
Les Cahiers du GERAD ISSN: 0711–2440

Random Number Generation

P. L’Ecuyer

G–96–38

August 1996

Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs
auteurs. La publication de ces rapports de recherche bénéficie d’une subvention du Fonds F.C.A.R.

Random Number Generation∗

Pierre L’Ecuyer

Département d’informatique et de recherche opérationnelle
Université de Montréal, C.P. 6128, Succ. Centre-Ville

Montréal, Canada, H3C 3J7
and GERAD

E-mail: lecuyer@iro.umontreal.ca

August, 1996

∗Preliminary draft of Chapter 4 of the Handbook on Simulation, Ed.: Jerry Banks, Wiley, 1997.
Version: April, 1996

Abstract

We give an overview of the main techniques for generating uniform random
numbers of computers. Theoretical and practical issues are discussed.

Résumé

Nous expliquons les principales méthodes pour la génération de valeurs aléatoires
uniformes par ordinateur. Nous abordons autant les aspects théoriques que pra-
tiques.

1 INTRODUCTION

Random numbers are the nuts and bolts of simulation. Typically, all the randomness

required by the model is simulated by a so-called random number generator whose

output is assumed to be a sequence of independent and identically distributed (i.i.d.)

U(0, 1) random variables (that is, continuous random variables distributed uniformly

over the interval (0, 1)). These random numbers are then transformed as needed to

simulate random variables from different probability distributions, such as the normal,

exponential, Poisson, Binomial, geometric, discrete uniform, and so on, as well as mul-

tivariate distributions and more complicated random objects. In general, the validity of

the transformation methods strongly depends on the i.i.d. U(0, 1) assumption. But this

assumption is false, since the random number generators are actually simple determin-

istic programs trying to fool the user by producing a deterministic sequence that looks

random.

What could be the impact of this on the simulation results? Despite this problem,

are there “safe” generators? What about the generators commonly available in system

libraries and simulation packages? If they are not satisfactory, how can we build “better”

ones? Which ones should be used and where is the code? These are some of the topics

addressed in the present chapter.

1.1 Pseudorandom Numbers

To draw the winning number for several million dollars in a lottery, people would gen-

erally not trust a computer. They would rather prefer a simple physical system that

they understand well, such as drawing balls from one or more container(s) to select the

successive digits of the number (as done, for example, by Loto Quebec each week in

Montreal). Even this requires many precautions: the balls must have identical weights

and sizes, be well mixed, and be changed regularly to reduce the chances that some

numbers come out more frequently than others in the long run. Such a procedure is

clearly not practical for computer simulations, which often require millions and millions

of random numbers.

Several other physical devices to produce random noise have been proposed and ex-

periments have been conducted using these generators. These devices include gamma

ray counters, noise diodes, and so on [43, 58]. Some of these devices have been commer-

cialized and can be purchased to produce random numbers on a computer. But they are

cumbersome and they may produce unsatisfactory outputs as there may be significant

1

correlation between the successive numbers. Marsaglia [82] applied a battery of statis-

tical tests to three such commercial devices recently and he reports that all three failed

the tests spectacularly.

As of today, the most convenient and most reliable way of generating the random

numbers for stochastic simulations appears to be via deterministic algorithms with a

solid mathematical basis. These algorithms produce a sequence of numbers which are

in fact not random at all, but seem to behave like independent random numbers; that

is, like a realization of a sequence of i.i.d. U(0, 1) random variables. Such a sequence is

called pseudorandom and the program that produces it is called a pseudorandom number

generator . In simulation contexts, the term “random” is used instead of “pseudorandom”

(a slight abuse of language, for simplification) and we will do so in this chapter. The

following definition is taken from L’Ecuyer [58, 60].

Definition 1 A (pseudo)random number generator is a structure G = (S, s0, T, U,G),

where S is a finite set of states , s0 ∈ S is the initial state (or seed), the mapping

T : S → S is the transition function, U is a finite set of output symbols, and G : S → U

is the output function.

The state of the generator is initially s0 and evolves according to the recurrence sn =

T (sn−1), for n = 1, 2, 3, At step n, the generator outputs the number un = G(sn).

The un, n ≥ 0, are the observations , and are also called the random numbers produced

by the generator. Clearly, the sequence of states sn is eventually periodic, since the

state space S is finite. Indeed, the generator must eventually revisit a state previously

seen; that is, sj = si for some j > i ≥ 0. From then on, one must have sj+n = si+n

and uj+n = ui+n for all n ≥ 0. The period length is the smallest integer ρ > 0 such

that for some integer τ ≥ 0 and for all n ≥ τ , sρ+n = sn. The smallest τ with this

property is called the transient. Often, τ = 0 and the sequence is then called purely

periodic. Note that the period length cannot exceed |S|, the cardinality of the state

space. Good generators typically have their ρ very close to |S| (otherwise, there is a

waste of computer memory).

1.2 Example: Linear Congruential Generators

Example 1 The best-known and (still) most widely used types of generators are the

simple linear congruential generators (LCGs) [53, 56, 74]. The state at step n is an

integer xn and the transition function T is defined by the recurrence:

xn = (axn−1 + c) mod m, (1)

2

where m > 0, a > 0, and c are integers called the modulus , the multiplier , and the

additive constant , respectively. Here, the “mod m” denotes the operation of taking the

least non-negative residue modulo m. In other words, multiply xn−1 by a, add c, divide

the result by m, and put xn equal to the remainder of the division. One can identify

sn with xn and the state space S is the set {0, . . . ,m − 1}. To produce values in the

interval [0, 1], one can simply define the output function G by un = G(xn) = xn/m.

When c = 0, this generator is called a multiplicative linear congruential generator

(MLCG). The maximal period length for the LCG is m in general. For the MLCG, it

cannot exceed m − 1, since xn = 0 is an absorbing state that must be avoided. Two

popular values of m are m = 231 − 1 and m = 232. But as will be discussed later,

these values are too small for the requirements of today’s simulations. LCGs with such

small moduli are still in widespread use, mainly because of their simplicity and ease of

implementation, but we believe that they should be discarded and replaced by more

robust generators.

For a concrete illustration, let m = 231 − 1 = 2147483647, c = 0, and a = 16807.

These parameters were originally proposed in [97]. Take x0 = 12345. Then,

x1 = 16807× 12345 mod m = 207482415,

u1 = 207482415/m = 0.0966165285,

x2 = 16807× 12345 mod m = 1790989824,

u2 = 1790989824/m = 0.8339946274,

x3 = 16807× 12345 mod m = 2035175616,

u3 = 2035175616/m = 0.9477024977,

and so on.

1.3 Seasoning the Sequence with External Randomness

In certain circumstances, one may want to combine the deterministic sequence with

external physical noise. The simplest and most frequently used way of doing this in

simulation contexts is to select the seed s0 randomly. If s0 is drawn uniformly from S,

say by picking balls randomly from a container or by tossing fair coins, then the generator

can be viewed as an extensor of randomness: it stretches a short truly random seed into

a longer sequence of random-looking numbers. Definition 1 can easily be generalized to

accomodate this possibility: add to the structure a probability distribution µ defined on

S and say that s0 is selected from µ.

3

In some contexts, one may want to re-randomize the state sn of the generator every

now and then, or to jump ahead from sn to sn+ν for some random integer ν. For example,

certain types of slot machines in casinos use a simple deterministic random number

generator, which keeps running at full speed (i.e., computing its successive states) even

when there is nobody playing with the machine. Whenever a player hits the appropriate

button and some random numbers are needed to determine the winning combination

(e.g., in the game of Keno) or to draw a hand of cards (e.g., for poker machines), the

generator provides the output corresponding to its current state. Each time the player

hits the button, he or she selects a ν as just mentioned. This ν is random (although not

uniformly distributed). Since typical generators can advance by up to a million states

per second, hitting the button at the right time to get a specific state or predicting the

next output value from the previous ones is almost impossible.

One could go further and select not only the seed, but also some parameters of the

generator at random. For example, for a MLCG, one may select the multiplier a at

random from a given set of values (for a fixed m) or select the pairs (a,m) at random

from a given set. Certain classes of generators for cryptographic applications are defined

in a way that the parameters of the recurrence (e.g, the modulus) are viewed as part of

the seed and must be generated randomly for the generator to be safe (in the sense of

unpredictability).

Marsaglia [82], after he observed that physical phenomena by themselves are bad

sources of random numbers and that the deterministic generators may produce sequences

with too much structure, decided to combine the output of some random number gener-

ators with various sources of white and black noise, such as music, pictures, or Johnson

noise produced by physical devices. The combination was done by addition modulo 2

(bitwise exclusive-or) between the successive bits of the generator’s output and of the bi-

nary files containing the noise. The result was used to produce a CDROM containing 4.8

billion random bits, which appear to behave as independent bits distributed uniformly

over the set {0, 1}. Such a CDROM may be interesting but is no universal solution: its

use cannot match the speed and convenience of a good generator and some applications

require much more random numbers than provided on this disk.

1.4 The Design of Good Generators

How can one build a deterministic generator whose output looks totally random? Per-

haps a first idea is to write a computer program more or less at random, and that can

also modify its own code in some unpredictable way. However, experience shows that

4

random number generators should not be built at random (see Knuth [53] for more

discussion on this). Building a good random number generator may look easy on the

surface, but it is not. It requires a good understanding of heavy mathematics.

The techniques used to evaluate the quality of random number generators can be

partitioned into two main classes: the structural analysis methods (sometimes called

theoretical tests) and the statistical methods (also called empirical tests). An empirical

test views the generator as a black box. It observes the output and applies a statistical

test of hypothesis to catch up significant statistical defects. An unlimited number of such

tests can be designed. Structural analysis, on the other hand, studies the mathematical

structure underlying the successsive values produced by the generator, most often over

its entire period length. For example, vectors of t successive output values of a LCG

can be viewed as points in the t-dimensional unit hypercube [0, 1]t. It turns out that

all these points, over the entire period of the generator, form a regular lattice structure.

As a result, all the points lie in a limited number of equidistant parallel hyperplanes, in

each dimension t. Computing certain numerical figures of merit for these lattices (e.g.,

computing the distances between neighboring hyperplanes) is an example of structural

analysis. Statistical testing and structural analysis will be discussed more extensively in

the forthcoming sections. We emphasize that all these methods are in a sense heuristic:

none ever proves that a particular generator is perfectly random or fully reliable for

simulation. The best they can do is improve our confidence in the generator.

1.5 Overview of What Follows

We now give an overview of the remainder of this chapter. In the next section, we

portray our ideal random number generator. The desired properties include uniformity,

independence, long period, rapid jump-ahead capability, ease of implementation, and

efficiency in terms of speed and space (memory size used). In certain situations, unpre-

dictability is also an issue. We discuss the scope and significance of structural analysis as

a guide to select families of generators and choose specific parameters. Section 3 stud-

ies the generators based on linear recurrences. This includes the linear congruential,

multiple recursive, multiply-with-carry, Tausworthe, generalized feedback shift register

generators, all of which have several variants, and also different types of combinations of

these. We study their structural properties at length. Section 4 is devoted to methods

based on nonlinear recurrences, such as inversive and quadratic congruential generators,

as well as other types of methods originating from the field of cryptology. Section 5

summarizes the ideas of statistical testing. Section 6 outlines the specifications of a

modern uniform random number package and refers to available implementations. It

also briefly discusses parallel generators.

5

2 DESIRED PROPERTIES

2.1 Unpredictability and “True” Randomness

From the user’s perspective, an ideal random number generator should be like a black box

producing a sequence that cannot be distinguished from a truly random one. In other

words, the goal is that given the output sequence (u0, u1, . . .) and an infinite sequence

of i.i.d. U(0, 1) random variables, no statistical test (or computer program) could tell

which is which with probability larger than 1/2. An equivalent requirement is that after

observing any finite number of output values, one cannot guess any given bit of any given

unobserved number better than by flipping a fair coin. But this is an impossible dream.

The pseudorandom sequence can always be determined by observing it sufficiently, since

it is periodic. Likewise, for any periodic sequence, it is always possible to construct

a statistical test that the sequence will fail spectacularly, if enough computing time is

allowed.

To dilute the goal we may limit the time of observation of the sequence and the

computing time for the test. This leads to the introduction of computational complexity

into the picture. More specifically, we now consider a family of generators, {Gk, k =

1, 2, . . .}, indexed by an integral parameter k equal to the number of bits required to

represent the state of the generator. We assume that the time required to compute the

functions T and G is (at worst) polynomial in k. We also restrict our attention to the

class of statistical tests whose running time is polynomial in k. Since the period length

typically increases as 2k, this precludes the tests that exhaust the period. We say that

the family {Gk} is polynomial-time perfect if, for any polynomial time statistical test

trying to distinguish the output sequence of the generator from an infinite sequence of

i.i.d. U(0, 1) random variables, the probability that the test makes the right guess does

not exceed 1/2 + e−kε, where ε is a positive constant. An equivalent requirement is

that no polynomial-time algorithm can predict any given bit of un with probability of

success larger than 1/2 + e−kε, after observing u0, . . . , un−1, for some ε > 0. This setup

is based on the idea that what cannot be computed in polynomial time is practically

impossible to compute if k is reasonably large. It was introduced in cryptology, where

unpredictability is a key issue (see [4, 6, 55, 71] and other references given there).

Are there efficient polynomial-time perfect families of generators available? Actually,

nobody knows for sure whether or not there exists such a family. But some generator

families are conjectured to be polynomial-time perfect. The one with apparently the

best behavior so far is the BBS, introduced by Blum, Blum, and Shub [4], explained in

the next example.

