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Abstract

A hedger of a contingent claim may decide to partially replicate on some states of
nature and not on the others� A partial hedge initially costs less than a perfect hedge�
However� a partial hedge may lead to a default position� It is of interest in that context
to estimate the gain and the default risk� Some partial hedging strategies based on
the �nal primitive asset price� its maximum over the trading period� and the time to
maximum� are analyzed� Closed�form solutions are derived in the Black and Scholes
����	
 model and e�cient Monte Carlo estimates are computed using a stochastic
volatility model� The results show how the gain and the default risk inversely change
depending on the hedging event�

R�esum�e

Un signataire d�un actif conditionnel peut decider d�une couverture partielle pour
certains etats de la nature et non pas pour les autres� une couverture partielle co�ute
moins cher qu�une couvertre parfaite� Par ailleurs� une couverture partielle peut mener
�a une position de defaut� Il est alors opportun dans ce contexte d�estimer le gain et le
risque de defaut� Quelques strategies de couverture partielle basees sur le prix �nal du
titre primitif� de son maximum durant la periode de transaction et du temps d�atteinte
de ce maximum sont analysees� Dans un premier temps� des solutions analytiques
sont derivees dans le mod�ele de Black et Scholes ����	
� Par la suite� des simulations
e�caces de Monte Carlo sont elaborees dans un mod�ele de volatilite stochastique�
Les resultats montrent la mani�ere selon laquelle le gain et le risque de defaut varient
inversement en fonction de l�evenement de couverture�
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� Introduction

The basic idea used to evaluate a contingent claim in a frictionless� arbitrage�free and
complete market is the possibility of hedging it with certainty by managing an associated
replication portfolio� The initial cost of this portfolio is equal to the price of the contingent
claim� The value of this portfolio matches with certainty its payo� at the exercise date�
A hedger of a contingent claim may opt for partial replication since it costs less than a
full replication� allowing thus an initial gain� However� this agent may fall in default� with
probability that depends on the partial hedging event� We call this probability the default

risk� Sellers of contingent claims who do not perfectly hedge their risk are commonplace
in real life�

The aim of this paper is to compute the �initial� gain and the ��nal� default risk when
the hedging event depends on the �nal primitive asset price� its maximum over the trading
period� and the time at which this maximum occurs�

In the following� we consider models where no arbitrage and hedging arguments are
used to evaluate contingent claims� Signi�cant contributions dealing with hedging contin�
gent claims are found in Harrison and Kreps ��	
	� and Harrison and Pliska ��	���� In a
frictionless� arbitrage�free� and complete market� a perfect hedge cannot be realized with
an initial wealth which is less than the price of the contingent claim� A result derived
by F�ollmer ��		�� and reported in Karatzas ���		��� page 
�� shows how to minimize
the default risk of a standard option in the Black and Scholes model when starting with
an initial wealth which is less than required� Similar results for more complex contingent
claims and for more general models were not available so far� to the best of our knowledge�

In the second section� a general model for options pricing is recalled� In the third sec�
tion� some partial hedging strategies are analyzed� First� closed�form solutions are derived
for the gain and the default risk in the Black and Scholes ��	
�� model� Then� e�cient
Monte Carlo estimates are computed in a stochastic volatility model using two correlation
induction techniques� Antithetic Variates and Control Variates� In the simulation exper�
iments� the closed�form solutions derived from the Black and Scholes model are used as
control variables to improve the precision of the crude Monte Carlo estimators� In the
conclusion� further applications are suggested�

� The Model

The model described in this section is presented in detail in Karatzas ���		��� Chapters �
and ��� LetM be a market with p�� traded assets in which trading takes place continuously
over the period ��� T �� In our presentation� a stochastic processX�t� for t � ��� T � is denoted
by X���� Let ���F �P � be a probability space� W ��� � �W������ � ��Wd����� a d�dimensional
Brownian motion� and F ��� the P �augmented �natural� �ltration of W ���� The ��algebra
F can be chosen as F �T �� The Brownian motions Wj���� for j � ��� � ��d� can be interpreted
as d sources of systematic risk and the �ltration F ��� as a collection of the increasing sets
of information available to investors over time� All the stochastic processes are assumed
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to be adapted to the �ltration F ��� and verify some additional conditions which guarantee
their existence and uniqueness� The adaptability requirement allows dependence on past
realizations and precludes anticipation of future realizations� Assume that the market
M is frictionless� that is� there are no taxes� transaction costs� information asymmetries�
constraints on short selling� or any other friction�

The �rst asset� called the bank account� does not pay dividends� It starts at unity�
and moves according to the di�erential equation

dB�t� � B�t�r�t�dt� for B��� � � and � � t � T � ���

where r��� is the interest rate process� The solution of ��� yields the following de�nition
for the discount factor

