
Les Cahiers du GERAD ISSN: 0711–2440

Combining the Stochastic Counterpart and
Stochastic Approximation Methods

J.-P. Dussault, D. Labrecque
P. L’Ecuyer, R. Y. Rubinstein

G–95–32

June 1995

Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs
auteurs. La publication de ces rapports de recherche bénéficie d’une subvention du Fonds F.C.A.R.

Combining the Stochastic Counterpart and
Stochastic Approximation Methods

Jean-Pierre Dussault
Département de mathématiques et informatique,

Université de Sherbrooke,
Sherbrooke, Québec, Canada, J1K 2R1

e-mail: dussault@dmi.usherb.ca

Donald Labrecque
Département d’IRO, Université de Montréal,

C.P. 6128, Succ. Centre-Ville, Montréal, Canada H3C 3J7

Pierre L’Ecuyer
GERAD and Département d’IRO, Université de Montréal,
C.P. 6128, Succ. Centre-Ville, Montréal, Canada H3C 3J7

e-mail: lecuyer@iro.umontreal.ca

Reuven Y. Rubinstein
Faculty of Industrial Engineering and Management

Technion—Israel Institute of Technology, Haifa 32000, Israel
and Department of Mathematics, EPFL-Ecublens

CH-1015 Lausanne, Switzerland
e-mail: ierrr01@technion.bitnet

June, 1995

Abstract

In this work, we examine how to combine the score function method with
the standard crude Monte Carlo and experimental design approaches, in order
to evaluate the expected performance of a discrete event system and its associ-
ated gradient simultaneously for different scenarios (combinations of parameter
values), as well as to optimize the expected performance with respect to two
parameter sets, which represent parameters of the underlying probability law
(for the system’s evolution) and parameters of the sample performance mea-
sure, respectively. We explore how the stochastic approximation and stochastic
counterpart methods can be combined to perform optimization with respect to
both sets of parameters at the same time. We outline three combined algo-
rithms of that form, one sequential and two parallel, and give a convergence
proof for one of them. We discuss a number of issues related to the implemen-
tation and convergence of those algorithms, introduce averaging variants, and
give numerical illustrations.

Keywords: Score function, sensitivity analysis, optimization, stochastic coun-
terpart, stochastic approximation.

Résumé

Nous examinons comment combiner la méthode de la fonction score avec une
méthode de Monte Carlo standard (näıve) et des approches de plan d’expérience,
afin d’évaluer la performance espérée d’un système à événements discrets, de
même que le gradient de cette espérance, simultanément pour différents scé-
narios (combinaisons des valeurs des paramètres), de même que pour opti-
miser la performance espérée par rapport à deux ensembles de paramètres,
qui représentent des paramètres de la loi de probabilité régissant l’évolution du
système et des paramètres de la fonction de performance, respectivement. Nous
explorons comment combiner les méthodes d’approximation stochastique et de
la contrepartie stochastique pour optimiser par rapport aux deux ensembles de
paramètres à la fois. Nous décrivons trois algorithmes combinés, l’un séquentiel
et deux parallèles, et donnons une preuve de convergence pour l’un d’entre eux.
Nous discutons aussi plusieurs questions liées à l’implantation et à la conver-
gence de ces algorithmes, introduisons des variantes lissantes, et donnons des
résultats numériques.

1 Introduction

Let
�(v, θ) = Ev{L(Y, θ)} (1)

be the expected performance of a discrete event system (DES), where L is the sample
performance driven by an input vector Y , which has a probability density function
(pdf) f(y, v). In (1), f and L depend on the vectors of parameters v and θ, respec-
tively, and the subscript v in Ev means that the expectation is taken with respect to
f(·, v). In other words, v is a parameter of the probability law, while θ is a parameter
of the sample performance. We assume that �(v, θ) is not available analytically and
that we need to resort to Monte Carlo simulation methods for its estimation. We are
concerned with the following questions:

(i) Solve the so-called “what-if” problem; that is, to estimate �(v, θ) and its gradient
w.r.t. v and θ, ∇v�(v, θ) and ∇θ�(v, θ), in functional form, or simultaneously for
different values of v and θ;

(ii) Combine the Crude Monte Carlo (CMC) and the score function (SF) methods,
to deal with parameters θ and v, respectively;

(iii) Solve an optimization problem associated with �(v, θ), where both v and θ are
decision parameters.

As a motivating example, consider a queueing network containing GI/D/1 or
GI/G/c/m queues, where c and m denote the number of parallel servers and the
buffer size, respectively. In the first case, v might be a parameter (vector) of the
interarrival pdf f(y, v) and θ might be the vector of (fixed) service times, while in the
second case, v might be the vector of the interarrival and service rates in the joint
pdf f(y, v) and θ might be the vector of the buffer size and the number of parallel
servers, respectively.

In its original form, the likelihood ratio (LR) or score function (SF) method
[10, 28, 29, 30, 31, 32] permits the solution of the “what-if” problem from a sin-
gle simulation run (single sample path) with respect to v alone, that is, when θ is
fixed. Roughly, the use of the score function transforms an estimator of �(v, θ) into
an estimator of ∇v�(v, θ), whereas the likelihood ratio transforms point estimators
into functional estimators, thereby allowing the estimation of the entire functions
�(·, θ) and ∇v�(·, θ) from a single simulation run, for any given value of θ. The latter
“likelihood ratio” or “change of measure” technique is in fact exactly the same as
that used in importance sampling for variance reduction [9]. Unlike SF, the CMC

1

method permits the solution of the “what-if” problem with respect to both v and
θ, simply by performing separate simulations at each parameter values of interest.
Since it requires multiple runs (at least a separate run for each point (v, θ)), it is
typically time-consuming. Note that a modification of the SF method, the so-called
“push out” method [32], as well as the perturbation analysis (PA) method [8], also
called “push in” method in [32], combined with the use of a likelihood ratio, permit
(in some particular cases) the solution of the “what-if” problem simultaneously from
a single simulation with respect to both v and θ; see [19] for examples. Here, we
shall not deal with the latter approaches. We should mention that the SF method
sometimes suffers from a variance explosion problem (the variance of the estimator
may become huge at some values), especially when the values of v of interest span a
large area (see [19, 32] for details). But there are ways of dealing with such problems
(e.g., break the area of interest into smaller subareas), at least for certain classes of
applications [32].

Suppose now that we want to minimize �(v, θ) with respect to v and θ. One
approach for minimizing �(v, θ) w.r.t. v for fixed θ is to compute an estimator of �(·, θ)
in functional form, using a likelihood ratio, based on N replicates of the simulation,
and then minimize the (sample) value of that estimator w.r.t. v using conventional
mathematical programming tools. The latter minimization problem is called the
stochastic counterpart (SC). That SC optimization approach is studied in much detail
in Rubinstein and Shapiro [32], where it is shown that the sample optimizer converges
to the true optimizer with probability one (w.p. 1), and obeys a central-limit theorem,
as the sample size N goes to ∞. If the number of values of θ of interest is finite and
not too large, then the SC approach can be applied at each such value, and one may
select the value of θ which gave the best result. A statistical analysis of such an
approach can be performed along the lines of the statistical ranking and selection
and multiple comparison methods [12, 16, 37]. In particular, those values of θ of
interest may have been chosen among a much larger (perhaps infinite) set by some
experimental design (ED) strategy [14].

Suppose now that both parameters are continuous. To optimize w.r.t. θ for
fixed v, one can use a stochastic approximation (SA) algorithm (see, e.g., [6, 7, 15, 21,
24, 25, 27, 30] and several further references given there). SA is an iterative procedure
which at each step estimates the gradient of the objective function and makes a small
step in its opposite direction. The gradient estimator can be based on either SF,
PA, finite differences, and so on, and the speed of convergence depends highly on
the quality of the gradient estimator that is used (for example, is can be quite slow
when using the so-called Kiefer-Wolfowitz SA variant, based on finite differences with
independent random numbers). In fact, the SA algorithm can be used as well for
optimization w.r.t. v, or w.r.t. both parameters simultaneously. However, it could be

2

in some cases more efficient or convenient to use the SC approach rather than SA for
dealing with v. This leads to the following question: Can we design combined (or
hybrid) algorithms which use SC for v and SA for θ, while performing optimization
w.r.t. both parameters simultaneously ?