6

Example 2 The BBS generator of size k is defined as follows. The state space Sk is

the set of triplets (p, q, x) such that p and q are (k/2)-bit prime integers, p + 1 and

q + 1 are both divisible by 4, and x is a quadratic residue modulo m = pq, relatively

prime to m (that is, x can be expressed as x = y2 mod m for some integer y that is

not divisible by p or q). The initial state (seed) is chosen randomly from Sk, with the

uniform distribution. The state then evolves as follows: p and q remain unchanged and

the successive values of x follow the recurrence

xn = x2
n−1 mod m.

At each step, the generator outputs the νk least significant bits of xn (i.e., un =

xn mod 2νk), where νk ≤ K log k for some constant K. The relevant conjecture here

is that with probability at least 1 − e−kε for some ε > 0, factoring m (that is, finding

p or q, given m) cannot be done in polynomial time (in k). Under this conjecture, the

BBS generator has been proved polynomial-time perfect [4, 113]. Now, a down-to-earth

question is: how large should be k to be safe in practice? Also, how small should be K?

Perhaps no one really knows. A k larger than a few thousands is probably pretty safe,

but makes the generator too slow for general simulation use.

Most of the generators discussed in the remainder of this chapter are known not to be

polynomial-time perfect. However, they seem to have good enough statistical properties

for most reasonable simulation applications.

2.2 What is a Random Sequence?

The idea of a “truly random” sequence makes sense only in the (abstract) framework of

probability theory. Several authors (see, e.g., [53]) give definitions of a random sequence,

but these definitions require nonperiodic infinite-length sequences. Whenever one selects

a generator with a fixed seed, as in Definition 1, one always obtains a deterministic

sequence of finite length (the length of the period) which repeats itself indefinitely.

Choosing such a random number generator then amounts to selecting a finite-length

sequence. But among all sequences of length ρ of symbols from the set U , for given ρ

and finite U , which ones are better than others? Let |U | be the cardinality of the set

U . If all the symbols are chosen uniformly and independently from U , then each of the

|U |ρ possible sequences of symbols from U has the same probability of occuring, namely

|U |−ρ. So, it appears that no particular sequence (that is, no generator) is better than

any other. A pretty disconcerting conclusion! To get out of this dead end, one must

take a different point of view.

7

Suppose that a starting index n is randomly selected, uniformly from the set {1, 2, . . . ,
ρ}, and consider the output vector (or subsequence) un = (un, . . . , un+t−1), where t <<

ρ. Now, un is a (truly) random vector. We would like un to be uniformly distributed

(or almost) over the set U t of all vectors of length t. This requires ρ ≥ |U |t, since

there are at most ρ different values of un in the sequence. For ρ < |U |t, the set Φ =

{un, 1 ≤ n ≤ ρ} can cover only part of the set U t. Then, one may ask Ψ to be uniformly

spread over U t. For example, if U is a discretization of the unit interval [0, 1], such as

U = {0, 1/m, 2/m, . . . , (m− 1)/m} for some large integer m, and if the points of Ψ are

evenly distributed over U t, then they are also (pretty much) evenly distributed over the

unit hypercube [0, 1]t.

Example 3 Suppose U = {0, 1/100, 2/100, . . . , 99/100} and that the period of the gen-

erator is ρ = 104. Here we have |U | = 100 and ρ = |U |2. In dimension 2, the pairs

un = (un, un+1) can be uniformly distributed over U 2, and this happens if and only if

each pair of successive values of the form (i/100, j/100), for 0 ≤ i, j < 100 occurs exactly

once over the period. In dimension t > 2, we have |U |t = 102t to cover, but can cover

only 104 of those because of the limited period length of our generator. In dimension 3,

for instance, we can cover only 104 points out of 106. We would like those 104 points

that are covered to be very uniformly distributed over the unit cube [0, 1]3.

An even distribution of Ψ over U t, in all dimensions t, will be our basis for discrimi-

nating among generators. The rationale is that under these requirements, subsequences

of any t successive output values produced by the generator, from a random seed, should

behave much like random points in the unit hypercube. This captures both uniformity

and independence: if un = (un, . . . , un+t−1) is generated according to the uniform distri-

bution over [0, 1]t, then the components of un are independent and uniformly distributed

over [0, 1]. This idea of looking at what happens when the seed is random, for a given

finite sequence, is very similar to the “scanning ensemble” idea of Compagner [11, 12],

only that we use the framework of probability theory instead.

The reader may have already noticed that under these requirements, Φ will not look

at all like a random set of points, because its distribution over U t is too even (or super-

uniform, as some authors say [105]). But what the above model assumes is that only

a few points are selected at random from the set Φ. In this case, the best one can do

for these points to be distributed approximately as i.i.d. uniforms is to take Φ super-

uniformly distributed over U t. For this to make some sense, ρ must be several orders of

magnitude larger than the number of output values actually used by the simulation.

8

To assess this even distribution of the points over the entire period, some (theoretical)

understanding of their structural properties is necessary. Generators whose structural

properties are well-understood and precisely described may look less random, but those

which are more complicated and less understood are not necessarily better. They may

hide strong correlations or other important defects. Avoid generators without convincing

theoretical support. As a basic requirement, the period length must be known and huge.

But this is not enough. Analyzing the equidistribution of the points as just discussed,

which is sometimes achieved by studying the lattice structure, usually gives good insight

on how the generator behaves. Empirical tests can be applied thereafter, just to improve

one’s confidence.

2.3 Discrepancy

A well-established class of measures of uniformity for finite sequences of numbers are

based on the notion of discrepancy . This notion and most related results are well-covered

by Niederreiter [92]. We only recall the most basic ideas here.

Consider the N points un = (un, . . . , un+t−1), for n = 0, . . . , N − 1, in dimension

t, formed by (overlapping) vectors of t successive output values of the generator. For

any hyper-rectangular box aligned with the axes, of the form R =
∏t

j=1[αj, βj), with

0 ≤ αj < βj ≤ 1, let I(R) be the number of points un falling into R, and V (R) =
∏t

j=1(βj − αj) be the volume of R. Let R be the set of all such regions R, and

D
(t)
N = max

R∈R
|V (R)− I(R)/N |.

This quantity is called the t-dimensional (extreme) discrepancy of the set of points

{u0, . . . ,uN−1}. If we impose αj = 0 for all j; that is, we restrict R to those boxes

which have one corner at the origin, then the corresponding quantity is called the star

discrepancy , denoted by D
∗(t)
N . Other variants also exist, with richer R.

A low discrepancy value means that the points are very evenly distributed in the

unit hypercube. To get super-uniformity of the sequence over its entire period, one

might want to minimize the discrepancy D(t)
ρ or D∗(t)

ρ for t = 1, 2, A major practical

difficulty with discrepancy is that it can be computed only for very special cases. For

LCGs, for example, it can be computed efficiently in dimension t = 2, but the computing

cost then increases exponentially as a function of t. In most cases, only (upper and

lower) bounds on the discrepancy are available. Often, these bounds are expressed as

orders of magnitude as a function of N , are for N = ρ, and/or are averages over a

large (specific) class of generators (for example, over all full period MLCGs with a given

9

prime modulus). Discrepancy also depends on the rectangular orientation of the axes,

in contrast to other measures of uniformity such as the distances between hyperplanes

for LCGs (see Section 3.4). On the other hand, it applies to all types of generators, not

only those based on linear recurrences.

We previously argued for super-uniformity over the entire period, which means seek-

ing the lowest possible discrepancy. When a subsequence of length N is used (for

N << ρ), starting, say, at a random point along the entire sequence, the discrepancy of

that subsequence should behave (viewed as a random variable) as the discrepancy of a

sequence of i.i.d. U(0, 1) random variables. The latter is of order O(N−1/2) for both the

star and extreme discrepancies, according to the law of the iterated logarithm [92].

Niederreiter [92] shows that the discrepancy of full period MLCGs over their en-

tire period (of length ρ = m − 1), on the average over multipliers a, is of order

O(m−1(logm)t log log(m+1)). This order is much smaller (for large m) than O(m−1/2),

meaning super-uniformity. Over small fractions of the period length, the available

bounds on the discrepancy are more in accordance with the law of the iterated log-

arithm [90]. This is yet another important justification for never using more than a

negligible fraction of the period.

Suppose now that numbers are generated in [0, 1] with L fractional binary digits.

This gives resolution 2−L, which means that all un’s are multiples of 2−L. It then follows

(see [92]) that D
∗(t)
N ≥ 2−L for all t ≥ 1 and N ≥ 1. Therefore, as a necessary condition

for the discrepancy to be in the right order of magnitude, the resolution 2−L must be

small enough for the number of points N that we plan to generate: 2−L should be much

smaller than N−1/2. A too coarse discretization implies a too large discrepancy.

2.4 Quasi-Random Sequences

The interest in discrepancy stems largely from the fact that deterministic error bounds

for (Monte Carlo) numerical integration of a function are available in terms of D
(t)
N

and of a certain measure of variability of the function. In that context, the smaller the

discrepancy, the better (because the aim is to minimize the numerical error, not really to

imitate i.i.d. U(0, 1) random variables). Sequences for which the discrepancy of the first

N values is small for all N are called low-discrepancy or quasi-random sequences [92].

Numerical integration using such sequences is called quasi-Monte Carlo integration. To

estimate the integral using N points, one simply evaluates the function (say, a function

of t variables) at the first N points of the sequence, take the average, multiply by

the volume of the domain of integration, and use the result as an approximation of the

10

integral. Specific low-discrepancy sequences have been constructed by Sobol’, Faure, and

Niederreiter, among others (see [92]). In this chapter, we concentrate on pseudorandom

sequences and will not discuss quasi-random sequences any further.

2.5 A Long Period

Let us now return to the desired properties of pseudorandom sequences, starting with

the length of the period. What is long enough? Suppose a simulation experiment takes

N random numbers from a sequence of length ρ. Several reasons justify the need to

take ρ >> N ; see, e.g., [20, 60, 78, 92, 101]. Based on geometric arguments, Ripley

[101] suggests ρ >> N 2 for linear congruential generators. Our previous discussion also

supports the view that ρ must be huge in general.

Period lengths of 232 or smaller, which are typical for the default generators of many

operating systems and software packages, are unacceptably too small. Such period

lengths can be exhausted in a matter of minutes on today’s workstations. Even ρ = 264

is a relatively small (perhaps minimal) period length. Generators with period lengths

over 2200 are now available.

2.6 Efficiency

Some say that the speed of a random number generator (the number of values that it

can generate per second, say) is not very important for simulation, since generating the

numbers typically takes only a tiny fraction of the simulation time. But there are several

counter-examples, such as for certain large simulations in particle physics [24], or when

using intensive Monte Carlo simulation to estimate with precision the distribution of a

statistic that is fast to compute but requires many random numbers. Moreover, even if

a fast generator takes only, say, 5 percent of the simulation time, changing to another

one that is 20 times slower will approximately double the total simulation time. Since

simulations often consume several hours of cpu time, this could be very significant.

The memory size used by a generator might also be important in general, especially

since simulations often use several generators in parallel, for instance to maintain syn-

chronization for variance reduction purposes (see Section 6 and [7, 56] for more details).

11

2.7 Repeatability, Splitting Facilities, and Ease of Implementation

The ability to replicate exactly the same sequence of random numbers, called repeatabil-

ity , is important for program verification and to facilitate the implementation of certain

variance reduction techniques [7, 51, 56, 102]. Repeatability is a major advantage of

pseudorandom sequences over sequences generated by physical devices. The latter can

of course be stored on disks or other memory devices, and then re-read as needed, but

this is less convenient than a good pseudorandom number generator which fits in a few

lines of code in a high-level language.

A code is said to be portable if it works without change and produces exactly the

same sequence (at least up to machine accuracy) across all “standard” compilers and

computers. A portable code in a high-level language is clearly much more convenient

than a machine-dependent assembly-language implementation, for which repeatability

is likely to be more difficult to achieve.

Ease of implementation also means the ease of splitting the sequence into (long)

disjoint substreams and jumping quickly from one substream to the next. Section 6

says why this is important. For this, there should be an efficient way to compute the

state sn+ν for any large ν, given sn. For most linear-type generators, we know how to do

that. But for certain types of nonlinear generators and for some methods of combination

(such as shuffling), good jump-ahead techniques are unknown. Implementing a random

number package as described in Section 6 requires efficient jump-ahead techniques.

2.8 Historical Accounts

There is an enormous amount of scientific literature on random number generation. Law

and Kelton [56] present a short (but interesting) historical overview. Further surveys

and historical accounts of the old days are provided in [43, 49, 108].

Early attempts to construct pseudorandom number generators have given rise to all

sorts of bad designs, sometimes leading to disatrous results. An illustrative example is

the mid-square method, which works as follows (see, e.g., [56]). Take a b-digit number

xi−1 (say, in base 10, with b even), square it to obtain a 2b-digit number (perhaps with

zeros on the left), and extract the b middle digits to define the next number xi. To

obtain an output value ui in [0, 1), divide xi by 10b. The period length of this generator

depends on the initial value and is typically very short, sometimes of length 1 (such as

when the sequence reaches the absorbing state xi = 0). Hopefully, it is no longer used.

Another example of a bad generator is the RANDU (see G4 in Table 1).

12

3 LINEAR-TYPE METHODS

3.1 The Multiple-Recursive Generator

Consider the linear recurrence

xn = (a1xn−1 + · · ·+ akxn−k) mod m, (2)

where the order k and the modulus m are positive integers, while the coefficients

a1, . . . , ak are integers in the range {−(m − 1), . . . ,m − 1}. Define ZZm as the set

{0, 1, . . . ,m− 1} on which operations are performed modulo m. The state at step n of

the multiple recursive generator (MRG) [53, 58, 92] is the vector sn = (xn, . . . , xn+k−1) ∈
ZZk

m. The output function can be defined simply by un = G(sn) = xn/m, which gives

a value in [0, 1], or by a more refined transformation if a better resolution than 1/m is

required. The special case where k = 1 is the MLCG mentioned previously.

