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Legal deposit – Bibliothèque et Archives nationales du Québec, 2026
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Québec à Chicoutimi, Saguenay (Qc), Canada,
G7H 2B1
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Canada, H3C 1K3

skeshavarz@etu.uqac.ca

ogagne1@etu.uqac.ca

sara.seguin@uqac.ca

gelareh.momen@etsmtl.ca

January 2026
Les Cahiers du GERAD
G–2026–05
Copyright © 2026 Keshavarzi, Gagné, Zacharie, Séguin, Momen, Tremblay
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les exigences légales associées à ces droits. Ainsi, les utilisateurs:
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Abstract : Designing icephobic surfaces to delay ice formation is crucial for applications like aviation
safety and cryopreservation. While Classical Nucleation Theory (CNT) provides a thermodynamic
foundation, real-world stochastic effects and complex wetting states make designing these surfaces
difficult. The performance of icephobic surfaces is influenced by surface structure. However, finding
the best designs for specific environmental conditions is still a challenge. In this work, we introduce a
hybrid approach that combines experiments, CNT, and blackbox optimization to predict and optimize
ice nucleation time on micropatterned surfaces. Cylindrical SU-8 micropillar arrays with different
heights and spacings were created, and the apparent contact angles and freezing delay times were
measured at −10 ◦C and −20 ◦C. An analytical model was developed to describe the wetting states
between the Wenzel and Cassie Baxter regimes, optimizing its parameters using the Mesh Adaptive
Direct Search (MADS) algorithm. This approach allows us to estimate contact angles and ice nucleation
times for any surface geometry within the studied design space. The predicted contact angles matched
experimental results with a mean absolute percentage error (MAPE) of 2.09% (R2 = 0.92) and the
approximate nucleation times showed a MAPE of 27.3% (R2 = 0.75). Our method also identified
the best micropillar geometries that maximize freezing delay and was validated with an independent
dataset, showing strong predictive ability. This work emphasizes the benefit of combining physics-based
models with data-driven optimization for rapid design of icephobic surfaces.

Keywords: Water contact angle; ice nucleation time; surface design; Classical Nucleation Theory;
blackbox optimization
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1 Introduction

The onset of the liquid-to-solid phase transition in supercooled water is ice nucleation that is a critical

phenomenon in many natural and engineered systems [1, 2]. The control of ice nucleation on surfaces

is a critical challenge in areas like aviation safety, renewable energy, cryopreservation and outdoor

infrastructure [3, 4]. Ice formation can reduce efficiency and functionality and may also pose significant

safety and economic risks [5]. Although Classical Nucleation Theory (CNT) has well represented

the basic thermodynamic principles of ice nucleation [6–9], real-world systems often differ from ideal

assumptions. This is due to impurities, complex surface interactions, environmental fluctuations, and

stochastic effects [3, 10–12].

Micro- and nano-engineered surfaces have recently been used as a passive method to control ice

formation. Microstructured surfaces, especially those with periodic designs like micropillars, can change

how droplets interact with surfaces by altering wetting behavior, contact line dynamics, and heat

transfer [13–18]. Depending on the surface geometry and chemistry, droplets may rest on surface

features in a Cassie-Baxter state [19], completely wet the surface in a Wenzel state [20], or fall in the

intermediate state [21–23]. Each of these states affects the contact area between solid and liquid, heat

transfer, and the energy barrier for nucleation.

While microstructured surfaces can significantly affect droplet wetting and interfacial energy, they

do not remove the randomness of ice formation. Ice nucleation is inherently stochastic which means

even under seemingly controlled and identical conditions, nucleation events may occur at different

times. Eberle et al. [10] demonstrated the random nature of ice nucleation using Poisson statistics,

where nucleation events follow a nonhomogeneous Poisson process during cooling and a homogeneous

Poisson process at constant temperature. In multiple contexts like pharmaceutical freezing, identical

vials can also show a wide range of nucleation times during cold-chain storage and freeze-drying [24].

Another challenge is the complexity of the design space. Surface shapes can have many adjustable

factors, including pillar diameter, height, spacing, aspect ratio, and surface chemistry. The properties

related to droplets, as well as environmental factors like cooling rate, humidity, and temperature, all

play a key role in determining nucleation outcomes. Exploring this multi-faceted space through exper-

imentation alone is very time-consuming and resource-heavy. Additionally, accurately characterizing

wetting states on these surfaces especially during dynamic freezing adds to the complexity.