The rest of this work is organized as follows. In Section 2, we show how to
combine the SF and CMC/ED methods in order to estimate �(v, θ), ∇v�(v, θ), and
∇θ�(v, θ) simultaneously for several scenarios (combinations) of (v, θ). Section 3 deals
with the minimization of �(v, θ) with respect to both v and θ. We outline three
optimization algorithms, each coming in two versions, and provide a convergence
proof for the first version of the first algorithm. A numerical example then gives
some insight into the behavior of the algorithms and also illustrates some potential
difficulties.

2 The “what-if” problem

In this section, we recall some background material on the SF method and on how
a functional estimator w.r.t. v can be obtained. Further details on this are given in
[1, 2, 3, 9, 10, 17, 28, 31, 32]. We then explain how to combine SF and CMC in order
to estimate �(v, θ) and its gradient simultaneously for several values of v and θ. We
distinguish the following two cases: (a) θ is fixed; (b) θ is not fixed.

2.1 The case of a fixed θ: a “what-if” design with respect
to v

Assume that θ is fixed and let Y1, Y2, . . . , be an input sequence of independent identi-
cally distributed (iid) random vectors, generated from a density f(·, v), which depends
on the parameter vector v. Let {Lt : t > 0} be a discrete-time output process driven
by {Yt}, that is, Lt = Lt(Y1, . . . , Yt, θ). Assume that {Lt} is regenerative with cy-
cle length τ = τ(Y1, Y2, . . . , θ). It is well known [36] that the expected steady-state
(average) of {Lt} can be written as

�(v, θ) =
Ev [

∑τ
t=1 Lt]

Ev[τ]
=

�1(v, θ)

�2(v, θ)
, (2)

provided that Ev[τ] > 0 and Ev [|∑τ
t=1 Lt|] < ∞, and similarly when Lt is a continuous-

time regenerative process. A finite-horizon model can be viewed as a special case of
this: just replace �2(v, θ) by 1.

3

Under standard regularity conditions allowing interchangeability of expecta-
tion and differentiation (e.g., uniform integrability), one has [1, 9, 17, 32]:

�1(v, θ) = Eg

[
τ∑

t=1

LtWt

]
; (3)

∇v�1(v, θ) = Eg

[
τ∑

t=1

Lt∇vWt

]
, (4)

where Lt = Lt(Z1, . . . , Zt, θ), Wt =
∏t

j=1 f(Zj, v)/g(Zj), (Z1, . . . , Zt) has density∏t
j=1 g(zj), g(·) is a density that dominates all the f(·, v)’s in the sense that f(z, v) > 0

for some v implies g(z) > 0, and Eg denotes the expectation with respect to g. To
obtain similar expressions for �2, just replace Lt by 1. We call Wt, ∇Wt, LtWt,
and Lt∇Wt the likelihood ratio, score function, sample performance, and sensitivity
processes, respectively. This could also be generalized to larger values of k [17, 32].

If we further assume that ∇θLt(θ) is available from the simulation, that ∇θτ = 0
(which is typical, since τ is usually piecewise constant as a function of θ), and under
a few additional conditions (see [8, 13]), then one also has

∇θ�1(v, θ) − �1(v, θ)∇θ�2(v, θ) = Eg

[
τ∑

t=1

Wt∇θLt

]
. (5)

(Note that the latter bracketted expression is typically not an unbiased estimator
of �1(v, θ) when τ depends on θ.) When these conditions are not satisfied, one can
still rely to finite differences to estimate the gradients on the left-hand-side of (5),
preferably with common random numbers (see [20]).

Remark 1 In this setup, we have implicitly assumed that both v and θ are continous
parameters and that the derivatives exist. In the case where either v or θ is discrete,
then we just forget about the corresponding derivatives.

Consider now a sample of N iid regeneratice cycles, with values τi, Lti, and Wti

of τ , Lt, and Wt, respectively, for t ≥ 1 and 1 ≤ i ≤ N , again based on the underlying
distribution g. Then, under the conditions mentioned above, unbiased estimators of
�1(v, θ) and ∇v�1(v, θ) are given by

�1N(v, θ) =
1

N

N∑
i=1

τi∑
t=1

LtiWti,

∇v�1N(v, θ) =
1

N

N∑
i=1

τi∑
t=1

Lti∇vWti,

4

and similarly for �2 with Lti replaced by 1. Consistent estimators of �(v, θ) =
�1(v, θ)/�2(v, θ) and ∇v�(v, θ) = (∇v�1(v, θ)− �(v, θ)∇v�2(v, θ))/�2(v, θ) are then given
by:

�N(v, θ) =
�1N(v, θ)

�2N(v, θ)
(6)

and

∇v�N(v, θ) =
∇v�1N(v, θ) − �N(v, θ)∇v�2N(v, θ)

�2N(v, θ)
(7)

respectively. Note that these estimators depend on v only through the Wti’s, which
can typically be written explicitly as functions of v for fixed values of the underlying
random variables Zji’s. These estimators then permit one to estimate the function and
its gradient in functional form w.r.t. v, from the simulation of N regenerative cycles
based on density g. Confidence intervals at any fixed value of v can be computed
as explained in [11]. In a similar way, again under the appropriate conditions, a
consistent estimator of ∇θ�(v, θ) is given by

∇θ�N(v, θ) =
∇θ�1N(v, θ)

�2N(v, θ)
. (8)

2.2 Selecting the Reference Parameter Value

An important question in this context is how to select g. Henceforth, we shall assume
that g(·) = f(·, v0), where v0 is a fixed value of v called the reference parameter value.
Now the question is how to select v0. This has been studied, e.g., in [2, 19, 32]. A good
choice of v0 turns out to be extremely important, because for a given v, the variance
of the estimators (6–8) may blow up to a very large value or even become infinite
for certain choices of v0. A good choice of v0 may reduce the variance at a given v
compared to that obtained with v0 = v (the usual choice in standard simulation). On
the other hand, it may happen that for any given value of v0, the variance blows up
for certain values of v.

Solving the problem:
min
v0∈V

Varv0 [�N(v, θ)], (9)

for a given v ∈ V is very difficult in general. In our context, we are also interested
in a value of v0 that does well for all values of v in a certain region. Asmussen and
Rubinstein [2] and Rubinstein and Shapiro [32] have studied the problem (9) in the
context where �(v, θ) is the average sojourn time per customer in a single queue. In
that context, let ρ(v) denote the traffic intensity (which is assumed to depend on v).

5

Under conditions given in [32], Varv0 [�N(v, θ)] is strictly convex w.r.t. v0 and one has
ρ(v∗0) > ρ(v), where v∗0 is the optimal solution of (9). This means that it is best to
simulate at a larger traffic intensity than the one at which we want to estimate the
performance or its gradient. The trace of the variance of ∇v�N(v, θ) has the same
property under similar conditions. Under these conditions, for a given v, there exists
a traffic intensity ρ̃ > ρ = ρ(v) such that

Varv0 [�N(v, θ)] ≤ Varv[�N(v, θ)] (10)

if and only if ρ(v0) ∈ [ρ, ρ̃], and similarly for the trace of the variance of ∇v�N(v, θ).
Conversely, for a fixed ρ0 = ρ(v0), there exists an interval [ρ̂, ρ0], such that

Varv0 [�N(v, θ)] ≥ Varv[�N(v, θ)] (11)

for all v such that ρ(v) ∈ [ρ̂, ρ0]. When going below ρ̂ and above ρ0, the variance
of the “what-if” estimator �N(v, θ) typically increases rather slowly and very fast,
respectively, w.r.t. ρ. Similar results were obtained for more complex queueing models
for which the performance measure is the average sojourn or waiting time. A general
recommendation from [2, 32] is: in order to be on the safe side one should choose v0

such that ρ(v0) is moderately larger than the nominal value ρ = ρ(v). That does not
tell us the precise value of v∗0 in general, but gives us some rough guideline for that
particular class of models.

Example 1 Suppose that the performance measure of interest is the average sojourn
time in an M/M/1 queue with traffic intensity ρ = ρ(v). In this case, ρ̃ can be
found analytically as a function of ρ [2]. For example, if ρ = 0.5, then ρ̃ ≈ 0.8,
so that the variance is reduced for ρ0 ∈ [ρ, ρ̃] ≈ [0.5, 0.8], which is a rather broad
interval. Conversely, for ρ0 = 0.8, we obtain variance reduction in the sense of (11)
simultaneously for all ρ ∈ [0.5, 0.8].

