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Abstract

We define two classes of lower bounds using either one or two simplices for the
minimization of a concave function over a polytope. For each of them, a procedure is
developed to compute the best lower bound of the class. These two lower bound pro-
cedures are embedded in a normal conical algorithm to solve the concave minimization
problem. Computational results are presented.

Keywords: Concave Minimization, Normal Conical Algorithm, Lower Bound, Global
Optimization.

Résumé

Nous définissons deux classes de bornes inférieures pour la minimisation d’une fonc-
tion concave sur un polytope. Pour chacune d’elle, nous développons un algorithme
pour le calcul de la meilleure borne possible. Ces deux procédures de calcul de bornes
sont incluses dans un algorithme d’énumération implicite utilisant des subdivisions
coniques normales. Des résultats numériques sont présentés.

Mots clés: minimisation concave, subdivisions coniques normales, borne inférieure,
optimisation globale.
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1 Introduction

We consider the following concave minimization problem:

(CP ) min{f(x) | x ∈ P}
where f is a concave function defined on IRn and P = {x ∈ IRn|Ax ≤ b} is a full dimensional
polytope. (This last assumption is not restrictive as it is easy to check whether P has a
non-empty interior and to project on a lower-dimensional space if not.)
These last years, concave minimization - and particularly concave minimization over a

polytope - has received a lot of attention (see, for example, the book of Horst and Tuy [7]
and the surveys of Benson [2], Horst [3] and Pardalos and Rosen [13]).
From a mathematical point of view, concave minimization is a difficult class of problems

which nevertheless possesses some nice properties that make it solvable in practice for
instances of moderate size. Its main difficulty is the possible existence of local minima,
that cause the standard tools developed for convex minimization to be insufficient. This
difficulty is also expressed by the fact that concave minimization is NP-hard, even for simple
case such as minimizing a concave quadratic function over a hypercube (see Kalantari and
Bagchi [10]). Fortunately, concave minimization has several other mathematical properties
that can be exploited to design algorithms for solving (CP). One of the most important
is that the minimum of a concave function over a polytope is attained at a vertex of
the polytope (see, e.g., Rockafellar [14], Horst and Tuy [7], Benson [2] for this and other
properties).
Although many methods have been proposed to solve the concave minimization prob-

lem, they are essentially based on three approaches: vertex enumeration, successive ap-
proximation and successive partitioning (branch-and-bound). This last approach can be
further subdivided depending on whether the elements of the partitions are cones, simplices
or rectangles.
In this paper, we focus on the conical partitioning approach, which is one of the winners
of the computational experiments of Horst and Thoai [5]. This approach originated in
1964 with the paper of Tuy [17] where conical subdivisions are used in conjunction with
concavity cuts (now called Tuy cuts). In 1980, Thoai and Tuy [15] proposed the first con-
ical branch-and-bound method. Their lower bounding procedure is strongly related to the
Tuy cut: if the cut does not allow the elimination of the cone, the cutting hyperplane is
translated (by means of the solution of a linear program) until it supports the portion of
the polytope contained in the cone. The lower bound is then defined as the minimum of
the function f over the set of extreme points of the simplex defined by the hyperplane and
the cone. This bound was later used by Horst, Thoai and Benson [6] for the minimization
of a concave function over a convex set.
A second lower bounding method, based on the same principle but which does not require
the solution of a linear program, is proposed in Tuy and Thai [21] (see also Tuy, Thieu and
Thai [22]). In this method, the hyperplane is a supporting hyperplane to the convex set at
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a point of the intersection of the cone with the boundary of the convex set. Unfortunately,
if some edge of the cone does not intersect the hyperplane, it is not possible to compute a
lower bound by this way.
The reader is referred to Horst and Tuy [7] and Benson [2] for more detail.
The purpose of this paper is to propose two new classes of lower bounds, to give for each

of them a procedure for the computation of the best possible bound and finally to embed
them in a conical branch-and-bound algorithm for the concave minimization. The first
class, called simplicial bound, contains the Thoai-Tuy and the Tuy-Thai lower bounds as a
special case. The second, which involves two simplices, is called double-simplicial bound.
The paper is organized as follows. Section 2, which is devoted to the two classes of lower

bounds and constitutes therefore the core of this paper, is subdivided in four paragraphs. In
Paragraph 2.1, we recall the notion of γ-extension, which is used by the two lower bound
procedures. In Paragraph 2.2, we present the simplicial lower bound. Paragraph 2.3 is
devoted to the presentation of the double-simplicial bound, assuming that an additional
cone satisfying some conditions is available. Finally in Paragraph 2.4, we explain how the
simplicial bound procedure can be used to determine such a cone. In Section 3, we embed
these lower bounds in a conical branch-and-bound algorithm and prove its convergence.
Some computational results are presented in Section 4 and conclusions are drawn in the
last section.

2 Simplicial and Double-Simplicial lower bounds

In this section, we present two lower bounds of f over K ∩P , where K is a cone originated
at an interior point O of P , with exactly n linearly independent edges.
For the first one, called simplicial bound, a hyperplane H is chosen, which defines with K
a simplex containing K ∩ P .
The second one, called double-simplicial bound, needs the introduction of an additional
cone K ′. A hyperplane H is then chosen, defining with K and K ′ two simplices, the union
of which contains K ∩ P .
For each of these bounds, we characterize the hyperplane H giving the best possible value
(i.e, largest) and present a procedure for its computation.

2.1 Definition and properties

We recall below the definition of a γ-extension, where we use a reference vector instead of
a reference feasible point as in Horst and Tuy [7].
For z ∈ IRn and u ∈ IRn fixed, consider the function γ �→ λ(z, u; γ) defined on

(−∞, f(z)]:

λ(z, u; γ) = max{λ ≥ 0 | f(z + λu) ≥ γ}. (1)

The point (possibly at infinity) z+λ(z, u; γ)u is called γ-extension of z along the direction u.
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Proposition 1 Let z and u fixed.

a) If λ(z, u; γ0) = +∞ for some γ0 < f(z), then λ(z, u; γ) = +∞ for all γ < f(z).
b) If λ(z, u; γ0) is finite for some γ0 < f(z), then the mapping γ �→ λ(z, u; γ) is concave
and strictly decreasing over (−∞, f(z)).

Proof:
It is well known that a concave function over a halfline is continuous and either
reaches its minimum at the origin, or is unbounded from below (see, e.g., Tuy [20, p.
134]).
If f reaches its minimum at the origin, there cannot exist λ ≥ 0 such that f(z+λu) <
γ for γ < f(z), thus λ(z, u; γ) = +∞ for all γ < f(z).
Assume now that f is unbounded from below. Clearly, for any γ < f(z), there exists
a λ such that f(z + λu) ≤ γ for all λ ≥ λ. Thus λ(z, u; γ) is finite for each γ < f(z).
The function γ �→ λ(z, u; γ) is concave as it is the supremum of a concave func-
tion over a convex set (see, e.g., Tuy [20, Proposition 2.6]). Finally the decreasiv-
ity is shown by contradiction: assume that there exist γ1 < γ2 < f(z) such that
λ(z, u; γ1) ≤ λ(z, u; γ2). Then γ1 = f(z + λ(z, u; γ1)u) ≥ γ2 by concavity of f , which
is a contradiction.

λu)f(z+

λ γ )(z,u;

λu)f(z+

λ γ ) =(z,u;

λλ
0

γ

0

γ

f

f

Figure 1: Possible configurations of f over a halfline

Figure 1 illustrates the two cases of Proposition 1.

2.2 Simplicial lower bound

LetH be the set of hyperplanesH defining withK a generalized simplex (i.e., with possibly
some extreme points at infinity) containing K ∩ P .
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Consider the simplicial lower bound function SLB which, to each H ∈ H, associates the
lower bound SLB(H) = min{f(O), f(z1), f(z2), . . . , f(zn)} where zi, i = 1, 2, . . . , n are
the intersection points of the edges ui of K with H.
The first bound of this class was proposed by Thoai and Tuy [15] with H being the

hyperplane supporting K ∩P and parallel to the hyperplane intersecting the edges of K at
points of value f , where f is the value of the current best feasible point of problem (CP ).
A second one, proposed by Tuy and Thai [21], takes for H a hyperplane supporting K ∩P
at a preselected point of K ∩ δP (note that this construction does not guarantee that H
belongs to H, thus one cannot always compute a lower bound by this last method).
In this section, we are interested in identifying the best possible lower bound SLB(H)

with respect to H, i.e., in solving the following optimization problem:

(SLBP ) max
H∈H

SLB(H).

We first prove the existence of a solution.