To address these complex and random design challenges, data-driven methods have recently been

used to speed up materials and surface design. This includes neural networks, random forests, and
other supervised learning models [25–29]. However, they usually require large datasets, may be hard

to interpret, and might not easily incorporate theoretical models. In contrast, blackbox optimiza-

tion (BBO) provides a strong alternative. Algorithms like Mesh Adaptive Direct Search (MADS),

implemented in NOMAD software [30], have been used in various fields such as energy systems, mate-

rials design, hydrology, aerospace, and biomedical engineering [31]. For materials design, for example,

blackbox methods have enabled efficient exploration of complex composition spaces, prediction of phase

stability, and identification of materials with optimized properties. This makes it especially useful for

situations where evaluation is costly or hard to analyze [32]. The advantage of these types of methods

is that optimization can be conducted even when there is no analytical representation of the objec-

tive function and/or the constraints. In many industrial applications, the objective value can only

be computed using a computer code, since the models are complex, unknown and have no explicit

mathematical formulation. Blackbox optimization requires only input-output values of the blackbox

to optimize the objective function and the constraints, if there are any. One of the greatest advantages

of MADS is that it is a provably convergent algorithm, compared to methods issued from the field of

machine learning. This algoritm also handles continous, integer and categorical variables, making it

suitable for complex applications. MADS is better for optimization when the goal is to find optimal

decisions.
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In this study, we present a novel hybrid approach that combined experiments, CNT-based cal-

culations, and blackbox optimization (CNT-BBO approach) to approximate ice nucleation time and

guide surface design. We created SU-8 micropillar arrays with different geometries and measured both

contact angles and nucleation times under controlled subzero conditions. We calculated theoretical

nucleation times using CNT while applying an interpolation method to account for partial wetting.

Blackbox optimization was then used to merge experimental and theoretical data into an optimization

model that estimates contact angles and nucleation times for any surface geometry and suggests the

optimum surface design to increase ice nucleation time (Figure 1). The performance of this methodol-

ogy was tested on new surface designs that had not been evaluated before. The close match between

the approximated and experimentally measured contact angles and nucleation times confirms the re-

liability and usefulness of the approach. This validation shows that the methodology can effectively

estimate surface behavior for geometries not included in the original dataset.

Overall, we propose an adaptive framework for microstructured surface design to approximate

contact angles and ice nucleation times. By combining experimental data, CNT-based calculations,

and blackbox optimization, this approach provides an efficient way to design ice-repelling surfaces.

Figure 1: Overall structure of the paper. The key parameters used throughout the study are defined as follows: water
contact angle (CA), ice nucleation time (t), pillar diameter (D), pillar height (H), pillar spacing (S), and temperature (T).

2 Methodology

2.1 Surface fabrication & characterization

Micropatterned surfaces were created on silicon wafers using standard photolithography techniques, as

we described in our previous work [33]. Arrays of cylindrical SU-8 micropillars were produced with a

diameter of 10 µm (D) and heights (H) of 10 or 20 µm. The pillar spacings (S) ranged from 5 to 100 µm,

resulting in 14 different surface configurations. Each 15 × 15 mm sample was chemically modified with

trichloro(1H,1H,2H,2H-perfluorooctyl) silane (TPFS) to improve hydrophobicity. We characterized

surface morphologies using scanning electron microscopy (SEM) and 3D optical profilometry (Figure 2)
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and measured contact angle (CA) using a goniometer at 22 ◦C, −10 ◦C, −20 ◦C; and relative humidity

30± 5%.

Figure 2: SEM images and 3D surface profile of silicon wafer surface with S = 70 µm.

For ice nucleation experiments (Figure 3), 10 µL deionized water droplets were deposited on the mi-

cropillar surfaces inside a temperature-controlled chamber. A high-speed camera recorded the freezing

process, and the delay time for ice nucleation was determined from the moment of droplet deposition

to visible ice formation. Readers can refer to our original publication [33] for full experimental details.

This study builds upon and expands that work to provide an approximating tool for ice nucleation

time.