Example 2 Let Lt(θ) be the expected waiting time for the t-th customer in a
GI/D/1 queue and assume that we want to estimate the gradient of the steady-
state waiting time, ∇θ�(v, θ), where θ is the (deterministic) service time. To do so,
recall first (see [34]) that for a GI/G/1 queue, for t ≤ τ , one has

Lt(θ) =
t−1∑
j=1

(Yj − Aj),

where τ = min{t : Lt(θ) ≤ 0}, Yj and Aj are the service time of customer j and the
interarrival time between customers j− 1 and j, respectively. For the GI/D/1 queue,

6

Lt(θ) reduces to

Lt(θ) =
t−1∑
j=1

(θ − Aj). (12)

Differentiating Lt(θ) with respect to θ, we obtain

∇θLt(θ) =
t−1∑
j=1

(1 − Aj). (13)

Substituting finally Lt(θ) and ∇θLt(θ) from (12) and (13) into (8), we obtain the
estimator ∇θ�N(v, θ) which allows the estimation of ∇θ�(v, θ) from a single simulation,
simultaneously for different values v, for a fixed θ.

Now, let θ be fixed, while we are interested in estimating at values v1, . . . , vr1

of v in V . In this case we are interested in the following extension of problem (9):

min
v0∈V

max
v=v1,...,vr1

Varv0 [�N(v, θ)]. (14)

Arguing as before, again in the same queueing context, it seems natural to choose the
reference parameter v0 in such a way that

ρ(v0) ≈ ρ+ = max
k=1,...,r1

ρ(vk), (15)

which means that the reference parameter v0 should correspond to the highest traffic
intensity among all traffic intensities associated with the selected values v1, . . . , vr1 . Of
course, it may happen that ρ− = mink=1,...,r1 ρ(vk) < ρ̂, in which case the variance is
decreased in the sense of (11) whenever ρ = ρ(vk) is in [ρ̂, ρ+], and increased otherwise.
In the latter case, the variance increase is typically moderate when ρ̂ − ρ is not too
large and the cycle length τ tends to be small (see [2, 19] for illustrations). If that
is not the case, then the set {v1, . . . , vr1} should be partitioned into smaller subsets
and a different v0 chosen over each subset.

2.3 Many values of θ: the “what-if” Design for both
parameters

Consider now the estimation of �(v, θ) for the “what-if” design

{(v, θ) = (vk, θj), k = 1, . . . , r1, j = 1, . . . , r2}. (16)

7

In this case, the CMC method (based on N regenerative cycles) requires a total
of r1r2N simulations, whereas a straightforward combination of CMC (for θ) with
SF/LR method requires only r2N simulation runs. The idea is simply to apply the
technique used for the case of a fixed θ to each value θj of interest, as follows:

a) Select a reference parameter v0,j;

b) Perform N simulation runs using density g(·) = f(·, v0,j), at θ = θj, and com-
pute Lti and Wti (the latter in functional form) for each run i;

c) Calculate �N(vk, θj) according to (6) for k = 1, . . . , r1.

A trivial adaptation of the above permits one to also compute the gradient estimators
(7) and (8) over the “what-if” design.

Remark 2 In typical applications, the traffic intensity is often monotone in each
component of v and θ. When this is the case, it is easy to find out the parameter
value (v0, θ0) that gives the largest traffic intensity ρ0, and use it as a reference
parameter to estimate the performance at all other parameter values of interest. On
the other hand, using the same v0 for all θ of interest is not really necessary.

Remark 3 It is common practice in simulation to use the same stream of random
numbers while running different scenarios (see, e.g., [16, 18, 30, 37]), in order to
reduce the variance of the differences across scenarios. In the present context, this
means that the same stream of random numbers would be used for all values of j,
with proper synchronization, so that the differences between the estimates will be
due only to the different parameter values, and not to different random numbers.

Remark 4 If θ is a continuous parameter, then the above method can be combined
with different standard experimental design (ED) methods, such as the full factorial
design, the central composite design, and so on, w.r.t. the parameter θ. Such designs
turn out to be particular cases of the above “what-if” design, aimed at fitting a
regression curve to the response surface �(v, θ).

Example 3 Suppose that we want to estimate the steady-state expected waiting
time in a GI/G/c/m queue with interarrival rate of 1, for all the combinations of
r1 different values of the service rate v and r2 different values of the buffer size
θ = m. To do so, we select a v0,j according to (15) for each buffer size mj from the
set {m1, . . . ,mr2}, then run the corresponding r2 simulations. Here, the reference

8

parameter v0,j should be the smallest value of v of interest, which (in this case) is the
same for all j. In comparison with CMC, the number of runs is reduced from r1r2 to
r2. If one also has ρ ∈ [ρ̂, ρ0], then a variance reduction is also obtained at the same
time. If not, then one may partition the values of v of interest into separate intervals,
then select a different v0 and perform separate simulations for each interval. For a
more specific illustration, consider an M/M/2/m queue with m ∈ {5, 10, 15} and
v ∈ {1.25, 1.5, 2.0, 5.0}. Here, one would choose v0 = 1.25 as the reference parameter
value. From numerical experiments with this example, we found that the estimator
of �(v, θ) based on the change of measure is more accurate (has less variance) in the
sense of (11) than its CMC counterpart for v ≤ 2, and less accurate for v = 5.0, for
all values of m considered.

3 Optimization

3.1 Discrete Parameters

Consider the minimization problem:

min
(v,θ)∈V ×Θ

�(v, θ), (17)

where V × Θ = {vk, θj, k = 1, . . . , r1, j = 1, . . . , r2}. To estimate the minimizer,
one can simply estimate �(v, θ) at all points of V ×Θ (using perhaps the approach of
Section 2.3), and just select the system with the best sample value. Assuming that
there is a single best system, the probability of making the correct decision (choosing
the truly best system) under that procedure converges to one as N → ∞, under the
(weak) conditions that our estimators are consistent. This follows from the strong
law of large numbers (see also [32]). Note however that this does not tell us about
the probability of making the correct decision for a specific N .

For finite sample sizes N , there exists “ranking and selection” procedures for
selecting the best system among a finite number of candidates (here r1 × r2 candi-
dates), but these procedures usually assume independence between the performance
estimators for the different candidates (see [12, 16]). Such procedures will return one
of the candidates, which will be the the best system, i.e., the minimizer of (17), with
probability at least p∗, where p∗ depends on the difference in performance between
the best and second best systems. Similar selection procedures using control variates
and common random numbers have been proposed and analyzed recently [37], but

9

the set of assumptions made for the analysis typically do not hold in the context of
the methodology outlines in Section 2.3. Developing ranking and selection procedures
for that context is a topic for further research.

3.2 Continuous Parameters

We are interested in the minimization problem:

min
(v,θ)∈V ×Θ

�(v, θ), (18)

where V and Θ are continuous parameter sets. Before proceeding further, consider
also the following two particular cases of (18):

min
v∈V

�(v, θ), for fixed θ ∈ Θ (19)

and
min
θ∈Θ

�(v, θ), for fixed v ∈ V. (20)

The problems (19) and (20) are well known in the stochastic optimization literature.
In particular, we can estimate the optimal solution of (19), say v∗(θ), by solving its
stochastic counterpart (SC) (see [32]):

min
v∈V

�N(v, θ), (21)

using a conventional mathematical programming method. The statistical properties
of the minimizer of (21), which is taken as an estimator of v∗(θ), are studied in [32].
Under reasonable conditions, the function �̄N(·, θ) is twice continuously differentiable,
and the minimizer in (21) obeys a central-limit theorem and converges to v∗(θ) as
O(N−1/2).

