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Département d’IRO, Université de Montréal
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Abstract

In this paper, we develop mathematical machinery for verifying that a broad class

of general state space Markov chains reacts smoothly to certain types of perturba-

tions in the underlying transition structure. Our main result provides conditions under

which the stationary probability measure of an ergodic Harris recurrent Markov chain

is differentiable in a certain strong sense. The approach is based on likelihood ratio

“change-of-measure” arguments, and leads directly to a “likelihood ratio gradient esti-

mator” that can be computed numerically.

Keywords: Harris recurrent Markov chain, likelihood ratio, gradient estimation,

regeneration.

Résumé

Nous développons dans cet article des outils mathématiques permettant de vérifier

qu’une chaine de Markov à espace d’états général réagit de manière régulière à cer-

tains types de perturbation de ses lois de transition. Le résultat principal fournit des

conditions suffisantes pour que la loi stationnaire d’une chaine de Markov ergodique

Harris-récurrente soit différentiable dans un certain sens très fort, soit au sens d’une

version étendue de la norme de la variation totale. Le développement est basé sur une

technique de changement de mesure (rapport de vraisemblance) et conduit directement

à un estimateur de gradient basé sur le rapport de vraisemblance, utilisable pour estimer

numériquement les dérivées.





1. Introduction

In this paper, we will study the class of Markov chains that arise as solutions to stochas-

tic recursions. Specifically, we shall consider sequences X = (Xn : n ≥ 0) that can be

represented in the form

Xn+1 = h(Xn, Zn+1),(1.1)

where the sequence Z = (Zn : n ≥ 1) is assumed to be i.i.d. (independent and identically

distributed). In the case that h is additive, Z is often termed the “innovations” sequence;

we shall adopt this terminology for the more general case considered here.

The class of chains that take the form (1.1) is very rich from an applications view-

point. In fact, Markov chains modeled in discrete time are often formulated as solutions to

stochastic recursions; see Meyn and Tweedie (1993) for examples. Our motivation to study

solutions X to (1.1) stems largely from our interest in discrete-event simulation, which is

perhaps the most widely used numerical tool for studying stochastic models of produc-

tion systems, telecommunication networks, and computer systems. Such simulations are

typically implemented computationally by recursively updating a certain internal state de-

scriptor that includes information on both the “physical state” and “clocks” that govern the

behavior of the process. These updates occur at state transition epochs, and take the form

(1.1). Consequently, the analysis that we shall pursue in this paper is, at least in principle,

applicable to the class of stochastic processes that correspond to discrete-event simulations.

(This class can basically be identified with the class of generalized semi-Markov processes

studied by König, Mathes, and Nawrotzki (1967), and by others.)

Our primary goal here is to study the behavior of the Markov chain X under pertur-

bations of the distribution that governs the innovations sequence Z. In particular, suppose

that θ is a real-valued parameter under which the Zn’s have common distribution Kθ (say).

In this paper, we will use likelihood ratio “change-of-measure” arguments to establish con-

ditions under which:

i) the expectation of a r.v. (random variable) defined over a randomized time-horizon is

differentiable in θ;
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ii) the stationary probability measure of X is differentiable in θ (in a sense to be made

more precise in Section 4).

We shall also discuss and illustrate how our conditions can be verified by using stochastic

Lyapunov functions. These methods permit one, for example, to establish differentiability of

the stationary distribution by verifying certain conditions that can be expressed in terms of

the distribution Kθ and the one-step transition function of X. These methods are illustrated

via applications to the waiting time sequence of the single-server queue and a general class

of nonlinear storage models. For the single-server queue, our techniques are sharp enough

to establish that essentially any functional of the steady-state distribution of the waiting

time sequence, having finite mean, is differentiable (see Proposition 6).

The differentiability results that we obtain can be viewed as strengthening the conti-

nuity theory for stochastic models studied by, for example, Kennedy (1972), and Whitt

(1974, 1980). Of course, it must be added that our theory typically demands more of the

underlying perturbation of the process than is the case in existing “continuity” literature

(for example, we basically require some form of differentiability). Derivatives of stationary

distributions have also been studied for finite Markov chains. Schweitzer (1968) gives “close

form” expressions (which can be computed by matrix operations) for such derivatives with

respect to the transition probabilities of the chain. Golub and Meyer (1986) show how to

differentiate the stationary distribution w.r.t. a parameter θ, assuming that the entries of

the transition matrix are differentiable w.r.t. θ.

In addition to developing theory that can be used to establish model “smoothness”,

our approach also provides expressions for the resulting derivatives that can be used to

numerically calculate the derivatives via simulation. In particular, we develop a “likelihood

ratio gradient estimator” that can be used to numerically calculate the derivative of the

steady-state expectation of a functional defined on a Harris recurrent Markov chain. This

estimator converges at rate t−1/2 in the amount of computational effort t, and is the only

known estimator having this property that works at the level of generality analyzed here.

(For more details on the likelihood ratio gradient estimators in general, see Rubinstein
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and Shapiro (1993) and the references given there. The method of infinitesimal perturba-

tion analysis is often more efficient but is limited to a much smaller class of models and

performance measures than those analyzed here; see Glasserman (1991) for details.)

We also consider enhancements to the basic estimator that can improve its numerical

efficiency. In particular, we emphasize the fact that the likelihood ratio can be based either

directly on the innovations sequence Z or on the chain X itself. We discuss the merits and

disadvantages of the two approaches, and offer the results of some numerical computation

performed on the waiting time sequence for comparison.

This paper is organized as follows. In Section 2, we consider a finite horizon model where

the horizon is a randomized stopping time and provide sufficient conditions under which

the expected performance measure is differentiable. We also construct likelihood ratio (LR)

derivative estimators where the LR can be based on either the filtration associated with

the “innovations process” or that associated with the Markov chain itself. In Section 3, we

construct LRs for Harris recurrent Markov chains, while in Section 4, we study the derivative

of such likelihood ratios and find a LR representation for the derivative of the stationary

distribution. From that, we construct LR derivative estimators for the steady-state average

cost. The results developed in Sections 3 and 4 build upon those of Section 2. In Section

5, we examine the single-server queue and a storage theory example. The latter is Harris

recurrent but has no state that is visited infinitely often with probability one. For each of

these examples, we illustrate how to use our Lyapunov methods to establish smoothness of

their corresponding stationary distributions. We also give numerical results for the M/M/1

queue that compare the LR gradient estimator based on the innovations process with that

based on the transition probabilities.

2. LR’s for Finite-Horizon Stochastic Recursions

In this section, we shall focus on finite-horizon simulations. We start by formulating the

problem more precisely. In particular, we assume that the sequences X and Z take values

in separable metric spaces S1 and S2, respectively. Note that IRd, when equipped with the
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Euclidean norm, is such a space; see Billingsley (1968). We require that h be a jointly

measurable function from S1 × S2 into S1. We define our basic probability space Ω as Ω =

(0, 1)×S1×S2×S2× . . .. A typical element ω ∈ Ω then takes the form ω = (u, x0, z1, z2, . . .)

where u ∈ (0, 1), x0 ∈ S1, and zi ∈ S2 for i ≥ 1. Then, we can define U(ω) = u, X0(ω) = x0,

Zn(ω) = zn for n ≥ 1, and

Xn+1(ω) = h(Xn(ω), Zn+1(ω))

for n ≥ 0. The random variable U is used to determine a randomized stopping time, as we

will see later on. For each θ ∈ Λ = (a, b), assume that Kθ is a probability measure on S2

that will act as the distribution of Zn under θ. We then let Pθ,x be the distribution on Ω

under which U has the uniform distribution over (0, 1), X0 = x, and Z = (Zn, n ≥ 0) is an

i.i.d. sequence having common distribution Kθ. Specifically,

Pθ,x(du× dx0 × dz1 × · · · × dzn) = du · δx(dx0) Kθ(dz1) . . . Kθ(dzn)(2.1)

for n ≥ 1. With the distributional assumption (2.1), the sequence X is then a (time-

homogeneous) Markov chain under Pθ,x, having the one-step transition function P (θ) de-

fined by

P (θ, x, dy)
∆
= Pθ,x[X1 ∈ dy]

for x, y ∈ S1.

In a finite-horizon setting, it is natural to permit the initial distribution µ to depend on

θ. More precisely, for each θ ∈ Λ, let µθ be a probability measure on S1. We can then let

Pθ be the probability measure on Ω defined by

Pθ(dω) =

∫

S1

µθ(dx)Pθ,x(dω),

under which X0 has distribution µθ, and the sequence Z is i.i.d. and independent of X0,

with common distribution Kθ.

In the most general form of a finite-horizon simulation, the time horizon T is determined

by a randomized stopping time. More precisely, for each θ ∈ Λ, we assume that there exists
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a family of functions (rn(θ) : n ≥ 0) such that for each n ≥ 0, rn(θ) : Sn+1
1 → [0, 1] is

measurable, and such that

Pθ[T = n | X] = rn(θ,X0, . . . , Xn).

Demanding this is equivalent to require that T be a randomized stopping time with respect

to (σ(X0, . . . , Xn) : n ≥ 0). One can use the r.v. U to determine the value of T as follows:

T = inf







j :
j
∑

n=1

rn(θ,X0, . . . , Xn) ≥ U







.

We now turn to the construction of a likelihood ratio (LR) representation of Pθ in terms

of Pθ0 . We will need to assume that:

(A1) There exists ε > 0 such that for each θ ∈ Λε = (θ0 − ε, θ0 + ε),

(i) Kθ is absolutely continuous with respect to Kθ0 ;

(ii) µθ is absolutely continuous with respect to µθ0 ;

(iii) rn(θ, x0, . . . , xn) > 0 implies rn(θ0, x0, . . . , xn) > 0 for all n ≥ 0 and

(x0, . . . , xn) ∈ Sn+1
1 .

Let k(θ, z) and u(θ, x) be the densities of Kθ and µθ with respect to Kθ0 and µθ0 ,

respectively, so that Kθ(dz) = k(θ, z)Kθ0(dz) and µθ(dx) = u(θ, x)µθ0(dx). Let ρ(θ) denote

rT (θ,X0, . . . , XT )/rT (θ0, X0, . . . , XT ) on {T < ∞} and let Gn = σ(U,X0, Z1, . . . , Zn) for

each n. (We omit writing the dependence of ρ(θ) on X0, . . . , XT to simplify the notation.)

It is now straightforward to establish the following result, where I denotes the indicator

function.