��t� � ��B�t� � e�
R
t

�
r�s�ds� for � � t � T �

If the interest rate process is constant� r��� � r� the discount factor can be written as

��t� � e�rt� for � � t � T � ���

The p remaining assets� called the primitive assets� move according to the stochastic
di�erential equations

dSi�t� � �i�t�Si�t�dt�
dX

j��

�ij�t�Si�t�dWj�t�� ���

for Si��� � �� i � �� � � � �p� and � � t � T �

where ���� � �������� � ���p����� is the vector�process of the appreciation rates and ���� �
��ij���� is the matrix�process of volatility� For simplicity� assume that the primitive assets
do not pay dividends�

The Black and Scholes ��	
�� model assumes a constant interest rate� one source of
systematic risk� and one primitive asset� Speci�cally�

dS�t� � �S�t�dt� �S�t�dW �t�� for S��� � � and � � t � T � ���

where � and � are assumed to be �positive� constants� Another interesting case is a
stochastic volatility model similar to those discussed by Hull and White ��	�
�� Johnson
and Shanno ��	�
�� Scott ��	�
�� and Wiggins ��	�
�� Speci�cally�

dS�t� � �S�t�dt� ��t�S�t�dW��t�� for S��� � � and � � t � T � ��

where the volatility process ���� is random and depends on a two�dimensional Brownian
motion W ��� � �W�����W������� as we shall see later�

An investor trades continuously on the p�� traded assets by managing a self��nancing
portfolio which generates the wealth process

X�t� �

pX
i��

�i�t� �

�
X�t��

pX
i��

�i�t�

�
� for � � t � T �
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where ���� � �������� � ���p������ called the portfolio strategy� is the vector�process of the
dollar amounts invested in the primitive assets� Notice that the components of this portfolio
strategy can be positive or negative� depending on the position �long or short� of the
investor� The wealth process is denoted by Xx����� since it depends on the initial wealth
X��� � x and the portfolio strategy �����

An arbitrage opportunity is a strategy ���� such that

P �X����T � � �� � � and P �X����T � � �� � ��

A rational investor should take this opportunity when it appears because it costs nothing
to hold and may lead to a positive �nal wealth� A market without arbitrage opportunities
is called arbitrage�free� There are two su�cient conditions for the arbitrage�free property
to be veri�ed� Firstly� there exists a process � � ��� T � � � �IRd� called the market�price

of risk� which veri�es
����� r����p � ��������� ���

where �p � ���� � ����� � IRp� Secondly� the exponential process

Z�t� � e�
�

�

R
t

�
jj��t�jj�dt�R t

�
��t��dW �t�� for � � t � T � �
�

is a P �martingale� In practice� it is somewhat hard to check for �
�� However� a su�cient
requirement for �
� to hold is the so�called Novikov condition

EP
h
e�

�

�

R
t

�
jj��t�jj�dt

i
� ��� ���

The Black and Scholes market de�ned in ��� is arbitrage�free since � � ���r��� does
exist and veri�es the Novikov condition ���� In the stochastic volatility model de�ned in
��� assume that the volatility process ���� is chosen such that the model is arbitrage�free�

Assume that the conditions ��� and ��� hold and that p � d� The market is said to be
standard� The exponential process Z��� de�ned in �
� allows the construction of a collection
of P �equivalent probability measures Qt for t � ���T �� each de�ned on the corresponding
��algebra F �t� by

Qt�A� � EP �Z�t��A� � for A � F �t��

The probability measure QT � denoted by Q� is called the risk�neutral probability measure�
An important feature of Q is that the process

B�t� � W �t� �

Z t

�
��s�ds� for � � t � T � �	�

is a Q�Brownian motion� In turn� the equations described in ��� can be transformed into

dSi�t� � r�t�Si�t�dt�

dX
j��

�ij�t�Si�t�dBj�t�� ����

for Si��� � �� i � �� � � � �p� and � � t � T �
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or� equivalently� into

d���t�Si�t�� � ��t�
dX

j��

�ij�t�Si�t�dBj�t�� ����

for Si��� � �� i � �� � � � �p� and � � t � T �

where B��� � �B������ � ��Bd����� is a Q�Brownian motion as expressed in �	�� Equation
���� shows that one can ignore the appreciation rate ���� when computing expectations in
the form EQ�f�S�t�� t � I � ��� T ��� where f � IRjIj �IR� Equation ���� shows that each
discounted primitive asset price is a Q�martingale� The notion of e�ciency implied by this
result is that the �best prediction� of ��T �S�T � is S����

A contingent claim is any non�negative and F �T ��measurable random variable Y
such that EQ���T �Y � � ��� One can think of a contract that gives a payo� of Y at
time T � This contract should be interpreted as a privilege since it gives its holder a non�
negative amount� Contingent claims that take the form f�S�t�� t � I � ��� T �� are called
derivatives� Optioncontracts are a subclass of derivatives� For example� a calloption pays
C�T � � �S�T ��E�� at time T where x� � max�x� �� for x � IR� This contract gives the
holder the right to buy the primitive asset at time T at a speci�ed exercise price E� A
put option pays P �T � � �E � S�T ���� This contract gives the holder the right to sell the
primitive asset at time T at a speci�ed exercise price E� Notice that

C�T �� P �T � � S�T ��E� ����

A complete market is a market on which any contingent claim Y is attainable by a
well�selected self��nancing portfolio strategy ���� �

	 Y	 
 ���� such that Xv���T � � Y	 ����

where
v � EQ ���T �Y � � ����

In a complete market� one can start at the initial wealth v de�ned in ���� and �nd a
portfolio strategy ���� as in ����� called the replication portfolio� such that the �nal wealth
matches with certainty the contingent claim payo�� In a standard and complete market�
the discounted wealth process ����Xv����� satis�es the martingale property

��s�Xv���s� � EQ ���t�Xv���t� j F �s�� � for � � s � t � T � ���

Equation ���� can be obtained from ��� at s � � and t � T � In fact� the wealth process
Xv����� matches with certainty the contingent claim�s value during all the trading period
���T �� This is why the wealth process is called the price�process of the contingent claim�
In a standard and complete market� the value v de�ned in ���� is the unique rational price
of the contingent claim Y � If the market is only standard� there exists in general a whole
range of prices

Iv � �vmin� vmax�	
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including the value de�ned in ����� that are consistent with the arbitrage�free property�

Assume that the interest rate is constant as in ���� Using equations ���� and ����
and the martingale property of ����S��� described in ���� one obtains the put�call parity
relationship

c� p � S���� e�rTE� ����

where c is the price of the call option and p is the price of the corresponding put option�
Equation ���� shows that the value of a put option can often be deduced from the value
of a call option�

A simple criterion exists to check for the completeness property in a standard market�
A standard market is complete if and only if

p � d� ��
�

and
��t	 
� is regular for t � ��	 T � and 
 � �� ����

Roughly speaking� the completeness property is a question of dimension� There must be as
many sources of systematic risk as primitive assets� The Black and Scholes model described
in ��� is complete since it is standard and veri�es p � d � � and ��t�
� � � � � for t � ���
T � and 
 � �� On the other hand� based on equation ��
�� the stochastic volatility model
described in �� is incomplete�

� Partial Hedging in Complete Markets

Assume that the market is standard and complete� The seller of a contingent claim Y can
hedge perfectly all risk by starting at the initial wealth v de�ned in ���� and managing the
replication portfolio ���� mentioned in ����� Let �A be the indicator of an event A � F �T ��
Instead of hedging Y � this investor may want to hedge Y �A� This is less expensive to
replicate� since if we de�ne u � EQ ���T �Y �A� and v � EQ ���T �Y �� then

g � v � u � �� ��	�

The replication takes place only on the hedging event H � fY � �g�A� The gainis de�ned
as g � v � u and the default event is de�ned as Hc � fY � �g �Ac� The default risk is

P �Hc� � EP ��Hc � � ����

Notice that P �Hc� depends on the appreciation rate ���� which is assumed to be constant
in the following�

In the next subsections� some partial hedging strategies are analyzed in terms of
the gain and default risk� These strategies account for the �nal primitive asset price� its
maximum during the trading period� and the time at which this maximum occurs� In the
�rst subsection� closed�form solutions are derived for the Black and Scholes model� In the
second subsection� e�cient Monte Carlo estimators are developed for a stochastic volatility
model�



Les Cahiers du GERAD G������ 


��� Partial Hedging in the Black and Scholes Model

����� Partial Hedging when A � fE � S�T � � ag
Consider a partial replication of the call option Y � �S�T ��E�� whenA � fE � S�T � � ag
for some real a greater than E� By equation ��	�� the gain is

g � v � u�

� EQ
�
�S�T ��E��

��EQ
�
�S�T ��E��fE�S�T ��ag

�
�

The cost of the perfect hedge� denoted by v� is the Black and Scholes price which is known
in closed�form� The cost of the partial hedge� denoted by u� can also be computed in
closed�form as follows� In the Black and Scholes model de�ned in ���� the �nal primitive
asset price can be written as

S�T � � S���e�r��
����T��

p
TZ �

where Z is a standard normal random variable� The primitive asset price S�T � is then
lognormal� and from this we can derive �after some algebraic manipulations� the following
expression for u�

u � S���
�
N�d���N�d���

��Ee�rT
�
N�d���N�d���

�
� ����

d� �
�
log�S����E� � �r � �����T

�
��
p
T �

d� � d� � �
p
T �

d�� �
�
log�S����a� � �r � �����T

�
��
p
T �

d�� � d�� � �
p
T �

where N��� is the cumulative normal distribution�

Notice the similarity with the Black and Scholes formula since u � v when a �
��� An agent who applies this partial hedging strategy ���� must hold initially N�d���
N�d��� shares of the primitive asset� while a perfect hedge requires N�d��� The default risk
measured under Q can be derived in a similar way� One obtains