In the second case, if v is fixed and Θ is a compact and convex set, we can
estimate the optimal solution of (20), say θ∗(v), by using a conventional stochastic
approximation (SA) algorithm of the following form:

θn+1 := πΘ[θn − γnψn], (22)

where πΘ denotes the projection on the convex set Θ, ψn is an estimator of ∇θ�(v, θ)
at θ = θn (computed at iteration n of the SA algorithm), θn is the parameter value at
the beginning of iteration n, and {γn} is a sequence of gains, decreasing to zero, and
such that

∑∞
n=1 γn = ∞. A common choice for the sequence of gains is γn = γ0/n, for

10

some appropriate constant γ0. Under a few additional conditions, the SA algorithm
can be shown to converge to the optimizer w.p.1, and convergence rates can also
be obtained in several cases; see [6, 7, 15, 23, 27] and other numerous references
given there. The use of SA and other similar stochastic iterative methods which use
gradient or subgradient estimates in the context of on-line or simulated discrete-event
dynamic systems has attracted much attention recently; see, e.g., [7, 21, 22, 26] and
the several other references given there.

Remark 5 Here, to simplify the discussion, we have assumed that γn is a scalar.
However, it can also be a matrix of the same dimension as θ. Indeed, γn = γ0/n,
where γ0 is the inverse of the Hessian at the optimum, is asymptotically optimal under
broad conditions [15]. That inverse is of course unknown in practice, but adaptive
algorithms have been designed which modify both θn and γn (adaptively) between
iterations. Other techniques (e.g., averaging) can also improve the performance of
SA. For further details, see [15, 22, 27, 35] and the references given there.

Let us now turn back to the problem (18). Besides straightforward SA (22),
which can be applied to estimate the parameter vector (v∗, θ∗), we shall present three
new algorithms based on the programs (19) and (20), which combine SA with the
SC method. As we shall see below, those algorithms work iteratively, but differ from
each other by the fact that the first algorithm tries to solve the problems (19) and
(20) by iterating on v and θ sequentially, in a Gauss-Seidel-like manner, while the
other two perform parallel iterations with respect to both groups of variables, in a
Jacobi-like manner. The second algorithm is similar to the algorithm with Relaxation
used in games theory (see, e.g., [4]).

Algorithm 1 : Sequential algorithm

1. Choose two sequences of positive integers: {Mi, i ≥ 1} and {Ni, i ≥ 1}, and
three sequences of positive real numbers: {βi, i ≥ 1}, {εi, i ≥ 1}, and {γn, n ≥
1}, following the guidelines given by Assumption 1 below and the remarks that
follow. Choose an initial parameter vector (v1, θ1), which represents our best
guess of (v∗, θ∗). Let i := 1, n := 1, and θ1 = θ1.

2. REPEAT

(a) For v fixed at vi, perform SA for Mi iterations to improve the current value
of θ, i.e., repeat the following Mi times: Compute a gradient estimator ψn

w.r.t. θ by simulating at parameter value (vi, θn), let

θn+1 := πΘ[θn − γnψn], (23)

11

and increase n by 1.

(b) Let
θi+1 := θn. (24)

Simulate the system at some reference parameter value v0,i (which may
depend on vi), with θ fixed at θi+1, for Ni regenerative cycles, and then
solve the stochastic counterpart (21). Let ṽ∗i be the solution and ṽi an
approximation of it, such that ‖ṽi − ṽ∗i ‖2 ≤ εi. Put

vi+1 := βiṽi + (1 − βi)vi = vi + βi(ṽi − vi) (25)

and increase i by 1.

UNTIL an appropriate stopping criterion is met.

3. Return (vi, θ̄i) as an estimate of the optimal solution (v∗, θ∗).

Algorithm 2 : Parallel algorithm I

Same as Algorithm 1, except that θi+1 is replaced by θi in step 2b. With that modi-
fication, steps 2a and 2b can be performed in parallel.

Algorithm 3 : Parallel algorithm II

Same as Algorithm 1, except that (a–b) in step 2 are replaced by the following. Select
a reference parameter value v0,i and repeat the following Mi times: Compute
a gradient estimator ψn by simulating at parameter value (v0,i, θn), compute
θn+1 from (23), and increase n by 1. Then, solve the stochastic counterpart
(21) built from the data obtained during the last Mi SA iterations, assuming
(almost correctly) that θ was fixed at θ̄i+1 = (1/Mi)

∑n
j=n−Mi+1 θj. Let ṽi be an

approximation of the solution ṽ∗i , such that ‖ṽi − ṽ∗i ‖2 ≤ εi. Compute vi+1 from
(25) and increase i by 1.

Algorithms 1 and 2 are stochastic versions of the Gauss-Siedel and Jacobi
steepest descent algorithms for nonlinear optimization, respectively. Algorithm 3 is
fundamentally different in the sense that the same simulations are used for both
the SA and SC. Therefore, it could be more economical. However, its analysis and
implementation tend to be more difficult. For example, one difficulty could be the
choice of v0,i, because of the fact that θn is not fixed during an SC iteration.

12

For each of those algorithms, we also consider the following “averaging” ver-
sions: replace (24) by

θi+1 :=
1

Mi

n∑
j=n−Mi+1

θj. (26)

We shall call those versions 1’, 2’, and 3’, respectively. In those versions, the value
θi of θ that is used for the SC is the average of all values of θn during the last series
of SA iterations, instead of just the last θn. However, when we go back to SA, we
restart from the last θn. In our empirical investigations, that kind of averaging gave
much better results than just taking the last θn in the SC as stated in the “regular”
versions of the algorithms. However, the convergence proof appear technically more
difficult in that case, mainly because of the switching back from θi to θn after the SC.

Remark 6 Under appropriate assumptions, if we suppose that v∗i converges to some
value as i → ∞, then it is not hard to show by standard SA arguments that θn must
converge w.p.1. Conversely, if θn converges to some value, then the arguments of [32]
can be used to show that vi must also converges w.p.1 under appropriate conditions.
In both cases, if the function is convex and the optimizer is in the interior of Θ, then
the convergence point must be the optimum. However, we want (and we shall) prove
convergence without making any a priori assumption about the convergence of one
of the two sequences. This entails a little more complication.

We now state a list of sufficient conditions and give a convergence proof to the
optimum under those conditions. Let ∇2� denote the Hessian (matrix) of � and ‖ · ‖2

denote the Euclidean norm (or the sum of squares of the elements in the case of a
matrix). The vectors are assumed to be column vectors and the “prime” transposes
them into line vectors. For i = 1, 2, . . ., define mi = 1 +

∑i−1
j=1 Mj, let

∑
(i) denote∑mi+Mi

n=mi+1, and let γ̃i =
∑

(i) γn. We can decompose ψn, for n ≥ 1, as

ψn = ∇θ�(vi, θn) + ζn + ξn,

where E[ξn | vi, θn] = 0 and ζn = E[ψn | vi, θn] −∇θ�(vi, θn). The random variable ζn

represents the conditional bias on the gradient estimator ψn at the nth SA iteration,
while ξn represents the noise.

Assumption 1 (i) The function �(v, θ) is twice continuously differentiable over
V , which is a compact and convex subset of the d-dimensional real space for
some integer d, and there is a unique minimizer (v∗, θ∗) which is an interior
point of V × Θ.

13

(ii) The Hessian ∇2�(v, θ) is positive definite over V ×Θ, with smallest eigenvalue
bounded below by λmin > 0 and largest eigenvalue bounded above by λmax < ∞,
uniformly over V × Θ.

(iii) One has γn ↘ 0, 0 < βi ≤ 1,
∑∞

i=1 β
2
i /N

2
i < ∞, Ni → ∞, βi/(Niγ̃i) → 0,∑∞

i=1 min(βi, γ̃i) = ∞, γ̃i/βi ≤ K1, and εi ≤ K1/Ni for some finite constant
K1.

(iv) One has E[ζn] → 0, and ζn → 0 w.p.1 as n → ∞. Also, γnE[‖ξn‖2] → 0,
γnE[‖ξn‖2 | vi, θn] → 0 w.p.1, and

∑∞
n=1 γ

2
nE[‖ξn‖2] < ∞.

(v) W.p.1, �N(v, θ) is twice continuously differentiable w.r.t. v and there is a finite
constant K2 such that

sup
(v0,θ)∈V ×Θ

E
[
‖∇v �̄N(v∗(θ), θ)‖4 | v0, θ

]
≤ K2

2/N
2. (27)

In many cases, ζn is zero and the conditions on it hold trivially. The last
condition in Assumption 1(v) is reasonable in view of the fact that ∇v�(v

∗(θ), θ) = 0.