Figure 3: Schematic of the experimental setup [33].
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2.2 Wetting models and theoretical framework

The apparent contact angle (θ) of a droplet is governed by the balance of interfacial tensions be-

tween the solid, liquid, and vapor phases. For a perfectly smooth surface, Young’s equation applies

(Figure 4) [34, 35]:

cos(θY ) =
γSV − γSL

γLV
(1)

where γSL, γLV and γSV represent the interface tensions of the solid/liquid, liquid/vapor and

solid/vapor, respectively.

Figure 4: Typical wetting mechanisms (a) Young contact mode (b) Wenzel mode (c) Cassie-Baxter mode.

On rough surfaces, Wenzel and Cassie–Baxter models are defined as following [36–38]:

cos(θW ) = r cos(θY ) (2)

cos(θCB) = Φ(1 + cos(θY ))− 1 (3)

where r is the roughness ratio, Φ is the solid fraction of the surface, θW , θCB , and θY are the Wenzel,

Cassie-Baxter and the Young contact angle, respectively.

The calculations of r and Φ are based on the cylindrical surface geometry used in this study [39]:

r =
(D + S)2 + πDH

(D + S)2
(4)

Φ =
πD2

4(D + S)2
(5)

According to the theory of intermediate wetting [21, 22], the contact angle is described as follows:

cos θPW = (Φ + (rw − Φ)f) cos θY + (1− Φ)(1− f) cos 180◦ (6)

For a droplet in partial wetting state, the effective solid–liquid contact area A (actual contact area

considering microstructure penetration) can be approximated by [23]:

A = A′(Φ+ f(rW − Φ)
)

(7)

where A′ is the projected base area of the droplet on a flat surface. Given droplet volume V and

contact angle θ, A′ is calculated as [40]:

A′ =

(
9πV 2

)1/3
sin2 θ(

(2 + cos θ)(cos θ − 1)2
)2/3 (8)
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2.3 Ice nucleation model based on CNT

Heterogeneous nucleation rates are described by CNT as [10, 12]:

J(T ) = K(T )A exp

(
−∆G∗

Hetero(T )

KBT

)
(9)

In this equation, K(T ) is a kinetic factor showing the diffusive flux of water molecules across the

ice interface, A is the contact area between the droplet and the substrate, ∆G∗
Hetero represents the free

energy barrier for heterogeneous nucleation, KB is the Boltzmann constant (1.38× 10−2 JK−1), and

T is the absolute temperature.

The kinetic factor K(T ) is expressed as:

K(T ) =
kBT

h
exp

(
−kBT

2E

(T − TR)2

/
(kBT )

)
n (10)

where h = 6.62 × 10−34 J s−1 is Planck’s constant, n ≈ 1019 m−2 is the number density of water

molecules at the ice interface, TR = 118 K and E = 892 K are empirical parameters derived from

experiments on supercooled water, valid between 150 K and 273 K [10].

The nucleation barrier ∆G∗
Hetero for a spherical ice embryo is calculated as:

∆G∗
Hetero =

16πγ3
IW

3(∆GV )2
ϕ(θ) (11)

Here, γIW is the interfacial energy between ice and water, ∆GV is the volumetric free energy

change, and ϕ(θ) is a geometric correction factor that depends on the ice–water contact angle θIW :

ϕ(θ) =
(1− cos θIW )2(2 + cos θIW )

4
(12)

Since θIW cannot be directly measured, it is inferred by fitting CNT-based predictions of nucleation

rates to experimentally measured delay times at different temperatures.

The temperature dependence of the ice-water interfacial tension is given by [41]:

γIW = 28 + 0.25(T − 273.15) (13)

And the volumetric free energy change for the phase transition is calculated as:

∆GV =
Tm − T

Tm
∆HV (14)

where Tm = 273.15 K is the melting point of ice under atmospheric pressure, and ∆HV = 278 MJm−3

is the enthalpy of fusion.

Then, the average nucleation time, t, is:

t =
1

J(T )
(15)

2.4 Analytical model for contact angle in intermediate wetting states

Since wetting states are not limited to purely Wenzel or Cassie–Baxter regimes, a new equation is

introduced to provide an analytical model for intermediate wetting states by interpolating between



Les Cahiers du GERAD G–2026–05 6

these two contact angles. A new transition function is introduced that is very similar to a weighted-sum

function; however, the weights are variable:

cos (θp) = f × c1 × cos (θW ) + (1− f)× c2 × cos (θCB) (16)

where θp is the calculated intermediate contact angle, f is the transition function, c1 and c2 are

constants.