Q�Hc� � EQ
�
�fS�T ��ag

�
� N�d����

The default risk P �Hc� is deduced from Q�Hc� by substituting � for r where � is the
appreciation rate of S����

The parameters of the option to be evaluated are� S��� � ���� E � ���� T � ���
� � ���� and r � ���� The partial hedging parameter is a� A numerical illustration is
given in Table � whose last column� denoted by �� reports the cost v of a full replication�
Each cell of this table contains the exact solution computed by numerical integration�
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Table �� Partial Hedging of a Call Option when A � fE � S�T � � ag
a ��� �� ��� �� �� �
u ��	��� ��
�	
 ���� ��
�� ��		 ��
�

g ����� ����
 ���
�
 ����	 ����
� �

P �Hc� for � � ��� ������ ����
� ������ ������ ������ �

P �Hc� for � � ���� ���	�
 ������ ����		 ������ ������ �

When the hedging parameter a increases� the cost u of the partial replication increases
and converges to the Black and Scholes price v � ��
�� At the same time� the default
risk converges to zero� For example� if the seller decides to hedge the call option only when
S�T � � ��� and not on the others states of nature� he can do so with an initial wealth
u � ����� This results in a gain of g � ���
�
 over the perfect hedge� Nevertheless� the
hedger will fall into default with probability P �Hc� � ����� for � � ���� and P �Hc� �
����		 for � � ���� Notice that P �Hc� is an increasing function of ��

����� Partial Hedging when A �
�
E � S�T � � a	 MS�T � � b

�
We now consider a hedging event of the form

A �
�
E � S�T � � a	 MS�T � � b

�
	 for E � a � b�

where the random variable MS�T � � max fS�t�	 t � ��	 T �g is the maximum attained by
the primitive asset price over the trading period� By the Girsanov Theorem �Karatzas and

Shreve ��		��� Section ���� there exists a probability measure eQ under which the process

X��� � log�S����S�������
is a eQ�Brownian motion� The probability measure eQ is de�ned by its Radon�Nikodym
likelihood ratio

dQ�d eQ � eZ�T � � e�r��
����X�T �����r�������T���� �

This result has been used judiciously by Conze and Viswanathan ��		�� to derive explicit
formulas for several lookback options using the risk�neutral evaluation approach� The
original results� solutions of a partial di�erential equation� are derived by Goldman� Sosin�
and Gatto ��	
	��

This change of measure allows the use of the known density function of �X�T ��MX �T ��
�Karatzas and Shreve ��		��� Section ����

��x	 y� � ����T ��������y � x�e���y�x�
���T 	 for y � max�x	 ���

where MX�T � � max fX�t�	 t � ��	 T �g is the maximum attained by the eQ�Brownian
motion X��� during ��� T �� This result allows for the derivation of the closed�form solutions

u � EQ
h
e�rT �S�T ��E��fE�S�T ��a� MS�T ��bg

i
�

� E
eQ
h
e�rT eZ�T ��S���e�X�T � �E��f eE�X�T ��ea� MX�T ��ebg

i
�
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and

Q�Hc� � EQ ��Hc � �

� EQ
�
�fS�T ��Eg

��EQ
h
�fE�S�T ��a� MS�T ��bg

i
�

� N�d���E
eQ
h eZ�T ��f eE�X�T ��ea� MX�T ��ebg

i
�

where ez � log�z�S������ for z � fE� a� bg� The default risk P �Hc� is deduced from Q�Hc�
by substituting � for r� These expectations are basically ��dimensional integrals�

The parameters of the option to be evaluated are� S��� � ���� E � ���� T � ���
� � ���� and r � ���� The partial hedging parameters are a and b � a� �� Results are
shown in Table � whose last column� denoted by�� reports the cost v of a full replication�
Each cell of this table contains the exact solution computed by numerical integration�

Table �� Partial Hedging of a Call when A �
�
E � S�T � � a� MS�T � � b

�
a ��� �� ��� �� �� �
u ������ ����� ����� ����� ���
 ��
�

g ������ ��	�� ������ ����� ������ �

P �Hc� for � � ��� ����� �����
 �����
 ����� ������ �

P �Hc� for � � ���� ������ ����� ������ ����	 ������ �

For example� if the seller decides to hedge the call option only when S�T � � ��� and
MS�T � � ���� and not on the others states of nature� he can do so with an initial wealth
u � ������ This results in a gain of g � ������ over the perfect hedge� Nevertheless� the
hedger will fall into default with probability P �Hc� � �����
 for � � ���� and P �Hc� �
������ for � � ���� In comparison with the results of Table �� here the cost of any partial
hedging strategy is slightly smaller and the default risk is slightly larger�

����� Partial Hedging on A � fE � S�T � � a� MS�T � � b� �S�T � � sg
Consider now a partial hedging strategy on the event

A �
�
E � S�T � � a� MS�T � � b� �S�T � � s

�
�

for E � a � b and � � s � T �

where �S�T � � inf
�
t � ��	 T �	 S�t� � MS�T �

�
is the �rst time when the primitive asset

attains its maximum over the trading period� The random variable �S�T � is an example
of a random time which is not a stopping time� The same change of measure as in Section
����� allows one to use the known density function of �X�T �� MX�T �� �X�T �� �Karatzas
and Shreve ��		��� Section ����

��x� y� �X�T � � s� � ����T ����	
h
N��������y � x�e���y�x�

���T�

N������xe�x���T
i
�

for y � max�x	 �� and � � s � T �
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where � � �y�T � s�  �x � y�s��T and �� � s�T � s��T � From this� we can derive
closed�form solutions for the cost of a partial hedge and its associated default risk� The
results are

u � EQ
h
e�rT �S�T ��E��fE�S�T ��a� MS�T ��b� �S�T ��sg

i
�

� E
eQ
h
e�rT eZ�T ��S���e�X�T � �E��f eE�X�T ��ea� MX�T ��eb� �X�T ��sg

i
�

and

Q�Hc� � EQ��Hc ��

� EQ
�
�fS�T ��Eg

��EQ
h
�fE�S�T ��a� MS�T ��b� �S�T ��sg

i
�

� N�d���E
eQ
h eZ�T ��f eE�X�T ��ea� MX�T ��eb� �X�T ��sg

i
�

These expectations are basically ��dimensional integrals transformed into ��dimensional
integrals� The default risk P �Hc� can be deduced from Q�Hc� by substituting � for r�

The parameters of the option to be evaluated are� S��� � ���� E � ���� T � ���
� � ���� and r � ���� The partial hedging parameters are a� b � a � �� and s � �����
Results are shown in Table � whose last column� denoted by �� reports the cost v of a full
replication� In that way� for a � �� one has s � ��� Each cell of this table contains the
exact solution computed by numerical integration�

Table �� Partial Hedging a call when A �
�
E � S�T � � a	MS�T � � b	 �S�T � � s

�
a ��� �� ��� �� �� �
u ����	
 ��	� ������ ������ ������ ��
�

g ���

� ��
�
 ����
� ����
� ����	 �

P �Hc� for � � �� ������ ���
�� ����� ����� ����� �

P �Hc� for � � ���� ������ �����	 �����
 ���	

 ���	�	 �

If the seller decides to hedge the call option only when S�T � � ���� MS�T � � ����
and �S�T � � ����� and not on the others states of nature� he can do so with an initial wealth
u � ������� This results in a gain of g � ����
� over the perfect hedge� Nevertheless� the
hedger will fall into default with probability P �Hc� � ����� for � � ���� and P �Hc� �
�����
 for � � ���� In comparison with the results of Table � and Table �� here the cost
of any partial hedging strategy is signi�cantly smaller and the default risk is signi�cantly
larger� The reason is that the primitive asset is likely to attain its maximum at the end
of the period� The density function of the time to maximum �S�T � obeys the arcsin law
�Karatzas and Shreve ��		��� Section �����

h�s� � ���� arcsin�
p
s�T �� for � � s � T �

Closed�form solutions can also be derived if the hedging event depends on the �nal
primitive asset price� its �rst passage time at a certain level� its maximum during the
trading period� and the time to maximum�
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��� Partial Hedging in a Stochastic Volatility Model

����� A Monte Carlo Experiment

All the random variables introduced in the following sections are assumed to have �nite
variance� The stochastic volatility model introduced in �� is arbitrage�free but incomplete
�see Section � for a justi�cation�� The dynamic of the primitive asset under Q is

dS�t� � rS�t�dt� ���t�S�t�dB��t�� for S��� � � and � � t � T �

where the volatility process ����� is a function of a Brownian motion B��� � �B����� B�������
Several dynamics for volatility have been proposed in the literature �see Detemple and
Osakwe ��		
� for a general speci�cation�� One of these is the following mean�reverting
process

d���t� � �� � ���t��dt� ����t���dB��t� �
p

�� ��dB��t���

for � � t � T �

where the coe�cients  �the reverting rate�� � �the long�term volatility�� � �the volatility of
the volatility�� and � �the correlation between the innovations� are assumed to be constants�
Statistical methods are needed to estimate these coe�cients� For simplicity� we assume
here that � � � so that

d���t� � �� � ���t��dt� ����t�dB��t�� for � � t � T �

To make the hedging of contingent claims possible� a second primitive asset S����
is introduced in the market� It is assumed to move under Q according to the stochastic
di�erential equation

dS��t� � rS��t�dt� ��S��t�dB��t�� for S���� � � and � � t � T �

where �� is a positive constant �see equation ���� for a justi�cation�� The asset S���� could
be interpreted as an index of the rest of the economy�

By equation ���� the components of the market�price of risk are ���t� � ����r�����t�
and ���t� � ��� � r���� for � � t � T � By equation �	�� the dynamics of S���� ������ and
S���� under P are

dS�t� � ��S�t�dt� ���t�S�t�dW��t�� ����

d���t� � ���� � ���t��dt� ����t�dW��t��

dS��t� � ��S��t�dt� ��S��t�dW��t��

for S��� � �� ����� � �� and � � t � T �

where � � � ���� � r���� and �� � ����
In the market de�ned in ����� starting at the initial wealth de�ned in ����� any

contingent claim Y is attainable by a replication portfolio ���� � ������� ������� as de�
scribed in ����� The price of the call option written on the �rst primitive asset is v �
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EQ
�
e�rT �S�T ��E��

�
� The partial hedging strategy costs u � EQ

�
e�rT �S�T ��E���A

�
and default risk is P �Hc�� Notice that the appreciation rate �� of the �rst primitive asset
and the parameters of the second primitive asset� �� and ��� are needed for estimating
P �Hc�� but not for v and u�

It is well known that option prices usually do not admit closed�form solutions in this
model and that simulation is required� Since the �nal primitive asset price S�T � cannot
be simulated directly� a discrete�time approximation such that the Euler scheme with m
periods of length h � T�m can be performed�bS�kh� � bS��k � ��h� � bS��k � ��h��rh � b����k � ��h�

p
hZ��k��� ����b���kh�� b����k � ��h� � �� � b����k � ��h�h � �b����k � ��h�

p
hZ��k��

for k � �� � � � �m�

where the
p
hZ��k� � B��kh��B���k���h� and the

p
hZ��k� � B��kh��B���k���h� are

the increments of the Brownian motionsB���� andB����� Here Z������ � ��Z��m��Z������ � ��Z��m�
are independent and identically distributed normal variables�

The error of the Euler approximation when computing an expectation in the form
E �f�S�t�	 t � I � ��	 T ���� de�ned as

e�m� � jE�f�bS�t�� t � I � ��� T ����E�f�S�t�� t � I � ��� T ���j�
where f � IRjIj �IR� is known to be in O�m���� Given a computational budget� a trade�o�
between the number of time increments m of the Euler approximation and the sample size
n of the simulation experiment must be found� Du�e and Glynn ��		� argue that n must

increase as O�m�� so that doublingm necessitates quadrupling n� In the following� f�bS�t��
t � I � ��� T �� is denoted f�S�t�� t � I � ��� T ���

The Euler approximation is used to simulate n copies �we take n � ����� of �S�T ��
MS�T �� �S�T ��� which serve to simulate as many copies of f�S�T �� MS�T �� �S�T �� where
f � IR� �IR� Depending on the function f and the probability measure used� the parameter
w � E

�
f�S�T �	MS�T �	 �S�T ��

�
matches v� u� or P �Hc�� The crude Monte Carlo estimator

of w based on n replications is

bw � n��
nX
i��

f��S�T �	 MS�T �	 �S�T ��i��

where the �S�T �� MS�T �� �S�T ��i� for i � ��� � ��n� are the n copies of �S�T �� MS�T ��
�S�T ��� The estimated error of bw can be de�ned as the half�length of the asymptotic 	�
con�dence interval of w based on the normality assumption�

e � ��	�S�
p
n�

where S is the sample standard error of f�S�T �� MS�T �� �S�T ���

Through each path� the global maximum MS�T � is simulated following Beaglehole�
Dybvig� and Zhou ��		��� The time to maximum is simulated as the midpoint of the
subinterval ��k� � ��h� k�h� containing the global maximum�
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The parameters of the option to be evaluated are S��� � ���� E � ���� T � ���
� � ���� and r � ���� The parameters of the volatility are  � ��� � � ���� and
� � ����� The appreciation rate of the �rst primitive asset is �� � ���� and the parameters
of the second primitive asset are �� � ���� and �� � ����� Results in Table � are obtained
at s � ��� that is� the constraint �S�T � � s can be ignored� Each cell of this table contains
the Monte Carlo estimate and its estimated error� The partial hedging parameters are a
and b � a� �� and the parameters of the simulation are� m � �� and n � �����

Table �� Partial Hedging of a Call when A �
�
E � S�T � � a� MS�T � � b

�
a ��� �� ��� �� �� �
u ����

����

����
�����

����
�����

��	
�����

���
�����

���
�����

P �Hc� �����
������

�����
������

�����
�����	

�����
������

� �

Results in Table � are similar to those in Table �� except for the statistical error�
which we shall now try to reduce� The relative error of P �Hc�� de�ned as the ratio of the
statistical error over the statistical estimation� increases as the parameter a increases� i�e��
as the event Hc becomes rarer� This is a typical situation when estimating probability of
rare events� At the extreme case a � ��� the default event Hc is so rare that we have
observed no realization of f�S�T �� MS�T �� �S�T �� in this region for our ���� simulation
runs� The variance reduction technique� called Importance Sampling �see Boyle� Broadie�
and Glasserman ��		
� and L�Ecuyer ��		�� for a discussion�� provides a way to handle
this type of situation and could be used for large values of a� The idea is to select a change
of measure so that the integrand� here f�S�T ��MS�T �� �S�T ��� goes more frequently into
the most important regions of the sample space� here Hc� For a � ��� one can also see
that the simulation could not distinguish between the cost of the partial replication and
the cost of the full replication�

In the next subsections� correlation induction techniques are used to reduce the es�
timated error of the crude Monte Carlo estimators� These variance reduction techniques�
namely Antithetic Variates and Control Variates� induce correlation between estimators in
attempt to reduce the variance� The techniques used are discussed� e�g�� in Bratley� Fox�
and Schrage ��	�
� and L�Ecuyer ��		���

����� Antithetic Variates

Let bw� to be an unbiased estimator of w� For simplicity� take bw� as the crude Monte Carlo
estimator of w based on one replication� Assume that one can build a second unbiased
estimator bw� of w which is negatively correlated with bw�� Thus� the unbiased estimatorbw � � bw� � bw���� of w is expected to have lower variance than each of its components�

Var � bw� � Var � bw�� �� � Var � bw�� �� � Cov � bw�� bw�� ��	

if Cov� bw�� bw�� � � and bw� is well selected� Roughly speaking� if bw� takes high values above
its mean w� bw� takes low values below its mean w� Thus� their deviations are mutually
compensated in bw whence the terminology �Antithetic Variates��
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The estimator bw� is often written as a monotone function of some independent and
identically basic uniforms U��� � ��Uq

bw� � f�U�� � � � �Uq��

where f � IRq �IR� Taking bw� � f��� U�� � � � ��� Uq��

ensures the condition Cov� bw�� bw�� � � �Bratley� Fox� and Schrage ��	�
�� page ��� and
variance reduction� In the case analyzed here� the output bw� is a function of some inputs
as shown in ����� bw� � f�Z����� � � � �Z��m��Z����� � � � 	 Z��m���

where Z������ � ��Z��m��Z������ � ��Z��m� are independently and identically distributed nor�
mal random variables� By the same argument� taking

bw� � f��Z����� � � � �� Z��m��Z����� � � � �Z��m���

ensures the condition Cov� bw�� bw�� � � and variance reduction� One can focus only on the
components where the function is monotone and synchronize between the estimators to
induce the attempted negative correlation� For the estimation of P �Hc�� we observed no
variance reduction with the antithetic variates�

The parameters of the option to be evaluated are S��� � ���� E � ���� T � ���
� � ���� and r � ���� The parameters of the volatility are  � ��� � � ���� and
� � ����� Results are shown in Table � Each cell of this table contains the Antithetic
Variates estimate and its estimated error� The partial hedging parameters are a and
b � a��� and the simulation parameters are m � �� and n � ����� The estimated errors�
given in Table � show a modest variance reduction in comparison with those of Table ��

Table � Partial Hedging a Call when A �
�
E � S�T � � a	 MS�T � � b

�
a ��� �� ��� �� �
u ����

����
���
�����

���
�����

��	
�����

��	
�����

����� Control Variates

Let X to be an unbiased estimator of w and let C � �C��� � ��Cq�
� be a random vector with

a known expected value � � ����� � ���q�
� presumably correlated with X� Assume that C

is known to the simulator� Think of X as the crude Monte Carlo estimator of w based
on one replication when the volatility moves randomly and C � C� as the synchronous
crude Monte Carlo estimator of w when the volatility is constant� The idea behind this
technique is to �nd a vector � � ����� � ���q�

� such that the unbiased estimator of w� namely
the controlled estimator�

Xc � X � ���C � ���
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has a lower variance than X� The optimal choice for �� to yield the maximum variance
reduction� is

�� � ���
C �X�C �

where �C is the variance matrix of C and �X�C is the covariance vector between X and
the components of C� At ��� a variance reduction takes place�

Var �XC � � ���R�
X�C�Var �X� �

where

R�
X�C � ��

X�C�
��
C �X�C�Var �X� �

is the multiple coe�cient of correlation between X and the components of C� In the
particular case q � �� these results can be written as