Observe that the solution v∗ of the SC (21) is usually not an unbiased estimator
of the optimal solution of the original minimization problem (18), but it is a consistent
estimator under broad conditions (see [32]). This is why we need to take Ni → ∞.
Reasonable choices for the sequences could be Ni = N0 + N1i for fixed constants N0

and N1, and Mi = Ni, which gives an equal part of the budget to the SA and SC
“components” of the algorithm. The role of βi is to introduce a weighted averaging
of the previous values of ṽi instead of just taking the last one. The aim of this is
mainly to reduce the variance. For example, one can take βi = Ni/

∑i
j=1 Nj, which is

equivalent to taking the weighted average:

vi+1 =

∑i
j=1 Nj ṽj∑i
j=1 Nj

.

Other possibilities include taking βi = β0/(b + i) for some positive constants β0 ≤ b,
or βi equals to a constant. The latter corresponds to exponential smoothing. The
standard choice for γn is γn = γ0/n for some constant γ0. Finally, one can take
εi = K1/Ni for some constant K1. We point out that with the above choices of
Ni and γn, and with βi equal to a constant, the condition: βi/(Niγ̃i) → 0 is not
satisfied.Nevertheless, that combination turned out to give the best results in our
empirical investigations.

14

Proposition 1 Under Assumption 1, one has

lim
i→∞

(
‖vi − v∗‖2 + ‖θi − θ∗‖2

)
= 0 w.p.1

in Algorithm 1.

Proof: Let ∆i = ‖vi − v∗‖2 + ‖θmi
− θ∗‖2 = ‖vi − v∗‖2 + ‖θi − θ∗‖2 and ∆i,j =

‖vi − v∗‖2 + ‖θmi+j − θ∗‖2, j = 0, . . . ,Mi. Let v∗i = v∗(θi+1), the optimal value of v
when θ is fixed at θi+1. For i ≥ 1, 0 ≤ j < Mi, and n = mi + j, define

Dn = ∇θ�(vi, θn),

Sn = 2(Dn − ψn)
′(θn − θ∗) + γn‖ψn‖2,

Ti = ‖ṽi − v∗i ‖2,

sn = E[Sn | vi, θn],

ti = E[Ti | vi,0, θi+1].

In the remainder of the proof, we will use the following lemmas.

Lemma 1 There is a constant 0 < K3 ≤ 1 such that for all (v, θ) ∈ V × Θ,

‖v − v∗(θ)‖ + ∇θ�(v, θ)
′(θ − θ∗) ≥ K3(‖θ − θ∗‖2 + ‖v − v∗‖2).

Proof: First, observe that

�(v, θ) = �(v∗, θ∗) + ∇�(v∗, θ∗)′
(
θ − θ∗

v − v∗

)
+

1

2

(
θ − θ∗

v − v∗

)′
∇2�(v̂, θ̂)

(
θ − θ∗

v − v∗

)

≥ λmin

2
(‖θ − θ∗‖2 + ‖v − v∗‖2)

where (v̂, θ̂) lies on the line segment joining (v, θ) to (v∗, θ∗). Since � is convex, one
has

�(v, θ) − �(v∗, θ∗) ≤ ∇θ�(v, θ)
′(θ − θ∗) + ∇v�(v, θ)

′(v − v∗)

= ∇θ�(v, θ)
′(θ − θ∗) + ∇v�(v

∗(θ), θ)′(v − v∗)

+ (v − v∗(θ))′∇2
v �(ˆ̂v, θ)(v − v∗)

≤ ∇θ�(v, θ)
′(θ − θ∗) + λmax‖v − v∗(θ)‖ · ‖v − v∗‖,

where ˆ̂v lies on the line segment between v and v∗(θ). Since V is compact, ‖v − v∗‖
is bounded above, say by K, so that

‖θ − θ∗‖2 + ‖v − v∗‖2 ≤ 2

λmin

∇θ�(v, θ)
′(θ − θ∗) +

2Kλmax

λmin

‖v − v∗(θ)‖, (28)

and the result follows.

15

Lemma 2 There is a finite constant K4 such that for all i ≥ 1,

ti ≤ K4/Ni w.p.1 and E[T 2
i] ≤ K2

4/N
2
i . (29)

Proof: Let �̄i denote the sample function that corresponds to (6) obtained at itera-
tion i with N = Ni. From Assumption 1(i,v) and Taylor’s expansion, for any θ ∈ Θ,
one has

�i(ṽ
∗
i , θ) − �i(v

∗
i , θ) = (ṽ∗i − v∗i)

′∇v�i(v
∗
i , θ) + (ṽ∗i − v∗i)

′∇2
v �i(ui(θ), θ)(ṽ

∗
i − v∗i)/2

where ui(θ) lies on the line between v∗i and ṽ∗i . By definition of ṽ∗i , �i(ṽ
∗
i , θi+1) −

�i(v
∗
i , θi+1) ≤ 0. Therefore,

2‖ṽ∗i − v∗i ‖ · ‖∇v�i(v
∗
i , θi+1)‖ ≥ (ṽ∗i − v∗i)

′∇2
v �i(ui(θi+1), θi+1)(ṽ

∗
i − v∗i)

≥ λmin‖ṽ∗i − v∗i ‖2,

so

‖ṽ∗i − v∗i ‖ ≤ (2/λmin)‖∇v�i(v
∗
i , θi+1)‖

and, from Assumption 1(v), w.p.1,

E
[
‖ṽi − v∗i ‖2 | vi,0, θi+1

]
≤ 2

(
4

λ2
min

E
[
‖∇v�i(v

∗
i , θi+1)‖2 | vi,0, θi+1

]
+ εi

)

≤ 8K2

λ2
minNi

+
2K1

Ni

.

Similarly,

E[T 2
i] = E

[
‖ṽi − v∗i ‖4

]
≤ 8

(
E

[
‖ṽ∗i − v∗i ‖4

]
+ E

[
‖ṽi − ṽ∗i ‖4

])

≤ 8

(
24

λ4
min

E
[
‖∇v�i(v

∗
i , θi+1)‖4

]
+ ε2i

)

≤ 128K2
2

λ4
minN

2
i

+
8K2

1

N2
i

.

Define K4 = max(8K2/λ
2
min + 2K1, 128K2

2/λ
4
min + 8K2

1).

We now continue the proof of the proposition. We have:

∆i,j+1 = ‖vi − v∗‖2 + ‖θn+1 − θ∗‖2

≤ ‖vi − v∗‖2 + ‖θn − γnψn − θ∗‖2

= ∆i,j − 2γnψ
′
n(θn − θ∗) + γ2

n‖ψn‖2

≤ ∆i,j + γnSn − 2γnD
′
n(θn − θ∗).

16

Also,

∆i+1 = ‖vi+1 − v∗‖2 + ‖θi+1 − θ∗‖2

= ‖vi + βi(ṽi − vi) − v∗‖2 + ‖θi+1 − θ∗‖2

≤ (1 − βi)‖vi − v∗‖2 + βi‖ṽi − v∗‖2 + ‖θi+1 − θ∗‖2

= ‖vi − v∗‖2 + ‖θi+1 − θ∗‖2 + βi[‖ṽi − v∗‖2 − ‖v∗i − v∗‖2]

−βi[‖vi − v∗‖2 − ‖v∗i − v∗‖2]

≤ ∆i,Mi
+ βi‖ṽi − v∗i ‖2 − βi‖vi − v∗i ‖2.

Combining these inequalities yields

∆i+1 ≤ ∆i + βiTi − βi‖vi − v∗i ‖2 +
∑
(i)

γnSn − 2
∑
(i)

γnD
′
n(θn − θ∗). (30)

Let δi = E[∆i]. To complete the proof, we shall show first that δi → 0 as i → ∞,
then that ∆i → 0 w.p.1. For the former, we will show that for any ε > 0, δi eventually
gets smaller than ε for large i, and cannot go over 2ε thereafter. We will then do a
similar reasoning for ∆i. We draw some ideas from the proofs of Lemmas 7 and 8 of
Ermoliev and Gaivoronski [7].

