more complicated to implement than the criterion (22), however, because
a larger number of subsets I would have to be examined, and the choice of the weights is
still arbitrary.

Among the interesting topics currently under investigation, we mention the concept
of embedded lattice sequences, where a sequence of lattices with node sets {Pni , i ≥ 1}
is defined so that ni divides ni+1 (e.g., ni+1 = 2ni) and Pni ⊂ Pni+1 for each i. The
idea is that if the empirical variance (or the other error estimate in use) is still larger than
desired after applying the lattice rule with ni points, one can switch to the lattice rule with
ni+1 points (e.g., double the number of points) without discarding the work performed so
far. One only needs to evaluate the function at the new points. With this kind of lattice
sequence, the number of points in the lattice needs not be fixed in advance. To implement
this concept, one needs to find a practical way of constructing such a sequence of embedded
lattices so that each intermediate node set Pni is of good quality. Hickernell et al. (1999)
have recently proposed one way of doing this. They provide concrete parameters and
numerical illustrations.

For a given problem, a good lattice rule is one that kicks out of the dual lattice the
most important squared Fourier coefficients in (16). The choice of the rule should therefore
(ideally) depend on the problem. This suggests adaptive lattice sequences, where the
choice of the next lattice in the sequence is based on estimates of certain squared Fourier
coefficients, or on sums of certain bundles of squared coefficients. This deserves further
investigation.
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Lemieux, C., “L’amélioration de l’efficacité des estimateurs en simulation,” PhD thesis,
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