Proposition 2 There exists always a finite optimal solution for problem (SLBP ).

Proof:
First note that if an optimal solution exists, it is necessary finite. Indeed, by bound-
edness of P there exists a hyperplane H0 which together with K defines a simplex
containing K∩P and that intersects each edge of K at finite distance. By continuity
of f (which follows from the concavity), the simplicial lower bound SLB(H0), which
provides a lower bound of the optimal simplicial bound, is finite. An upper bound is
given by f(O).
When solving (SLBP ), we can always assume without loss of generality that H sup-
ports K ∩ P . Indeed, let H ′ be a supporting hyperplane of K ∩ P , parallel to H.
The generalized simplex defined with H ′ is included in that defined with H thus
SLB(H ′) ≥ SLB(H).
Any hyperplane H ∈ H which supports K ∩ P can be written under the form
H = {x | ax = b} with:

aui ≥ 0 i = 1, 2, . . . , n (2)
‖a‖ = 1 (3)
b = max{ax | x ∈ K ∩ P} (4)

where ui is the direction of the ith edge of K, i = 1, 2, . . . , n.
Constraints (2) express the fact that H intersects each direction corresponding to an
edge of K at the same side with respect to O (note that we could also consider the
other direction of the inequalities), (3) is a normalization constraint and (4) expresses
that H supports K ∩ P . Clearly, (2) and (3) define a compact set, which will be
noted by D.
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The function b : a �→ max{ax | x ∈ K ∩ P} is continuous as the supremum of
an infinite family of convex functions, and bounded from above over the unit ball.
Moreover, b(a) > 0 for all a in D. Indeed since O is an interior point of P , there
exists λ0 > 0 such that x0 = λ0(u1 + u2 + · · ·+ un) ∈ K ∩ P . Now for at least one i,
aui > 0 since the ui, i = 1, 2, . . . , n are linearly independent and a �= 0 by (3). Hence
b(a) ≥ ax0 > 0.
On the other hand, the intersection points of the edges of K with the hyperplane H
are zi = ( b(a)

aui )ui, i = 1, 2, . . . , n. Thus the objective function of problem (SLBP )
can be written:

SLB(a) = min
{
f(O), f

(
(
b(a)
au1

)u1

)
, . . . , f

(
(
b(a)
aun

)un

)}
.

Let us set f(10u
i) = lim

λ→+∞
f(λui) for all i = 1, 2, . . . , n. By continuity of f over IRn

and by continuity of the functions a �→ b(a)
aui , i = 1, 2, . . . , n over D, it follows that the

function SLB(a) is continuous over D.
Thus problem (SLBP ) can be reduced to the maximization of a continuous function
over a compact set which has always a solution using the Theorem of Weierstrass
(see, e.g., Mawhin [12, p. 137]).

We next discuss a sufficient condition for a hyperplane to lead to a best possible lower
bound.

Theorem 1 A sufficient condition for a hyperplane H ∈ H to be an optimal solution of
problem (SLBP) is

(SC)

∣∣∣∣∣∣∣∣∣∣

a) SLB(H) = f(O)
or

b) H supports K ∩ P, is parallel to any edge of K on which f
is nondecreasing and the intersection points of the remaining
edges of K with the hyperplane H have the same value.

This condition can always be satisfied.

Proof:
Let H̃ = {x ∈ IRn | ãx = 1} ∈ H be a hyperplane satisfying the condition (SC) and
let γ̃ = SLB(H̃) be the corresponding simplicial bound.
If γ̃ = f(O), H̃ is clearly optimal since O is a feasible point of K ∩ P .
Assume now that γ̃ < f(O) and let J∞ be the set of indices j such that f is non-
decreasing on the edge j: we have |J∞| < n. Assume that there exists a hyperplane
Ĥ = {x ∈ IRn | âx = 1} ∈ H which yields a simplicial lower bound γ̂ = SLB(Ĥ)
satisfying γ̂ > γ̃. We show that this leads to a contradiction.
Let z̃j (respectively ẑj) be the intersection point of the jth edge of K with H̃ (re-
spectively Ĥ) for all j �∈ J∞ (note that ẑj and z̃j are finite points, otherwise the
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corresponding simplicial bound would be −∞). By definition of γ̂, we have f(ẑj) ≥ γ̂
for all j �∈ J∞ and f(O) ≥ γ̂. Since γ̂ > γ̃ = f(z̃j) and by concavity of f , it follows
that z̃j is outside the segment [O, ẑj ] thus âz̃j > 1 for all j �∈ J∞.
On the other hand, let ω̃ be a point of H̃ ∩ (K ∩P ) (such a point exists since H̃ sup-
ports K ∩P ): ω̃ =

∑
j∈J∞

µju
j+

∑
j �∈J∞

µj z̃
j with

∑
j �∈J∞

µj = 1 and µj ≥ 0 for all j. Thus

âω̃ =
∑
j∈J∞

µj âu
j +

∑
j �∈J∞

µj âz̃
j > 1. This shows that ω̃ lies outside the generalized

simplex defined by K and Ĥ, which is a contradiction. Thus the condition (SC) is
sufficient.

Finally, let us show that the condition (SC) can always be satisfied. LetH∗ ∈ H
be an optimal solution of problem (SLBP ) and let γ∗ be its value. If H∗ satisfies
the condition (SC), we are done.
Otherwise, let J∞ be the set of indices j such that f is nondecreasing on the edge
j (note that |J∞| < n; otherwise H∗ would satisfy part a) of condition (SC)). For
j �∈ J∞, denote by zj∗ the intersection point of the jth edge of K with H∗ (note that
zj∗ is a finite point, otherwise we would have γ∗ = −∞) and by yj∗ the γ∗-extension
of O along the edge uj . By concavity of f and since f(O) > γ∗ and f(zj∗) ≥ γ∗
for j �∈ J∞, yj∗ is located at or after zj∗ on the edge. Let H∗′ be the hyperplane
parallel to the directions uj , j ∈ J∞ and going through the points yj∗, j �∈ J∞: this
hyperplane still defines a generalized simplex containing K ∩ P and yields also the
lower bound γ∗. H∗′ still supports K ∩P (otherwise we could slide H∗′ until it does,
improving strictly the lower bound which would contradict the optimality of γ∗),
thus H∗′ satisfies the condition (SC).

The next two results show, under some condition, the unicity of the optimal hyperplane.
Proposition 3 Let H̃ be a hyperplane satisfying condition (SC). If SLB(H̃) < f(O), then
H̃ is the unique hyperplane satisfying (SC).

Proof:
Since SLB(H̃) = γ̃ is the optimal simplicial bound, any hyperplane satisfying (SC)
must satisfy the part b) of this condition. Consider an edge of K along which f is not
nondecreasing. Since γ̃ < f(O) and since f is concave along this edge, there exists a
unique point zj on this edge such that f(zj) = γ̃ (note that for γ̃ = f(O), this is not
true: f can be constant over a segment starting at O and then decreases). Since the
uj , j = 1, 2 . . . , n are linearly independent, there exists an unique hyperplane parallel
to the edges of K along which f is nondecreasing, and that intersects the other edges
at point of value γ̃.

We now show under which conditions the (SC) condition is necessary.

Theorem 2 Assume that the best simplicial bound is not equal to f(O).
Then condition (SC) is necessary if and only if there exists a support point of the hyperplane
satisfying (SC) in the interior of K.
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Proof:
Note that the assumption reduces the condition (SC) to its part b).
Denote by H̃ = {x ∈ IRn | ãx = 1} the unique hyperplane satisfying the condition
(SC) (such a hyperplane exists by Theorem 1 and the unicity follows from Proposi-
tion 3).
Assume first that H̃ supports K ∩ P at a point ω̃ that is in the interior of K. Then

ω̃ =
∑
j �∈J∞

µj z̃
j +

∑
j∈J∞

µju
j with

∑
j �∈J∞

µj = 1 and µ > 0,

where z̃j , j �∈ J∞ are the intersection points of the hyperplane H̃ with the edges uj

of K. Let Ĥ = {x ∈ IRn | âx = 1} be an optimal hyperplane: we next show that
Ĥ = H̃. Since the optimal simplicial bound is attained at the points z̃j , j �∈ J∞, Ĥ
must intersect the corresponding edges of K at points ẑj ∈ [Oz̃j ], thus âz̃j ≥ 1 for all
j �∈ J∞. Since Ĥ must intersect each edge of K, we have also âuj ≥ 0 for all j ∈ J∞.
On the other hand ∑

j �∈J∞
µj âz̃

j +
∑
j∈J∞

µj âu
j = âω̃ ≤ 1

since ω̃ ∈ K ∩ P . However, as µj > 0 for all j = 1, 2, . . . , n it follows then that
âz̃j = 1 for all j �∈ J∞ and âuj = 0 for all j ∈ J∞. Thus Ĥ = H̃, which shows the
necessity of the condition (SC).
The fact that the hyperplane is not unique if there exists no support point in the
interior of K is illustrated in Figure 2 in the two-dimensional case. The simplex
defined by the dotted hyperplane is clearly included in the (possibly generalized)
simplex defined by the dashed hyperplane, hence yields a not-smaller lower bound.
Since the lower bound given by the dashed hyperplane is optimal by assumption, the
two simplices actually give the same lower bound. This construction can be easily
generalized to higher dimension, showing the non-unicity of the optimal hyperplane
when the support point is not in the interior of the cone.