From Assumptions 1(iv) and the fact that Dn as well as (θn−θ∗) are bounded,
we have that E[sn] = E[2ζ ′n(θn−θ∗)]+γnE[‖ψn‖2] → 0 as n → ∞. Take an arbitrary
0 < ε < 1 and define δ(ε) = K3ε. There is an integer i0 such that for all i ≥ i0 and
n ≥ mi,

max

{
K4

Ni

,
γ̃iE[sn]

βi

}
≤ δ2(ε)

16
(31)

and

max

{
E[sn],

K4βi

Niγ̃i

}
≤ δ(ε)

4
. (32)

Suppose that
δi > ε for all i ≥ i0. (33)

Then, for each i ≥ i0, using Lemma 1 and taking expectations, one has

E[‖vi − v∗i ‖ + D′
n(θn − θ∗)] ≥ K3E[‖vi − v∗‖2 + ‖θn − θ∗‖2]

> K3ε = δ(ε), (34)

17

which implies that either
E[‖vi − v∗i ‖] ≥ δ(ε)/2 (35)

or
E[D′

n(θn − θ∗)] > δ(ε)/2 for all n in {mi, . . . ,mi+1 − 1}. (36)

If i ≥ i0 and (35) holds, then E[‖vi−v∗i ‖2] ≥ δ(ε)2/4 and, from (30), Lemma 2,
and (31),

δi+1 − δi ≤ βiE[ti − δ2(ε)/4)] +
∑
(i)

γnE[sn]

≤ βi[K4/Ni − δ2(ε)/4)] + γ̃i sup
mi≤n<mi+1

E[sn]

≤ −βiδ
2(ε)/8.

On the other hand, if (36) holds, from (30), Lemma 2, and (32), one has

δi+1 − δi ≤ βiE[ti] +
∑
(i)

γn(E[sn] − δ(ε))

≤ K4βi

Ni

+ γ̃iδ(ε)/4 − γ̃iδ(ε)

≤ −γ̃iδ(ε)/2.

Combining these inequalities yields

δi+1 − δi ≤ −min(δ(ε)βi, γ̃i)δ(ε)/8 (37)

and ∞∑
i=i0

(δi+1 − δi) ≤ −
∞∑

i=i0

min(δ(ε)βi, γ̃i)δ(ε)/8 = −∞.

This implies that δi → −∞, which is a contradiction because δi can never be negative.
Therefore, there exists i1 ≥ i0 such that δi1 < ε. We now claim that δi < 2ε for all
i ≥ i1. Suppose otherwise, that is, i3 = inf{i ≥ i1 | δi > 2ε} < ∞, and let
i2 = max{i < i3 | δi < ε}. For i ≥ i0, one has

δi+1 − δi ≤ βiE[ti] +
∑
(i)

γnE[sn] ≤ K4βi

Ni

+ γ̃i sup
mi≤n<mi+1

E[sn] ≤ ε/2.

Therefore, one must have i3 − i2 > 1 and ε < δi < 2ε for i2 < i < i3. Then, by
the same reasoning as above, δi+1 − δi ≤ −min(δ(ε)βi, γ̃i)δ(ε)/8 < 0 for i2 < i < i3,
which contradicts the definition of i3. Since ε is arbitrary, we have now shown that
δi → 0 as i → ∞.

18

Now, for each ε > 0 and integer i0,

εP [∆i ≥ ε for all i ≥ i0] = εP
[
inf
i≥i0

∆i ≥ ε
]

≤ E
[
inf
i≥i0

∆i

]
≤ inf

i≥i0
E[∆i] = 0.

Therefore, w.p.1, there exists i1 ≥ i0 such that ∆i1 < ε.

From Lemma 2 and Assumption 1(iii), we have that

∞∑
i=1

β2
i E[(Ti − ti)

2] < ∞. (38)

It then follows from standard martingale theory that

∞∑
i=1

βi(Ti − ti) < ∞. w.p.1. (39)

We also have

∞∑
n=1

γn(Sn − sn) = 2
∞∑

n=1

γnξ
′
n(θn − θ∗) +

∞∑
n=1

γ2
n(‖ψn‖2 − E[‖ψn‖2 | vi, θn])

= 2
∞∑

n=1

γnξ
′
n(θn − θ∗) +

∞∑
n=1

γ2
n‖ξn‖2 + 2

∞∑
n=1

γ2
nξ

′
n(Dn + ζn).

Since E [
∑∞

n=1 γ
2
nξ

2
n] < ∞ and since {θn} and {Dn} evolve in compact sets, it follows

(again from a martingale argument) that the first and third sums in the last expression
are finite w.p.1. The second sum is also finite w.p.1 because all its terms are non-
negative and it has finite expectation. We then have

∞∑
n=1

γn(Sn − sn) < ∞ w.p.1. (40)

It follows from (39) and (40) that, w.p.1, βi(Ti − ti) → 0, γn(Sn − sn) → 0, and so,
in view of (30) and since both {ti} and {sn} converge to zero w.p.1, we have that
max(0, ∆i+1 − ∆i) → 0 w.p.1. Choose i0 such that for all i ≥ i0, ∆i+1 − ∆i < ε/2
and

sup
I≥i0

I∑
i=i0

βi(Ti − ti) +

∑
(i)

γn(Sn − sn)

 ≤ ε/2. (41)

19

Then, choose i1 ≥ i0 such that ∆i1 < ε. By a similar argument as in the case of the
expectation, we now show that ∆i < 2ε for all i ≥ i1. Suppose that i3 = inf{i ≥ i1 |
∆i > 2ε} < ∞, and let i2 = max{i < i3 | ∆i < ε}. Since ∆i+1 − ∆i < ε/2, we must
have i3 − i2 > 1. Then, for i2 < i < i3, we have ε < ∆i < 2ε and

∆i+1 − ∆i ≤ βi(Ti − ti) +
∑
(i)

γn(Sn − sn) + βiti +
∑
(i)

γnsn

−βi‖vi − v∗i ‖2 − 2
∑
(i)

γnD
′
n(θn − θ∗)

≤ βi(Ti − ti) +
∑
(i)

γn(Sn − sn) − min(δ(ε)βi γ̃i)δ(ε)/8,

where the last inequality follows from the same arguments that we used to obtain (37),
but without the expectation E, and using the fact that sn = 2ζ ′n(θn−θ∗)+γnE[‖ψn‖2 |
vi, θn] → 0 w.p.1 from our assumptions. Combining this with (41), we obtain that
∆i3 − ∆i2+1 < ε/2. It follows that ∆i3 − ∆i2 < ε, contradicting the assumption that
∆i3 > 2ε. We have now shown that ∆i → 0 w.p.1 as i → ∞. That completes the
proof.

3.3 A Numerical Illustration

Example 4 To illustrate those algorithms, we will take a simple example, namely
an M/D/1 queue, where v is the arrival rate and θ is the (deterministic) service time
of each customer. Suppose we want to minimize

α(v, θ) = �(v, θ) + 1/v + 1/θ, (42)

where �(v, θ) = �1(v, θ)/�2(v, θ) is the average sojourn time in the system per cus-
tomer, while �1(v, θ) and �2(v, θ) are respectively the expected total sojourn time and
the expected number of customers, over one regenerative cycle. We impose the fol-
lowing constraints: 0.1 ≤ v ≤ 1.3 and 0.1 ≤ θ ≤ 0.7. These constraints will turn out
to be inactive at the optimum; however, they make sure that the system will remain
stable and that the parameters always take reasonable values all along the optimiza-
tion process. Indeed, the traffic intensity is bounded as follows: 0.01 ≤ vθ ≤ 0.91.
Minimizing (42) is clearly a rather simple and easy to solve example, but it can
nevertheless illustrate quite well our algorithms.

For the present example, one has �(v, θ) = θ + vθ2/(2(1 − vθ)); see Wolff [36,
p.385]. Using this in a deterministic optimization algorithm, one finds that (42) is
minimized by taking (v∗, θ∗) ≈ (1.0824, 0.5412). One has �2(v∗, θ∗) = 1/(1 − v∗θ∗) ≈

20

2.414, α(v∗, θ∗) ≈ 3.6955, and the values of the second derivatives of α with respect
to v and θ at that point are approximately 3.8076 and 13.437, respectively.