The characteristic polynomial P of (2) is defined by

P (z) = zk − a1z
k−1 − · · · − ak. (3)

The maximal period length of (2) is ρ = mk − 1, reached if and only if m is prime and

P is a primitive polynomial over ZZm, identified here as the finite field with m elements.

Suppose that m is prime and let r = (mk − 1)/(m− 1). The polynomial P is primitive

over ZZm if and only if it satisfies the following conditions, where everything is assumed

to be modulo m (see Knuth [53]):

(a) ((−1)k+1ak)
(m−1)/q 6= 1 for each prime factor q of m− 1;

(b) (zr mod P (z)) = (−1)k+1ak;

(c) (zr/q mod P (z)) has degree > 0 for each prime factor q of r, 1 < q < r.

For k = 1 and a = a1 (the MLCG case), these conditions simplify to: a 6= 0 (mod

m) and a(m−1)/q 6= 1 (mod m) for each prime factor q of m− 1. For large r, finding the

factors q to check condition (c) can be too hard, since it requires the factorization of r.

In this case, the trick is to choose m and k so that r is prime (this can be done only for

odd k). Testing primality of large numbers (using probabilistic algorithms, for example,

as in [66, 100] is much easier than factoring. Given m, k, and the factorizations of m−1

and r, primitive polynomials are generally easy to find, simply by random search.

13

If m is not prime, then the period length of (2) has an upper bound typically much

lower than mk − 1. For k = 1 and m = 2e, e ≥ 4, the maximum period length is

2e−2, which is reached if a1 = 3 or 5 (mod 8) and x0 is odd [53, p.20]. Otherwise, if

m = pe for p prime and e ≥ 1, and k > 1 or p > 2, the upper bound is (pk − 1)pe−1 [34].

Clearly, p = 2 is very convenient from the implementation point of view, because the

modulo operation then amounts to “chopping-off” the higher-order bits. So, to compute

ax mod m in that case, for example with e = 32 on a 32-bit computer, just make sure

that the “overflow checking” option or the compiler is turned off, and compute the

product ax using unsigned integers while ignoring the overflow.

However, taking m = 2e imposes a big sacrifice on the period length, especially for

k > 1. For example, if k = 7 and m = 231 − 1 (a prime), the maximal period length is

(231−1)7−1 ≈ 2217. But for m = 231 and the same value of k, the upper bound becomes

ρ ≤ (27 − 1)231−1 < 237, which is more than 2180 times shorter. For k = 1 and p = 2, an

upper bound on the period length of the ith least significant bit of xn is max(1, 2i−2) [7],

and if a full cycle is split into 2d equal segments, then all segments are identical except

for their d most significant bits [19, 24]. For k > 1 and p = 2, the upper bound on the

period length of the ith least significant bit is (2k − 1)2i−1. So, the low-order bits are

typically much too regular when p = 2. For k = 7 and m = 231, for example, the least

significant bit has period length at most 27 − 1 = 127, the second least significant bit

has period length at most 2(27 − 1) = 254, and so on.

Example 4 Consider the recurrence xn = 10205xn−1 mod 215, with x0 = 12345. The

first 8 values of xn, in base 10 and in base 2, are:

x0 = 12345 = 0110000001110012

x1 = 20533 = 1010000001101012

x2 = 20673 = 1010000110000012

x3 = 7581 = 0011101100111012

x4 = 31625 = 1111011100010012

x5 = 1093 = 0000100010001012

x6 = 12945 = 0110010100100012

x7 = 15917 = 0111110001011012.

The last two bits are always the same. The third least significant bit has a period length

of 2, the fourth least significant one has a period length of 4, and so on.

14

Adding a constant c as in (1) can alleviate the period-length limitations just dis-

cussed. The LCG with recurrence (1) has period length m if and only if the following

conditions are satisfied see [53, p.16]:

(a) c is relatively prime to m;

(b) a − 1 is a multiple of p for every prime factor p of m (including m itself if m is

prime);

(c) If m is a multiple of 4 then a− 1 is also a multiple of 4.

For m = 2e ≥ 4, these conditions simplify to: c is odd and a mod 4 = 1. But the

low-order bits are again too regular: the period length the the ith least significant bit

of xn is at most 2i.

A constant c can also be added to the right side of the recurrence (2). One can show

(see [58]) that a linear recurrence of order k with such a constant term is equivalent

to some linear recurrence of order k + 1 with no constant term. As a result, an upper

bound on the period length of such a recurrence with m = pe is (pk+1− 1)pe−1, which is

much smaller than mk for large e and k.

All of this argues against the use of power-of-two moduli in general, despite their

advantage in terms of implementation. It favors prime moduli instead. Later on, when

discussing combined generators, we will also be interested in moduli that are the products

of a few large primes.

3.2 Implementation for Prime m

For k > 1 and primem, for the characteristic polynomial P to be primitive, it is necessary

that ak and at least another coefficient aj be non-zero. From the implementation point

of view, it is best to have only two non-zero coefficients; that is, a recurrence of the form

xn = (arxn−r + akxn−k) mod m, (4)

with characteristic trinomial P defined by P (z) = zk− arz
k−r − ak. Note that replacing

r by k − r generates the same sequence in reverse order.

When m is not a power of two, computing and adding the products modulo m in

(2) or (4) is not necessarily straightforward, using ordinary integer arithmetic, because

of the possibility of overflow: the products can exceed the largest integer representable

on the computer. For example, if m = 231 − 1 and a1 = 16807, then xn−1 can be as

15

large as 231 − 2, so the product a1xn−1 can easily exceed 231. L’Ecuyer and Côté [69]

study and compare different techniques for computing a product modulo a large integer

m, using only integer arithmetic, so that no intermediate result ever exceeds m. Among

the general methods, working for all representable integers and easily implementable

in a high-level language, decomposition was the fastest in their experiments. Roughly,

this method simply decomposes each of the two integer that are to be multiplied in two

blocks of bits (e.g., the 15 least significant bits and the 16 most significant ones, for a

31-bit integer) and then cross-multiplies the blocks and adds (modulo m) just as one

does when multiplying large numbers by hand.

There is a faster way to compute ax mod m for 0 < a, x < m, called approximate

factoring , which works under the condition that

a (m mod a) < m. (5)

This condition is satisfied if and only if a = i or a = bm/ic for i < √m (here, bxc denotes
the largest integer smaller or equal to x, so bm/ic is the integer division of m by i). To

implement the approximate factoring method, one initially precomputes (once for all)

the constants q = bm/ac and r = m mod a. Then, for any positive integer x < m, the

following instructions have the same effect as the assignment x := ax mod m, but with

all intermediate (integer) results remaining strictly between −m and m (see [7, 57, 96]):

y := bx/qc;
x := a(x− yq)− yr;

IF x < 0 THEN x := x+m END.

As an illustration, if m = 231 − 1 and a = 16807, then the generator satisfies the

condition, since 16807 <
√
m. In this case, one has q = 127773 and r = 2836.

Hörmann and Derflinger [47] give a different method, which is about as fast, for the

case where m = 231 − 1.

Another approach is to represent all the numbers and perform all the arithmetic

modulo m in double precision floating-point. This would work provided that the mul-

tipliers ai are small enough to make sure that the integers aixn−i and their sum are

always represented exactly by the floating-point values. A sufficient condition is that

the floating-point numbers are represented with at least
⌈

log2

(

(m− 1)
k
∑

i=1

ai

)⌉

bits of precision in their mantissa, where dxe denotes the smallest integer larger or equal

to x).

16

3.3 Jumping ahead

To jump ahead from xn to xn+ν with an MLCG, just use the relation

xn+ν = aνxn mod m = (aν mod m)xn mod m.

If many jumps are to be performed with the same ν, then the constant aν mod m can

be precomputed once and used for all subsequent computations.

Example 5 Again, let m = 2147483647, a = 16807, and x0 = 12345. Suppose we

want to compute x3 directly from x0, so ν = 3. One easily finds that 168073 mod m =

1622650073 and x3 = 1622650073x0 mod m = 2035175616, which agrees with the value

given in Example 1. Of course, we are usually interested in much larger values of ν, but

the method works the same way.

For the LCG, with c 6= 0, one has

xn+ν =

(

aνxn +
c(aν − 1)

a− 1

)

mod m.

To jump ahead with the MRG, one way is to use the fact that it can be represented as

a matrix MLCG: Xn = AXn−1 mod m, where Xn is sn represented as a column vector

and A is a k× k square matrix. Jumping ahead is then achieved in the same way as for

the MLCG:

Xn+ν = AνXn mod m = (Aν mod m)Xn mod m.

Another way is to transform the MRG into its polynomial representation [60], in which

jumping ahead is easier, and then apply the inverse transformation to recover the original

representation.

3.4 Lattice Structure of LCGs and MRGs

A lattice of dimension t, in the t-dimensional real space IRt, is a set of the form

L =







V =
t
∑

j=1

zjVj | each zj ∈ ZZ







, (6)

where ZZ is the set of all integers and {V1, . . . , Vt} is a basis of IRt. The lattice L is thus

the set of all integer linear combinations of the vectors V1, . . . , Vt, and these vectors are

called a lattice basis of L. The basis {W1, . . . ,Wt} of IRt which satisfies V ′i Wj = δij for

17

all 1 ≤ i, j ≤ t (where δij = 1 if i = j, 0 otherwise), is called the dual of the basis

{V1, . . . , Vt}, and the lattice generated by this dual basis is called the dual lattice to L.

Consider the set

Tt = {un = (un, . . . , un+t−1) | n ≥ 0, s0 = (x0, . . . , xk−1) ∈ ZZk
m} (7)

all overlapping t-tuples of successive values produced by (2), with un = xn/m, from

all possible initial seeds. Then, this set Tt is the intersection of a lattice Lt with the

t-dimensional unit hypercube I t = [0, 1)t. For more detailed studied and to see how to

construct a basis for this lattice Lt and its dual, see [22, 53, 66, 70]. For t ≤ k, it is

clear from the definition of Tt that each vector (x0, . . . , xt−1) in ZZt
m can be taken as s0,

so Tt = ZZt
m/m = (ZZt/m) ∩ I t; that is, Lt is the set of all t-dimensional vectors whose

coordinates are multiples of 1/m, and Tt contains mt points. For a full period MRG,

this also holds if we fix s0 in the definition of Tt to any non-zero vector of ZZk
m, and then

add the zero vector to Tt. In dimension t > k, the set Tt contains only mk points, while

ZZt
m/m contains mt points. Therefore, for large t, Tt contains only a small fraction of

the t-dimensional vectors whose coordinates are multiples of 1/m.

For full period MRGs, the generator covers all of Tt except the zero state in one

cycle. In other cases, such as MRGs with non-prime moduli or MLCGs with power-of-

two moduli, each cycle covers only a smaller subset of Tt, and the lattice generated by

that subset is often equal to Lt, but may in some cases be a strict sublattice or subgrid

(i.e., a shifted lattice of the form V0 + L where V0 ∈ IRt and L is a lattice). In the

latter case, to analyze the structural properties of the generator, one should examine

the appropriate sublattice or subgrid instead of Lt. Consider for example an MLCG

for which m is a power of two, a mod 8 = 5, and x0 is odd. The t-dimensional points

constructed from successive values produced by this generator form a subgrid of Lt

containing one-fourth of the points [46, 3]. For a LCG with m a power of two and c 6= 0,

with full period length ρ = m, the points all lie in a grid that is a shift of the lattice

Lt associated with the corresponding MLCG (with the same a amd m). The value of c

determines only the shifting and has no other effect on the lattice structure.

Example 6 Figures 1–3 illustrate the lattice structure of a small, but instructional,

LCGs with (prime) modulus m = 101 and full period length ρ = 100, in dimension t = 2.

They show all 100 pairs of successive values (un, un+1) produced by these generators,

for the multipliers a = 12, a = 7, and a = 51, respectively. In each case, one clearly

sees the lattice structure of the points. Any pair of vectors forming a basis determine

a parallelogram of area 1/101. This holds more generally: in dimension t, the vectors

of any basis of Lt determine a parallelepiped of volume 1/mk. Conversely, any set of t

vectors that determine such a parallelepiped form a lattice basis.

18

0.0 1.0

un

0.0

1.0

un+1

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

..

.

.

.

.

.

Figure 1: All pairs (un, un+1) for the LCG with m = 101 and a = 12

0.0 1.0

un

0.0

1.0

un+1 .

.

.

.

.
.

.

. .

.
.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.
.

.

..

.
.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

Figure 2: All pairs (un, un+1) for the LCG with m = 101 and a = 7

19

0.0 1.0

un

0.0

1.0

un+1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. .
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
...

.

.

.

.

.

.

.

.

.

.

.

Figure 3: All pairs (un, un+1) for the LCG with m = 101 and a = 51

The points are much more evenly distributed in the square for a = 12 than for

a = 51, and slightly more evenly distributed for a = 12 than for a = 7. The points of Lt

are generally more evenly distributed when there exists a basis comprised of vectors of

similar lengths. One also sees from the figures that all the points lie in a relative small

number of equidistant parallel lines. In Figure 3, only two lines contain all the points

and this leaves large empty spaces between the lines, which is bad. 2

In general, the lattice structure implies that all the points of Tt lie on a family of

equidistant parallel hyperplanes. Among all such families of parallel hyperplanes that

cover all the points, take the one for which the successive hyperplanes are farthest apart.