Let J∞ be the set of edges of cone K on which f is nondecreasing.
Let H be a valid hyperplane (i.e., belonging to H), parallel to the edges j ∈ J∞ of K. Let
γ be the corresponding simplicial lower bound.
If H does not satisfy condition (SC), a valid hyperplane H ′′ yielding a better lower bound
can be defined as follows.
For j �∈ J∞, let yj = λj(γ)uj be the γ-extension of O along the direction uj . Let H ′ be
the hyperplane parallel to the edges j of K for j ∈ J∞ and going through yj , j �∈ J∞:
this hyperplane belongs to H and yields the same simplicial lower bound γ. If H ′ supports
K ∩ P , H ′ is optimal by Theorem 1. Otherwise, let H ′′ be the hyperplane parallel to H ′

that supports K ∩ P : this hyperplane yields a lower bound γ′′ = SLB(H ′′) > γ.
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z2

z1

z1

f(z 1) = γ f(z 1) = γ

f(z 2 γ) = 

hyperplane not

satisfying (SC)

optimal

P

OO

KK
P

optimal hyperplane satisfying (SC)

satisfying (SC)

hyperplane

optimal

optimal hyperplane

not satisfying (SC)

Figure 2: Non necessity of condition (SC)

The hyperplanes going through yj , j �∈ J∞ and parallel to the edges j ∈ J∞ of K are
obtained as

Hc = {x ∈ IRn | x =
n∑

j=1

λju
j ;

∑
j �∈J∞

λj

λj(γ)
= c}.

Note that H1 = H ′.
The hyperplane H ′′ is thus obtained by solving the following linear program

LP (γ) : ĉ(γ) = max
∑
j �∈J∞

λj

λj(γ)

s.t.




x =
n∑

j=1

λju
j

Ax ≤ b
λj ≥ 0 j = 1, 2, . . . , n.

We are now able to describe a procedure which allows the computation of the best simplicial
bound.

Procedure BSB
Step 1 (Initialization) : Select γ < f(O).

Compute the γ-extensions yj = λj(γ)uj of O along each edge of K and let J∞ =
{j | λj(γ) = +∞}.

Step 2 (Computing a new hyperplane) : Solve LP (γ) to obtain the hyperplane H =
Hĉ(γ). If ĉ(γ) = 1, stop: H is an optimal solution of problem (SLBP ).
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Step 3 (Computing a new simplicial value) : Let zj = ĉ(γ)yj , j �∈ J∞ be the inter-
section point of the jth edge of K with the hyperplane H.
Compute γ = min

j �∈J∞
{f(zj), f(O)}.

If γ = f(O), stop: H is an optimal solution of problem (SLBP).
Step 4 (Computing new γ-extensions) : For all j �∈ J∞, compute the γ-extensions

yj = λj(γ)uj .
Return to Step 2.

Theorem 3 The procedure BSB converges to an optimal solution of (SLBP ).

Proof:
Denote by γk the value of γ at the beginning of iteration k, by λ̂k = (λ̂k

1, λ̂
k
2, . . . , λ̂

k
n)

and ĉk respectively the optimal solution and value of problem LP (γk) and by yjk

and zjk the points yj and zj , j �∈ J∞. Let Hk = Hĉk
.

If the procedure stops at the end of Step 2, we have ĉk = 1. Thus the hyperplane Hk

supports K ∩P , is parallel to the edges j ∈ J∞ of K and intersects the edges j �∈ J∞
at points yjk of same value γk: by Theorem 1, Hk is then optimal.
If the procedure stops at the end of Step 3, Hk is optimal by part a) of the sufficient
condition (SC) of Theorem 1.
Assume now that the procedure is infinite. The sequence {γk} is increasing from
the second iteration on and bounded from above by f(O) thus converges to a limit
γ∗. By continuity of the functions λj(γ), the sequences {yjk}k converge to yj∗ =
λj(γ∗)uj and we have f(yj∗) = γ∗ for all j �∈ J∞. Moreover, the mapping γ �→ ĉ(γ)
is nondecreasing as for any feasible λ and x, the objective function of LP (γ) is
nondecreasing with respect to γ by Proposition 1. This entails that the sequence
ĉk = ĉ(γk) is nondecreasing. Since in addition ĉk is bounded from above by 1, it
follows that ĉk → ĉ∗. Thus the sequences {zjk}k converge to zj∗ = ĉ∗yj∗. Let us
show that ĉ∗ = 1. Let jk be an index such that f(zjkk) = γk: by definition of the
points yjk we have yjk,k+1 = zjk,k. By considering a subsequence if necessary, we can
assume that jks = i for all ks with i �∈ J∞. Thus yi∗ = zi∗. Since zi∗ is outside the
segment [O, zi] where zi is the intersection of the edge i with the boundary δP of P ,
we have zi∗ �= O thus ĉ∗ = 1.

Let ω̂k =
n∑

j=1

λ̂k
ju

j . Since ω̂k ∈ K ∩ δP for all k, there exists a subsequence ks such

that ω̂ks → ω̂. Since ω̂ks belongs to the hyperplane Hĉks
for all ks, it follows that ω̂

belongs to Hĉ∗ = lim
s→∞Hĉks

.
Thus Hĉ∗ supports K ∩ P , is parallel to the edges j of K, j ∈ J∞ and intersects
the edges j �∈ J∞ at points zj∗ of same value γ∗. By Theorem 1, Hĉ∗ is an optimal
solution of problem (SLBP ).
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Observe that in Step 2, the value of ĉ(γ) allows us to locate the best simplicial bound
with respect to γ. Indeed, if ĉ(γ) ≤ 1 then γ is a simplicial bound, hence the best simplicial
bound is greater than γ (actually all subsequent simplicial bounds given by the procedure
are greater than γ). On the other hand, ĉ(γ) > 1 means that the simplex S defined by K
and the hyperplane passing through the yj does not contain K ∩ P . By definition of the
yj , any (hypothetical) simplicial bound γ′ > γ would be obtained with a simplex S′ ⊆ S,
which clearly does not contain K ∩ P . Thus if ĉ(γ) > 1, there does not exist simplicial
bound with value greater than γ.
Note also that for some functions f , the above procedure gives the best simplicial bound

after only one iteration. This is in particular the case if there exists a function h such that
f(λu) = h(λ, f(u)) for all λ ≥ 0 and all u ∈ IRn.
Of course, procedure BSB can be stopped at any iteration at the end of Step 3, yielding

a valid simplicial lower bound f(K) of f over K ∩ P .
In particular, if in Step 1, γ corresponds to the incumbent value f of the concave min-
imization problem (CP ) and if only one iteration is performed we obtain the bounding
procedure proposed by Thoai and Tuy [15].
We denote by H(K) the hyperplane used to compute the simplicial bound (i.e., such

that f(K) = SLB(H(K))), and by (ω(K), λ(K)) the basic optimal solution of the corre-
sponding linear program LP (γ).

2.3 Double-simplicial lower bounding procedure

Recall that K is a cone originated at O with exactly n linearly independent edges whose
directions are u1, u2, . . . , un.
Let K ′ be a cone, originated at z′ with exactly n linearly independent edges of directions
u

′1, u
′2, . . . , u

′n, which contains K ∩ P .
Note that since O is an interior point of P , and since the ui, i = 1, . . . , n are linearly
independent, it follows that int(K ∩ P ) �= ∅. By the inclusion K ∩ P ⊆ K ′, this implies
that K ∩K ′ has a nonempty interior. We assume furthermore that K ∩K ′ is bounded.
Clearly, since K ∩P ⊆ K ∩K ′ and by concavity of f , min

x∈vert(K∩K′)
f(x) is a lower bound

of f over K ∩ P , where vert(K ∩K ′) denotes the set of extreme points of K ∩K ′. Note
however that vert(K ∩ K ′) can contain an exponential number of points since, e.g., the
hypercubes of IRn can be viewed as the intersection of two cones.
Therefore we next explore how to outer-approximateK∩K ′ by a set containing less extreme
points.
Let HK′ be the set of hyperplanes H = {x ∈ IRn | ax = b} defining with K and

K ′ two full dimensional generalized simplices S(H) = K ∩ {x ∈ IRn | ax ≤ b} and
S′(H) = K ′ ∩ {x ∈ IRn | ax ≥ b} such that K ∩K ′ ⊆ S(H) ∪ S′(H) (see Figure 3 for an
illustration).