Theorem 1. Let Y be a non-negative GT -measurable random variable and let A1 be in

force. Then, there exists ε > 0 such that

Eθ[Y I(T <∞)] = Eθ0 [Y L̃(θ)I(T <∞)](2.2)

for θ ∈ Λε, where

L̃(θ) = u(θ,X0)ρ(θ)
T
∏

i=1

k(θ, Zi).(2.3)
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It turns out that one can obtain an alternative LR representation by conditioning ap-

propriately. Observe that A1 implies that P (θ, x, ·) is absolutely continuous with respect

to P (θ0, x, ·) and let p(θ, x, ·) be the density of P (θ, x, ·) with respect to P (θ0, x, ·). Set

Fn = σ(U,X0, . . . , Xn). Starting from Theorem 1, it is straightforward to establish that if

Y is a non-negative FT -measurable random variable, then

Eθ[Y I(T <∞)] = Eθ0 [Y L(θ)I(T <∞)](2.4)

where

L(θ) = u(θ,X0)ρ(θ)
T
∏

i=1

p(θ,Xi−1, Xi).(2.5)

Since (2.4) holds for any non-negative FT -measurable random variable and L(θ) is itself

FT -measurable, it follows from the defining property of conditional expectation that

L(θ) = Eθ0 [L̃(θ) | FT ]

on the set {T < ∞}. Furthermore, it should be noted that the above analysis establishes

that p(θ,Xi−1, Xi) = E[k(θ, Zi) | Xi−1, Xi].

Remark 1. One can use expressions (2.2) and (2.4) to estimate functionals of the measure

Pθ, while simulating X under θ0. Since L(θ) is a conditional expectation of L̃(θ), it is

evident that estimation based on (2.4) is statistically more efficient. Specifically, under mild

additional regularity hypotheses, the principle of conditional Monte Carlo asserts that this

latter estimator produces smaller confidence intervals for any given number of transitions

of X simulated; see Fox and Glynn (1986) for a similar argument. Generally speaking,

the more information Z contains relative to X, the greater the gain in statistical efficiency

should be. However, (2.2) could be much easier to implement, because the densities p(θ, ·, ·)

are often rather complicated functions in practice. Therefore, there is typically a trade-off

between variance reduction on the one side and ease of implementation and computational

cost on the other. As a result, whether (2.4) is preferable to (2.2) or vice-versa depends on

the problem considered.

Remark 2. The stopping time T is called non-randomized if each rn(θ,X1, . . . , Xn) is

either 0 or 1. In that case, it follows from A1 (iii) that ρ(θ) = 1 Pθ0-almost surely and the

likelihood ratios simplify accordingly.
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We will now derive a LR representation for the derivative of Pθ. For that, we shall require

that the family of distributions Kθ be suitably smooth in θ. To simplify our notation, let

P (·)
∆
= Pθ0(·) and E(·)

∆
= Eθ0(·). A “prime” will denote the derivative with respect to θ.

We shall assume that:

(A2) (i) There exists ε > 0 such that for each θ ∈ Λε, Pθ[T <∞] = 1;

(ii) There exists ε > 0 such that for each x ∈ S1 and z ∈ S2, u(·, x) and k(·, z)

are continuously differentiable on Λε;

(iii) There exists a random variable ρ′(θ0) such that

lim
h→0

E

[∣

∣

∣

∣

ρ(θ0 + h)− ρ(θ0)

h
− ρ′(θ0)

∣

∣

∣

∣

]

= 0;

(iv) For each p > 0, there exists ε = ε(p) such that

E

[

sup
θ∈Λε

∣

∣u′(θ,X0)
∣

∣

p

]

<∞, E

[

sup
θ∈Λε

∣

∣k′(θ, Z1)
∣

∣

p

]

<∞,

and sup
θ∈Λε

E

[∣

∣

∣

∣

ρ(θ)− 1

θ − θ0

∣

∣

∣

∣

p]

<∞.

Remark 3. Observe that A2 implies that for each p > 0, there exists ε = ε(p) such that

E

[

sup
θ∈Λε

|u(θ,X0)|
p

]

<∞ and E

[

sup
θ∈Λε

|k(θ, Z1)|
p

]

<∞.(2.6)

Indeed, one can write u(θ,X0) = 1 + (θ − θ0)u
′(ξ(θ), X0) for some ξ(θ) ∈ Λε, and so

E

[

sup
θ∈Λε

|u(θ,X0)|
p

]

≤ E

[(

1 + ε sup
θ∈Λε

∣

∣u′(θ,X0)
∣

∣

)p]

≤ 2p E

[

1 + εp sup
θ∈Λε

∣

∣u′(θ,X0)
∣

∣

p

]

< ∞.

The same argument applies to the second expression in (2.6). Assumption A2 also guaran-

tees that

lim
ε→0

E

[

sup
θ∈Λε

|k(θ, Z1)|
p

]

= E

[

lim
ε→0

sup
θ∈Λε

|k(θ, Z1)|
p

]

= 1.(2.7)

To see this, observe that the uniform integrability of the inside expression on the left permits

one to exchange the limit and the expectation, and the inside limit is equal to one because

k(·, z) is continuous and k(θ0, z) = 1.
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Recall that the transition density p(θ,Xi, Xi+1) was constructed using a measure-

theoretic argument based on properties of conditional expectation. We will now estab-

lish the L1 convergence of its difference quotient to the random variable p′(θ,Xi, Xi+1)
∆
=

E[k′(θ, Zi) | Xi−1, Xi], again using basic properties of conditional expectation.

Proposition 1. Assume A1 (i) and A2 (ii). Then, there is an ε > 0 such that for each

i ≥ 1 and θ ∈ Λε,

lim
h→0

E

[∣

∣

∣

∣

p(θ + h,Xi−1, Xi)− p(θ,Xi−1, Xi)

h
− p′(θ,Xi−1, Xi)

∣

∣

∣

∣

]

= 0.

Furthermore, for each p > 0, there exists ε = ε(p) > 0 such that

sup
θ∈Λε

E
[∣

∣p′(θ,X0, X1)
∣

∣

p]
<∞ and sup

θ∈Λε

E [|p(θ,X0, X1)|
p] <∞.

Proof: Recall that

p(θ,Xi−1, Xi) = E [k(θ, Zi)| Xi−1, Xi] .

Then, for h such that θ + h ∈ Λε, the continuous differentiability of k(·, Zj) and the mean

value theorem implies the existence of a random variable ξ ∈ Λε such that

p(θ + h,Xi−1, Xi)− p(θ,Xi−1, Xi)

h
a.s.
= E

[

k(θ + h, Zi)− k(θ, Zi)

h

∣

∣

∣

∣

Xi−1, Xi

]

= E
[

k′(ξ, Zi)
∣

∣Xi−1, Xi
]

and

E
[

|k′(ξ, Zi)|
∣

∣Xi−1, Xi
]

≤ E

[

sup
θ∈Λε

|k′(θ, Zi)|

∣

∣

∣

∣

∣

Xi−1, Xi

]

.

¿From A2, the latter has finite p-th moment for ε small enough. ¿From the dominated

convergence theorem for conditional expectations, it follows that

lim
h→0

E

[∣

∣

∣

∣

p(θ + h,Xi−1, Xi)− p(θ,Xi−1, Xi)

h
− p′(θ,Xi−1, Xi)

∣

∣

∣

∣

]

= E

[∣

∣

∣

∣

E

[

k(θ + h, Zi)− k(θ, Zi)

h
− k′(θ, Zi)

∣

∣

∣

∣

Xi−1, Xi

]∣

∣

∣

∣

]

= 0.
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The finiteness of the two suprema then follows via an application of the conditional Jensen’s

inequality. 2

Note that if the derivative of p(·, Xi−1, Xi) exists a.s., then it must be equal to

p′(·, Xi−1, Xi) a.s.. Proposition 1 calculates the limit of the sample path difference quo-

tient. To calculate the limit of the expectation (2.2) or (2.4), we will need to verify that we

can pass the derivative inside the expectation operator. An important ingredient in estab-

lishing this interchange is to control the behavior of the likelihood ratios L̃(θ) and L(θ). To

accomplish this, we will make the following assumption, to control the random variable T :

(A3) There exists z > 1 such that E[zT ] <∞.

We will also use the following lemma, which will permit us to analyze the difference

quotients. This lemma will be used not only in the proof of the next theorem, but also later

on, in the proof of Proposition 5, where we will need it to establish the uniform integrability

of some difference quotients directly without appealing to the mean value theorem. We

denote max(x, y) by (x ∨ y).

Lemma 1. Let z1, . . . , zn be non-negative real numbers. Then,
∣

∣

∣

∣

∣

n
∏

i=1

zi − 1

∣

∣

∣

∣

∣

≤
n
∑

i=1

|zi − 1| ·
n
∏

j=1

(zj ∨ 1).

Proof: This follows by induction on n. The result is obvious for n = 1. Assuming that the

result holds for n = k, note that
∣

∣

∣

∣

∣

k+1
∏

i=1

zi − 1

∣

∣

∣

∣

∣

≤ zk+1

∣

∣

∣

∣

∣

k
∏

i=1

zi − 1

∣

∣

∣

∣

∣

+ |zk+1 − 1|

≤ (zk+1 ∨ 1)

∣

∣

∣

∣

∣

k
∏

i=1

zi − 1

∣

∣

∣

∣

∣

+ |zk+1 − 1|
k
∏

j=1

(zj ∨ 1)

≤ (zk+1 ∨ 1)





k
∑

i=1

|zi − 1| ·
k
∏

j=1

(zj ∨ 1)



 + |zk+1 − 1| ·
k+1
∏

j=1

(zj ∨ 1)

=
k+1
∑

i=1

|zi − 1| ·
k+1
∏

j=1

(zj ∨ 1). 2

We are now ready to state one of our main technical results.
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Theorem 2. Assume A1–A3. Then, for each p > 0, there exists ε > 0 such that

sup
θ∈Λε

E

[∣

∣

∣

∣

L(θ)− L(θ0)

θ − θ0

∣

∣

∣

∣

p]

≤ sup
θ∈Λε

E

[∣

∣

∣

∣

∣

L̃(θ)− L̃(θ0)

θ − θ0

∣

∣

∣

∣

∣

p]

< ∞.

Proof: The first inequality follows immediately from the conditional Jensen inequality and

the fact that L(θ)
a.s.
= E[L̃(θ) | F ]. So, it remains to prove that the second expression is

finite. By Lyapunov’s inequality (see, for example, p. 47 of Chung (1974)), it suffices to

prove the result for p > 1. Noting that L̃(θ0) = 1, Lemma 1 yields

|L̃(θ)− L̃(θ0)| ≤

{

|u(θ,X0)− 1| + |ρ(θ)− 1| +
T
∑

i=1

|k(θ, Zi)− 1|

}

·(u(θ,X0) ∨ 1) · (ρ(θ) ∨ 1) ·
T
∏

i=1

(k(θ, Zi) ∨ 1).