The distance dt between these successive hyperplanes is equal to 1/`t, where `t is the

length of a shortest non-zero vector in the dual lattice to Lt. Computing a shortest non-

zero vector in a lattice L means finding the combination of values of zj in (6) giving the

shortest V . This is a quadratic optimization problem with integer variables and can be

solved by a branch-and-bound algorithm, as in [37, 15]. In these papers, the authors use

an ellipsoid method to compute the bounds on the zj for the branch-and-bound. This

appears to be the best (general) approach known to date, and is certainly much faster

than the algorithm given in [22] and [53]. This idea of analyzing dt was introduced by

Coveyou and MacPherson [18] via the viewpoint of spectral analysis. For this historical

reason, computing dt is often called the spectral test .

20

The shorter the distance dt, the better, because a large dt means thick empty slices

of space between the hyperplanes. One has the theoretical lower bound

dt ≥ d∗t =
1

γtmk/t
(8)

where γt is a constant called the Hermite constant for quadratic forms, that depends

only on t, and whose exact value is currently known only for t ≤ 8 (see [53]). So, for

t ≤ 8 and T ≤ 8, one can define the figures of merit St = d∗t/dt and MT = mink≤t≤T St,

which lie between 0 and 1. Values close to 1 are desired. Another lower bound on dt,

for t > k, is [61]:

dt ≥


1 +
k
∑

j=1

a2
j





−1/2

(9)

It means that an MRG whose coefficients aj are small is guaranteed to have a large

(bad) dt.

Other figures of merit have been introduced to measure the quality of random number

generators in terms of their lattice structure. For example, one can count the minimal

number of hyperplanes that contain all the points, or compute the ratio of lengths of

the shortest and longest vector in a Minkowski-reduced basis of the lattice. For more

details on the latter, which is typically much more costly to compute than dt, the reader

can consult [70] and the references given there. These alternative figures of merit do not

tell us much important information in addition to dt.

Tables 1 and 2 give the values of dt and St for certain LCGs and MRGs. All these

generators have full period length. The LCGs of the first table are well known and most

are (or have been) heavily used. For m = 231−1, the multiplier a = 742938285 was found

by Fishman and Moore [38] in an exhaustive search for the MLCGs with the best value

of M6 for this value of m. It is used in the GPSS/H simulation environment. The second

multiplier, a = 16807, was originally proposed in [75], is suggested in many simulation

books and papers (e.g., [7, 96, 103]) and appears in several software systems such as the

SLAM II and SIMAN simulation programming languages, the IMSL statistical library,

and in operating systems for the IBM and Macintosh computers. It satisfies the condition

(5). The multiplier a = 630360016 was proposed in [97], is recommended in [56, 84]

among others, and is used in software such as the SIMSCRIPT II.5 and INSIGHT

simulation programming languages. Generator G4, with modulus m = 231 and multiplier

a = 65539, is the infamous RANDU generator, used for a long time in the IBM/360

operating system. Its lattice structure is particularly bad in dimension 3, where all the

points lie in only 15 parallel planes. Law and Kelton [56] give a graphical illustration.

Generator G5, with m = 232, a = 69069, and c = 1, is used in the VAX/VMS operating

21

Table 1: Distances between hyperplanes for some LCGs

G1 G2 G3 G4 G5 G6

m 231 − 1 231 − 1 231 − 1 231 232 248

k 1 1 1 1 1 1

a 742938285 16807 630360016 65539 69069 1108835251

c 0 0 0 0 1 11

ρ 231 − 2 231 − 2 231 − 2 229 232 248

S2 0.8673 0.3375 0.8212 0.9307 0.6541 0.2057

S3 0.8607 0.4412 0.4317 0.0119 0.4971 0.7249

S4 0.8627 0.5752 0.7833 0.0595 0.6223 0.4492

S5 0.8319 0.7361 0.8021 0.1570 0.6583 0.6120

S6 0.8341 0.6454 0.5700 0.2927 0.3356 0.7358

S7 0.6239 0.5711 0.6761 0.4530 0.4499 0.5507

S8 0.7067 0.6096 0.7213 0.6173 0.6284 0.6981

1/m 4.65E-10 4.65E-10 4.65E-10 4.65E-10 2.33E-10

d2 2.315E-5 5.950E-5 2.445E-5 4.315E-5 3.070E-5 2.696E-7

d3 8.023E-4 1.565E-3 1.599E-3 0.0921 1.389E-3 1.875E-5

d4 4.528E-3 6.791E-3 4.987E-3 0.0928 6.277E-3 4.570E-4

d5 0.0133 0.0150 0.0138 0.0928 0.0168 1.710E-3

d6 0.0259 0.0334 0.0379 0.0928 0.0643 4.114E-3

d7 0.0553 0.0604 0.0510 0.0928 0.0767 0.0116

d8 0.0682 0.0791 0.0668 0.0928 0.0767 0.0158

d9 0.1060 0.1125 0.0917 0.0928 0.1000 0.0295

d10 0.1085 0.1250 0.1155 0.1543 0.1387 0.0376

d11 0.1690 0.1429 0.1270 0.1543 0.1443 0.0494

d12 0.2425 0.1961 0.2132 0.1622 0.1581 0.0697

d13 0.2425 0.1961 0.2132 0.1961 0.1826 0.0697

d14 0.2425 0.2000 0.2132 0.2132 0.1961 0.0801

d15 0.2425 0.2000 0.2182 0.2132 0.2041 0.0913

d16 0.2425 0.2085 0.2294 0.2357 0.2236 0.1031

d17 0.2425 0.2425 0.2357 0.2673 0.2236 0.1195

d18 0.2500 0.2500 0.2500 0.2673 0.2236 0.1361

d19 0.2673 0.2500 0.2500 0.2673 0.2500 0.1543

d20 0.2673 0.2887 0.2673 0.2887 0.2500 0.1581

d21 0.2673 0.2887 0.2673 0.2887 0.3162 0.1581

d22 0.2887 0.2887 0.2774 0.2887 0.3162 0.1622

d23 0.2887 0.2887 0.2774 0.3162 0.3162 0.1667

d24 0.3015 0.2887 0.3015 0.3162 0.3162 0.1826

d25 0.3015 0.2887 0.3015 0.3162 0.3162 0.1890

d26 0.3015 0.2887 0.3015 0.3162 0.3162 0.1961

d27 0.3015 0.3015 0.3015 0.3162 0.3162 0.2041

d28 0.3015 0.3015 0.3333 0.3162 0.3162 0.2236

d29 0.3162 0.3015 0.3333 0.3162 0.3162 0.2236

d30 0.3162 0.3162 0.3333 0.3536 0.3162 0.2236

22

Table 2: Distances between hyperplanes for some MRGs

G7 G8 G9 G10

m 231 − 19 231 − 19 (231 − 1)(231 − 2000169) (231 − 85)(231 − 249)
k 7 7 3 1

a1 1975938786 1071064 2620007610006878699 1968402271571654650

a2 875540239 0 4374377652968432818

a3 433188390 0 667476516358487852

a4 451413575 0

a5 1658907683 0

a6 1513645334 0

a7 1428037821 2113664

S2 0.66650

S3 0.76439

S4 0.75901 0.39148

S5 0.77967 0.74850

S6 0.75861 0.67560

S7 0.76042 0.61124

S8 0.73486 0.00696 0.74215 0.56812

1/m 4.6E-10 4.6E-10 4.6E-10 4.6E-10

d2 6.5E-10

d3 7.00E-7

d4 1.1E-14 4.63E-5

d5 6.6E-12 2.00E-4

d6 4.7E-10 8.89E-4

d7 9.80E-9 2.62E-3

d8 6.57E-9 6.94E-7 9.55E-8 5.78E-3

d9 5.91E-8 4.58E-6 6.00E-7 9.57E-3

d10 2.87E-7 8.38E-6 2.24E-6 1.73E-2

d11 1.08E-6 1.10E-5 8.41E-6 2.36E-2

d12 3.85E-6 1.10E-5 2.66E-5 3.07E-2

d13 9.29E-6 1.26E-5 4.68E-5 3.47E-2

d14 1.99E-5 2.17E-5 1.05E-4 3.96E-2

d15 4.17E-5 4.66E-5 1.60E-4 5.98E-2

d16 7.63E-5 8.36E-5 2.68E-4 6.07E-2

d17 1.33E-4 1.31E-4 4.26E-4 6.51E-2

d18 2.77E-4 2.04E-4 7.05E-4 7.43E-2

d19 2.95E-4 3.50E-4 1.03E-3 8.19E-2

d20 4.62E-4 4.17E-4 1.32E-3 8.77E-2

23

system. The LCG G6, with modulus m = 248, multiplier a = 1108835251, and constant

c = 11, is the generator implemented in the procedure drand48 of the SUN Unix system’s

library [106]. We actually recommend none of the generators G1 to G6. Their period

lengths are too short and they fail many statistical tests (see Section 5).

In Table 2, G7 and G8 are two MRGs of order 7 found by a random search for

multipliers with a “good” lattice structure in all dimensions t ≤ 20, among those giving

a full period with m = 231 − 19. For G8, there was the additional restrictions that a1

and a7 satisfy the condition (5), and that ai = 0 for 2 ≤ i ≤ 6. This m is the largest

prime under 231 such that (m7−1)/(m−1) is also prime. The latter property facilitates

the verification of condition (c) in the full period conditions for an MRG. These two

generators are taken from [66], where one can also find more details on the search and a

precise definition of the selection criterion. It turns out that G8 has a very bad figure of

merit S8, and larger values of dt than G7 for t slightly larger than 7. This is due to the

restrictions: ai = 0 for 2 ≤ i ≤ 6, under which it is not possible to have S8 close to 1.

The distances between the hyperplanes for G8 are nevertheless much smaller than the

corresponding values of any LCG of Table 1, so this generator is a clear improvement

over those. G7 is better in terms of lattice structure, but also much more costly to run,

because there are seven products modulo m to compute instead of two, at each iteration

of the recurrence. The other generators in this table will be discussed later.

3.5 Lacunary Indices

Instead of constructing vectors of successive values as in (7), one can (more generally)

construct vectors with values that are a fixed distance apart in the sequence, using so-

called lacunary indices . More specifically, let I = {i1, i2, · · · , it} be a given set of integers

and define, for an MRG,

Tt(I) = {(ui1+n, . . . , uit+n) | n ≥ 0, s0 = (x0, . . . , xk−1) ∈ ZZk
m}.

Consider the lattice Lt(I) spanned by Tt(I) and ZZt, and let dt(I) be the distance between

the hyperplanes in this lattice. L’Ecuyer and Couture [70] show how to construct bases

for such lattices, how to compute dt(I), and so on. The following provides “quick-and-

dirty” lower bounds on dt(I) [13, 61]:

(i) If I contains all the indices i such that ak−i+1 6= 0, then

dt(I) ≥


1 +
k
∑

j=1

a2
i





−1/2

. (10)

24

In particular, if xn = (arxn−r+akxn−k) mod m and I = {0, k− r, k}, then d3(I) ≥
(1 + a2

r + a2
k)
−1/2.

(ii) If m can be written as m =
∑t

j=1 cija
ij for some integers cij , then

dt(I) ≥




t
∑

j=1

c2
ij





−1/2

. (11)

As a special case of (10), consider the so-called lagged-Fibonacci generator, based

on a recurrence whose only two nonzero coefficients satisfy ar = ±1 and ak = ±1. In

this case, for I = {0, k − r, k}, d3(I) ≥ 1/
√
3 ≈ .577. As a consequence, all vectors

(un, un+r, un+k) produced by such a generator lie in only two planes! Specific instances

of this generator are the one proposed by Mitchell and Moore and recommended by

Knuth [53], based on the recurrence xn = (xn−24 + xn−55) mod 2e for e equal to the

computer’s word length, as well as the “addrans” function in the SUN Unix library

[106], based on xn = (xn−5 + xn−17) mod 224. These generators should not be used, at

least not in their original form.

3.6 Combined LCGs and MRGs

Several authors advocated the idea of combining in some way different generators (for

example, two or three different LCGs), hoping that the composite generator will behave

better than any of its components alone. See [10, 53, 56, 58, 79] and dozens of other

references given there. Combination can provably increase the period length. Empirical

tests show that it typically improves the statistical behavior as well. Some authors

(e.g., [8, 42, 79]) have also given theoretical results which (on the surface) appear to

“prove” that the output of a combined generator is “more random” than (or at least

“as random” as) the output of each of its components. However, these theoretical

results make sense only for random variables defined in a probability space setup. For

(deterministic) pseudorandom sequences, they prove nothing, and can be used only as

heuristic arguments to support the idea of combination. To assess the quality of a specific

combined generator, one should make a structural analysis of the combined generator

itself, not only analyze the individual components and assume that combination will

make things more random. This implies that the structural effect of the combination

method must be well-understood. Law and Kelton [56, Problem 7.6] give an example

where combination makes things worse.

The two most widely known combination methods are:

25

(i) Shuffling one sequence with another or with itself;

(ii) Adding two or more integer sequences modulo some integer m0, or adding se-

quences of real numbers in [0, 1] modulo 1, or adding binary fractions bitwise

modulo 2.

Shuffling one LCG with another can be accomplished as follows. Fill up a table of

size d with the first d output values from the first LCG (suggested values of d go from

2 up to 128 or more). Then, each time a random number is needed, generate an index

I ∈ {1, . . . , d} using the log2(d) most significant bits of the next output value from the

second LCG, return (as output of the combined generator) the value stored in the table

at position I, then replace this value by the next output value from the first LCG.

Roughly, the first LCG produces the numbers and the second one changes the order of

their occurence. There are several variants of this shuffling scheme. In some of them,

the same LCG that produces the numbers to fill up the table is also used to generate the

values of I. A large number of empirical investigations performed over the past 30 years

strongly support shuffling and many generators available in software libraries use it (e.g.,

[50, 99, 106]). However, it has two important drawbacks: (a) the effect of shuffling is not

well-enough understood from the theoretical viewpoint and (b) one does not know how

to quickly jump ahead to an arbitrary point in the sequence of the combined generator.