Les Cahiers du GERAD G–96–17 – Revised 11

11 z 2 z’
z’

2
z

z’

K

K’

O

S(H)

S’(H)

H

halfspace ax < b

halfspace ax > b

Figure 3: Double-simplicial lower bound

We define the double-simplicial lower bound DSLB(H) as the minimum of f over
S(H) ∪ S′(H), i.e., since f is concave, over vert(S(H)) ∪ vert(S′(H)).
In the following, we consider the problem of finding the best possible bound of this class,
i.e., of solving the problem

(DSLBP ) max
H∈HK′

DSLB(H).

The first question of importance is the characterization of HK′ .

Proposition 4 HK′ is the set of hyperplanes H = {x ∈ IRn |ax = b} with (a, b) satisfying




aui ≥ 0 i = 1, 2, . . . , n (5)
au

′i ≤ 0 i = 1, 2, . . . , n (6)
az′ = 1 (7)
0 < b < 1 (8).

This set is nonempty and bounded.
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Proof:
Let H = {x ∈ IRn | ax = b} be a hyperplane of HK′ . Since S(H) = {x =∑n

i=1 λiu
i | λi ≥ 0, i = 1, 2, . . . , n; ax ≤ b} is defined by n+1 inequalities, its vertices

can only be

z0 = O

zi =
(

b

aui

)
ui i = 1, 2, . . . , n. (9)

In order that these points actually belong to S(H) and that S(H) is full dimensional,
we must have aO < b, i.e., b > 0 and b

aui > 0 for i = 1, 2, . . . , n, i.e., aui ≥ 0 for
i = 1, 2, . . . , n.
Similarly, the vertices of S′(H) can only be

z
′0 = z′

z
′i = z′ +

(
b− az′

au′i

)
u

′i i = 1, 2, . . . , n (10)

from which we deduce the conditions az′ > b and au
′i ≤ 0, i = 1, 2, . . . , n.

From az′ > b and b > 0 we deduce az′ > 0. By dividing a and b by az′, we obtain
H = {x ∈ IRn | ãx = b̃} with (ã, b̃) satisfying (5)-(8).
Conversely, if (a, b) satisfies (5)-(8), then clearly the hyperplane H = {x ∈ IRn | ax =
b} belongs to HK′ .
Note that only (8) involves the variable b, and the set described by this double
inequality is clearly nonempty and bounded. Therefore to show thatHK′ is nonempty
and bounded, it is sufficient to show these properties for a satisfying (5)-(7).
Let us show first that this set is nonempty. Since K ∩K ′ is bounded and z′ �= O, the
following linear problem

max
n∑

i=1

λi +
n∑

i=1

λ′i

s.t.




n∑
i=1

λiu
i = z′ +

n∑
i=1

λ′iu
′i

λ, λ′ ≥ 0
has a finite positive optimal solution, thus its dual

min az′

s.t.
{ −aui ≤ −1 i = 1, 2, . . . , n

au
′i ≤ −1 i = 1, 2, . . . , n

is feasible and has an optimal solution ã with ãz′ > 0. Hence ã
ãz′ is a feasible solution

for (5)-(7).
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We now show that the set of a satisfying (5)-(7) is bounded. To do that, it suffices
to show that the following linear program

max ae (11)

s.t.




−aui ≤ 0 i = 1, 2, . . . , n
au

′i ≤ 0 i = 1, 2, . . . , n
az′ = 1

has a finite optimal value for any vector e satisfying ‖e‖ = 1. Since we already know
that this program is feasible, by the duality theorem of linear programming, it suffices
to show that the dual is feasible. The dual is:

min η (12)

s.t.


 −

n∑
i=1

λiu
i +

n∑
i=1

λ′iu
′i + ηz′ = e

λ, λ′ ≥ 0

Since the ui = 1, . . . , n are linearly independent, there exists λ̃ such that

−
n∑

i=1

λ̃iu
i = e. (13)

On the other hand, since the interior of K ∩K ′ is nonempty, there exists λ̇ and λ̇′

such that

−
n∑

i=1

λ̇iu
i +

n∑
i=1

λ̇′iu
′i + z′ = 0 (14)

with λ̇i, λ̇
′
i > 0 for i = 1, . . . , n. A feasible solution to the dual can then be constructed

by adding to (13) the equation (14) premultiplied by a sufficiently large η. Hence
problem (12) - and therefore (11) - has a finite optimal value, which shows that the
set of a satisfying (5)-(7) is bounded.

We now give a reformulation of problem (DSLBP ).

Proposition 5 For any γ ≤ min{f(O), f(z′)}, let λi(γ) = λ(O, ui; γ) and λ′i(γ) = λ(z′, u′i; γ),
i = 1, 2, . . . , n. Denote by J∞ the set of edges of K along which f is nondecreasing, and
by J ′∞ the set of edges of K ′ along which f is nondecreasing. Then problem (DSLBP ) is
equivalent to
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(DSP ) max γ

s.t.




λi(γ)aui ≥ b i �∈ J∞ (15)
−λ

′
i(γ)au

′i ≥ 1− b i �∈ J ′∞ (16)
aui ≥ 0 i = 1, 2, . . . , n (17)
au

′i ≤ 0 i = 1, 2, . . . , n (18)
az′ = 1 (19)
0 < b < 1 (20)
γ ≤ min{f(O), f(z′)}. (21)

Proof:
First note that the constraint (21) is innocuous: since O and z′ are feasible point of
K ∩ K ′, there cannot exist a double-simplicial lower bound with a value γ greater
than f(O) or f(z′). This constraint is merely here to ensure that the λi(γ) and λ

′
i(γ)

are defined (see Section 2.1).
Also note that the constraints (17)-(20) are those who characterize HK′ (see Propo-
sition 4).
In order to prove Proposition 5, it suffices to show the identity between the set of
hyperplanes defined by constraints (15)-(20) and the subset of HK′ of hyperplanes
H = {x ∈ IRn | ax = b} satisfying DSLB(H) ≥ γ.
Assume that (a, b) satisfies constraints (15)-(20). Since (a, b) satisfies (17)-(20), by
Proposition 4, H = {x ∈ IRn | ax = b} is in HK′ . Let yi = λi(γ)ui, i �∈ J∞ and
y
′i = z′ + λ

′
i(γ)u

′i, i �∈ J ′∞. Let zi (respectively z
′i), i = 1, 2, . . . , n be the (possibly

infinite) intersection points of the edges of K (respectively K ′) with the hyperplane
H: the expression of these points is given respectively by (9) and (10). Then for
i �∈ J∞, zi lies between O and yi by constraint (15), thus by concavity, f(zi) ≥ γ.
For i ∈ J∞, f is greater than f(O) on the entire edge, thus again f(zi) ≥ γ. Simi-
larly, constraints (16) and (19) imply that the z

′i lie between z′ and y
′i for i �∈ J ′∞,

thus f(z
′i) ≥ γ for all i = 1, 2, . . . , n. It follows that DSLB(H) ≥ γ.

Conversely, assume that H ∈ HK′ satisfies DSLB(H) ≥ γ. By Proposition 4, there
exists (a, b) satisfying (17)-(20) such that H = {x ∈ IRn | ax = b}. Now H intersects
the edges of K at point zi = b

auiu
i of value greater than or equal to γ. By definition

of the λi(γ), we have then b
aui ≤ λi(γ) for i �∈ J∞. Multiplying both side by aui

(which is positive by constraint (17) and since zi cannot be infinite for i �∈ J∞),
we obtain relation (15). Similarly, constraint (16) is satisfied since the intersection
points z

′i of H with the edges of K ′ must have a value greater than or equal to γ.
Thus H satisfies the constraints (15)-(20).