Since we can assume p > 1, we may apply Hölder’s inequality and then Minkowski’s in-

equality to conclude that

sup
θ∈Λε

E

[∣

∣

∣

∣

∣

L̃(θ)− L̃(θ0)

θ − θ0

∣

∣

∣

∣

∣

p]

(2.8)

≤

{

sup
θ∈Λε

E
1

4p

[

∣

∣

∣

∣

u(θ,X0)− 1

θ − θ0

∣

∣

∣

∣

4p
]

+ sup
θ∈Λε

E
1

4p

[

∣

∣

∣

∣

ρ(θ)− 1

θ − θ0

∣

∣

∣

∣

4p
]

+ sup
θ∈Λε

E
1

4p

[

T
∑

i=1

∣

∣

∣

∣

k(θ, Zi)− 1

θ − θ0

∣

∣

∣

∣

]4p






p

·

{

sup
θ∈Λε

E
[

(u(θ,X0) ∨ 1)4p
]

sup
θ∈Λε

E
[

(ρ(θ) ∨ 1)4p
]

sup
θ∈Λε

E

[

T
∏

i=1

(k(θ, Zi) ∨ 1)4p
]}1/4

∆
= [a1 + a2 + a3]

p(b1b2b3)
1/4.

We will now show that each quantity in the latter expression is finite. To deal with

a1, we note that u(θ0, X0) = 1. Under A2, the mean value theorem yields the existence of

ξ(θ) ∈ Λε, for each X0 ∈ S1 and θ ∈ Λε, such that u(θ,X0)−1 = (θ−θ0)u
′(ξ(θ), X0). Then,

a4p1 = sup
θ∈Λε

E
[

|u′(ξ(θ), X0)|
]4p

≤ E

[

sup
θ∈Λε

|u′(θ,X0)|
4p

]

< ∞(2.9)
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for ε small enough, by A2. The finiteness of a2 is directly guaranteed by A2. For a3, we

note that k(θ0, Zi) = 1 for each i and recall that the Zi are i.i.d.. Under A2, the mean value

theorem can be applied to each of the T summands and for each θ, yielding the existence

of ξi(θ) ∈ Λε such that

a4p3 = sup
θ∈Λε

E





(

T
∑

i=1

|k′(ξi(θ), Zi)|

)4p


(2.10)

≤ E

[

T 4p max
1≤i≤T

sup
θ∈Λε

|k′(θ, Zi)|
4p

]

≤

(

E[T 8p] E

[

max
1≤i≤T

sup
θ∈Λε

|k′(θ, Zi)|
8p

])1/2

≤

(

E[T 8p] E

[

T
∑

i=1

sup
θ∈Λε

|k′(θ, Zi)|
8p

])1/2

=

(

E[T 8p] E[T ] E

[

sup
θ∈Λε

|k′(θ, Zi)|
8p

])1/2

,

which is again finite, for ε small enough, by A2 (iv) and A3. Wald’s indentity was applied

to obtain the final equality.

For b1, observe that

b1 = sup
θ∈Λε

E
[

(u(θ,X0) ∨ 1)4p
]

≤ 1 + sup
θ∈Λε

E
[

u(θ,X0)
4p
]

< ∞(2.11)

for ε sufficiently small, from Remark 3. For b2, observe that

(ρ(θ) ∨ 1)4p ≤ (1 + |ρ(θ)− 1|)4p

≤ 24p
(

1 + |ρ(θ)− 1|4p
)

≤ 24p
(

1 + ε4p
∣

∣

∣

∣

ρ(θ)− 1

θ − θ0

∣

∣

∣

∣

4p
)

and so

b2 ≤ 24p
(

1 + ε4p sup
θ∈Λε

E

[

∣

∣

∣

∣

ρ(θ)− 1

θ − θ0

∣

∣

∣

∣

4p
])

< ∞
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by A2 (iv). For b3, we have the following inequalities:

b3 ≤ sup
θ∈Λε

∞
∑

n=1

E

[(

n
∏

i=1

(k(θ, Zi) ∨ 1)4p; T ≥ n

)]

(2.12)

≤ sup
θ∈Λε

∞
∑

n=1

(

E

[

n
∏

i=1

(k(θ, Zi)
8p ∨ 1)

]

· P [T ≥ n]

)1/2

≤ sup
θ∈Λε

∞
∑

n=1

(

1 + E
[

|k(θ, Zi)
8p − 1|

])n/2
· (P [T ≥ n])1/2.

¿From (2.7), for each ε > 0, there exists δ(ε) > 0 such that supθ∈Λε
E
[

|k(θ, Zi)
8p − 1|

]

<

δ(ε) and limε→0 δ(ε) = 0, while from A3, there exists α < 1 and n0 such that P [T ≥ n] ≤ αn

for all n ≥ n0. Choose ε small enough such that (1 + δ(ε))α < 1. Then,

b3 ≤
n0−1
∑

n=1

(1 + δ(ε))n/2 +
∞
∑

n=n0

[(1 + δ(ε))α]n/2 <∞.

This concludes the proof of the theorem. 2

The derivation of a LR representation for the derivative of Pθ basically reduces to

bringing the derivative inside the expectation operator appearing in expressions (2.2) and

(2.4). The random variables which then need to be differentiated with respect to θ are L̃(θ)

and L(θ).

Proposition 2. Assume A1, A2, and A3. Then,

lim
h→0

E

[∣

∣

∣

∣

∣

L̃(θ0 + h)− L̃(θ0)

h
− L̃′(θ0)

∣

∣

∣

∣

∣

]

= 0

and

lim
h→0

E

[∣

∣

∣

∣

L(θ0 + h)− L(θ0)

h
− L′(θ0)

∣

∣

∣

∣

]

= 0,

where

L̃′(θ0) = L̃(θ0)

[

u′(θ0, X0)

u(θ0, X0)
+

ρ′(θ0)

ρ(θ0)
+

T
∑

i=1

k′(θ0, Zi)

k(θ0, Zi)

]

,(2.13)

L′(θ0) = L(θ0)

[

u′(θ0, X0)

u(θ0, X0)
+

ρ′(θ0)

ρ(θ0)
+

T
∑

i=1

p′(θ0, Xi−1, Xi)

p(θ0, Xi−1, Xi)

]

(2.14)

= E[L̃′(θ0) | F ].
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Proof: Assumption A2 permits us to define the random variable:

D̃ = [u′(θ0, X0)ρ(θ0) + u(θ0, X0)ρ
′(θ0)]

T
∏

i=1

k(θ0, Zi)

+ u(θ0, X0)ρ(θ0)
T
∑

i=1

k′(θ0, Zi)
∏

j 6=i

k(θ0, Zj).

That assumption also guarantees that we have enough differentiability present for the dif-

ference quotient (L̃(θ0 + h) − L̃(θ0)/h to converge in probability to D̃. In Theorem 2, we

have established the uniform integrability of that difference quotient. It then follows that

lim
h→0

E

[∣

∣

∣

∣

∣

L̃(θ0 + h)− L̃(θ0)

h
− D̃

∣

∣

∣

∣

∣

]

= 0.

To show that D̃ can be written as in (2.13), we need to show that u(θ0, X0) is positive

whenever u′(θ0, X0) 6= 0 (so that we may divide through by u(θ0, X0)), and similarly for k

and ρ. Observe, however, that if {u(θ0, X0) = 0, u′(θ0, X0) 6= 0} has positive probability,

then it follows that {u(θ0, X0) < 0} has positive probability as well. This contradiction

allows us to divide through by u(θ0, X0), and similarly for k. For ρ, recall that ρ(θ0) = 1

by definition. Therefore D̃ = L̃′(θ0). The expression (2.14) follows by taking conditional

expectations in (2.13) with respect to FT and applying Proposition 1. 2

In Theorem 2 and Proposition 2, we proved that the difference quotients are well-

behaved. Those results are the main tools required to establish our next theorem. That

theorem provides general conditions under which finite-horizon performance measures are

differentiable.

Theorem 3. Let Y be an FT -measurable random variable for which there exists δ > 0 such

that E[|Y |1+δ] <∞. If A1–A3 hold, then

d

dθ
Eθ[Y ]

∣

∣

∣

∣

θ=θ0

= Eθ0 [Y L̃′(θ0)].(2.15)

Furthermore, Eθ0 [Y L̃′(θ0) | FT ] = Y L′(θ0).

Proof: Given Theorem 1 and Proposition 2, it is sufficient to establish that there exists

p > 1 and ε > 0 such that

sup
θ0+h∈Λε

E

[∣

∣

∣

∣

∣

Y ·
L̃(θ0 + h)− L̃(θ0)

h

∣

∣

∣

∣

∣

p]

< ∞,(2.16)
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since this will guarantee the appropriate level of uniform integrability necessary to justify

(2.15) (the assertion involving L′(θ0) follows by simple conditioning). But (2.16) is an

immediate consequence of Theorem 2; just apply Hölder’s inequality. 2

We note that Theorem 3 suggests two different simulation-based estimators for the

derivative of a finite-horizon performance measure, one using replicates of Y L̃′(θ0), and the

other using replicates of Y L′(θ0). The principle of conditional Monte Carlo asserts that the

estimator based on Y L′(θ0) has lower variance (but see Remark 1).

3. LR’s for Harris Recurrent Stochastic Recursions

We will now turn our attention to the construction of likelihood ratios and gradient estima-

tors for infinite-horizon (steady-state) systems. In order to make the steady-state deriva-

tive estimation problem well-defined at θ0 ∈ Λ, we shall need to require that X possesses

a (unique) stationary distribution for each θ ∈ Λε for some ε > 0. Specifically, we shall

require that:

(A4) There exists ε > 0 such that X is a positive recurrent Harris chain under P (θ)

for each θ ∈ Λε.

It is well known (see Nummelin (1984)) that because S1 is separable, we can assert that A4

implies that for each θ ∈ Λε, there exists an integer m(θ) ≥ 0, a non-negative (measurable)

function λ(θ), a (measurable) subset A(θ) ⊆ S1, and a probability measure ϕ(θ) on S1, such

that:

i) Pθ,x[Xn ∈ A(θ) infinitely often] = 1 for x ∈ S1;

ii) Pθ,x[Xm(θ) ∈ dy] ≥ λ(θ, x) ϕ(θ, dy) for x, y ∈ S1;

iii) inf {λ(θ, x) : x ∈ A(θ)} > 0.

In this paper, we shall strengthen these conditions so that they hold uniformly in θ.

Specifically, we shall assume that:

14



(A5) There exists ε > 0, an integer m ≥ 0, a (measurable) subset A ⊆ S1, a

probability ϕ on S1, and a non-negative (measurable) function λ for which

i) Pθ,x[Xn ∈ A infinitely often] = 1 for x ∈ S1, θ ∈ Λε;

ii) Pθ,x[Xm ∈ dy] ≥ λ(x) ϕ(dy) for x, y ∈ S1, θ ∈ Λε;

iii) inf {λ(x) : x ∈ A}
∆
= λ∗ > 0.