�� � Cov �X�C� �Var �C� �

and
Var �XC � � ���Corr �X�C���Var �X� �

Roughly speaking� if X increases and takes high values� Cov�X	C� �C � ���Var�C� neces�
sarily increases� Thus� it controls the excess of X above its mean w via Xc� whence the
terminology �Control Variates�� In options pricing� the random variable ��T �S�T � is usu�
ally taken as a control variable since S��� � EQ���T �S�T �� is known� The process ����S���
is a Q�martingale as mentioned in ���� Several authors� e�g�� Clewlow and Carverhill
��		��� select a priori �� � � and report a signi�cant variance reduction� In fact� this
choice is not necessarily acceptable but it should work when C is simulated to be approxi�
mately equal to X� In that case� the optimal value for � is expected to be near unity since
Cov�X	C� �Var�C��

Unfortunately� neither �C nor �X�C are known in practice and �� cannot be computed
as shown above� An alternative idea is to simulate n copies of �X�C�� estimate �C and
�X�C as usual� and de�ne the observations of the controlled estimator as

Xc�i � Xi � b���Ci � ��� for i � ������n�

where b� � b���
C
b�X�C �

The controlled estimator of w is de�ned as the sample mean of the Xc�i� for i � ������n�

Xc � X � b���C � ���

The sample variance S�
c of Xc is de�ned as usual� Notice that the controlled estimator

Xc is generally a biased estimator of w since b� and C are a priori correlated� However�
Lavenberg and Welch ��	��� showed that this bias vanishes when �X�C� is multinormal�
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As pointed out by Nelson ��		��� the controlled estimator often is convergent as
n� �� �

Xc � w in probability�

S�
c � ���R�

X�C�Var�X� in probability�
p
n�Xc � w��Sc � N��	 �� in distribution�

Thus�Xc is an asymptotically unbiased estimator of w and has asymptotic smaller variance
than the crude Monte Carlo estimator X � Techniques for reducing the bias of Xc for small
samples� such as Batching� Jackkni�ng� and Splitting� are described in Nelson ��		���
By splitting optimally into three groups� Avramidis and Wilson ��		�� build a controlled
estimator which is somewhat more consistent than Xc� as it converges to w always surely�

The parameters of the option to be evaluated are S��� � ���� E � ���� T � ���
���� � ���� and r � ���� The parameters of the volatility are  � ��� � � ���� and
� � ����� The appreciation rate of the �rst primitive asset is �� � ���� and the parameters
of the second primitive asset are �� � ���� and �� � ����� Results are shown in Table
�� Each cell of this table contains the Control Variates estimate and its estimated error�
The partial hedging parameters are a and b � a � �� and the simulation parameters are
m � �� and n � ����� We observe a signi�cant variance reduction resulting from the high
correlation between the crude estimators and their associated control variables�

Table �� Partial Hedging a Call when A �
�
E � S�T � � a	 MS�T � � b

�
a ��� �� ��� �� �
u ����

�����
����
����

��	
����

��	
����

��	
����

P �Hc� ����	
������

����
������

�����
������

�����
������

�

����� Integrating the Correlation Induction Techniques

Now� denote X as the antithetic variates estimator of w �based on one replication� when
the volatility moves randomly and C � C� the synchronous antithetic variates estimator
of w when the volatility is constant� As pointed out by Avramidis and Wilson ��		��� the
estimator X can be viewed as an aggregate response and the random variable C as an
aggregate control variable�

The parameters of the option to be evaluated are S��� � ���� E � ���� T � ���
���� � ���� and r � ���� The parameters of the volatility are  � ��� � � ���� and � �
����� Results are shown in Table 
� Each cell of this table contains the estimate based on the
aggregate response and its estimated error� The partial hedging parameters are a and b �
a��� and the simulation parameters are m � �� and n � ����� Additional improvements
are realized when integrating the Antithetic Variates and the Control Variates techniques�
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Table 
� Hedging Partially a Call when A �
�
E � S�T � � a	 MS�T � � b

�
a ��� �� ��� �� �
u ����

����
����
����

��	

����

���
����

��	
����

� Conclusion

A hedger may �nd an advantage in partially replicating a contingent claim if the lower
cost of a partial hedge more than o�sets the added default risk� Several partial replication
strategies are possible� In this paper� the strategies analyzed use the �nal primitive asset
price� its maximum over the trading period� and the time to maximum� The results show
how the cost of a partial hedge and default risk vary depending on the replication event�
These strategies are easy to implement and can be generalized to more complex contingent
claims using more general evaluation models�Monte Carlo simulation� a �exible and robust
tool� can be used to analyze such strategies� In addition� correlation induction techniques
can be implemented easily with a great success�

Hedging contingent claims sometimes is not possible� For example� in constraint
models� the super�replication cost is excessively high �see Cvitani c� Pham� and Touzi ��		
�
for some examples�� In such models� a partial super�replication may be an interesting
solution�
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