The transition function in Equation (16) is given by:

f =
1

1 + e−c3(
S

H0.6 −c4)
(17)

where c3 and c4 are constants, S is the spacing between the pillars and H is the height of the pillars.

This transition function is based on a simoid function, which is commonly used to represent the

transition phenamena. To consider the combined effects of S and H, the term c3(
S

H0.6 − c4) was added

to the exponential part of the sigmoid function. The constants c1 through c4 in Equation (16) and

Equation (17) are determined using blackbox optimization described in the following Sections.

2.5 Parameter optimization via Blackbox

Blackbox optimization is used when the analytical representation of the objective function and/or

the constraints are not available. Therefore, the problem is treated as a blackbox and derivatives are

not used to conduct optimization. Rather, inputs are given to the blackbox optimization solver, and

outputs are observed to refine the solution. Blackbox optimization is often used for hyperparameter

tuning, as it is the case for this project. NOMAD [42] is a blackbox optimization software that is the

implementation of the MADS algorithm. This algorithm does not used derivatives or gradients, but

rather explores the state space using a mesh, that is shrunk of expanded, depending on the solutions

at each iteration.

NOMAD proposes inputs for the blackbox, then the user provides the framework to compute the

value of the blackbox for theses values of input, and the solution is returned to NOMAD, that returns

new values of input to be evaluated. The mesh is then refined or coarsened, and a new iteration is

conducted. Usually, a budget of evaluations is given to NOMAD as a stopping criterion.

2.5.1 Calculation of c1, c2, c3, c4

Figure 5 illustrates the process when NOMAD is used to optimize values for the parameters c1 to c4.

The blackbox uses the equations defined in Section 2.2 and Section 2.3, and Equations (16)–(18) to

calculate the theoretical contact angle θp using the theoretical equations given input values c1 through

c4. The output of the blackbox is given by diff sum(c1, c2, c3, c4). The following equation is used to

calculate diff sum:

diff sum =
∑
i∈Ω

|θie − θip| (18)

where Ω is the set of experimental points and θie are the experimental contact angles.

The sum of the differences between the theoretical contact angle and the experimental contact

angle is minimized by the blackbox solver and the best values for c1, c2, c3 and c4 are obtained.

2.5.2 Calculation of θIW

Since θIW cannot be meausred experimentally at the ice–water–substrate interface, the value of this

angle is calculated for the intermediate wetting states using the theoretical equations. This value is

required to calculate the theoretical nucleation times.
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Figure 5: Blackbox optimization procedure used to determine parameters c1, c2, c3, and c4.

Figure 6 shows the process to calculate θIW using blackbox optimization. NOMAD proposes a

value for θIW , then the nucleation time is calculated using Equations (2)–(17).

We need to define the equation diff err, which calculates the error between the theoretical nucelation

time calculated with the theoretical Equations (2)–(17) and the experimental nucleation time:

diff err =
∑
i∈Ω

|tie − tθIW | (19)

where Ω is the set of experimental points, tie are the experimental nucleation times, and tθIW are the

calculated nucleation times.

Figure 6: Blackbox optimization procedure for calculating θIW .

2.5.3 Calculation of the optimal surface design

Given the experimental data, blackbox optimization is also used to calculate the optimal surface

design, more precisely to find the best values of S,D and H to maximize the nucleation time for a

temperature T of either −10 ◦C or −20 ◦C.

Figure 7 shows the process. The blackbox takes as input values of D,H, S and the output is

the difference between the nucelation times, calculated using theoretical Equations (2)–(17) and the

experimental nucleation times. Note that the temperature T is fixed to −10 ◦C or −20 ◦C, and must

be used accordingly in the equations.

Calc time is defined as:

calc time =
∑
i∈Ω

|λi
e − λi

p| (20)

where Ω is the set of experimental points, λi
e are the experimental nucleation times, λi

p are the calcu-

lated nucleation times given the parameters D,H, S, T .
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Figure 7: Blackbox optimization procedure for identifying the optimal surface design.

One the budget of evaluations is reached, the best values for D,S and H are found using the

blackbox optimization solver NOMAD.