Remark 4. Allowing m = 0 in A4 and A5 is non-standard, but it will permit us to simplify

our estimators nicely for systems which have a regenerative state. To be more precise,

suppose that there is a specific state x∗ ∈ S1 that is hit in finite time with probability

one from any other state; that is, Pθ,x[T < ∞] = 1 for all x ∈ S1 and θ ∈ Λε, where

T
∆
= inf{n > 0 : Xn = x∗}. Define A = {x∗} and ϕ(dy) = I[x∗ ∈ dy]. Then, A5 holds with

m = 0, λ(x) = I[x = x∗], and λ∗ = 1. In fact, this degenerate case is the only case where

A5 can hold for m = 0.

Remark 5. In most applications, A will be a compact set, and conditions A5 (ii–iii) will

follow via a continuity argument. To verify A5 (i), let Eθ,x(·) denote the expectation

operator corresponding to Pθ,x(·). Suppose that for each θ ∈ Λε, there exists a non-negative

(measurable) function g(θ, ·) and a positive constant ε(θ) such that:

a) Eθ,x[g(θ,X1)] ≤ g(θ, x)− ε(θ) for x /∈ A;

b) supx∈A Eθ,x[g(θ,X1)] <∞.
(3.1)

Let T (A) = inf {n ≥ 1 : Xn ∈ A}. Then, conditions (3.1) ensure that

sup
x∈A

Eθ,x[T (A)] <∞(3.2)

(see, for example, Nummelin (1984) for details) and hence A5 (i) is satisfied. In fact, (3.2)

and A5 together imply A4. (We note that A5 does not guarantee that X is positive recurrent

under P (θ); the additional hypothesis (3.2) yields this.) The function g(θ, ·) is called a “test

function” or “stochastic Lyapunov function” in the literature.

Assumption A5 ensures that for each θ ∈ Λε, the Markov chain X possesses a unique

σ-finite stationary measure π(θ) having a regenerative representation. To see this, one uses
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the so-called “splitting method” due to Athreya and Ney (1978) and Nummelin (1978). This

technique consists of observing that A5 (ii) ensures the existence of a family of transition

functions Q(θ) such that

Pθ,x[Xm ∈ dy] = λ(x) ϕ(dy) + (1− λ(x)) Q(θ, x, dy)(3.3)

for θ ∈ Λε, x, y ∈ S1. Roughly speaking, (3.3) asserts that if the Markov chain X currently

occupies state x ∈ S, then there is a probability λ(x) that m time units later, the chain

will be distributed according to ϕ. Because of A5 (i) and (iii), there will therefore be a

random time τ at which the state of the chain is distributed independently of the state at

time τ −m. The stationary distribution π(θ) can then be represented in terms of a ratio

formula expressed over the time interval [0, τ ]. Note that if m = 0 and λ∗ = 1, then ϕ is

concentrated on a single state x∗ and τ is the first hitting time of x∗. For the remainder

of this section, we will assume (unless otherwise specified) that m ≥ 1. For the case where

m = 0, the development goes through with many simplifications.

To develop likelihood ratio representations for π(θ), we need to make the above discus-

sion more precise. To facilitate this task, we will modify slightly the interpretation of Ω

adopted in the previous section. Our interpretation will provide the randomness necessary

to “split” P (θ) and construct the first regeneration time τ , as well as the succeeding regen-

eration times. Specifically, let Ω̃ = S1 × S∞2 × {0, 1}
∞. A typical element ω̃ ∈ Ω̃ then takes

the form (x0, z1, z2, . . . , i1, i2, . . .). The random variables (Zn : n ≥ 1) and (Xn : n ≥ 0) are

defined and distributed as before (so we can still denote their probability measure by Pθ,x),

and we further define the random variables ηn(ω̃) = in for n ≥ 1.

Before completing the construction of probability measures on Ω̃, we note that the

splitting idea requires the ability to generate variates having distributions given either by

ϕ or by Q(θ, x, ·). We wish to show that such variates can be constructed directly from the

simulation of the Markov chain X itself and the 0–1 valued random variables ηn defined

above. In other words, no additional randomization will be introduced to generate the

appropriate variates. (The details of this type of construction have not previously been

explored in the literature on simulation of Harris chains.) To accomplish this task (for

m ≥ 1), we fix β ∈ (0, 1) and let
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ϕβ(x, dy) = βλ(x) ϕ(dy),

Qβ(θ, x, dy) = (1− β)λ(x) ϕ(dy) + (1− λ(x)) Q(θ, x, dy)

= Pθ,x[Xm ∈ dy]− βλ(x)ϕ(dy).

(3.4)

Note that introducing β effectively shrinks λ(x). The main reason for introducing this

shrinkage is to make sure that Qβ(θ, x, ·) is equivalent to Pm(θ, x, ·) (in the measure-

theoretic sense, i.e., Qβ(θ, x, dy) = 0 if and only if Pm(θ, x, dy) = 0) where Pm(θ, x, ·)
∆
=

Pθ,x[Xm ∈ · ]; this will be used later. Furthermore, ϕβ(x, ·) is absolutely continuous with

respect to Pm(θ, x, ·). Hence, there exist densities wi(θ, x, y), i = 0, 1, such that

Qβ(θ, x, dy) = w0(θ, x, y) Pm(θ, x, dy)

ϕβ(x, dy) = w1(θ, x, y)P
m(θ, x, dy)

(3.5)

Also, these densities are non-negative and satisfy w0(θ, x, y) + w1(θ, x, y) = 1.

Let S0 = −m and Sj = inf {n ≥ Sj−1 +m : Xn ∈ A} for j ≥ 1 be a sequence of hitting

times of the set A defined so that at least m time units elapse between such visits to A. We

can now define a probability P̃θ,x on Ω̃ as follows:

P̃θ,x(dx0 × dz1 × · · · × dzn × {i1} × . . .× {in})(3.6)

= δx(dx0) Kθ(dz1) . . . Kθ(dzn)
n
∏

j=1

wij (θ,XSj(ω), XSj(ω)+m).

Under P̃θ,x, X and Z are distributed as before. Let

Pθ(dω̃) =

∫

S1

ϕ(dx) P̃θ,x(dω̃)

be the probability on Ω̃ under which X0 has distribution ϕ (this ensures that X “regen-

erates” at time 0) and let Eθ(·) be the corresponding expectation operator. Again, P (·)

and E(·) will be a shorthand notation for Pθ0(·) and Eθ0(·). In any case, the ηj ’s have

conditional distribution given by

Pθ[ηj = 1 | X0, Z] = w1(θ,XSj
, XSj+m) = 1− Pθ[ηj = 0 | X0, Z].

With this definition of Pθ, we find that on the event {S` = n},
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Pθ[Xn+m ∈ dy | X0, Z1, . . . , Zn, η1, . . . , η`]

= Pθ[Xn+m ∈ dy | Xn, η`]

=
wη`(θ,Xn, y) Pm(θ,Xn, dy)

∫

S1
wη`(θ,Xn, z) Pm(θ,Xn, dz)

.

Taking advantage of (3.5) and (3.6), we find that on {S` = n, η` = 1},

Pθ[Xn+m ∈ dy | X0, Z1, . . . , Zn, η1, . . . , η`] = ϕ(dy).

Hence, if we set γ = inf {n ≥ 1 : ηn = 1}, we may conclude that τ = Sγ+m is a randomized

stopping time at which the distribution of X is independent of its position at time τ −m.

We have

Pθ[τ = Sn +m| X0, Z] = w1(θ,XSn , XSn+m)
n−1
∏

j=1

w0(θ,XSj
, XSj+m),

which is a function of only X0, . . . , XSn+m. As a consequence, τ is the desired “regeneration

time” for X under Pθ, and it follows that under A4 and A5, there exists ε > 0 such that

πθ(dx) =

Eθ





τ−1
∑

j=0

I(Xj ∈ dx)





Eθ[τ ]
(3.7)

for θ ∈ Λε.

Remark 6. The representation (3.7) for πθ is valid for arbitrary positive recurrent Harris

chains. In other words, the construction of τ followed above does not depend on the fact

that X is the solution of a stochastic recursion or on the uniformity hypotheses implicit in

A5.

We now turn to the construction of a likelihood ratio (LR) representation of πθ in terms

of πθ0 . Assume that:

(A6) A1 (i) is in force; i.e., there exists ε > 0 such that Kθ is absolutely continuous

with respect to Kθ0 for θ ∈ Λε.
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We note that under A6, P n(θ, x, ·)
∆
= Pθ,x[Xn ∈ · ] is absolutely continuous with respect

to Pn(θ0, x, ·) for θ ∈ Λε, x ∈ S1, n ≥ 1. Let pn(θ, x, y) be the density of P n(θ, x, ·) with

respect to P n(θ0, x, ·) for n ≥ 1.

To proceed further, we observe that (3.4) and (3.5) imply that

ϕβ(x, dy) = w1(θ, x, y) Pm(θ, x, dy)

= w1(θ, x, y) pm(θ, x, y) Pm(θ0, x, dy)

and

ϕβ(x, dy) = w1(θ0, x, y) Pm(θ0, x, dy),

and hence

w1(θ, x, y) pm(θ, x, y) = w1(θ0, x, y)

Pm(θ0, x, ·)-a.s. Furthermore, if we define 0/0 to be zero, it is evident that

w1(θ, x, y)

w1(θ0, x, y)
=

1

pm(θ, x, y)
(3.8)

Pm(θ0, x, ·)-almost everywhere. We now take advantage of the fact that because Qβ(θ, x, ·)

is equivalent to Pm(θ, x, ·), it follows that Qβ(θ, x, ·) is absolutely continuous with respect

to Qβ(θ0, x, ·) (this is the prime reason why we took β < 1). We let q(θ, x, y) be the

corresponding density, and note that (3.4) and (3.5) imply that

Qβ(θ, x, dy) = q(θ, x, y) Qβ(θ0, x, dy)

= q(θ, x, y) w0(θ0, x, y)P
m(θ0, x, dy).

On the other hand,

Qβ(θ, x, dy) = w0(θ, x, y) Pm(θ, x, dy)

= w0(θ, x, y) pm(θ, x, y) Pm(θ0, x, dy)

and thus

q(θ, x, y) w0(θ0, x, y) = w0(θ, x, y) pm(θ, x, y)
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Pm(θ0, x, ·)-almost everywhere. Because of the measure equivalency mentioned above,

pm(θ, x, ·) and q(θ, x, ·) have the same support. Hence, whenever w0(θ0, x, y) > 0,

w0(θ, x, y)

w0(θ0, x, y)
=

q(θ, x, y)

pm(θ, x, y)
(3.9)

Pm(θ0, x, ·)-almost everywhere.