Note that if b = 0 in (20), K ∩ P ⊆ K ′ ∩ {x ∈ IRn | ax ≥ 0} = S′(H) since K ∩ P ⊆ K ′

and by (17), thus a lower bound of f over K ∩ P is the simplicial bound min
x∈S′(H)

f(x). By
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(16), its value is greater than or equal to γ.
Similarly, if b = 1, we have K ∩ P ⊆ S(H) and the simplicial bound min

x∈S(H)
f(x) is greater

than or equal to γ.
Thus, by slightly modifying the definition of the double-simplicial bound to include these
two extreme cases, we can assume that the double inequality (20) is a nonstrict one. We
denote by HK′ the set of hyperplanes H = {x ∈ IRn | ax = b} where (a, b) satisfies
constraints (5)-(7) and 0 ≤ b ≤ 1.
There are different ways to solve problem (DSP).
First, it may be restated as

max γ

s.t.



(a, b) ∈ C
hi(a, b; γ) ≤ 0 for i �∈ J∞
h′i(a, b; γ) ≤ 0 for i �∈ J ′∞

where C = {(a, b) ∈ IRn+1 |az′ = 1; aui ≥ 0(i = 1, 2, . . . , n); au
′i ≤ 0(i = 1, 2, . . . , n); 0 ≤

b ≤ 1}, hi(a, b; γ) = b − (aui)λi(γ) for i �∈ J∞ and h′i(a, b; γ) = 1 − b + (au
′i)λ′i(γ) for

i �∈ J ′∞.
Since C is convex and since the functions hi and h′i are linear-convex functions over C× IR
(i.e., (a, b) �→ h(a, b, γ) is linear for each fixed γ ∈ IR and γ �→ h(a, b; γ) is convex for each
fixed (a, b) ∈ C), this problem can be solved by the algorithm of Horst, Muu and Nast [4].
A second approach is as follows. For each γ, define CDSP (γ) as the set of vectors (a, b)

such that (a, b, γ) is a feasible solution to problem (DSP ). By noting that the function
γ �→ CDSP (γ) is nonincreasing, i.e., CDSP (γ) ⊆ CDSP (γ′) when γ ≥ γ′, problem
(DSP ) can be solved by a dichotomy search over [γ, γ] where γ is such that CDSP (γ) �= ∅
and γ is such that CDSP (γ) = ∅.
We choose to focus our attention on a third method. Assume that γ is fixed and less

than min{f(O), f(z′)}. If (a, b) satisfies at equality none of the constraints (15) and (16),
then γ′ = DSLB(a, b) improves strictly the current value of γ. Indeed, assume that the
value γ′ is attained at the intersection point of the ith edge of K with the hyperplane
ax = b. Then γ′ = f(( b

aui )ui) and b
aui < λi(γ). Thus γ′ > γ by definition of λi(γ).

Similarly, if γ′ is attained at an intersection point of an edge of K ′ with the hyperplane
ax = b, since γ < f(z′), we have γ′ > γ.
If a vector (a, b) satisfying strictly all the constraints (15) and (16) exists, it can be found
by solving the following linear program:
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DSLP (γ) max ξ

s.t.




λi(γ)aui ≥ b+ ξ i �∈ J∞
−λ

′
i(γ)au

′i ≥ 1− b+ ξ i �∈ J ′∞
aui ≥ 0 i ∈ J∞
au

′i ≤ 0 i ∈ J ′∞
az′ = 1
0 ≤ b ≤ 1.

This leads to the following procedure.

Procedure BDSB
Step 1 (Initialization) : Initialize γ to a double-simplicial bound (for example, consider

a hyperplane Ĥ belonging to HK′ and take γ = DSLB(Ĥ); such a hyperplane can be
constructed by finding a feasible point of the system {aui ≥ 1 (i = 1, 2, . . . , n), au′i ≤
−1 (i = 1, 2, . . . , n)} (see the proof of Proposition 4)).
Compute λj(γ) and λ

′
j(γ) for j = 1, 2, . . . , n. Let J∞ = {j | λj(γ) = +∞} and

J ′∞ = {j | λ′j(γ) = +∞}.
Step 2 (Computing a new hyperplane) : Solve the linear problem DSLP (γ). Let

(â, b̂, ξ̂) be an optimal solution. Let Ĥ = {x ∈ IRn | âx = b̂}.
If ξ̂ = 0, stop: Ĥ is an optimal solution to problem (DSLBP ) with value γ.

Step 3 (Computing a new double-simplicial bound) : Let zj = b̂
âuj u

j for j �∈ J∞
and z

′j = z′+
(

b̂−1
âu

′j

)
u

′j for j �∈ J ′∞. Compute γ = min{f(O), f(z′), min
j �∈J∞

f(zj), min
j �∈J ′∞

f(z
′j)}.

If γ = min{f(O), f(z′)}, stop: Ĥ is an optimal solution of problem (DSLBP ).
Step 4 (Computing new γ-extensions) : For all j �∈ J∞, compute λj(γ); for all j �∈

J ′∞, compute λ
′
j(γ).

Return to Step 2.

Theorem 4 Procedure BDSB described above converges to an optimal solution of problem
(DSLBP ).

Proof:
Denote by γk the value of γ at iteration k, and by âk, b̂k, ξ̂k the optimal solution of
problem DSLP (γk).
The sequence γk is increasing and bounded from above by min{f(O), f(z′)}, thus
converges to a limit γ∗. If γ∗ = min{f(O), f(z′)} we are done, hence we assume that
γ∗ < min{f(O), f(z′)}.
For any k, (âk+1, b̂k+1, ξ̂k+1) is a feasible solution of problemDSLP (γk). Thus ξ̂k+1 ≤
ξ̂k. Since ξ̂k is positive (because γk is a double-simplicial lower bound), it follows that
the sequence ξ̂k converges to a limit ξ̂∗. Let us show that this limit is 0. If the sequence
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is finite, it is easy to see that if ξ̂∗ > 0, the best double-simplicial lower bound can
be strictly improved. Hence ξ̂∗ = 0. Assume now that the sequence is infinite. Then
there exists a subsequence {kh} of {k} such that a) for all kh, γkh+1 = f(zkh�) for
some ( �∈ J∞, or b) for all kh, γkh+1 = f(z

′kh�) for some ( �∈ J ′∞. Since the proof is
similar for the two cases, we only give the details for the case b). We have then

λ
′
�(γkh+1) =

b̂kh − 1
âkhu′� . (22)

But (âkh+1 , b̂kh+1
, ξ̂kh+1

) is a feasible solution of problem DSLP (γkh+1), hence

−λ
′
�(γkh+1)âkh+1u

′� ≥ 1− b̂kh+1
+ ξ̂kh+1

. (23)

Observe that (âkh , b̂kh) is bounded by Proposition 4. Hence considering a subsequence
if necessary, we may assume that âkh → â∗ and b̂kh → b̂∗. We distinguish between
two cases depending on whether â∗u′� = 0 or not. In the first case, since λ′�(γ∗) < ∞,
we have b̂∗ = 1 by (22). Using (23), we obtain 0 ≥ 1 − b̂∗ + ξ̂∗ which shows that
ξ̂∗ = 0. Consider now the second case in which â∗u′� �= 0. Using (22) and (23),
and simplifying by â∗u′�, we obtain −(b̂∗ − 1) ≥ 1− b̂∗ + ξ̂∗, which again shows that
ξ∗ = 0.
Now assume that there exists a double-simplicial lower bound γ̃ > γ∗. Let H̃ =
{x ∈ IRn | ãx = b̃} be the corresponding hyperplane. Then ãui > b̃

λi(γ∗)
, i �∈ J∞ and

−au
′i > 1−b̃

λ
′
i(γ

∗)
, i �∈ J ′∞.

Let ξ̃ = min
{
min
i�∈J∞

{λi(γ∗)ãui − b̃}, min
i�∈J ′∞

{−λ
′
i(γ

∗)ãu
′i − 1 + b̃}

}
. Then (ã, b̃, ξ̃) is a

feasible solution of problem DSLP (γ∗) with ξ̃ > 0, which is a contradiction. Thus
γ∗ is the best double-simplicial lower bound.

In the next section, we explain how the simplicial lower bound presented in Para-
graph 2.2 can be used to choose a valid cone K ′.

2.4 Combination of the simplicial and double-simplicial lower bound

Let H(K) = {x ∈ IRn |ax = 1} be a hyperplane corresponding to a simplicial lower bound,
as defined in Section 2.2. Let ω(K) be an extreme point of K ∩P at which H(K) supports
K ∩ P .
Let K ′ be a cone originated at z′ = ω(K), contained in the halfspace {x ∈ IRn | ax ≤ 1}
and containing K ∩ P . Then H(K) clearly belongs to HK′ .
If ω(K) is a non-degenerate vertex of K ∩P , we can simply take for K ′ the cone generated
by the n edges of K ∩ P emanating from ω(K).
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If ω(K) is degenerate, we can consider the cone induced by the basic variables in the
solution of the linear program from which ω(K) was obtained.