The second class of combination method, by modular addition, is generally better

understood theoretically. Moreover, jumping ahead in the composite sequence amounts

to jumping ahead with each of the individual components, which we know how to do if

the components are LCGs or MRGs.

Consider J MRGs evolving in parallel. The jth MRG is based on the recurrence:

xj,n = (aj,1xj,n−1 + · · ·+ aj,kxj,n−k) mod mj,

for j = 1, . . . , J . We assume that the moduli mj are pairwise relatively prime and

that each recurrence is purely periodic (has zero transient) within period length ρj. Let

δ1, . . . , δJ be arbitrary integers such that for each j, δj and mj have no common factor.

Define the two combinations:

zn =





J
∑

j=1

δjxj,n



 mod m1; un = zn/m1 (12)

and

wn =





J
∑

j=1

δjxj,n
mj



 mod 1. (13)

Let k = max(k1, . . . , kJ) and m =
∏J

j=1 mj. The following results were proved in [72] for

the case of MLCG components (k = 1) and in [62] for the more general case:

26

(i) The sequences {un} and {wn} both have period length ρ = lcm(ρ1, . . . , ρJ) (the

least common multiple of the period lengths of the components).

(ii) The wn obey the recurrence:

xn = (a1xn−1 + · · ·+ akxn−k) mod m; wn = xn/m, (14)

where the ai can be computed by a formula given in [62] and do not depend on

the δj.

(iii) One has un = wn + εn, with ∆− ≤ εn ≤ ∆+, where ∆− and ∆+ can be computed

as explained in [62] and are generally extremely small when the mj are close to

each other.

The combinations (12) and (13) can then be viewed as efficient ways to implement

an MRG with very large modulus m. A structural analysis of the combination can be

done by analyzing this MRG (e.g., its lattice structure, etc.). The MRG components

can be chosen with only two nonzero coefficients aij, both satisfying condition (5), for

ease of implementation, and the recurrence of the combination (14) can still have all

of its coefficients nonzero and large. If each mj is an odd prime and each MRG has

maximal period length ρj = m
kj

j −1, each ρj is even, so ρ ≤ (mk1
1 −1) · · · (mkJ

J −1)/2J−1

and this upper bound is attained if the (m
kj

j − 1)/2 are pairwise relatively prime [62].

The combination (13) generalizes an idea of Wichmann and Hill [115], while (12) is

a generalization of the combination method proposed by L’Ecuyer [57]. The latter

combination somewhat scrambles the lattice structure because of the added “noise” εn.

Example 7 L’Ecuyer [62] proposes the following parameters and gives a computer code

in the C language that implements (12). Take J = 2 components, δ1 = −δ2 = 1,

m1 = 231−1, m2 = 231−2000169, k1 = k2 = 3, (a1,1, a1,2, a1,3) = (0, 63308,−183326), and
(a2,1, a2,2, a2,3) = (86098, 0,−539608). Each component has period length ρj = m3

j − 1,

and the combination has period length ρ = ρ1ρ2/2 ≈ 2185. The MRG (14) that corre-

sponds to the combination is called G9 in Table 2, where distances between hyperplanes

for the associated lattice are given. Generator G9 requires 4 modular products at each

step of the recurrence, so it is slower than G8 but faster than G7. The combined MLCG

originally proposed by L’Ecuyer [57] also has an approximating LCG called G10 in the

table. Note that this combined generator was originally constructed on the basis of the

lattice structure of the components only, without examining the lattice structure of the

combination. Slightly better combinations of the same size have been constructed since

this original proposal [72, 70].

27

3.7 Matrix LCGs and MRGs

A natural way to generalize LCGs and MRGs is to consider linear recurrences for vectors,

with matrix coefficients:

Xn = (A1Xn−1 + · · ·+ AkXn−k) mod m (15)

where A1, . . . , Ak are L×L matrices and each Xn is a L-dimensional vector of elements

of ZZm, which we denote:

Xn =







xn,1
...

xn,L





 .

At each step, one can use each component of Xn to produce a uniform variate: unL+j−1 =

xn,j/m. Niederreiter [95] introduced this generalization and calls it the multiple recursive

matrix method for the generation of vectors. The recurrence (15) can also be written as

a matrix LCG of the form Xn = AXn−1 mod m, where

A =











0 I . . . 0
...

...
. . .

...
0 0 . . . I
Ak Ak−1 . . . A1











and Xn =













Xn

Xn+1
...

Xn+k−1













(16)

are a matrix of dimension kL × kL and a vector of dimension kL, respectively (here I

is the L × L identity matrix). This matrix notation applies to the MRG as well, with

L = 1.

Is the matrix LCG more general than the MRG? Not much. If a k-dimensional

vector Xn follows the recurrence Xn = AXn−1 mod m, where the k × k matrix A has a

primitive characteristic polynomial P (z) = zk − a1z
k−1 − · · · − ak, then Xn also follows

the recurrence

Xn = (a1Xn−1 + . . .+ akXn−k) mod m (17)

(see [44, 58, 91]). So, each component of the vector Xn evolves according to (2). In other

words, one simply has k copies of the same MRG sequence in parallel, usually with some

shifting between those copies. This also applies to the matrix MRG (15), since it can

be written as a matrix LCG of dimension kL, and therefore corresponds to kL copies of

the same MRG of order kL (and maximal period length mkL − 1). The difference with

the single MRG (2) is that instead of taking successive values from a single sequence,

one takes values from different copies of the same sequence, in a round-robin fashion.

Observe also that when using (17), the dimension of Xn in this recurrence (i.e., the

number of parallel copies) does not need to be equal to k.

28

3.8 Linear Recurrences with Carry

Consider a generator based on the following recurrence:

xn = (a1xn−1 + · · ·+ akxn−k + cn−1) mod b, (18)

cn = (a1xn−1 + · · ·+ akxn−k + cn−1) div b, (19)

un = xn/b.

where div denotes the integer division. For each n, xn ∈ ZZb, cn ∈ ZZ, and the state at

step n is sn = (xn, . . . , xn+k−1, cn). As in [14, 16, 80], we call this a Multiply-with-Carry

(MWC) generator. The idea was suggested in [54, 83]. The recurrence looks like that of

an MRG, except that a carry cn is propagated between the steps. What is the effect of

this carry?

Assume that b is a power of two, which is very nice form the implementation view-

point. Define a0 = −1,

m =
k
∑

`=0

a`b
`,

and let a be such that ab mod m = 1 (a is the inverse of b in arithmetic modulo m).

Note that m could be either positive or negative, but we now assume m > 0 to simplify.

Consider the LCG:

zn = azn−1 mod m; wn = zn/m. (20)

There is a close correspondence between the LCG (20) and the MWC generator, assum-

ing that their initial states agree [16]. More specifically, if

wn =
∞
∑

i=1

xn+i−1b
−i (21)

holds for n = 0, then it holds for all n. As a consequence, |un − wn| ≤ 1/b for all n.

For example, if b = 232, then un and wn are the same up to 32 bits of precision!

The MWC generator can thus be viewed as just another way to implement (approxi-

mately) a LCG with huge modulus and period length. It also inherits from this LCG

an approximate lattice structure, which can be analyzed as usual.

The LCG (20) is purely periodic, so each state zn is recurrent (none is transient).

Since b is a power of two, a is a quadratic residue and so cannot be primitive mod m.

But if (m − 1)/2 is odd and 2 is primitive mod m (e.g., if (m − 1)/2 is prime), then

ρ = (m− 1)/2.

29

On the other hand, the MWC has an infinite number of states (since we imposed no

bound on cn) and most of them turn out to be transient. How can one characterize the

recurrent states? They are (essentially) the states s0 that correspond to a given z0 via

(21). Couture and L’Ecuyer [16] give necessary and sufficient conditions for a state s0

to be recurrent. In particular, if a` ≥ 0 for ` ≥ 1, then all the recurrent states satisfy

0 ≤ c < a1 + · · · + ak. In view of this inequality, we want the a` to be small, for their

sum to fit into a computer word. More specifically, one can impose a1 + · · · + ak ≤ b.

Now, b is a nice upper bound on the cn as well as on the xn.

Since b is a power of two, a is a quadratic residue and so cannot be primitive mod m.

Therefore the period length cannot reach m− 1 even if m is prime. But if (m− 1)/2 is

odd and 2 is primitive mod m (e.g., if (m− 1)/2 is prime), then (20) has period length

ρ = (m− 1)/2.

Couture and L’Ecuyer [16] show that the lattice structure of the LCG (20) satisfies

the following: In dimensions t ≤ k, the distances dt do not depend on the parameters

a1, . . . , ak, but only on b, while in dimension t = k + 1, the shortest vector in the dual

lattice to Lt is (a0, . . . , ak), so that

dt = (1 + a2
1 + · · ·+ a2

k)
−1/2. (22)

The distance dk+1 is then minimized if we put all the weight on one coefficient a`. It

is also better to put more weight on ak, to get a larger m. So, one should choose ak close

to b, with a0 + · · ·+ ak ≤ b. Marsaglia [80] proposed two specific parameter sets. They

are analyzed in [16], where a better set of parameters, in terms of the lattice structure

of the LCG is also given.

Special cases of the MWC include the add-with-carry (AWC) and subtract-with-

borrow (SWB) generators, originally proposed Marsaglia and Zaman [83] and subse-

quently analyzed in [13, 111]. For the AWC, put ar = ak = −a0 = 1 for 0 < r < k and

all other a` equal to zero. This gives the simple recurrence:

xn = (xn−r + xn−k + cn−1) mod b,

cn = I[xn−r + xn−k + cn−1 ≥ b],

where I denotes the indicator function, equal to 1 if the bracketted inequality is true

and to 0 otherwise. The SWB is similar, except that either ar or ak is −1, and the

carry cn is 0 or −1. The correspondence between AWC/SWB generators and LCGs was

established in [111].

30

Equation (22) tells us very clearly that all AWC/SWB generators have a bad lattice

structure in dimension k+1. A little more can be said when looking at the lacunary in-

dices: for I = {0, r, k}, one has d3(I) = 1/
√
3 and all vectors of the form (wn, wn+r, wn+k)

produced by the LCG (20) lie in only two planes in the three-dimensional unit cube.

Obviously, this is bad.

Perhaps one way to get around this problem is to take only k successive output

values, then skip (say) ν values, take another k successive ones, skip another ν, and so

on. Lüscher [77] has proposed such an approach, with specific values of ν for a specific

SWB generator, with theoretical justification based on chaos theory. James [52] gives a

Fortran implementation of Lüscher’s generator.

3.9 The Digital Method: LFSR, GFSR, TGFSR, Etc., and their Combina-

tion

The MRG (2), matrix MRG (15), combined MRG (12), and MWC (18–19) have res-

olution 1/m, 1/m, 1/m1, and 1/b, respectively. This could be seen as a limitation.

To improve the resolution, one can simply take several successive xn to construct each

output value un. Consider the MRG. Choose two positive integers s and L ≤ k, and

redefine

un =
L
∑

j=1

xns+j−1m
−j. (23)

Call s the step size and L the number of digits in the m-adic expansion. The state at

step n is now sn = (xns, . . . , xns+k−1). The output values un are multiples of m−L instead

of m−1. This output sequence, usually with L = s, is called a digital multistep sequence

[60, 92]. Taking s > L means that s−L values of the sequence {xn} are skipped at each

step of (23). If the MRG sequence has period ρ and if s has no common factor with ρ,

the sequence {un} also has period ρ.

Now, it is no longer necessary for m to be large. A small m with large s and L

can do as well. In particular, one can take m = 2. Then, {xn} becomes a sequence of

bits (zeros and ones) and the un are constructed by juxtaposing L successive bits from

this sequence. This is called a Linear Feedback Shift Register (LFSR) or Tausworthe

generator [60, 92, 107], although the bits of each un are often filled in reverse order

than in (23). Efficient computer code that implements the sequence (23), for the case

where the recurrence has the form xn = (xn−r + xn−k) mod 2 with s ≤ r and 2r > k,

can be found in [63, 110, 109]. For specialized jump-ahead algorithms, see [21, 63].

31

Unfortunately, such simple recurrences lead to LFSR generators with bad structural

properties (see [11, 63, 88, 109] and other references there). But combining several

recurrences of this type can give good generators.

Consider J LFSR generators, where the jth one is based on a recurrence {xj,n}
with primitive characteristic polynomial Pj(z) of degree kj (with binary coefficients),

an m-adic expansion to L digits, and a step size sj such that sj and the period length

ρj = 2kj − 1 have no common factor. Let {uj,n} be the output sequence of the jth

generator and define un as the bitwise exclusive-or (i.e., bitwise addition modulo 2) of

u1,n, . . . , uj,n. If the polynomials P1(z), . . . , PJ(z) are pairwise relatively prime (no pair

of polynomials has a common factor), then the period length ρ of the combined sequence

{un} is equal to the least common multiple of the individual periods ρ1, . . . , ρJ . These

ρj can be relatively prime, so it is possible here to have ρ =
∏J

j=1 ρj. The resulting com-

bined generator is also exactly equivalent to a LFSR generator based on a recurrence

with characteristic polynomial P (z) = P1(z) · · ·PJ(z). All of this is shown in [110],

where specific combinations with two components are also suggested. For good com-

binations with more components, see [63]. Wang and Compagner [114] also suggested

similar combinations, with much longer periods. They recommended constructing the

combination so that the polynomial P (z) has approximately half of its coefficients equal

to one. In a sense, the main justification for combined LFSR generators is the effi-

cient implementation of a generator based on a (reducible) polynomial P (z) with many

nonzero coefficients.