We can now make the connection with the finite-horizon framework of the previous

section: take T = τ ,

rT (θ,X0, . . . , XT ) = w1(θ,XSγ , XSγ+m)
γ−1
∏

j=1

w0(θ,XSj
, XSj+m),

and µθ ≡ ϕ. Using the relation τ = Sγ + m, one can construct τ and γ from either Ω or

Ω̃. With (3.8) and (3.9) at our disposal, and since ϕ does not depend on θ, we obtain that

u(θ,X0) ≡ 1 and

ρ(θ) =





γ−1
∏

j=1

q(θ,XSj
, XSj+m)

pm(θ,XSj
, XSj+m)





1

pm(θ,Xτ−m, Xτ )
.

The likelihood ratios L̃(θ) and L(θ) can then be written as

L̃(θ) =

(

τ
∏

i=1

k(θ, Zi)

)





γ−1
∏

j=1

q(θ,XSj
, XSj+m)

pm(θ,XSj
, XSj+m)





1

pm(θ,Xτ−m, Xτ )
.(3.10)

and

L(θ) =

(

τ
∏

i=1

p(θ,Xi−1, Xi)

)





γ−1
∏

j=1

q(θ,XSj
, XSj+m)

pm(θ,XSj
, XSj+m)





1

pm(θ,Xτ−m, Xτ )
.(3.11)

Under A4–A6, A1 holds and Theorem 1 applies, with Gτ = σ(X0, Z1, . . . , Zτ , η1, . . . , ηγ).

Combining this with (3.7), we also obtain:

Corollary 1. Under A4–A6, there exists ε > 0 such that

πθ(dx) =

Eθ0





τ−1
∑

j=0

I(Xj ∈ dx) L̃(θ)





Eθ0

[

τL̃(θ)
] =

Eθ0





τ−1
∑

j=0

I(Xj ∈ dx) L(θ)





Eθ0 [τL(θ)]
(3.12)

for θ ∈ Λε.
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Remark 7. We note that the last expression in (3.12) is defined only in terms of the

chain X and the r.v.’s η1, . . . , ηγ . This representation for πθ is in fact valid without any

assumption that X be derived from a stochastic recursion, provided that A6 is replaced by

an assumption that P (θ, x, ·) is absolutely continuous with respect to P (θ0, x, ·) for each

θ ∈ Λε, x ∈ S1.

Remark 8. We must acknowledge that implementing this construction in actual simula-

tions is not easy in general, because w0 and w1 may be hard to evaluate. Moreover, when

m > 0, we must memorize the sequence of states for the last m transitions in order to be

able to do the acceptance/rejection test properly. In the degenerate case where m = 0,

there is no need to shrink λ(x): one can take β = 1. Then, one has ρ(θ) ≡ 1 and the

likelihood ratios simplify to

L̃(θ) =
τ
∏

i=1

k(θ, Zi);

L(θ) =
τ
∏

i=1

p(θ,Xi−1, Xi).

4. A LR Representation for the Derivative of the Stationary

Distribution

To obtain a LR representation for the derivative in Section 2, we required the family Kθ

to be suitably smooth in θ. One of the major results of this section is that the imposition

of appropriate regularity hypotheses on the densities k(θ, ·) in fact forces the densities

pm(·, x, y), and q(·, x, y) appearing on (3.10) and (3.11) to be well-behaved. A similar

result for p(·, x, y) was already established in Proposition 1. We shall assume the following

conditions.

(A7) i) There exists ε > 0 such that for each z ∈ S2, k(·, z) is continuously differ-

entiable over Λε;
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ii) For each p > 0, there exists ε = ε(p) such that

E

[

sup
θ∈Λε

∣

∣k′(θ, Z1)
∣

∣

p

]

<∞;

iii) For each r ∈ IR,

lim
ε→0

E

[

sup
θ∈Λε

|k(θ, Z1)|
r

]

= 1.

Remark 9. Note that in contrast to (2.6), A7 (iii) is assumed to hold not only for positive

values of r, but for negative values as well. This will be used in the proof of Proposition 5

(and only there). When the stopping time τ is non-randomized, as when the system is

regenerative in the classical sense as indicated in Remarks 2, 4, and 8, then the result of

Proposition 5 will hold trivially and A7 (iii) for r < 0 is no longer necessary. In the proof

of Proposition 3, we will need A7 (iii) for r > 0, but that follows from A7 (ii) and the same

argument as in Remark 3.

A glance at formulas (3.10) and (3.11) suggests that any LR derivative formula for the

stationary distribution will require differentiability of pm(·) and q(·) in the parameter θ.

The next proposition establishes the required differentiability; the key idea in the proof

is the recognition that the derivative of pm(·) can be defined in terms of the conditional

expectation of the derivative of k(·).

Proposition 3. Assume A4–A7. Then, for each i and n ≥ 1, there is an ε > 0 such that

for each θ ∈ Λε, there exist random variables p′n(θ,Xi, Xi+n) and q′(θ,XSi
, XSi+m) such

that

lim
h→0

E

[∣

∣

∣

∣

pn(θ + h,Xi, Xi+n)− pn(θ,Xi, Xi+n)

h
− p′n(θ,Xi, Xi+n)

∣

∣

∣

∣

]

= 0

and

lim
h→0

E

[∣

∣

∣

∣

q(θ + h,XSi
, XSi+m)− q(θ,XSi

, XSi+m)

h
− q′(θ,XSi

, XSi+m)

∣

∣

∣

∣

]

= 0.
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Proof: The proof for pn is similar to that of Proposition 1. ¿From the defining relation for

a conditional expectation, one has

pn(θ,Xi, Xi+n) = E





i+n
∏

j=i+1

k(θ, Zj)

∣

∣

∣

∣

∣

∣

Xi, Xi+n



 .

Hence,
pn(θ + h,Xi, Xi+n) − pn(θ,Xi, Xi+n)

h

= E





1

h





i+n
∏

j=i+1

k(θ + h, Zj) −
i+n
∏

j=i+1

k(θ, Zj)





∣

∣

∣

∣

∣

∣

Xi, Xi+n



 .
(4.1)

By A7 (i), it follows that for θ sufficiently close to θ0,

lim
h→0

1

h





i+n
∏

j=i+1

k(θ + h, Zj) −
i+n
∏

j=i+1

k(θ, Zj)



 =
i+n
∑

j=i+1

k′(θ, Zj)
i+n
∏

6̀=j
`=i+1

k(θ, Z`).(4.2)

On the other hand, for h small, the continuous differentiability of k(·, Zj) and the mean

value theorem assert the existence of ξ ∈ [θ − h, θ + h] such that

1

h





i+n
∏

j=i+1

k(θ + h, Zj)−
i+n
∏

j=i+1

k(θ, Zj)



 =
i+n
∑

j=i+1

k′(ξ, Zj)
i+n
∏

6̀=j
`=i+1

k(ξ, Z`) ,

which is in turn dominated, if θ + h ∈ Λε, by

i+n
∑

j=i+1

sup
θ∈Λε

|k′(θ, Zj)|
i+n
∏

`6=j
`=i+1

sup
θ∈Λε

k(θ, Z`) ,(4.3)

which has expectation

n E

[

sup
θ∈Λε

|k′(θ, Z1)|

] (

E

[

sup
θ∈Λε

k(θ, Zj)

])n−1

.

Assumptions A7 (ii–iii) ensure the finiteness of this expectation. Hence, the dominated

convergence theorem for conditional expectations, applied to (4.1) and (4.2), yields

lim
h→0

E

[∣

∣

∣

∣

pn(θ + h,Xi, Xi+n)− pn(θ,Xi, Xi+n)

h
− p′n(θ,Xi, Xi+n)

∣

∣

∣

∣

]

= lim
h→0

E







∣

∣

∣

∣

∣

∣

∣

1

h





i+n
∏

j=i+1

k(θ + h, Zj) −
i+n
∏

j=i+1

k(θ, Zj)



−
i+n
∑

j=i+1

k′(θ, Zj)
i+n
∏

6̀=j
`=i+1

k(θ, Z`)

∣

∣

∣

∣

∣

∣

∣







= 0.
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where

p′n(θ,Xi, Xi+n) = E







i+n
∑

j=i+1

k′(θ, Zj)
i+n
∏

`6=j
`=i+1

k(θ, Z`)

∣

∣

∣

∣

∣

∣

∣

Xi, Xi+n






.

To handle q(·), we observe that (3.4) and (3.5) imply that

Pm(θ + h, x, dy) − Pm(θ, x, dy)

= Qβ(θ + h, x, dy) − Qβ(θ, x, dy)

= [q(θ + h, x, y) − q(θ, x, y)] Qβ(θ0, x, dy)

= [q(θ + h, x, y) − q(θ, x, y)] w0(θ0, x, y) Pm(θ0, x, dy).(4.4)

But

Pm(θ + h, x, dy)− Pm(θ, x, dy) = [pm(θ + h, x, y)− pm(θ, x, y)] Pm(θ0, x, dy)(4.5)

is a (finite) signed measure. Relations (4.4) and (4.5), together with the Pm(θ0, x, ·)-almost

everywhere positivity of w0(θ0, ·), therefore yield the equality

q(θ + h, x, h)− q(θ, x, y)

h
=

pm(θ + h, x, y)− pm(θ, x, y)

h w0(θ0, x, y)
.

Moreover, from (3.3–3.5),

w0(θ0, x, y) =
dQβ(θ0, x, ·)

dPm(θ0, x, ·)
≥ 1− β.

Hence, the second part of the proposition follows again from the dominated convergence

theorem. 2

Remark 10. The proof of Proposition 3 in fact shows that

q′(θ,XSi
, XSi+m)

a.s.
=

p′m(θ,XSi
, XSi+m)

w0(θ0, XSi
, XSi+m)

.

¿From that proposition, it also follows that the difference quotient of ρ(θ) converges in L1

to ρ′(θ) at each θ ∈ Λε (although ρ(θ) is not necessarily continuously differentiable) under

A4–A7.
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It now remains to show that A2 (iv) and A3 hold, so that all the results of Section 2

apply. To accomplish this, we need to control the random variables τ and γ. In particular,

we will show that, under suitable hypotheses on the chain, τ and γ have a geometrically

dominated tail. This will require making a further assumption about the set A appearing

in A5:

(A8) The set A is a Kendall set for the Markov chain having transition function

P (θ0), i.e., if T (A) = inf {n ≥ 1 : Xn ∈ A}, then there exists z > 1 such that

sup
x∈A

Eθ0,x

[

zT (A)
]

< ∞.

Remark 11. The verification that a set A is a Kendall set can be implemented via the

use of appropriate Lyapunov function methods. In particular, suppose that there exists a

non-negative function g defined on S1, ε > 0, and r < 1 such that:

a) Eθ0,x [g(X1)] ≤ r g(x)− ε for x /∈ A;

b) supx∈A Eθ0,x[g(X1)] < ∞.
(4.6)

Then, A is a Kendall set; see Nummelin (1984), pp. 90–91 and Chapter 16 of Meyn and

Tweedie (1993). Note that such a Lyapunov function automatically implies the existence of

a Lyapunov function satisfying the conditions of Remark 5 at the parameter point θ = θ0.