More precisely, recall that ω(K) =
n∑

j=1

λ∗ju
j where λ∗ is a basic optimal solution of

LP (γ̃) max θTλ

s.t.
{

AUλ ≤ b
λ ≥ 0

where θ = (θ1, θ2, . . . , θn) with θj =

{
0 if j ∈ J∞

1
λj(γ̃)

if j �∈ J∞ for some value γ̃ and U is the

n× n matrix of columns uj , j = 1, 2, . . . , n.
Let us introduce the slack variables s and let y = (λ, s). Let B be the submatrix of (AU, I)
consisting of the columns corresponding to the basic variables (denoted yB). Let N be
the submatrix of (AU, I) corresponding to the nonbasic variables yN . Let (θB, θN ) be the
corresponding partitioning of vector (θ, 0). Then

ByB +NyN = b

yB, yN ≥ 0,

thus
(

yB
yN

)
=

(
B−1b
0

)
+

( −B−1N
I

)
yN . As y = (λ, s), by setting µ to yN , we get

λ = λ∗ + V µ, µ ≥ 0,

where λ∗ is some subvector of
(

B−1b
0

)
and V some n × n submatrix of

( −B−1N
I

)
.

It follows that K ∩ P = {x ∈ IRn | x = Uλ;AUλ ≤ b;λ ≥ 0} is included in the set
K ′ = {x ∈ IRn | x = Uλ∗ + UV µ ; µ ≥ 0}. Note that Uλ∗ = ω(K) and that the
columns of UV can be identified to the vectors u

′j , j = 1, 2, . . . , n. Let a = θT U−1

θT λ∗ and
b = 1. By the optimality condition, we have θTN − θTBB

−1N ≤ 0, i.e., θTV ≤ 0, thus
aUV = θT U−1(UV )

θT λ∗ ≤ 0, hence conditions (6) of Proposition 4 are fulfilled. Conditions (5)
are satisfied by construction of LP (γ̃). Finally, aω(K) = θT U−1Uλ∗

θT λ∗ = 1, which shows that
condition (7) is also satisfied. Thus, with this choice of K ′, H = {x ∈ IRn |ax = 1} belongs
to HK′ .
SinceH(K) belongs toHK′ ,H(K) is a valid hyperplane for the computation of a double-

simplicial lower bound and DSLB(H(K)) = SLB(H(K)). This is true in particular if
H(K) is the hyperplane corresponding to the best simplicial lower bound. Then the best
double-simplicial lower bound is at least as good as the best simplicial bound. The following
result gives a sufficient condition to obtain a strict improvement.
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Proposition 6 If H(K) = {x ∈ IRn|ax = 1} supports K∩P at an unique, non-degenerate,
extreme point z′, then either the minimum of f over K∩P is attained at z′, or the simplicial
bound SLB(H(K)) can be strictly improved.

Proof:
Let γ = SLB(H(K)). If f(z′) = γ, then γ is the minimum of f over K ∩ P since z′

is a feasible point of K ∩ P .
Assume now that f(z′) > γ. Then λ

′
i(γ) = λ(z′, u′i; γ) is strictly positive for i =

1, 2, . . . , n, and a(λi(γ)ui) ≥ 1 for all i = 1, 2, . . . , n by definition of γ. Furthermore,
we have au

′i < 0, i = 1, 2, . . . , n. Indeed, assume that au
′i = 0 for some i. Then

since z′ is a non-degenerate extreme point of K ∩ P , there exists η > 0 such that
z′ + ηu

′i is also an extreme point of K ∩ P . Since a(z′ + ηu
′i) = az′ = 1, it follows

that z′ is not the unique support point, in contradiction with the assumption.

Now let â = a, ξ̂ = min
{
1, 1

2 mini�∈J ′∞
{−λ

′
i(γ)âu

′i}
}
and b̂ = 1 − ξ̂. By construction,

(â, b̂, ξ̂) is a feasible solution of problem DSLP (γ) with value ξ̂ > 0. Hence the
double-simplicial lower bound can be strictly improved.

3 Embedding of the lower bounds in a branch-and-bound
algorithm

In a conical branch-and-bound algorithm, the subdivision point is often chosen as the point
ω(K), which is a byproduct of the computation of the simplicial lower bound (see Section
2.2). This raises the question of the theoretical convergence of the conical algorithm when
using the new lower bounds considered in this paper. Also, because of the interrelation
between lower bound and branching, it seems more reasonable to compare the lower bounds
on subproblems produced by the branch-and-bound algorithm rather than on random
subproblems (it may happen that the lower bounds are very good on average on random
subproblems, but that a branch-and-bound algorithm using these lower bounds perform
badly, for example because the algorithm tends to generate subproblems for which the
lower bound is not good). For these reasons, we have embedded the lower bounds in a
conical branch-and-bound algorithm. The subdivision rule is recalled in Paragraph 3.1; in
Paragraph 3.2 we present the branch-and-bound algorithm and finally in Paragraph 3.3 we
establish its convergence.

3.1 Subdivisions

We propose to consider normal conical subdivisions. We recall their definition and main
properties. The reader is referred to Horst and Tuy [7] and Tuy [20] for more details.
A partition of P into initial cones can be constructed in a standard way, either by

choosing O as an interior point of P in which case the partition consists of n+1 cones, or
by choosing O as a non-degenerate vertex of P in which case the partition consists of one
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cone defined by O and its adjacent extreme points. Note that in the latter case, we can
consider instead of P the polyhedron P ′ obtained from P by removing the n constraints
binding at O: O then satisfies our assumption of being an interior point for P ′.
Let K0 be one of the initial cone, u01, . . . , u0n be a point on each of the edges of K0

(distinct from O) and let F0 = conv{u01, . . . , u0n}. Consider a cone K ⊆ K0 and let
U = K ∩ F0 = [u1, u2, . . . , un] be the section of K by the facet F0: we say that U is the
base of K.
Let v be an arbitrary point of U such that

v =
n∑

i=1

λiu
i,

n∑
i=1

λi = 1, λi ≥ 0 (i = 1, 2, . . . , n). (24)

Let I = {i | λi > 0} and for all i ∈ I let Ki be the cone of edges Ou1, . . . , Oui−1,
Ov,Oui+1, . . . , Oun. It is easy to verify that the cones Ki, i ∈ I form a partition of
the cone K. Denote by δ(U) the length of a longest edge of U . If v = αup + (1 − α)uq

where ‖up − uq‖ = δ(U) and 0 < α ≤ 1
2 , the partition is called a bisection of ratio α. On

the other hand, if v belongs to the halfline Oω(K) where ω(K) was defined in Section 2.2,
we say that the cone K is ω-subdivided.
A subdivision rule is said normal if only bisections or ω-subdivisions are used and

if bisections occur infinitely many times in every infinite sequence of nested cones. In
this paper, we assume in addition that ω-subdivisions also occur infinitely many times in
every infinite sequence of nested cones. This is a natural assumption since the concept of
normality was introduced to derive proved convergent algorithms that are a compromise
between the algorithms that use only bisections but perform poorly, and the algorithms
with a pure ω-subdivisions strategy that perform better in practice but whose convergence
has not yet been proved (see Tuy [18])1. A typical normal rule is defined as follows: Denote
by τ(K) the generation index of the cone K (i.e., τ(K) = 0 if K is one of the initial cone;
τ(K) = τ(K ′)+1 if K is the son of cone K ′) and select a natural number N . Then if τ(K)
is divisible by N , bisect K; otherwise, ω-subdivide K (see, e.g., Tuy [20, p. 149-150]).
The following Proposition is useful to establish the convergence of the algorithm de-

scribed in the next section.

Proposition 7 (Tuy [19, p.20])
Let Uk = [uk1, uk2, . . . , ukn], k = 1, 2, . . . be a sequence of nested (n − 1)-simplices such
that any Uk+1 is a son of Uk in a subdivision via some vk ∈ Uk. If there exists an infinite
sequence ∆ ⊂ {1, 2, . . . } such that for every k �∈ ∆ the subdivision of Uk is a bisection of
ratio αk ≥ α0 > 0 then, whenever the sequence {vk, k ∈ ∆} is infinite, at least one of its
cluster points is a vertex of U∗ =

∞⋂
k=1

Uk.

1Since this paper has been written, the convergence with a pure ω-subdivision strategy has been proven,
independently and by different approaches, by some of the authors [9] and by Locatelli [11].