The digital method can be applied to the matrix MRG (15) or to the parallel MRG

(17) as follows: Construct the output un by a digital expansion of the components of

Xn (assumed to have dimension L):

un =
L
∑

j=1

xn,jm
−j. (24)

The combination of (15) with (24) gives the multiple recursive matrix method of Nieder-

reiter [93]. For the matrix LCG, L’Ecuyer [60] shows that if the shifts between the

successive L copies of the sequence are all equal to some integer d having no common

factor with the period length ρ = mk − 1, then the sequence (24) is exactly the same

as the digital multistep sequence (23) with s equal to the inverse of d modulo m. The

converse also holds. In other words, (23) and (24), with these conditions on the shifts,

are basically two different implementations of the same generator. So, one can be ana-

lyzed by analyzing the other, and vice-versa. If one uses the implementation (24), then

one must be careful with the initialization of X0, . . . , Xk−1 in (17) to maintain the cor-

respondence: the shift between the states (x0,j, . . . , xk−1,j) and (x0,j+1, . . . , xk−1,j+1) in

the MRG sequence must be equal to the proper value d for all j.

32

The implementation (24) requires more memory than (23), but may give a faster

generator. An important instance of this is the so-called Generalized Feedback Shift

Register (GFSR) generator ([39, 76, 112]) which we now describe. Take m = 2 and L

equal to the computer’s word length. The recurrence (17) can then be computed by a

bitwise exclusive-or of the Xn−j for which aj = 1. In particular, if the MRG recurrence

has only two nonzero coefficients, say ak and ar, we obtain

Xn = Xn−r ⊕Xn−k,

where ⊕ denotes the bitwise exclusive-or. The output is then constructed via the binary

fractional expansion (24). This GFSR can be viewed as a different way to implement a

LFSR generator, provided that it is initialized accordingly, and the structural proper-

ties of the GFSR can then be analyzed by analyzing those of the corresponding LFSR

generator [40, 60].

For the recurrence (17), we need to memorize kL integers in ZZm. With this memory

size, one should expect a period length close to mkL, but the actual period length cannot

exceed mk−1. A big waste! Observe that (17) is a special case of (15), with Ai = aiI. An

interesting idea is to “twist” the recurrence (17) slightly so that each aiI is replaced by

a matrix Ai such that the corresponding recurrence (15) has full period length mkL − 1

while its implementation remains essentially as fast as (17). Matsumoto and Kurita

[86, 87] proposed a specific way to do this for GFSR generators and called the resulting

generators twisted GFSR (TGFSR). Their second paper (as well as [109]) points out

some defects in the generators proposed in their first paper, proposes better specific

generators, and gives a nice computer code in C. Investigations are currently made to

find other twists with good properties. The multiple recursive matrix method of [93] is

a generalization of this.

3.10 Equidistribution Properties for the Digital Method

Suppose that we partition the unit hypercube [0, 1)t into mt` cubic cells of equal size.

This is called a (t, `)-equidissection in base m. A set of points is said to be (t, `)-

equidistributed if each cell contains the same number of points. If the set contains mk

points, the (t, `)-equidistribution is possible only for ` ≤ bk/tc. For a given digital

multistep sequence, let

Tt = {un = (un, . . . , un+t−1) | n ≥ 0, (x0, . . . , xk−1) ∈ ZZk
m} (25)

and `t = min(L, bk/tc). If the set Tt is (t, `t)-equidistributed for all t ≤ k, we call it a

maximally equidistributed (ME) set and say that the generator is ME. If it has the addi-

tional property that for all t, for `t < ` ≤ L, no cell of the (t, `)-equidissection contains

33

more than one point, then we also call it collision-free (CF). ME-CF generators have

their sets of points Tt very evenly distributed in the unit hypercube, in all dimensions t.

Full-period LFSR generators are all (bk/sc, s)-equidistributed. Full period GFSR

generators are all (k, 1)-equidistributed, but their (k, `)-equidistribution for ` > 1

depends on the initial state (i.e., on the shifts between the different copies of the

MRG). Fushimi and Tezuka [41] give a necessary and sufficient condition on this initial

state for (t, L)-equidistribution, for t = bk/Lc. The condition says that the tL bits

(x0,1, . . . , x0,L, . . . , xt−1,1, . . . , xt−1,L) must be independent, in the sense that the tL × k

matrix which expresses them as a linear transformation of (x0,1, . . . , xk−1,1) has (full)

rank tL. Fushimi [40] gives an initialization procedure satisfying this condition.

Couture, L’Ecuyer, and Tezuka [17] show how the (t, `)-equidistribution of simple and

combined LFSR generators can be analyzed via the lattice structure of an equivalent

LCG in a space of formal series. A different (simpler) approach is taken in [63]: check if

the matrix that expresses the first ` bits of un as a linear transformation of (x0, . . . , xk−1)

has full rank. This is a necessary and sufficient condition for (t, `)-equidistribution.

An ME LFSR generator based on the recurrence xn = (xn−607 +xn−273) mod 2, with

s = 512 and L = 23, is given in [112]. But as stated previously, only two nonzero

coefficients for the recurrence is much too few. L’Ecuyer [63] gives the results of a

computer search for ME and ME-CF combined LFSR generators with J components, as

described in the previous subsection, for J = 2, 3, 4. Each search was made within a class

with each component j based on a characteristic trinomial Pj(z) = zkj−zrj−1, with L =

32, step size sj such that sj ≤ rj and 2rj > kj, and period length ρ = (2k1−1) · · · (2kJ−1).
The searches were for “good” parameters rj and sj. We summarize here a few examples

of search results. For more details, as well as a specific implementation in the C language,

see [63].

Example 8 (a) For J = 2, k1 = 31, and k2 = 29, there are 2565 parameter sets

that satisfy the above conditions. None of these combinations is ME. Specific

combinations which are nearly ME, within this same class, can be found in [110].

(b) Let J = 3, k1 = 31, k2 = 29, and k3 = 28. In an exhaustive search among 82080

possibilities satisfying our conditions within this class, 19 ME combinations were

found, and 3 of them are also CF.

(c) Let J = 4, k1 = 31, k2 = 29, k3 = 28, and k4 = 25. Here, in an exhaustive search

among 3283200 possibilities, we found 26195 ME combinations, and 4744 of them

also CF.

34

These results illustrate the fact that ME combinations are much easier to find as

J increases. This appears to be because there are more possibilities to “fill up” the

coefficients of P (z) when it is the product of more trinomials. Since GFSR generators

can be viewed as a way to implement fast LFSR generators, these search methods and

results can be used as well to find good combined GFSRs, where the combination is

defined by a bitwise exclusive-or as in the LFSR case.

One may strenghten the notion of (t, `)-equidistribution as follows: instead of looking

only at equidissections comprised of cubic volume elements of identical sizes, look at more

general partitions. Such a stronger notion is that of a (q, k, t)-net in base m, where there

should be the same number of points in each box for any partition of the unit hypercube

into rectangular boxes of equal volume mq−k, with the length of each side of each box

equal to a multiple of 1/m. Niederreiter [92] defines a figure of merit r(t) such that for

t > bk/Lc, the mk points of Tt for (23) form a (q, k, t)-net in base m with q = k − r(t).

A problem with r(t) is the difficulty to compute it for medium and large t (say, t > 8).

4 NONLINEAR METHODS

An obvious way to remove the linear (and perhaps too regular) structure is to use a

nonlinear transformation. There are basically two classes of approaches:

(a) Keep the transition function T nonlinear, but use a nonlinear transformation G to

produce the output;

(b) Use a nonlinear transition function T .

Several types of nonlinear generators have been proposed over the last decade or so,

and an impressive volume of theoretical results have been obtained for them. See, for

example, [29, 32, 55, 71, 92, 94] and other references given there. Here, we give a brief

overview of this rapidly developing area.

Nonlinear generators avoid lattice structures. Typically, no t-dimensional hyperplane

contains more than t overlapping t-tuples of successive values. More importantly, their

output behaves much like “truly” random numbers, even over the entire period, with

respect to discrepancy. Roughly, they have lower and upper bounds on their discrepancy

(or in some cases on the average discrepancy over a certain set of parameters) whose

asymptotic order (as the period length increases to infinity) is the same as that of an i.i.d.

U(0, 1) sequence of random variables. They have also succeeded quite well in empirical

tests performed so far [45]. Fast implementations with specific well-tested parameters are

still under development, although several generic implementations are already available

[45, 65].

35

4.1 Inversive Congruential Generators

To construct a nonlinear generator with long period, a first idea is simply to add a

nonlinear twist to the output of a known generator. For example, take a full-period

MRG with prime modulus m and replace the output function un = xn/m by

zn = (x̃n+1x̃
−1
n) mod m and un = zn/m, (26)

where x̃i denotes the ith nonzero value in the sequence {xn}, and x̃−1
n is the inverse of

x̃n modulo m. (The zero values are skipped because they have no inverse.) For xn 6= 0,

its inverse x−1
n can be computed by the formula x−1

n = xm−2
n mod m, in time O(logm).

The sequence {zn} has period mk−1, under conditions given in [29, 92]. This class of

generators was introduced and first studied in [26, 25, 28]. For k = 2, (26) is equivalent

to the recurrence

zn =

{

(a1 + a2z
−1
n−1) mod m if zn−1 6= 0;

a1 if zn−1 = 0,
(27)

where a1 and a2 are the MRG coefficients.

A more direct approach is the explicit inversive congruential method of [30], defined

as follows. Let xn = an + c for n ≥ 0, where a 6= 0 and c are in ZZm and m is prime.

Define

zn = x−1
n = (an+ c)m−2 mod m and un = zn/m. (28)

This sequence has period ρ = m. According to [32], this family of generators seems to en-

joy the most favorable properties among the currently proposed inversive and quadratic

families. As a simple illustrative example, take m = 231 − 1 and a = c = 1. (However,

at the moment, we are not in a position to recommend these particular parameters nor

any other specific ones.)

Inversive congruential generators with power-of-two moduli have also been studied

[28, 29, 33]. However, they have have more regular structures than those based on prime

moduli [29, 32]. Their low-order bits have the same short period lengths as for the LCGs.

The idea of combined generators, already discussed in the linear case, also applies

to nonlinear generators and offers some computational advantages. Huber [48] and

Eichenauer-Herrmann [31] introduced and analyzed the following method. Take J in-

versive generators as in (27), with distinct prime moduli m1, . . . ,mJ , all larger than 4,

and full period length ρj = mj. For each generator j, let zj,n be the state at step n and

let uj,n = zj,n/mj. The output at step n is defined by the following combination:

un = (u1,n + . . .+ uJ,n) mod 1.

36

The sequence {un} turns out to be equivalent to the output of an inversive generator

(27) with modulus m = m1 · · ·mJ and period length ρ = m. Conceptually, this is

pretty similar to the combined LCGs and MRGs discussed previously, and provides a

convenient way to implement an inversive generator with large modulus m. Eichenauer-

Herrmann [31] shows that this type of generator has favorable asymptotic discrepancy

properties, much like (26–28).

4.2 Quadratic Congruential Generators

Suppose that the transformation T is quadratic instead of linear. Consider the recur-

rence:

xn = (ax2
n−1 + bxn−1 + c) mod m,

where a, b, c ∈ ZZm and xn ∈ ZZm for each n. This is studied in [53, 27, 35, 92]. If

m is a power of two, this generator has full period (ρ = m) if and only if a is even,

(b − a) mod 4 = 1, and c is odd. Its t-dimensional points turn out to lie on a union of

grids. Also, the discrepancy tends to be too large. Our usual caveat against power-of-two

moduli applies again.

4.3 The BBS and Other Cryptographic Generators

The BBS generator, explained in Section 2, is conjectured to be polynomial-time perfect.

This means that for a large enough size k, a BBS generator with properly (randomly)

chosen parameters is practically certain to behave very well from the statistical point

of view. However, it is not clear how large k must be and how K can be chosen in

practice for the generator to be really safe. The speed of the generator slows down with

k, since at each step we must square a 2k-bit integer modulo another 2k-bit integer. An

implementation based on fast modular multiplication is proposed by Moreau [89].

Other classes of generators, conjectured to be polynomial-time perfect, have been

proposed. From empirical experiments, they have appeared no better than the BBS.

See [55, 71, 5] for overviews and discussions.

An interesting idea, pursued for instance in [1], is to combine a slow but crypto-

graphically strong generator with a fast (but unsecure) one. The slow generator is used

sparingly, mostly in a preprocessing step. The result is an interesting compromise be-

tween speed, size, and security. In [1], it is also suggested to use a block cipher encryption

algorithm for the slow generator. These authors actually use triple-DES (three passes

over the well-known data encryption standard algorithm, with three different keys),

37

combined with a linear hashing function defined by a matrix. The keys and the hashing

matrix must be (truly) random. Their fast generator is implemented with a 6-regular

expander graph (see their paper for more details).

5 EMPIRICAL STATISTICAL TESTING

Statistical testing of random number generators is indeed a very empirical and heuristic

activity. The main idea is to seek situations where the behavior of some function of the

generator’s output is significantly different than the “normal” or “expected” behavior of

the same function applied to a sequence of i.i.d. uniform random variables.