Proposition 4. Under assumptions A4–A7, P [γ > k] ≤ (1 − βλ∗)
k for k ≥ 0. If, in

addition, A8 is in force, then there exists z > 1 such that E[zτ ] <∞.

Proof: Relation (3.6) implies that

P [γ > k] = E[P [γ > k | X]] = E

[

k
∏

i=1

w0(θ0, XSi
, XSi+m)

]

.

By applying the strong Markov property first at time Sk and then at times Sk−1, Sk−2, . . . ,

S1, we conclude that

P [γ > k] = E

[

k
∏

i=1

w̄0(θ0, XSi
)

]
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where

w̄0(θ0, XSi
) = E[w0(θ0, XSi

, XSi+m) | XSi
]

=

∫

S1

w0(θ0, XSi
, y) Pm(θ0, XSi

, dy)

= 1− βλ(XSi
) ≤ 1− βλ∗,

proving the tail bound for γ. To prove the existence of z > 1 such that E[zτ ] <∞, we note

that P [γ = k | Xj , ηi, j ≤ Sk, i ≤ k] ≥ βλ∗ on {γ > k − 1}. The result then follows from

Lemma 5.6 of Nummelin (1984), p. 88. 2

¿From (3.5), (3.9), and Remark 10, it is easily verified that

q′(θ,XSi
, XSi+m)

q(θ,XSi
, XSi+m)

−
p′m(θ,XSi

, XSi+m)

pm(θ,XSi
, XSi+m)

=
p′m(θ,XSi

, XSi+m)

pm(θ,XSi
, XSi+m)

w1(θ,XSi
, XSi+m)

w0(θ,XSi
, XSi+m)

P -a.s., and therefore

γ−1
∑

i=1

q′(θ,XSi
, XSi+m)

q(θ,XSi
, XSi+m)

−
γ
∑

i=1

p′m(θ,XSi
, XSi+m)

pm(θ,XSi
, XSi+m)

(4.7)

=
γ−1
∑

i=1

p′m(θ,XSi
, XSi+m)

pm(θ,XSi
, XSi+m)

w1(θ,XSi
, XSi+m)

w0(θ,XSi
, XSi+m)

−
p′m(θ,XSγ , XSγ+m)

pm(θ,XSγ , XSγ+m)
.

If the derivative of pm(·, XSi
, XSi+m) exists a.s., then it is a.s. equal to p′m(·, XSi

, XSi+m)

and the above expression is a.s. equal to ρ′(θ)/ρ(θ).

Recall that the random variables pm(θ,XSi
, XSi+m

) and q(θ,XSi
, XSi+m

) were con-

structed indirectly via conditioning arguments. Consequently, when viewing pm(·, XSi
,

XSi+m
) and q(·, XSi

, XSi+m
) as stochastic processes in θ, there is no a priori reason to ex-

pect almost sure differentiability or even continuity over θ ∈ Λε. (This can be said even if

the derivative exists a.s. at every θ, and this is for the same reason that a Poisson process

N = (N(t) : t ≥ 0) is discontinuous even though at every point t, N(·) is continuous a.s..

It could happen, for instance, that the set of measure zero on which the derivative fails to

exist does depend on θ in such a way that for each ω, there is a value of θ ∈ Λε where the

derivative does not exist.) To proceed further, we will use Lemma 1, which will permit us

to analyze the difference quotients directly without appealing to the mean value theorem.
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Proposition 5. Assume A4–A8. Then, for each p > 0, there exists ε > 0 such that

sup
θ∈Λε

E

[∣

∣

∣

∣

ρ(θ)− ρ(θ0)

θ − θ0

∣

∣

∣

∣

p]

< ∞.

Proof: Again, by Lyapunov’s inequality, it suffices to prove the result for p > 1. To reduce

the notational burden, let

Ki(θ) = k(θ, Zi),

K ′
i(θ) = k′(θ, Zi),

Pi(θ) = pm(θ,XSi
, XSi+m),

Qi(θ) = q(θ,XSi
, XSi+m),

Wij(θ) = wj(θ,XSi
, XSi+m), j = 0, 1.

Noting that ρ(θ0) = 1, Lemma 1 yields

|ρ(θ)− ρ(θ0)| ≤







γ
∑

i=1

|Pi(θ)
−1 − 1| +

γ−1
∑

i=1

|Qi(θ)− 1|







·
γ
∏

i=1

(Pi(θ)
−1 ∨ 1) ·

γ−1
∏

i=1

(Qi(θ) ∨ 1)

≤







γ
∑

i=1

|Pi(θ)− 1| +
γ−1
∑

i=1

|Qi(θ)− 1|







·
γ
∏

i=1

(Pi(θ)
−2 ∨ 1) ·

γ−1
∏

i=1

(Qi(θ) ∨ 1).

Now, from Hölder’s and Minkowski’s inequalities,

sup
θ∈Λε

E

[∣

∣

∣

∣

ρ(θ)− ρ(θ0)

θ − θ0

∣

∣

∣

∣

p]

≤











sup
θ∈Λε

E
1

3p





( γ
∑

i=1

∣

∣

∣

∣

Pi(θ)− 1

θ − θ0

∣

∣

∣

∣

)3p


 + sup
θ∈Λε

E
1

3p











γ−1
∑

i=1

∣

∣

∣

∣

Qi(θ)− 1

θ − θ0

∣

∣

∣

∣





3p
















p

·



 sup
θ∈Λε

E

[ γ
∏

i=1

(Pi(θ)
−2 ∨ 1)3p

]

sup
θ∈Λε

E





γ−1
∏

i=1

(Qi(θ) ∨ 1)3p









1/3

∆
= [a4 + a5]

p(b4b5)
1/3.
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By the same argument as in the proof of Proposition 3, one has

E

[

∣

∣

∣

∣

Pi(θ)− Pi(θ0)

θ − θ0

∣

∣

∣

∣

6p
]

≤ m6p E

[

sup
θ∈Λε

|K ′
1(θ)|

6p

]

·

(

E

[

sup
θ∈Λε

(K1(θ))
6p

])m−1

≤ C(4.8)

for some finite constant C. Therefore, using Proposition 4, we have

a3p4 ≤ sup
θ∈Λε

E

[

∞
∑

i=1

I[γ ≥ i]

∣

∣

∣

∣

Pi(θ)− Pi(θ0)

θ − θ0

∣

∣

∣

∣

3p
]

≤ sup
θ∈Λε

∞
∑

i=1

(P [γ ≥ i])1/2
(

E

[

∣

∣

∣

∣

Pi(θ)− Pi(θ0)

θ − θ0

∣

∣

∣

∣

6p
])1/2

≤
∞
∑

i=1

(1− βλ∗)
(i−1)/2C1/2

< ∞.

For a5, we note that the proof of Proposition 3 establishes that

Qi(θ)−Qi(θ0)

θ − θ0
=

Pi(θ)− Pi(θ0)

w0(θ0, XSi
, XSi+m)

1

θ − θ0
.(4.9)

Since (1 − β)P (θ, x, dy) ≤ Qβ(θ, x, dy) ≤ P (θ, x, dy), it follows that 1 − β ≤ w0(θ0, XSi
,

XSi+m) ≤ 1 a.s. and consequently

a5 ≤ (1− β)−1 a4,(4.10)

proving finiteness of a5. Turning now to b4, the Cauchy-Schwarz inequality yields

b4 = sup
θ∈Λε

E

[ γ
∏

i=1

(Pi(θ)
−2p ∨ 1)

]

(4.11)

≤ sup
θ∈Λε

∞
∑

n=1

E

[

n
∏

i=1

(Pi(θ)
−4p ∨ 1)

]

· P [γ ≥ n] .

Recall that

Pi(θ)
a.s.
= E





Si+m
∏

j=Si+1

Kj(θ) | XSi
, XSi+m



 ,

and note that (x−4p ∨ 1) is the maximum of two convex functions and hence convex. So,

the conditional Jensen inequality yields

Pi(θ)
−4p ∨ 1 ≤ E









Si+m
∏

j=Si+1

Kj(θ)
−4p



 ∨ 1 | XSi
, XSi+m





≤ E





Si+m
∏

j=Si+1

(Kj(θ)
−4p ∨ 1) | XSi

, XSi+m



 .
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Hence,

E

[

n
∏

i=1

(Pi(θ)
−4p ∨ 1)

]

≤ E





n
∏

i=1

E





Si+m
∏

j=Si+1

(Kj(θ)
−4p ∨ 1) | XSi

, XSi+m







 .

Applying the strong Markov property at time Sn, we obtain

E





n
∏

i=1

E





Si+m
∏

j=Si+1

(Kj(θ)
−4p ∨ 1) | XSi

, XSi+m



 | X0, . . . , XSn





≤
n−1
∏

i=1

E





Si+m
∏

j=Si+1

(Kj(θ)
−4p ∨ 1) | XSi

, XSi+m



 · E





Sn+m
∏

j=Sn+1

(Kj(θ)
−4p ∨ 1) | XSn





=
n
∏

i=1

E





Si+m
∏

j=Si+1

(Kj(θ)
−4p ∨ 1) | XSi

, XSi+m



 · E





n
∏

j=1

(Kj(θ)
−4p ∨ 1)





=
n
∏

i=1

E





Si+m
∏

j=Si+1

(Kj(θ)
−4p ∨ 1) | XSi

, XSi+m



 ·
(

E
[

(K1(θ)
−4p ∨ 1)

])n
.

Successively conditioning at times Sn−1, Sn−2, . . . , S1, we obtain

E





n
∏

i=1

E





Si+m
∏

j=Si+1

(Kj(θ)
−4p ∨ 1) | XSi

, XSi+m







 ≤
(

E
[

(K1(θ)
−4p ∨ 1)

])nm
.

So,

b4 ≤ sup
θ∈Λε

∞
∑

n=1

(

E
[

(K1(θ)
−4p ∨ 1)

])nm
P [γ ≥ n].

Proposition 3 and Assumption A7 can then be exploited, as in (2.12), to obtain that b4 <∞.

For b5, we argue as in (4.11) to obtain

b5 ≤ sup
θ∈Λε

∞
∑

n=0

E





n−1
∏

j=0

(Qj(θ)
2p ∨ 1)



 P [γ ≥ n].

We now apply a conditioning argument similar to that used for b4:

E





n−1
∏

j=0

(Qj(θ)
2p ∨ 1) | X0, . . . , XSn−1





≤
n−2
∏

j=0

(Qj(θ)
2p ∨ 1) · E

[

(Qn−1(θ)
2p ∨ 1) | XSn−1

]

.
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But

E
[(

Qn−1(θ)
2p ∨ 1

)

| XSn−1

]

≤ E
[

(1 + |Qn−1(θ)− 1| )2p | XSn−1

]

≤ E
[

(1 + |Qn−1(θ)− 1|)d2pe | XSn−1

]

= 1 +

d2pe
∑

i=1

(

d2pe

i

)

E
[

|Qn−1(θ)− 1|j | XSn−1

]

.