Les Cahiers du GERAD G–96–17 – Revised 21

3.2 Algorithm

We propose the following conical branch-and-bound algorithm for obtaining an ε-optimal
solution of the concave programming problem (CP ):

Algorithm CBB
Step 1 (initialization) : Select the tolerance ε ≥ 0.

Construct an initial conical partition P of P and define a normal subdivision rule
(see Section 3.1).
Initialize the incumbent value f and solution x with the best intersection point of
the edges of K ∈ P with the boundary δP of P . For each cone K in P, compute a
simplicial lower bound, or a simplicial bound followed by a double-simplicial bound,
as explained in Section 2. Denote by f(K) this lower bound. Let ω(K) be the point
of K ∩ P corresponding to the simplicial bound. If for some K ∈ P, f(ω(K)) < f
then set f ← f(ω(K)) and x ← ω(K). Set L to P.

Step 2 (subdivision) : let K̃ ∈ argmin{f(K) |K ∈ L}. Bisect K̃, or ω-subdivide it via
the point ω(K̃) according to the normal subdivision rule. Let P be the set of new
cones. Set L ← (L\{K̃}) ∪ P.

Step 3 (bounding) : for each coneK ∈ P, compute a simplicial lower bound f(K), using
the simplicial bound computed for K̃ as initial value for γ in Step 1 of procedure BSB
(see Section 2.2). Optionally, improve f(K) by computing a double-simplicial lower
bound as explained in Sections 2.3 and 2.4. Finally let f(K)← max{f(K), f(K̃)}.
Let ω(K) be the point of K ∩ P corresponding to the simplicial bound. If for some
K ∈ P, f(ω(K)) < f then set f ← f(ω(K)); x ← ω(K).

Step 4 (fathoming) : delete every cone K ∈ L for which f(K) ≥ f − ε.
If L = ∅ then terminate: x is an ε-optimal solution of problem (CP ); otherwise
return to Step 2.

3.3 Convergence

Theorem 5 The algorithm CBB either terminates in a finite number of iterations with
an ε-optimal solution of (CP ), or is infinite. In this latter case, which can occur only if
ε = 0, any cluster point of the sequence x is a global optimal solution of problem (CP ).

Proof:
Let D be the set of cones deleted at Step 4 since the beginning of the algorithm. At
any iteration, L ∪ D forms a conical partition of P and f(x) ≥ f(K) ≥ f − ε for all
K ∈ D and all x ∈ K ∩ P . In particular, if the algorithm stops at the end of Step 4,
f(x) ≥ f − ε = f(x) − ε for all x ∈ P , which shows that x is an ε-optimal solution
of (CP ).
Assume now that the algorithm is infinite. Then it generates at least an infinite
sequence of nested cone Kk of limit K∗.
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Denote by Uk = [u1k, . . . , unk] the base of Kk. Let fk be the incumbent value at the
iteration of the selection of Kk, f

k
= f(Kk) be the lower bound of f over Kk ∩ P

and γk be the simplicial bound. Let γ′k be the value of γ at the beginning of the last
iteration of procedure BSB (see Section 2.2). Let ck, yik, zik and Jk∞ be respectively
the value ĉ(γ), the points yi and zi and the set J∞ at the last iteration of procedure
BSB. Finally, let vk and qk be the points where the ray through ωk = ω(Kk) meets
the simplex Uk and the generalized simplex convi�∈Jk∞{yik}+ conei∈Jk∞{uik}. Clearly,
ωk = ckq

k and zik = cky
ik for all i �∈ Jk∞.

Clearly, fk is nonincreasing and bounded from below by min
x∈P

f(x) thus converges to

a limit f∗.
Since γk is used as initial value for γ in Step 1 of procedure BSB and since pro-
cedure BSB produces a sequence of increasing simplicial values, it follows that
γ′k+1 ≥ γk ≥ γ′k. Thus γ

′
k and γk are two imbricated nondecreasing sequences bounded

from above by min
x∈P

f(x), thus they converge to a same limit γ∗.

Due to the selection of the cone Kk at Step 2, we have γk ≤ f
k
= min{f(K) |K ∈

Lk} ≤ min{f(x) | x ∈ P} where Lk is the set of cones remaining when cone Kk is
selected. By taking the limit, we obtain γ∗ ≤ min{f(x) | x ∈ P}.
On the other hand, sinceKk is not eliminated at Step 4, we have fk−ε > f(Kk) ≥ γk

for all k, thus f∗ − ε ≥ γ∗.
Assume first that γ∗ = f(O). Since f

∗ ≤ f(O), this is only possible if ε = 0 and
f
∗ = f(O), in which case O is the global optimal solution of problem (CP ).
Assume now that γ∗ < f(O). Let ∆ = {k | Kk is ω-subdivided}. By Proposi-
tion 7 there exists a subsequence ks of {1, 2, . . . } \ ∆ such that {vks} tends to a
vertex of U∗ =

∞⋂
k=1

Uk, say vks → ṽ ∈ U∗. By considering a subsequence if neces-

sary, we may assume that Jks∞ is constant, say equal to J̃∞ (note that necessarily
J̃∞ �= {1, 2, . . . , n} since γ∗ < f(O)), that uiks → ũi for all i = 1, 2, . . . , n (so that
U∗ = conv{ũ1, . . . , ũn}), that cks → c̃ and that ωks → ω̃.
Under these assumptions, the sequence {yiks} is bounded for all i �∈ J̃∞. If not,
there would exist a subsequence {k′s} of {ks} such that {yik′s} is unbounded and
f(yik

′
s) = γk′s for all k

′
s. Hence, by denoting lim

k′s→∞
yik′s

‖yik′s‖ by u, we would have

lim
λ→∞

f(λu) = γ∗ < f(O). This is in contradiction with the fact that a concave func-

tion over a halfline is either unbounded below or reaches its minimum at the origin
(see, e.g., Tuy [20, Proposition 5.1, p. 134]). Similarly, for i ∈ J̃∞, f(λuiks) ≥ f(O)
for all λ ≥ 0 which, by passing to the limit, implies that f(λũi) ≥ f(O), i.e., that
the γ∗-extension along ũi is infinite.
By taking a subsequence if necessary, we can assume that yiks → ỹi for all i �∈ J̃∞.
Since ziks ∈ [Oyiks ] for all i �∈ J̃∞, we may also assume that ziks → z̃i for all i �∈ J̃∞.
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Since min
j �∈J̃∞

{f(z̃j)} = γ∗ = f(ỹi) with γ∗ < f(O), z̃i = c̃ỹi and z̃i �= O for all i �∈ J̃∞,

it follows that c̃ = 1.
Now let us show that f(ω̃) = γ∗. Since a vertex of U∗ must be one of the points
ũ1, . . . , ũn, we have for example ṽ = ũ1. Clearly, qks → q̃ ∈ convi�∈J̃∞{ỹi} +
conei∈J̃∞{ũi} and q̃ = αṽ for some α > 0. Therefore αũ1 = q̃ =

∑
i�∈J̃∞ µiλi(γ∗)ũi +∑

i∈J̃∞ µiũ
i with

∑
i�∈J̃∞ µi = 1. Since the limit of a sequence of finite (respectively

infinite) γ-extensions is a finite (respectively infinite) γ-extension as shown above,
the set I = {i | ũi = ũ1} cannot contain both elements in J̃∞ and elements not in
J̃∞. Since

∑
i�∈J̃∞ µi = 1, I contains only indices not in J̃∞, hence

λ1(γ∗)
∑
i∈I

µi = α

µi = 0 ∀i �∈ I.

Thus
∑

i∈I µi =
∑

i�∈J̃∞ µi = 1. Therefore α = λ1(γ∗), i.e., q̃ = λ1(γ∗)ṽ = λ1(γ∗)ũ1 =
ỹ1 and f(q̃) = f(ỹ1) = γ∗. Since ω̃ = c̃q̃ with c̃ = 1, it follows that f(ω̃) = γ∗.
Now fk = f(xk) ≤ f(ωk) for all k = 1, 2, . . . . Letting k go to ∞, we obtain
f
∗ = f(x∗) ≤ γ∗ ≤ min{f(x) | x ∈ P}. Since f

∗ − ε ≥ γ∗, this is possible only
if ε = 0, in which case x∗ is a global optimal solution of problem (CP ).