Here, we can use the score function method to estimate the derivative with
respect to v, but not the derivative with respect to θ, because the likelihood ratio
does not exist. For that second derivative, we will use here perturbation analysis
(IPA) [8, 17]. Minimizing (42) is equivalent to finding a zero of the gradient of (42)
with respect to (v, θ), or, equivalently, to solving the equations:

�2
2(v, θ)

d

dv
α(v, θ) = �2(v, θ)

d

dθ
α(v, θ) = 0, (43)

which can also be written as

�2(v, θ)
d

dv
�1(v, θ) − �1(v, θ)

d

dv
�2(v, θ) − �2

2(v, θ)/v
2 = 0; (44)

d

dθ
�1(v, θ) − �(v, θ)

d

dθ
�2(v, θ) − �2(v, θ)/θ

2 = 0. (45)

As explained in L’Ecuyer and Glynn [21], one can obtain an unbiased estimator of the
left-hand-side of (44) from two independent regenerative cycles and the score function
method, and an unbiased estimator of the left-hand-side of (45) from one regenerative
cycle with IPA.

The numerical results we present here are for Algorithms 1’–3’. We first tried
Algorithms 1–3 and the results were much more noisy. We took sequences of the
form Mi = Ni = N0 + N1i and γn = γ0/n, for different values of N0, N1, and
γ0, and tried both βi = 1/i and βi constant. In each case, the initial parameter
value was (v1, θ1) = (1/2, 1/2), and we used v0,i = 1.3. To compute ṽi in step
2(b) of the algorithm, we used a bisection method and stopped when the size of the
interval was smaller than 10−4 (so, εi is negligeably small). The stopping criterion
for the “REPEAT. . .UNTIL” loop was: stop after a total of T̄ customers have been
simulated, where T̄ is a fixed constant.

The function α here satisfies Assumption 1 (i), while (iv) is satisfied since ζi = 0
and one can show (much as in L’Ecuyer and Glynn [21]) that sup(v,θ)∈V ×Θ E[‖ξn‖2 |
v, θ] < ∞. Note that for βi constant, (iii) does not hold, but that nevertheless gave
us the best results empirically.

For each selected set of parameters (N0, N1, {βi}, γ0, T̄), each algorithm was
repeated 10 times and we computed the empirical mean, the standard deviation sd,
and the standard error se of the 10 final values of vi and θ̄i, as in L’Ecuyer, Giroux,
and Glynn [22]. If yk denotes the final value of parameter y for replication k (y = vi

21

or θ̄i), the latter quantities are defined by

µ(y) =
1

10

10∑
k=1

yk; s2
d(y) =

1

9

10∑
i=1

(yi − µ(y))2; s2
e(y) =

1

10

10∑
i=1

(yi − θ∗)2. (46)

A selection of results is given in Tables 1–3 for T̄ = 105, 106 and 107.

From those tables, we can observe the following.

1. When Ni is fixed to a small constant, the algorithm does not converge to the
optimizer. This can be seen by looking at the sd and se values when N1 = 0: a
small sd and large se indicate a small variance but large bias.

2. All three algorithms appear to converge at the canonical rate of O(T̄−1/2); that
is, when T̄ is multiplied by 100, sd and se are roughly divided by 10.

3. For that particular example, βi = 0.5 and Mi = Ni = 200 + 200i appear to
work well. It other words, it is better in this case to switch not too frequently
between SA and SC, and to insure that a large number of regenerative cycles is
used at every SC iteration.

Of course, these observations stand only for this particular example; the al-
gorithms can behave much differently in other situations. Nevertheless, this is a
first step towards getting insight about what goes on. We certainly cannot say that
these algorithms always work well and are easy to implement in general. Among the
difficulties that may arise, we mention the following:

1. Implementing the projection on V × Θ when it is a non-rectangular set; and
deciding what to do if it is non-convex.

2. Choosing appropriate sequences {Mi, Ni, βi, γn} for the problem at hand (the
performance of the algorithm is generally quite sensitive to those choices, and
our numerical results illustrate that to some extent).

3. Choosing the appropriate v0,i and implementing the SC part of the algorithm,
especially for Algorithm 3.

More investigation would be required before making specific recommendations for
dealing with those difficulties. Perhaps adaptive heuristic could also be designed.
This offers challenging opportunities for further research.

22

Table 1: Results for Example 3.1, with T̄ = 105.

Algor. N0 N1 βi γ0 µ(vi) µ(θi) sd(v) sd(θ) se(v) se(θ)

1’ 2 0 1/i 0.1 1.190 .513 .0045 .0046 .1076 .0290
1’ 20 0 1/i 0.1 1.216 .507 .0078 .0040 .1337 .0341
1’ 20 0 0.5 0.1 1.241 .502 .0620 .0084 .1691 .0400
1’ 200 0 0.5 0.1 1.195 .515 .0607 .0115 .1262 .0280
1’ 20 2 1/i 0.1 1.183 .514 .0211 .0069 .1021 .0276
1’ 20 2 1/i 0.5 1.180 .516 .0187 .0082 .0993 .0263
1’ 20 20 1/i 0.1 1.169 .521 .0302 .0084 .0915 .0221
1’ 20 20 1/i 0.5 1.154 .527 .0341 .0164 .0789 .0210
1’ 20 20 0.5 0.5 1.097 .542 .0221 .0119 .0254 .0113
1’ 200 200 0.5 0.1 1.068 .545 .0233 .0068 .0262 .0076
1’ 200 200 0.5 0.3 1.076 .539 .0197 .0106 .0197 .0103
1’ 200 200 0.5 0.5 1.076 .542 .0209 .0155 .0209 .0147

2’ 20 2 1/i 0.1 1.172 .519 .0226 .0057 .0922 .0227
2’ 20 2 1/i 0.5 1.178 .516 .0278 .0091 .0993 .0264
2’ 20 20 1/i 0.1 1.174 .517 .0238 .0067 .0944 .0249
2’ 20 20 1/i 0.5 1.115 .535 .0387 .0130 .0494 .0137
2’ 20 20 0.5 0.5 1.111 .539 .0453 .0100 .0516 .0097
2’ 200 200 0.5 0.1 1.040 .554 .0127 .0062 .0444 .0143
2’ 200 200 0.5 0.3 1.044 .550 .0147 .0114 .0407 .0138
2’ 200 200 0.5 0.5 1.058 .546 .0155 .0095 .0286 .0102

3’ 20 2 1/i 0.1 1.180 .515 .0130 .0040 .0986 .0270
3’ 20 2 1/i 0.5 1.133 .525 .0207 .0057 .0545 .0167
3’ 20 20 1/i 0.1 1.149 .523 .0435 .0125 .0790 .0218
3’ 20 20 1/i 0.5 1.106 .534 .0300 .0081 .0375 .0106
3’ 20 20 0.5 0.5 1.094 .537 .0120 .0020 .0160 .0043
3’ 200 200 0.5 0.1 1.052 .553 .0120 .0042 .0325 .0120
3’ 200 200 0.5 0.3 1.072 .544 .0097 .0021 .0138 .0034
3’ 200 200 0.5 0.5 1.075 .543 .0093 .0029 .0115 .0035

23

Table 2: Results for Example 1, with T̄ = 106.

Algor. N0 N1 βi γ0 µ(vi) µ(θi) sd(v) sd(θ) se(v) se(θ)

1’ 20 20 1/i 0.1 1.145 .524 .0260 .0269 .0670 .0189
1’ 20 20 1/i 0.5 1.127 .528 .0357 .0103 .0568 .0167
1’ 20 20 0.5 0.5 1.085 .540 .0133 .0056 .0128 .0054
1’ 200 200 0.5 0.1 1.087 .540 .0078 .0030 .0089 .0033
1’ 200 200 0.5 0.3 1.088 .540 .0063 .0028 .0080 .0030
1’ 200 200 0.5 0.5 1.085 .542 .0108 .0040 .0104 .0039

2’ 20 20 1/i 0.1 1.131 .528 .0369 .0099 .0595 .0165
2’ 20 20 1/i 0.5 1.106 .534 .0197 .0059 .0297 .0092
2’ 20 20 0.5 0.5 1.091 .538 .0172 .0064 .0186 .0068
2’ 200 200 0.5 0.1 1.080 .542 .0080 .0034 .0080 .0034
2’ 200 200 0.5 0.3 1.081 .541 .0116 .0048 .0111 .0045
2’ 200 200 0.5 0.5 1.092 .540 .0099 .0050 .0131 .0048

3’ 20 20 1/i 0.1 1.109 .533 .0221 .0062 .0340 .0098
3’ 20 20 1/i 0.5 1.075 .543 .0151 .0043 .0164 .0046
3’ 20 20 0.5 0.5 1.082 .541 .0061 .0016 .0058 .0016
3’ 200 200 0.5 0.1 1.082 .542 .0053 .0009 .0051 .0008
3’ 200 200 0.5 0.3 1.083 .541 .0026 .0013 .0025 .0012
3’ 200 200 0.5 0.5 1.084 .541 .0029 .0014 .0031 .0013

Table 3: Results for Example 1, with T̄ = 107.