By (4.9), it is evident that

E
[

|Qn−1(θ)− 1|j | XSn−1

]

= E





∣

∣

∣

∣

∣

Pn−1(θ)− Pn−1(θ0)

w0(θ0, XSn−1
, XSn−1+m)

∣

∣

∣

∣

∣

j

| XSn−1





≤ (1− β)−j E
[

|Pn−1(θ)− Pn−1(θ0)|
j | XSn−1

]

≤ (1− β)−j εj sup
θ∈Λε

E

[

∣

∣

∣

∣

Pn−1(θ)− Pn−1(θ0)

θ − θ0

∣

∣

∣

∣

j

| XSn−1

]

.

Arguing as in (4.8), we may therefore conclude that for every δ > 0, there exists ε > 0 such

that

sup
θ∈Λε

E
[(

Qn−1(θ)
2p ∨ 1

)

| XSn−1

]

≤ 1 + δ.

By conditioning on XSn−2
, . . . , XS1

and arguing similarly, we obtain the bound

sup
θ∈Λε

E





n−1
∏

j=0

(Qj(θ)
2p ∨ 1)



 ≤ (1 + δ)n,

so

b5 ≤
∞
∑

n=0

(1 + δ)n P [γ ≥ n].

By Proposition 4, b5 is then finite for ε small enough, concluding the proof. 2

Proposition 5 completes the verification of A1–A3 for our Harris-recurrent setup. Theo-

rem 2 shows in that case that the difference quotients are well-behaved. It is the main tool

required to establish our next theorem. Theorem 4 shows that the stationary distributions
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πθ are in fact differentiable in a very strong sense, namely in an extended version of the

total variation norm. (For f ≡ 1, the notion of convergence presented will be precisely that

of total variation.)

For a measure µ on S1 and a S1-measurable function f , we adopt the notation

µf
∆
=

∫

S1

f(y) µ(dy).

We also put

Y (g) =
τ−1
∑

n=0

g(Xn).

Theorem 4. Let f be a non-negative S1-measurable function and assume that there exists

δ > 0 such that πθ0f
1+δ <∞. If A4–A8 hold, then there exists a finite signed measure π′

such that

lim
h→0

sup
|g|≤f

∣

∣

∣

∣

πθ0+h g − πθ0 g

h
− π′g

∣

∣

∣

∣

= 0

and

π′(·) =

E

[

τ−1
∑

n=0

[I(Xn ∈ ·) − πθ0(·)] L̃
′(θ0)

]

E[τ ]
=

E
[

(Y (I(·))− τπθ0(·))L̃
′(θ0)

]

E[τ ]
.

Proof: Assume, to start, that g is non-negative. By (3.12), there exists ε > 0 such for

θ ∈ Λε,

πθg = u(g; θ) / `(θ)(4.12)

where

u(g; θ) = E





τ−1
∑

j=0

g(Xj) L̃(θ)



 ,

`(θ) = E
[

τ L̃(θ)
]

.

We observe that

sup
0≤g≤f

∣

∣

∣

∣

u(g; θ0 + h)− u(g; θ0)

h
− E[Y (g)L̃′(θ0)]

∣

∣

∣

∣
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≤ E

[

Y (f)

∣

∣

∣

∣

∣

L̃(θ0 + h)− L̃(θ0)

h
− L̃′(θ0)]

∣

∣

∣

∣

∣

]

≤ E

[

max
0≤n<τ

f(Xn) · τ ·

∣

∣

∣

∣

∣

L̃(θ0 + h)− L̃(θ0)

h
− L̃′(θ0)]

∣

∣

∣

∣

∣

]

≤ E1/p
[

max
0≤n<τ

f(Xn)
p
]

· E1/q [τ q] · E1/r

[∣

∣

∣

∣

∣

L̃(θ0 + h)− L̃(θ0)

h
− L̃′(θ0)]

∣

∣

∣

∣

∣

r]

by Hölder’s inequality, where p−1+ q−1+ r−1 = 1 and p, q, r > 0. Choose p = 1+ δ and use

the inequality

E

[

max
0≤n<τ

f(Xn)
p
]

≤ E

[

τ−1
∑

n=0

f(Xn)
p

]

= E[τ ]πθ0f
1+δ

to obtain the finiteness of the first factor. The second factor is finite by Proposition 4, and

the proof of Theorem 3 establishes that the third goes to zero. Consequently,

lim
h→0

sup
0≤g≤f

∣

∣

∣

∣

u(g; θ0 + h)− u(g; θ0)

h
− E

[

Y (g)L̃′(θ0)
]

∣

∣

∣

∣

= 0.(4.13)

Setting f ≡ 1 and noting that `(θ) = u(1; θ), we conclude that `(·) is also differentiable at

θ = θ0, so
1

`(θ0 + h)
=

1

`(θ0)
−

`′(θ0)

`2(θ0) h
+ o(h).(4.14)

Combining (4.12), (4.13), and (4.14) yields the conclusions of Theorem 4 uniformly in non-

negative g ≤ f . To handle general g, we split g into its positive and negative parts and

apply the above argument to the separate pieces. 2

Remark 12. Theorem 4 requires the hypothesis that πθ0f
1+δ < ∞, where f is a given

non-negative S1-measurable function. Once again, Lyapunov function methods can be used

to verify this condition. In particular, assume that there exists a non-negative function g

defined on S1 and ε > 0 such that:

a) Eθ0,x[g(X1)] ≤ g(x)− ε f(x)1+δ for x /∈ A

b) supx∈A Eθ0,x[g(X1)] <∞.
(4.15)

Then, under A4–A8, Tweedie (1983) has established that finiteness of πθ0f
1+δ necessarily

follows.
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Remark 13. Theorem 4 gives general conditions under which the stationary measure of a

Markov chain (driven by a stochastic recursion) is differentiable in a strong (total variation-

type) sense. Recent work of Vásquez-Abad and Kushner (1992) also addresses this question.

The hypotheses given there are quite different and, in particular, are not given in terms of

conditions that can be checked directly from the transition function of the chain (unlike,

for example, the Lyapunov function criteria used above).

Remark 14. Much of the analysis in this paper is independent of whether the chain is

driven by a stochastic recursion of the type described above. Our results could then be gen-

eralized. However, because the need for more general results from an applications viewpoint

does not seem compelling, we shall not pursue this further.

Noting that L′(θ0) = E[L̃′(θ0) | Fτ ] and that Y (g) and τ are both Fτ -measurable, we

obtain the following corollary to Theorem 4.

Corollary 2. Under the assumptions of Theorem 4, πθg is differentiable at θ = θ0 for any

g satisfying |g| ≤ f , and

d

dθ
πθg

∣

∣

∣

θ=θ0
=

E
[

(Y (g)− (πθ0g)τ) L̃′(θ0)
]

E[τ ]

=
E [(Y (g)− (πθ0g) τ) L′(θ0)]

E[τ ]
.

Remark 15. The representation of the derivative of πθg given in Corollary 2 can be used to

construct simulation-based derivative estimators that converge at rate t−1/2 in the amount

of computational effort t; see Glynn, L’Ecuyer, and Adès (1991).

It turns out that because the r.v. Y (g) is an additive functional, an alternative repre-

sentation for the derivative can be constructed. The representation takes advantage of the

fact that

E
[

g(Xi)k
′(θ0, Xj) | Fi

]

= 0

for i < j. Consequently, roughly half the cross-product terms appearing in Y (g)L̃′(θ0) (and

Y (g)L′(θ0)) have vanishing expectations. The resulting estimators are called triangular

estimators.
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Corollary 3. Under the assumptions of Theorem 4, one has:

E[τ ] ·
d

dθ
πθg

∣

∣

∣

∣

θ=θ0

= E





τ
∑

j=1

k′(θ0, Zj)
τ−1
∑

i=j

[g(Xi)− πθ0g]





+ E





γ−1
∑

j=1

q′(θ0, XSj
, XSj+m)

τ−1
∑

i=Sj+1

[g(Xi)− πθ0g]





− E





γ
∑

j=1

p′m(θ0, XSj
, XSj+m)

τ−1
∑

i=Sj+1

[g(Xi)− πθ0g]



(4.16)

= E





τ
∑

j=1

p′(θ0, Xj−1, Xj)
τ−1
∑

i=j

[g(Xi)− πθ0g]





+ E





γ−1
∑

j=1

q′(θ0, XSj
, XSj+m)

τ−1
∑

i=Sj+1

[g(Xi)− πθ0g]





− E





γ
∑

j=1

p′m(θ0, XSj
, XSj+m)

τ−1
∑

i=Sj+1

[g(Xi)− πθ0g]



 .(4.17)

5. Examples

The theory that we have developed in the previous sections is well suited to providing

sufficient conditions under which steady-state performance measures are differentiable. In

particular, suppose that X is the solution to a stochastic recursion for which the measures

Kθ satisfy A6 and A7. Assume that A5 is satisfied and, for the set A appearing in A5,

there exists a non-negative function g, and constants r < 1 and ε > 0, such that for θ ∈ Λε,

a) Eθ,x[g(X1)] ≤ rg(x)− ε for all x /∈ A

b) supx∈A Eθ,x[g(X1)] <∞.
(5.1)

Then, Remarks 5, 11, and 12 guarantee that πθ exists for θ in a neighborhood of θ0, and

πθf is differentiable at θ0 for each f satisfying the growth condition

|f(x)| ≤ a+ b(g(x))p,(5.2)

where a, b ≥ 0 and p < 1. We will now illustrate these ideas with a couple of examples.
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Example 1. Consider the sequence of waiting times in a single FIFO GI/GI/1 queue,

(Xn, n ≥ 0), with X0 = 0. That sequence follows the well-known recursion

Xn+1 = [Xn + Vn − Un+1]
+,

where Vn is the service time of customer n (n ≥ 0) and Un+1 represents the interarrival

time between customers n and n+1. This is a special case of (1.1) with Zn+1 = Vn−Un+1

and h(x, z) = [x + z]+, or with Zn+1 = (Vn, Un+1) and h(x, v, u) = [x + v − u]+. We

will adopt the latter representation, in which Zn+1 is a vector of two independent r.v.’s.

Let B(θ, ·) and A(θ, ·) be the service time and interarrival time distributions and let C(θ, ·)

be the distribution function of Vn − Un+1. Assume that over Λε, the support of these

distributions is independent of θ. Let c(θ, ·) denote the density of C(θ, ·) with respect to

C(θ0, ·), so that C(θ, dy) = c(θ, y)C(θ0, dy), and similarly for a and b with A and B. This

gives k(θ, v, u) = b(θ, v)a(θ, u) and p(θ, x, y) = c(θ, y − x).