The conclusion of Theorem 5 still holds if we use in Step 3 the incumbent value f
(instead of the simplicial bound computed for K̃) as the initial value for γ in procedure
BSB, and if only one iteration of this procedure is performed. Since the proof of this
result is very similar to that of Theorem 5, we only give the differences. Let pk be the
fk+1-extension along the ray going through ωk. Since fk+1 ≤ min{fk, f(ωk)} and since
ck ≥ 1 (otherwise Kk is eliminated which contradicts the infinity of the sequence), we
have ωk ∈ [pkqk]. We then show that for some subsequence, pk → p̃ and qk → q̃ with
f(p̃) = f

∗ = f(q̃). This implies p̃ = q̃ and c̃ = 1. Consequently, the limit γ̃ of the
simplicial bound γk is equal to f

∗.

4 Computational results

We present below some computational experiments to illustrate the efficiency of the lower
bounds presented in this paper. We consider test problems of the following form

min f(x) = −
√√√√ n∑

i=1

x2
i −

√√√√ n∑
i=1

(xi − 1)2

s.t.
{

Ax ≤ b
x ≥ 0

where A is a (100% dense) matrix of size 30× 7 and b a vector of IR30.
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Ten instances of the problem were generated randomly as follows. The constraint matrix
coefficients are pseudo-randomly generated in the interval [0, 1] for the first row, and in
the interval [−1, 1] for the remaining rows. The coefficients of the vector b are equal to
the sum of the elements of the corresponding row of A, plus a pseudo-random number in
the interval [0, 2]. This ensures that the polyhedron P = {x ∈ IR7 : Ax ≤ b, x ≥ 0} is
nonempty (as it contains the point (1, . . . , 1)) and bounded (due to the definition of the
first constraint together with the non-negativity constraints).
The point O, origin of the cones, is chosen as follows. We first minimize an arbitrary

objective function (e.g., the sum of the xi) over the polytope P , obtaining an extreme
point O1. Let p1 be the gradient of f at this point: we minimize p1(x − O1) over the
polytope, obtaining an extreme point O2 satisfying f(O2) ≤ f(O1) (see, e.g., Tuy [20,
p.135]). The point O2 is taken as the origin O (in our experiments, it never happened that
the point was degenerate; if that were the case, we could have taken for O an alternate
point, for example an interior point of P ). The constraints of P binding at O define a
cone that forms our initial partition. Although O is not necessarily a local minimum in
the general case, this choice ensures that the algorithm terminates after 1 iteration with
the optimal solution in the special case where the objective function is the composition of
a one-dimensional function with a linear function. This is in accordance with the remarks
of Tuan [16], which observed that problems that reduce to linear programs should not be
used to test algorithms for global optimization, and if used, should be solved efficiently.
The tolerance ε is set to 10−6, which is also the precision of the dichotomous procedure

used when computing the γ-extensions. The linear problems occurring in the computation
of the simplicial and double-simplicial bounds are solved by CPLEX [8]. When several
iterations are performed in procedures BSB and BDSB, we use the optimal solution of the
linear program solved at the previous iteration as a starting point for the linear problem
of the current iteration. Finally, to easily access both the cones of smallest lower bound
(Step 2 of algorithm CBB) and of greatest lower bound (Step 4), we store them in a
min-max heap (see, e.g., Atkinson et al. [1]).
The program has been implemented in C and run on a SUN ULTRA-2/1300 (384 Mram).

We first ran several versions of the algorithm CBB, in which the lower bound is a simplicial
lower bound, computed by procedure BSB. These versions are denoted CBB(SLBx y)
where x refers to the choice of γ in Step 1 of procedure BSB (x = A means that γ is
initialized “from above”, i.e., to the value of the best known solution; x = B means that
γ is initialized to a lower bound on the best simplicial bound, which is taken equal to the
simplicial lower bound of the father cone), and where y stands for the number of iterations
in procedure BSB. The best simplicial lower bound corresponds to both SLBA ∞ and
SLBB ∞, which are approximated in practice respectively by SLBA 10 and SLBB 10.
In any cases, we used a ratio of 1 bisection for 100 subdivisions in the normal subdivision
rule (see Section 3.1).
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Table 1 shows the average computing time (CPU) in seconds (average taken over 10
instances of the problem considered), the average number of iterations of algorithm CBB
(iter), the average number of iterations needed until the optimal solution is found (iter opt),
the average of the maximum number of cones simultaneously contained in the min-max
heap (maxc) and the average number of cones (cone).
Although some gain in CPU time and in memory is obtained by performing several

iterations of procedure BSB when this procedure is initialized from below, this is not enough
to beat the version using the Thoai-Tuy lower bound (1 iteration of BSB; γ initialized to
the incumbent). Note that the convergence of the algorithm CBB was shown for versions
CBB(SLBA 1), CBB(SLBA ∞) and CBB(SLBB y) for 1 ≤ y ≤ ∞: this could explain
the bad performance of CBB(SLBA 2).

CBB(.) CPU iter iter opt maxc cones
SLBA 1 142.1 14074 9521 3404 41866
SLBA 2 5320.4 1256399 74041 10867 1346568
SLBA 3 485.2 81894 18785 6161 133960
SLBA 5 254.7 24762 14161 5541 71507
SLBA 10 245.9 24005 13806 5358 69365
SLBB 1 398.9 45297 30230 13073 116770
SLBB 2 298.9 29775 19937 6923 81019
SLBB 3 271.4 26743 17829 5916 74110
SLBB 5 261.0 25424 16799 5527 71194
SLBB 10 231.3 25180 16585 5480 70764

Table 1: Simplicial lower bounds

Based on these results, we reran several versions of algorithm CBB, noted CBB(DSLBx y),
that use a combination of simplicial and double-simplicial lower bounds. The simplicial
lower bound used is the one that gave the best result in the first run, that is SLBA 1 if
x = A and SLBB 10 if x = B. y denotes the number of iterations in the procedure BDSB.
The results are given in Table 2.
For both A and B versions, the gain obtained by computing a double-simplicial lower bound
is substantial: the CPU time decreases by 40% from CBB(SLBA 1) to CBB(DSLBA 5)
and by 44% from CBB(SLBB 10) to CBB(DSLBB 5). The decrease in the iterations num-
ber is even greater (respectively 73% and 76%), which suggests that further improvement
in the computing time could be obtained by implementing more efficiently the procedure
BDSB. A similar decrease can be observed for the memory (indicator maxc): 72% and 74%
respectively.
When comparing A and B versions, versions B clearly outperform versions A. A small con-
solation for versions A is that the use of double-simplicial lower (version CBB(DSLBB 5))
allows to beat the versions B that use only simplicial bounds.
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CBB(.) CPU iter iter opt maxc cones
DSLBA 1 131.6 8719 5543 2163 26696
DSLBA 2 112.4 6026 3613 1540 19174
DSLBA 3 90.4 4536 3031 1160 14901
DSLBA 5 85.6 3706 2665 928 12312
DSLBA 10 90.8 3452 2451 834 11517
DSLBB 1 173.2 10953 7776 2675 34091
DSLBB 2 146.2 7864 5699 1791 25093
DSLBB 3 141.6 6918 4986 1568 22106
DSLBB 5 128.5 6047 4419 1387 19279
DSLBB 10 133.8 5853 4270 1323 18673

Table 2: Combination of simplicial and double-simplicial lower bounds

5 Conclusions

In this paper, we have investigated further the simplicial lower bound and introduced a
new class of lower bound, called double-simplicial lower bound, which can be seen as an
extension of the simplicial lower bound. For both simplicial and double-simplicial lower
bound, we have characterized the hyperplane yielding the best possible bound and given
an iterative algorithm to compute it.
A natural algorithm in which these lower bounds can be used is the conical branch-and-
bound algorithm. In such algorithms, cones that cannot be eliminated are subdivided
with respect to a point, that is often a byproduct of the computation of lower bound.
This raises convergence issues. Therefore we have embedded our lower bounds in a conical
branch-and-bound algorithm and proved its convergence for two possible initializations of
the lower bound computing procedure. Limited numerical results show that improving the
computation of the simplicial lower bound is worth for only one of the strategies, but that
the use of the double-simplicial lower bound allows significant reduction in the computing
time and in the memory for both strategies.
Further works should be done along several directions. More extensive computational
experiments should be performed in order to measure more precisely the gain that can
be obtained with the double-simplicial lower bound. The branch-and-bound algorithm
should also be optimized further (in particular, we have observed substantial differences
in the performance of the algorithm for different choices of the origin of the cones; a
solution could be to test several candidates and retain the one that gives the best starting
lower bound). Finally, it is well known that a conical branch-and-bound algorithm using
simplicial lower bound performs better if there is an interaction between the lower bound
computing procedure and the subdivision procedure. Therefore it would be interesting to
develop a subdivision procedure based on the computation of the double-simplicial lower
bound.
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