Algor. N0 N1 βi γ0 µ(vi) µ(θi) sd(v) sd(θ) se(v) se(θ)

1’ 200 200 0.5 0.3 1.084 .541 .0041 .0012 .0042 .0013
2’ 200 200 0.5 0.3 1.083 .541 .0027 .0014 .0027 .0014
3’ 200 200 0.5 0.3 1.083 .541 .0019 .0003 .0019 .0003

24

Acknowledgments

This work was supported by NSERC-Canada grants no. OGP0110050 and OGP0005491,
FCAR-Québec grant no. EQ2831, and the Technion V.P.R. Fund — B.R.L. Bloom-
field Industrial Management Research Fund. We wish to thank G. Kochman, B. Polyak,
and S. Uryas’ev for valuable comments and suggestions.

References

[1] Asmussen, S. and R. Y. Rubinstein (1992a). The efficiency and heavy traffic
properties of the score function method for sensitivity analysis of queueing mod-
els. Adv. Appl. Probab. 24, 172–201

[2] Asmussen, S. and R. Y. Rubinstein (1992b). Performance evaluation for the score
function method in sensitivity analysis and stochastic optimization. International
Workshop on Computer-Intensive Methods in Discrete Event Systems, Vienna
1990, (G. Pflug ed.). Springer-Verlag, 1–12.

[3] Asmussen, S., R. Y. Rubinstein, and C. Wang (1995). Rare-events simulation via
likelihood ratios: from M/M/1 queues to bottleneck networks. In preparation.

[4] Basa̧r, T. (1987). Relaxation techniques and asynchronous algorithms for on-line
computation of non-cooperative equilibria, Journal of Economic Dynamics and
Control 11, 531–549.

[5] Bertsekas, D. P. and J. N. Tsitsiklis (1989). Parallel and distributed computation:
Numerical methods , Prentice-Hall.

[6] Ermoliev, Y. M. (1983). “Stochastic Quasigradient Methods and their Applica-
tion to System Optimization”, Stochastics , 9, 1–36.

[7] Ermoliev, Y. M. and Gaivoronski, A. A. (1992). “Stochastic Quasigradient Meth-
ods for Optimization of Discrete Event Systems”, Annals of Operations Research,
39, 1–39.

[8] Glasserman, P. (1991). Gradient Estimation via Perturbation Analysis, Kluwer
Academic Press.

[9] Glynn, P. W. and D. L. Iglehart (1989). Importance Sampling for Stochastic
Simulations, Management Science, 35, 11, 1367–1392.

[10] Glynn, P. W. (1990). Likelihood Ratio Gradient Estimation for Stochastic Sys-
tems, Communications of the ACM , 33, 10, 75–84.

25

[11] Glynn, P. W., L’Ecuyer, P., and Adès, M. (1991). “Gradient Estimation for
Ratios”, Proceedings of the 1991 Winter Simulation Conference, IEEE Press,
986–993.

[12] Goldsman, D., Nelson, B., and Schmeiser, B. (1991). Methods for Selecting the
best System, Proceedings of the 1991 Winter Simulation Conference, IEEE Press,
177–186.

[13] Heidelberger, P., X.-R. Cao, M. A. Zazanis, and R. Suri (1988). “Convergence
Properties of Infinitesimal Perturbation Analysis Estimates”, Management Sci-
ence, 34, 11, 1281–1302.

[14] Kleijnen, J. P. C. and Van Groenendaal, W. (1992). Simulation: A Statistical
Perspective, Wiley, Chichester.

[15] Kushner, H. J. and D. S. Clark (1978). Stochastic Approximation Methods for
Constrained and Unconstrained Systems, Springer-Verlag, Applied Math. Sci-
ences, Vol. 26.

[16] Law, A. M. and Kelton, W. D. (1991). Simulation Modeling and Analysis, second
edition, McGraw-Hill.

[17] L’Ecuyer, P. (1990). A unified view of the IPA, SF, and LR gradient estimation
techniques. Management Science, 36, 1364–1384.

[18] L’Ecuyer, P. (1992). Convergence rates for steady-state derivative estimator.
Annals of Operations Research, 39, 121–136.

[19] P. L’Ecuyer, “Two Approaches for Estimating the Gradient in Functional Form”,
Proceedings of the 1993 Winter Simulation Conference, 1993, 338–346.

[20] L’Ecuyer, P. and G. Perron (1994). On the Convergence Rates of IPA and FDC
Derivative Estimators. Operations Research 42, 643–656.

[21] L’Ecuyer, P. and P. W. Glynn (1994). Stochastic Optimization by Simulation:
Convergence Proofs for the GI/G/1 Queue in Steady-State. Management Science
40, 1562–1578.

[22] L’Ecuyer, P., N. Giroux, and P. W. Glynn (1994). Stochastic Optimization by
Simulation: Numerical Experiments for the M/M/1 Queue in Steady-State. Man-
agement Science 40, 1245–1261.

[23] L’Ecuyer, P. and G. Yin (1994). Budget-Dependent Convergence Rate of Stochas-
tic Approximation. Submitted.

[24] Pflug, G. Ch. (1990). On-Line Optimization of Simulated Markov Processes.
Mathematics of Operations Research 15, 381–395.

26

[25] Pflug, G. Ch. (1992). Gradient Estimates for the Performance of Markov Chains
and Discrete Event Processes. Annals of Operations Research 39, 173–194.

[26] Plambeck, E. L., Fu, B.-R., Robinson, S. M., and Suri, R. (1993). Optimizing
Performance Functions in Stochastic Systems. Submitted.

[27] Polyak, B. T. and Juditsky, A. B. (1992). Acceleration of Stochastic Approxi-
mation by Averaging, SIAM J. on Control and Optimization 30, 4, 838–855.

[28] Reiman, M. I. and A. Weiss (1989). Sensitivity analysis for simulations via like-
lihood ratios, Operations Research 37, 830–844.

[29] Rubinstein, R. Y. (1976). A Monte Carlo method for estimating the gradient in
a stochastic network. Unpublished manuscript, Technion, Haifa, Israel.

[30] Rubinstein, R. Y. (1986). Monte Carlo Optimization Simulation and Sensitivity
of Queueing Network , John Wiley & Sons, Inc., New York.

[31] Rubinstein, R. Y. (1992). Monte Carlo Methods for performance evaluation, sen-
sitivity analysis and optimization of stochastic systems, Encyclopedia of Com-
puter Science and Technology (Kent ed.), Marcel Deker, Inc., Vol. 25, 211–233.

[32] Rubinstein, R. Y. and A. Shapiro (1993). Discrete Event Systems: Sensitivity
Analysis and Stochastic Optimization via the Score Function Method , John Wiley
& Sons.

[33] Rubinstein, R. Y. and S. Uryas’ev (1992). On Relaxation algorithms in compu-
tation of Non-cooperative equilibria, submitted for publication.

[34] Suri, R. and M. A. Zazanis (1988). Perturbation analysis gives strongly consistent
sensitivity estimates for the M/G/1 queue, Management Science, 34, 1, 39–64.

[35] Uryas’ev, S. P. (1992). A Stochastic Quasigradient Algorithm with Variable Met-
ric, Annals of Operations Research, 39, 251–267.

[36] Wolff, R. (1989). Stochastic Modeling and the Theory of Queues, Prentice-Hall.

[37] Yang, W.-N. and Nelson, B. L. (1991). Using Common Random Numbers and
Control Variates in Multiple-Comparison Procedures, Operations Research, 39,
4, 583–591.

27