Example 9 As a simple illustration, suppose one generates n random numbers from a

generator whose output is supposed to imitate i.i.d. U(0, 1) random variables. Let T be

the number of values which turn out to be below 1/2, among those n. For large n, T

should normally be not too far from n/2. In fact, one should expect T to behave like a

binomial random variable with parameters (n, 1/2). So, if one repeats this experiment

several times (e.g., generating N values of T), the distribution of the values of T obtained

should resemble that of the binomial distribution (and the normal distribution with mean

n/2 and standard deviation
√
n/2 for large n). If N = 100 and n = 10000, then the

mean and standard deviation are 5000 and 50, respectively. With these parameters, if

one observes for instance that 12 values of T are less than 4800, or that 98 values of T

out of 100 are less than 5000, then one would readily conclude that something is wrong

with the generator. On the other hand, if the values of T behave as expected, one may

conclude that the generator seems to reproduce the correct behavior for this particular

statistic T (and for this particular sample size). But nothing prevents other statistics

than this T to behave wrongly.

5.1 A General Setup with Two-Level Testing

Define the null hypothesis H0 as: “The generator’s output is a sequence of i.i.d. U(0, 1)

random variables”. Formally, this hypothesis is false, since the sequence is periodic and

usually deterministic (except parhaps for the seed). But if this cannot be detected by

reasonable statistical tests, one may assume that H0 holds anyway. In fact, what really

counts in the end is that the statistics of interest in a given simulation have (sample)

distributions close enough to their theoretical ones.

A statistical test for H0 can be defined by any function T of a finite number of U(0, 1)

random variables, for which the distribution under H0 is known of can be approximated

38

well enough. The random variable T is called a statistic. The statistical test tries to

find empirical evidence against H0.

When applying statistical tests to random number generators, one usually obtains

(say) N “independent” copies of T , denoted T1, . . . , TN , and computes their empiri-

cal distribution F̂N . This empirical distribution is then compared to the theoretical

distribution of T under H0, say F , via a standard goodness-of-fit test, such as the

Kolmogorov-Smirnov (KS) test [53, 104]. This procedure is sometimes called a two-level

test [60].

One version of the KS goodness-of-fit test uses the statistic

DN = sup
−∞<x<∞

|F̂N(x)− F (x)|,

for which an approximation of the distribution under H0 is available, assuming that the

distribution F is continuous [104]. Once the value dN of the statistic DN is known, one

can compute the significance level of the test, defined as

δ2 = P [DN > dN | H0]. (29)

Under H0, δ2 is a U(0, 1) random variable. When δ2 is too close to 0 or 1 (e.g., δ2 < .001

or δ2 > 0.999) this provides evidence against H0. When the conclusion is not obvious

(e.g., if δ2 = .01), the entire procedure can be repeated with other disjoint segments of

the sequence. If small values of δ2 are obtained consistently, H0 is rejected. If δ2 is not

too small, this improves confidence in the generator, but never proves that it will always

behave correctly. It may well be that the next test T to be designed will be the one that

catches the generator. But generally speaking, the more extensive and varied is the set

of tests that a given generator has passed, the more faith we have in the generator. For

still better confidence, it is always a good idea to run important simulations twice (or

more), using random number generators of totally different types.

5.2 Available Batteries of Tests

The statistical tests described by Knuth [53] have long been considered the “standard”

tests for random number generators. A Fortran implementation of (roughly) this set of

tests is given in the package TESTRAND [23]. A newer battery of tests is DIEHARD,

designed by Marsaglia [79, 81]. It contains more stringent tests than those in [53], in the

sense that more generators tend to fail some of the tests. References to other statistical

tests can be found in [59, 60, 68, 67, 65, 105].

39

Simply testing uniformity, or pair correlations, is far from enough. Good tests are

designed to catch higher-order correlation properties or geometric patterns of the suc-

cessive numbers. Such pattern can easily show up in certain classes of applications

[36, 45, 68].

Which are the best tests? No one can really answer this question. If the generator

is to be used to estimate the expectation of some random variable T by generating

replicates of T , then the best test would be the one based on T as a statistic. But this

is impractical, since if one knew the distribution of T , one would not use simulation to

estimate its mean. Ideally, a good test for this kind of application should be based on

a statistic T ′ whose distribution is known and resembles that of T . But such a test is

rarely easily available. Moreover, only the user can apply it. When designing a general

purpose generator, one has no idea of what kind of random variable interests the user.

So, the best the designer can do (after the generator has been properly designed) is to

apply a wide variety of tests that tend to detect defects of different natures.

Experience from years of empirical testing with different kinds of tests and different

generator families provides certain guidelines [45, 59, 68, 67, 64, 81, 73], Some of these

guidelines are summarized in the following remarks.

1. Generators with period length less than 232 (say) can now be considered as “baby

toys” and should not be used in general software packages. In particular, all LCGs

of that size fail spectacularly (e.g., with δ2 < 10−10) several tests that run in a

reasonably short time.

2. LCGs with power-of-two moduli are easier to crack than those with prime moduli,

especially if we look at lower-order bits.

3. LFSRs and GFSRs based on primitive trinomials, or lagged-Fibonacci and AWC/SWB

generators, whose structure is too simple in moderately large dimension, also fail

some tests.

4. Combined generators with long period lengths and good structural properties do

well in the tests. When a large fraction of the period length is used, nonlinear

inversive generators with prime modulus seen to do better than the linear ones.

5. In general, generators with good theoretical figures of merit (e.g., good lattice

structure or good equidistribution over the entire period, when only a small frac-

tion of the period is used) behave better in the tests. As a rough general rule,

generators based on more complicated recurrences (e.g., combined generators) and

good theoretical properties perform better and should be recommended.

40

6 PRACTICAL RANDOM NUMBER PACKAGES

6.1 Recommended Implementations

As said previously, no random number generator can be guaranteed against all possible

defects. However, there exists generators with fairly good theoretical support, that

have been extensively tested, and for which computer codes are available. We now

give references to such implementations. Some of them were already mentioned in the

previous sections. We do not reproduce the computer codes here, but the user can easily

find them from the references. More references and pointers can be found from the page

http://random.mat.sbg.ac.at on the world wide web.

Computer codes that this author can suggest for the moment include those of the

MRG in [66], the combined MRG in [62], the combined Tausworthe generator in [63],

the twisted GFSR in [87], and perhaps the RANLUX code in [52].

6.2 Multi-Generator Packages with Jump-Ahead Facilities

Good simulation languages usually offer many (virtual) random number generators,

often numbered 1, 2, 3, In most cases, this is the same generator, but starting with

different seeds, widely spaced in the sequence. L’Ecuyer and Côté [69] have constructed

a package with 32 generators (which can be easily extended to 1024). Each generator is

in fact based on the same recurrence (a combined LCG of period length near 261), with

seeds spaced 250 values apart. Moreover, each subsequence of 250 values is further split

into 220 segments of length 230. A simple procedure call permits one to have any of the

generators jump ahead to the beginning of its next segment, or its current segment, or

to the beginning of its first segment. The user can also set the initial seed of the first

generator to any admissible value (a pair of positive integers) and all other initial seeds

are automatically recalculated so that they remain 250 values apart. This is implemented

with efficient jump-ahead tools. A boolean switch can also make any generator produce

antithetic variates if desired.

To illustrate the utility of such a package, suppose simulation is used to compare two

similar systems using common random numbers, with n simulation runs for each system.

To ensure proper synchronization, one would typically assign different generators to

different streams of random numbers required by the simulation (e.g., in a queueing

network, one stream for the interarrival times, one stream for the service times at each

node, one stream for routing decisions, etc.), and make sure that for each run, each

generator starts at the same seed and produces the same sequence of numbers for the

41

two systems. Without appropriate tools, this may require tricky programming, because

the two systems do not necessarily use the same number of random numbers in a given

run. But with the package in [69], one simply assign each run to a segment number.

With the first system, simulate run 1 with the initial seed, and before each new run,

advance each generator to the beginning of the next segment. After the nth run, reset

the generators to their initial seeds and do the same for the second system.

The number and length of segments in the package of [69] are now deemed too small

for current and future needs. But other similar packages, based on generators with

much larger period lengths, are now under development. In some of those packages,

generators can be seen as “objects” which can be created by the user as needed, in

practically unlimited number.

When a generator’s sequence is cut into subsequences spaced, say, ν values apart

like we just described, to provide for multiple generators running in parallel, one must

analyze and test the vectors of non-successive output values (with lacunary indices;

see section 3.5) spaced ν values apart. For LCGs and MRGs, for example, the lattice

structure can be analyzed with such lacunary indices. See [70] for more details and

numerical examples.

6.3 Generators for Parallel Computers

Another situation where multiple random number generators are needed is for simula-

tion on parallel processors. The same approach can be taken: partition the sequence

of a single random number generator with very long period into disjoint subsequences.

Then use a different subsequence on each processor. So, the same packages that provide

multiple generators for sequential computers can be used to provide generators for par-

allel processors. Other approaches, such as using completely different generators on the

different processors, or using the same type of generator with different parameters (e.g.,

changing the additive term or the multiplier in a LCG), have been proposed but appear

much less convenient and sometimes dangerous [58, 60]. For different ideas and surveys

on parallel generators, the reader can consult [2, 9, 21, 85, 98].

ACKNOWLEDGMENTS

This work has been supported by NSERC-Canada grant # OGP0110050 and FCAR-

Québec grant # 93-ER-1654. Thanks to Jerry Banks, Raymond Couture, Hans Leeb,

and Thierry Moreau for their helpful comments.

42

REFERENCES

1. W. Aiello, S. Rajagopalan, and R. Venkatesan, Design of prac-

tical and provably good random number generators. Manuscript (contact

venkie@bellcore.com), 1996.

2. S. L. Anderson, Random number generators on vector supercomputers and other

advanced architecture, SIAM Review, 32 (1990), pp. 221–251.

3. A. C. Atkinson, Tests of pseudo-random numbers, Applied Statistics, 29 (1980),

pp. 164–171.

4. L. Blum, M. Blum, and M. Schub, A simple unpredictable pseudo-random num-

ber generator, SIAM Journal on Computing, 15 (1986), pp. 364–383. Preliminary

version published in Proceedings of CRYPTO’82, 61–78.

5. M. Boucher, La génération pseudo-aléatoire cryptographiquement sécuritaire et

ses considérations pratiques, Master’s thesis, Département d’I.R.O., Université de

Montréal, 1994.

6. G. Brassard, Modern Cryptology - A Tutorial, vol. 325 of Lecture Notes in Com-

puter Science, Springer Verlag, 1988.

7. P. Bratley, B. L. Fox, and L. E. Schrage, A Guide to Simulation, Springer-

Verlag, New York, second ed., 1987.

8. M. Brown and H. Solomon, On combining pseudorandom number generators,

Annals of Statistics, 1 (1979), pp. 691–695.

9. J. Chen and P. Whitlock, Implementation of a distributed pseudorandom num-

ber generator, in Monte Carlo and Quasi-Monte Carlo Methods in Scientific Com-

puting, H. Niederreiter and P. J.-S. Shiue, eds., no. 106 in Lecture Notes in Statistics,

Springer-Verlag, 1995, pp. 168–185.

10. B. J. Collings, Compound random number generators, Journal of the American

Statistical Association, 82 (1987), pp. 525–527.

11. A. Compagner, The hierarchy of correlations in random binary sequences, Journal

of Statistical Physics, 63 (1991), pp. 883–896.

12. , Operational conditions for random number generation, Physical Review E, 52

(1995), pp. 5634–5645.

13. R. Couture and P. L’Ecuyer, On the lattice structure of certain linear congru-

ential sequences related to AWC/SWB generators, Mathematics of Computation, 62

(1994), pp. 798–808.

14. , Linear recurrences with carry as random number generators, in Proceedings

of the 1995 Winter Simulation Conference, 1995, pp. 263–267.

15. , Computation of a shortest vector and Minkowski-reduced bases in a lattice. In

preparation, 1996.

43

16. , Distribution properties of multiply-with-carry random number generators,

Mathematics of Computation, (1997). To appear.

17. R. Couture, P. L’Ecuyer, and S. Tezuka, On the distribution of k-

dimensional vectors for simple and combined Tausworthe sequences, Mathematics

of Computation, 60 (1993), pp. 749–761, S11–S16.

18. R. R. Coveyou and R. D. MacPherson, Fourier analysis of uniform random

number generators, Journal of the ACM, 14 (1967), pp. 100–119.

19. A. De Matteis and S. Pagnutti, Parallelization of random number generators

and long-range correlations, Numerische Mathematik, 53 (1988), pp. 595–608.

20. , A class of parallel random number generators, Parallel Computing, 13 (1990),

pp. 193–198.

21. I. Deák, Uniform random number generators for parallel computers, Parallel Com-

puting, 15 (1990), pp. 155–164.

22. U. Dieter, How to calculate shortest vectors in a lattice, Mathematics of Compu-

tation, 29 (1975), pp. 827–833.

23. E. J. Dudewicz and T. G. Ralley, The Handbook of Random Number Gen-

eration and Testing with TESTRAND Computer Code, American Sciences Press,

Columbus, Ohio, 1981.

24. M. J. Durst, Using linear congruential generators for parallel random number

generation, in Proceedings of the 1989 Winter Simulation Conference, IEEE Press,

1989, pp. 462–466.

25. J. Eichenauer, H. Grothe, J. Lehn, and A. Topuzǒglu, A multiple recursive

nonlinear congruential pseudorandom number generator, Manuscripta Mathematica,

59 (1987), pp. 331–346.

26. J. Eichenauer and J. Lehn, A nonlinear congruential pseudorandom number

generator, Statistische Hefte, 27 (1986), pp. 315–326.

27. , On the structure of quadratic congruential sequences, Manuscripta Mathemat-

ica, 58 (1987), pp. 129–140.

28. J. Eichenauer, J. Lehn, and A. Topuzǒglu, A nonlinear congruential pseudo-

random number generator with power of two modulus, Mathematics of Computation,

51 (1988), pp. 757–759.