We assume that k satisfies A6 and A7, and will now examine how to verify A4, A5, and

A8 for that example using stochastic Lyapunov functions as suggested in Remarks 5, 11,

and 12. For that, we will find a function g that satisfies (5.1–5.2). One of our objectives

here is to illustrate the use of such functions. There also exist other approaches for verifying

A4–A8 for the GI/G/1 queue, based on the fact (for example) that the GI/G/1 queue can

be modeled as a random walk (see, e.g., Asmussen 1987 and L’Ecuyer and Glynn 1994).

To verify A5 (ii-iii), take m = 0, A = {0}, and ϕ(dy) = I[0 ∈ dy]. Then, ρ(θ) ≡ 1 and

this system is regenerative in the classical sense, with regeneration occuring at each n for

which Xn = 0.

Now, define D = V1 − U0. Assume that Eθ0 [D] < 0 and that D has a finite and

differentiable moment generating function in some neighborhood of zero; that is, there

exists z > 0 such that supθ∈Λε
ϕD(θ, z) < ∞, where ϕD(θ, β)

∆
= Eθ[exp(βD)]. Since

Eθ0 [D] < 0 and ϕD(θ, 0) = 1, it follows that for β > 0 and ε > 0 small enough, one has

r̃(β, ε)
∆
= sup

θ∈Λε

ϕD(θ, β) < 1.

Define

β̃ = inf{β > 0 : ϕD(θ0, β) ≥ 1},
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and let 0 < β < β̃, r = (r̃(β, ε) + 1)/2, and g(x) = K exp(βx)I(x > 0) for some K > 0.

Then, for x > 0, one has

Eθ,x[g(X1)] = Eθ[K exp(β(x+D)) I(D > −x)]

= g(x) · Eθ[exp(β(D)) I(D > −x)]

≤ g(x) · ϕD(θ, x)

≤ r̃(β, ε)g(x) ≤ (2r − 1)g(x) ≤ rg(x)−K(1− r),

which verifies parts (a) of (5.1). For x = 0, condition (b) in (5.1) is trivially verified. This

completes the verification of A4, A5, A8, and Remark 12.

As a result, Theorem 4 applies even if f grows exponentially fast in x, provided that it

grows no faster than O(exp(βx)) for some β < β̃. This growth rate also typically turns out

to be a tight bound, as indicated by the next proposition.

Proposition 6. Suppose that ϕD(θ0, β̃) = 1 for some β̃ > 0. If f(x) ∼ K exp(βx) as

x→∞, for K <∞, then πθ0f <∞ if and only if β < β̃.

Proof: We have just shown the “if” part. Recall that from the Cramèr-Lundberg approx-

imation (Asmussen 1987, page 269), one has Pθ0 [X > x] ∼ c exp(−β̃x) as x→∞, where c

is a positive constant. So, if X denotes the steady-state waiting time, then

E[exp(βX)− 1] = E

[

β

∫ X

0
exp(βx)dx

]

= βE

[∫ ∞

0
exp(βx)I(X > x)dx

]

= β

∫ ∞

0
exp(βx)Pθ0 [X > x]dx < ∞

if and only if β < β̃. So, for β ≥ β̃, πθ0f =∞. 2

For a more specific illustration and numerical results comparing the use of L(θ) with that

of L̃(θ), consider an M/M/1 queue with arrival rate λ0 and mean service time θ. Assume

that 0 < θ0 < 1/λ0. Details on the specific expressions for k, L, L̃, and so on, for that case,

are given in Glynn and L’Ecuyer (1994), which is a slightly expanded version of this paper.
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The derivatives u′(θ0) and `′(θ0) can be estimated by simulating the system at θ = θ0 and

computing either L̃′(θ0)Y and L̃′(θ0)τ , or L′(θ0)Y and L′(θ0)τ , where Y =
∑τ−1

i=1 Xi. The

first pair of derivative estimators is based on the innovations process Z (we will denote them

by IP) while the second pair is based on the transition probabilities of the Markov chain X

(and will be denoted by TP).

To estimate u′(θ), we can also use the triangular LR estimators (4.16–4.17), where,

roughly speaking, the derivative of each Xi is estimated “separately” using a likelihood

ratio based only on the minimal information required to determine Xi. We will denote

them by IP-T and TP-T, respectively.

Suppose that we simulate at θ = θ0 for N regenerative cycles and let ûk, ˆ̀k, û
′
k, and

ˆ̀′
k

denote the (unbiased) estimators of u(θ0), `(θ0), u′(θ0), and `′(θ0), respectively, based on

cycle i. Unbiased estimators of the latter quantities are obtained by averaging out:

û(θ0) =
1

N

N
∑

k=1

ûk

and similarly for ˆ̀(θ0), û
′(θ0), and ˆ̀′(θ0). Then, consistent estimators of α(θ0) and α′(θ0)

are given by:

α̂(θ0) =
û(θ0)
ˆ̀(θ0)

;

α̂′(θ0) =
û′(θ0)− α̂(θ0)ˆ̀

′(θ0)
ˆ̀(θ0)

.

We performed numerical experiments for this system with N = 1000, λ0 = 1, and

different values of θ0. Based on these 1000 cycles, we estimated u(θ0), `(θ0), α(θ0), and

the derivatives u′(θ0), `′(θ0), and α′(θ0), using IP, TP, IP-T, and TP-T. To estimate the

variance of our estimators, we repeated this estimation process R = 10000 times (that is,

104 times 103 cycles). Table 1 gives the sample variances of those derivative estimators, for

θ0 = 0.1, 0.5, 0.8, and 0.9. We also estimated the bias of α̂′(θ0) and in all cases, the squared

bias was negligible compared to the variance. For this simple case, for λ0 = 1, the exact

values are u(θ) = θ2/(1 − θ)2 and `(θ) = 1/(1 − θ), from which one can also derive u′(θ),

`′(θ), α(θ), and α′(θ). Generally speaking, we can see that the triangular estimators have
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Table 1: Experimental results for the M/M/1 queue (sample variances).

Derivative LR approach θ0 = 0.1 θ0 = 0.5 θ0 = 0.8 θ0 = 0.9

u(θ0) 4.59E-6 2.29E-2 1.32E1 6.68E2

`(θ0) 1.52E-4 5.99E-3 1.82E-1 1.70E0

α(θ0) 3.36E-6 3.56E-3 2.38E-1 2.64E0

u′(θ0) IP .0106 11.17 1.76E4 3.57E6

u′(θ0) TP .0091 10.15 1.62E4 3.16E6

u′(θ0) IP-T .0088 7.59 1.18E4 2.20E6

u′(θ0) TP-T .0081 7.30 1.11E4 2.03E6

`′(θ0) IP .3335 1.33 1.12E2 3.78E3

`′(θ0) TP .1582 1.12 1.00E2 3.38E3

α′(θ0) IP .0073 1.50 2.44E2 8.86E3

α′(θ0) TP .0063 1.34 2.19E2 7.56E3

α′(θ0) IP-T .0060 0.88 1.30E2 4.02E3

α′(θ0) TP-T .0055 0.84 1.17E2 3.61E3

significantly less variance than their “more standard” counterparts (approximately half the

variance, in some cases). It turns out that here, the TP estimators do not have much less

variance than the IP ones, and this holds for small θ0 as well as large θ0. There is one

exception, however, namely the estimation of `′(θ0) for small θ0.

Example 2. As a second example, we consider the same nonlinear storage process as in

Example 2 of Glynn (1992). In contrast to Example 1, this chain hits no point infinitely

often. Specifically, let Xn represents the volume of water in a reservoir at time n, and

Zn+1 ≥ 0 denotes the inflow during period n + 1. The model is assumed to satisfy the

equation

Xn+1 = Xn + Zn+1 − aXb
n+1,(5.3)
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where a > 0 and b > 0. This can be rewritten as Xn+1 = h(Xn + Zn+1), where h is the

inverse function to h̃(x) = x + axb. Let Fθ be the probability distribution function of Z1

under Kθ. The transition law of the Markov chain is then given by

P (θ, x, [0, y]) = P [h(Xn + Zn+1) ≤ y | Xn = x]

= P [Zn+1 ≤ h̃(y)− x]

= Fθ[y + ayb − x],

which can be positive only for y ≥ h(x). Then, for y ≥ h(x),

P (θ, x, dy) = F ′θ(y + ayb − x)(1 + abyb−1)dy.

Let us assume that Kθ is such that A6 and A7 are satisfied. For the other conditions,

we will use a stochastic Lyapunov function as follows. Let A = [0,K] where K ≥ 0, β > 0,

and

g(x) = exp[β(x+ axb)].

For x ≤ K, one has g(x) ≤ exp[β(K+aKb)] <∞, and so conditions (b) in (5.1) holds. For

x > K, one has

Eθ,x[g(X1)] = Eθ,x[exp(β(X1 + aXb
1))]

= Eθ,x[exp(β(X0 + Z1))]

= g(x) exp(−βaxb)ϕZ(θ, β),

where ϕZ(θ, β) = Eθ,x[exp(βZ1)] is the moment generating function of Z1. We shall assume

that

sup
θ∈Λε

ϕZ(θ, β) <∞.(5.4)

Then we can choose K such that Kb > supθ∈Λε
ln(ϕZ(θ, β))/(βa) (because a, b > 0), and so

r̃
∆
= sup

θ∈Λε

exp(−βaKb)ϕZ(θ, β) < 1.(5.5)

Let r = (1 + r̃)/2. Then,

Eθ,x[g(X1)] ≤ r̃g(x) = rg(x)− (1− r)g(x) ≤ rg(x)− (1− r).
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This verifies (5.1). It follows that if A5 (ii-iii) also hold, then Theorem 4 applies for functions

f of the form f(x) = exp[β ′(x+ axb)], for any β′ < β, if ϕZ(·, β) is finite in a neighborhood

of θ0. Note that if supθ∈Λε
ϕZ(θ, β) < 1, then we can take K = 0 and so A = {0}.

To verify A5 (ii-iii), we need to make further assumptions on the distribution Kθ. For

example, if there exists a lower-bound measure ϕ̃ such that P (θ, x, dy) ≥ ϕ̃(dy) for all x ∈ A

and θ ∈ Λε, where λ∗
∆
=
∫K
0 ϕ̃(dy) > 0, then these conditions are verified with m = 1 and

ϕ = ϕ̃/λ∗. Otherwise, the conditions can still hold for larger m, but their actual verification

gets more messy.

In Glynn and L’Ecuyer (1994), we verify these conditions and develop specific expres-

sions for a special case of this example in which the distribution of inflows is exponential.

Note that in this model, the strict monotonicity of h guarantees that Fn = Gn for each

n ≥ 0, and consequently L′(θ0) = L̃′(θ0).
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