29. J. Eichenauer-Herrmann, Inversive congruential pseudorandom numbers: A tu-

torial, International Statistical Reviews, 60 (1992), pp. 167–176.

30. , Statistical independence of a new class of inversive congruential pseudorandom

numbers, Mathematics of Computation, 60 (1993), pp. 375–384.

31. , On generalized inversive congruential pseudorandom numbers, Mathematics of

Computation, 63 (1994), pp. 293–299.

44

32. , Pseudorandom number generation by nonlinear methods, International Statis-

tical Reviews, 63 (1995), pp. 247–255.

33. J. Eichenauer-Herrmann and H. Grothe, A new inversive congruential pseu-

dorandom number generator with power of two modulus, ACM Transactions on Mod-

eling and Computer Simulation, 2 (1992), pp. 1–11.

34. J. Eichenauer-Herrmann, H. Grothe, and J. Lehn, On the period length

of pseudorandom vector sequences generated by matrix generators, Mathematics of

Computation, 52 (1989), pp. 145–148.

35. J. Eichenauer-Herrmann and H. Niederreiter, An improved upper bound for

the discrepancy of quadratic congruential pseudorandom numbers, Acta Arithmetica,

LXIX.2 (1995), pp. 193–198.

36. A. M. Ferrenberg, D. P. Landau, and Y. J. Wong, Monte Carlo simulations:

Hidden errors from “good” random number generators, Physical Review Letters, 69

(1992), pp. 3382–3384.

37. U. Fincke and M. Pohst, Improved methods for calculating vectors of short

length in a lattice, including a complexity analysis, Mathematics of Computation,

44 (1985), pp. 463–471.

38. G. S. Fishman and L. S. Moore III, An exhaustive analysis of multiplicative

congruential random number generators with modulus 231 − 1, SIAM Journal on

Scientific and Statistical Computing, 7 (1986), pp. 24–45.

39. M. Fushimi, Increasing the orders of equidistribution of the leading bits of the Taus-

worthe sequence., Information Processing Letters, 16 (1983), pp. 189–192.

40. , An equivalence relation between Tausworthe and GFSR sequences and appli-

cations, Applied Mathematics Letters, 2 (1989), pp. 135–137.

41. M. Fushimi and S. Tezuka, The k-distribution of generalized feedback shift regis-

ter pseudorandom numbers, Communications of the ACM, 26 (1983), pp. 516–523.

42. I. J. Good, Probability and the Weighting of Evidence, Griffin, London, 1950.

43. , How random are random numbers ?, The American Statistician, (1969),

pp. 42–45.

44. H. Grothe, Matrix generators for pseudo-random vectors generation, Statistische

Hefte, 28 (1987), pp. 233–238.

45. P. Hellekalek, Inversive pseudorandom number generators: Concepts, results,

and links, in Proceedings of the 1995 Winter Simulation Conference, C. Alexopoulos,

K. Kang, W. R. Lilegdon, and D. Goldsman, eds., IEEE Press, 1995, pp. 255–262.

46. D. C. Hoaglin and M. L. King, A remark on algorithm AS 98: The spectral test

for the evaluation of congruential pseudo-random generators, Applied Statistics, 27

(1978), pp. 375–377.

45

47. W. Hörmann and G. Derflinger, A portable random number generator well

suited for the rejection method, ACM Transactions on Mathematical Software, 19

(1993), pp. 489–495.

48. K. Huber, On the period length of generalized inversive pseudorandom number

generators, Applied Algebra in Engineering, Communications, and Computing, 5

(1994), pp. 255–260.

49. T. E. Hull, Random number generators, SIAM Review, 4 (1962), pp. 230–254.

50. I. IMSL, IMSL Library Users’s Manual, Vol.3, IMSL, Houston, Texas, 1987.

51. F. James, A review of pseudorandom number generators, Computer Physics Com-

munications, 60 (1990), pp. 329–344.

52. , RANLUX: A Fortran implementation of the high-quality pseudorandom num-

ber generator of Lüscher’s, Computer Physics Communications, 79 (1994), pp. 111–

114.

53. D. E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Al-

gorithms, Addison-Wesley, Reading, Mass., second ed., 1981.

54. C. Koç, Recurring-with-carry sequences, Journal of Applied Probability, 32 (1995),

pp. 966–971.

55. J. C. Lagarias, Pseudorandom numbers, Statistical Science, 8 (1993), pp. 31–39.

56. A. M. Law and W. D. Kelton, Simulation Modeling and Analysis, McGraw-Hill,

New York, second ed., 1991.

57. P. L’Ecuyer, Efficient and portable combined random number generators, Commu-

nications of the ACM, 31 (1988), pp. 742–749 and 774. See also the correspondance

in the same journal, 32, 8 (1989) 1019–1024.

58. , Random numbers for simulation, Communications of the ACM, 33 (1990),

pp. 85–97.

59. , Testing random number generators, in Proceedings of the 1992 Winter Simu-

lation Conference, IEEE Press, Dec 1992, pp. 305–313.

60. , Uniform random number generation, Annals of Operations Research, 53

(1994), pp. 77–120.

61. , Bad lattice structures for vectors of non-successive values produced by some

linear recurrences, ORSA Journal on Computing, (1996). To appear.

62. , Combined multiple recursive generators, Operations Research, (1996). To

appear.

63. , Maximally equidistributed combined Tausworthe generators, Mathematics of

Computation, 65 (1996), pp. 203–213.

64. , Tests based on sum-functions of spacings for uniform random numbers. In

preparation, 1996.

46

65. , TestUnif: Un logiciel pour appliquer des tests statistiques à des générateurs de

valeurs aléatoires. In preparation, 1996.

66. P. L’Ecuyer, F. Blouin, and R. Couture, A search for good multiple re-

cursive random number generators, ACM Transactions on Modeling and Computer

Simulation, 3 (1993), pp. 87–98.

67. P. L’Ecuyer, A. Compagner, and J.-F. Cordeau, Entropy-based tests for

random number generators. In preparation, 1996.

68. P. L’Ecuyer and J.-F. Cordeau, Close-neighbor tests for random number gen-

erators. In preparation, 1996.

69. P. L’Ecuyer and S. Côté, Implementing a random number package with splitting

facilities, ACM Transactions on Mathematical Software, 17 (1991), pp. 98–111.

70. P. L’Ecuyer and R. Couture, An implementation of the lattice and spectral

tests for multiple recursive linear random number generators, INFORMS Journal on

Computing, (Circa 1997). To appear.

71. P. L’Ecuyer and R. Proulx, About polynomial-time “unpredictable” generators,

in Proceedings of the 1989 Winter Simulation Conference, IEEE Press, Dec 1989,

pp. 467–476.

72. P. L’Ecuyer and S. Tezuka, Structural properties for two classes of combined

random number generators, Mathematics of Computation, 57 (1991), pp. 735–746.

73. H. Leeb and S. Wegenkittl, Inversive and linear congruential pseudorandom

number generators in selected empirical tests, ACM Transactions on Modeling and

Computer Simulation, (1996). Submitted.

74. D. H. Lehmer,Mathematical methods in large scale computing units, Annals Comp.

Laboratory Harvard University, 26 (1951), pp. 141–146.

75. P. A. W. Lewis, A. S. Goodman, and J. M. Miller, A pseudo-random number

generator for the system/360, IBM System’s Journal, 8 (1969), pp. 136–143.

76. T. G. Lewis and W. H. Payne, Generalized feedback shift register pseudorandom

number algorithm, Journal of the ACM, 20 (1973), pp. 456–468.

77. M. Lüscher, A portable high-quality random number generator for lattice field

theory simulations, Computer Physics Communications, 79 (1994), pp. 100–110.

78. N. M. MacLaren, A limit on the usable length of a pseudorandom sequence, Jour-

nal of Statistical Computing and Simulation, 42 (1992), pp. 47–54.

79. G. Marsaglia, A current view of random number generators, in in Computer

Science and Statistics, Sixteenth Symposium on the Interface, North-Holland, Am-

sterdam, 1985, Elsevier Science Publishers, pp. 3–10.

80. , Yet another rng. Posted to the electronic billboard sci.stat.math, August 1,

1994.

47

81. , Diehard: A battery of tests of randomness. Available via WWW at

http://stat.fsu.edu/∼geo/diehard.html, 1996.
82. , The Marsaglia random number CDROM. Available via WWW at

http://stat.fsu.edu/∼geo/, 1996.
83. G. Marsaglia and A. Zaman, A new class of random number generators, The

Annals of Applied Probability, 1 (1991), pp. 462–480.

84. K. Marse and S. D. Roberts, Implementing a portable FORTRAN uniform

(0,1) generator, Simulation, 41 (1983), pp. 135–139.

85. M. Mascagni, M. L. Robinson, D. V. Pryor, and S. A. Cuccaro, Par-

allel pseudorandom number generation using additive lagged-fibonacci recursions, in

Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, H. Niederre-

iter and P. J.-S. Shiue, eds., no. 106 in Lecture Notes in Statistics, Springer-Verlag,

1995, pp. 263–277.

86. M. Matsumoto and Y. Kurita, Twisted GFSR generators, ACM Transactions

on Modeling and Computer Simulation, 2 (1992), pp. 179–194.

87. , Twisted GFSR generators II, ACM Transactions on Modeling and Computer

Simulation, 4 (1994), pp. 254–266.

88. , Strong deviations from randomness in m-sequences based on trinomials, ACM

Transactions on Modeling and Computer Simulation, 6 (1996). To appear.

89. T. Moreau, A practical “perfect” pseudo-random number generator. Manuscript,

1996.

90. H. Niederreiter, The serial test for pseudorandom numbers generated by the

linear congruential method, Numerische Mathematik, 46 (1985), pp. 51–68.

91. , A pseudorandom vector generator based on finite field arithmetic, Mathematica

Japonica, 31 (1986), pp. 759–774.

92. , Random Number Generation and Quasi-Monte Carlo Methods, vol. 63 of SIAM

CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadel-

phia, 1992.

93. , The multiple-recursive matrix method for pseudorandom number generation,

Finite Fields and their Applications, 1 (1995), pp. 3–30.

94. , New developments in uniform pseudorandom number and vector generation, in

Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, H. Niederre-

iter and P. J.-S. Shiue, eds., no. 106 in Lecture Notes in Statistics, Springer-Verlag,

1995, pp. 87–120.

95. , Pseudorandom vector generation by the multiple-recursive matrix method,

Mathematics of Computation, 64 (1995), pp. 279–294.

96. S. K. Park and K. W. Miller, Random number generators: Good ones are hard

to find, Communications of the ACM, 31 (1988), pp. 1192–1201.

48

97. W. H. Payne, J. R. Rabung, and T. P. Bogyo, Coding the lehmer pseudo-

random number generator, Communications of the ACM, 12 (1969), pp. 85–86.

98. D. E. Percus and M. Kalos, Random number generators for MIMD parallel

processors, Journal of Parallel and Distributed Computation, 6 (1989), pp. 477–497.

99. W. H. Press and S. A. Teukolsky, Portable random number generators, Com-

puters in Physics, 6 (1992), pp. 522–524.

100. M. O. Rabin, Probabilistic algorithms for primality testing, J. Number Theory,

12 (1980), pp. 128–138.

101. B. D. Ripley, Stochastic Simulation, Wiley, New York, 1987.

102. , Thoughts on pseudorandom number generators, Journal of Computational

and Applied Mathematics, 31 (1990), pp. 153–163.

103. L. Schrage, A more portable fortran random number generator, ACM Transac-

tions on Mathematical Software, 5 (1979), pp. 132–138.

104. M. S. Stephens, Tests based on EDF statistics, in Goodness-of-Fit Techniques,

R. B. D’Agostino and M. S. Stephens, eds., Marcel Dekker, New York and Basel,

1986.

105. , Tests for the uniform distribution, in Goodness-of-Fit Techniques, R. B.

D’Agostino and M. S. Stephens, eds., Marcel Dekker, New York and Basel, 1986,

pp. 331–366.

106. Sun Microsystems, Numerical Computations Guide, 1991. Document number

800-5277-10.

107. R. C. Tausworthe, Random numbers generated by linear recurrence modulo two,

Mathematics of Computation, 19 (1965), pp. 201–209.

108. D. Teichroew, A history of distribution sampling prior to the era of computer

and its relevance to simulation, Journal of the American Statistical Association, 60

(1965), pp. 27–49.

109. S. Tezuka, Uniform Random Numbers: Theory and Practice, Kluwer Academic

Publishers, Norwell, Mass., 1995.

110. S. Tezuka and P. L’Ecuyer, Efficient and portable combined Tausworthe ran-

dom number generators, ACM Transactions on Modeling and Computer Simulation,

1 (1991), pp. 99–112.

111. S. Tezuka, P. L’Ecuyer, and R. Couture, On the add-with-carry and

subtract-with-borrow random number generators, ACM Transactions of Modeling

and Computer Simulation, 3 (1994), pp. 315–331.

112. J. P. R. Tootill, W. D. Robinson, and D. J. Eagle, An asymptotically

random Tausworthe sequence, Journal of the ACM, 20 (1973), pp. 469–481.

49

113. U. Vazirani and V. Vazirani, Efficient and secure pseudo-random number gen-

eration, in Proceedings of the 25th IEEE Symposium on Foundations of Computer

Science, 1984, pp. 458–463.

114. D. Wang and A. Compagner, On the use of reducible polynomials as random

number generators, Mathematics of Computation, 60 (1993), pp. 363–374.

115. B. A. Wichmann and I. D. Hill, An efficient and portable pseudo-random

number generator, Applied Statistics, 31 (1982), pp. 188–190. See also corrections

and remarks in the same journal by Wichmann and Hill, 33 (1984) 123; McLeod 34

(1985) 198–200; Zeisel 35 (1986) 89.

50