3 Results and discussion

This Section details the results obtained. First, the experimental dataset that was used is detailed.

Second, the approximated values for the contact angle, the nucleation time and the optimal surface

design are presented. Third, a new dataset is introduced in order to validate the proposed methodology

and results are also reported.

3.1 Experimental dataset

The experimental data set used in this study was obtained from measurements performed on 14

micropillar silicon wafer surfaces with fixed pillar diameter D = 10 µm, pillar height H = 10 and 20

µm, and pillar spacing S = 5, 10, 20, 30, 40, 70, and 100µm. The experiments were performed at

temperatures T = −10 ◦C and −20 ◦C using 10 µL water droplets (V). For each configuration, the

apparent contact angle (CA) and ice nucleation time (t) were measured with multiple repetitions. The

intrinsic contact angle (θY ) was measured on smooth, chemically identical SU-8 substrates. It was

found to be 95.9° at −10 ◦C and 93.3° at −20 ◦C. These values used as inputs for the wetting and

CNT-based nucleation times.

3.2 Approximation of the intermediate contact angle

In our previous work [33], all microstructured silicon wafer surfaces exhibited partial wetting states

at both −10 ◦C and −20 ◦C. This indicated that neither the pure Cassie–Baxter nor Wenzel models

fully explained the actual droplet–surface interaction in our surfaces. In this study, we developed a

model to approximate the contact angle in these intermediate states. The theoretical expressions of

Cassie–Baxter andWenzel states were used as bounding conditions and a continuous transition function

was introduced to show a smooth transition between them. The model parameters were optimized

using the experimental contact angles at −10 ◦C and −20 ◦C. The approximate and experimental

CA were compared in Figures 8. In these figures, the Cassie-Baxter contact angles, given spacing

and height, are shown by the pink surface, the Wenzel contact angles by the green surface, and the

propsed transition function by the blue surface. The experimental contact angles are shown as yellow

points. It is shown that the experimental data points closely follow the fitted theoretical model (blue

surface), confirming that the parameters c1 through c4, optimized using the blackbox optimization

model, accurately represent the underlying intermediate wetting state. The approximation model

also successfully reproduces the observed increase in contact angle with decreasing pillar spacing and

increasing height. This is expected because reduced solid–liquid contact area improves hydrophobicity.



Les Cahiers du GERAD G–2026–05 9

In theory, the contact angle for partial wetting is described by the intermediate wetting model

as shown in Equation (6) [20, 21]. Here, the effective solid-liquid contact ratio f determines the

shift between the Wenzel and Cassie-Baxter states that depends on geometric features and the fractal

characteristics of the surface, expressed as f = 1−ΦD−2 [21]. To find D experimentally, it is needed to

conduct a detailed fractal analysis of high-resolution surface images using the box-counting method [43].

This process is time-consuming, sensitive to imaging conditions, and often produces uncertain results.

Consequently, theoretical approximations based on this formulation may diverge from experimental

observations when surface variation or partial liquid penetration takes place.

The current model addresses these limitations by using a data-driven transition function instead of

explicitly calculating f and D. This function uses the combined effects of geometric parameters like

S, H, and D. The sigmoid-type transition interpolates between the Cassie-Baxter and Wenzel limits

that allows for continuous approximation of the contact angle. The model obtained a mean absolute

percentage error of 2.09% (MAPE), a median error of 1.07% and an R2 of 0.92. The optimized

parameters are c1 = 0.58300675119152, c2 = 5.65445621119218, c3 = 2.58164406154465, and c4 =

0.90242543026997. This good agreement between approximated and experimental contact angles shows

the capability of the proposed method in the intermediate wetting behavior on micropatterned surfaces.

The ability to estimate contact angles accurately for new surface can provide a basis for measuring ice

nucleation time. Since the contact angle affects the solid-liquid contact area and the heterogeneous

nucleation barrier, this approximation model can be used for assessing how different designs may

influence nucleation behavior.

(a) T = −10oC (b) T = −20oC

Figure 8: Water contact angle (CA) of the silicon wafer surfaces at (a) T = −10 ◦C and (b) T = −20 ◦C.

3.3 Approximation of the ice nucleation time

Figures 9 compares the measured freezing delay times with the approximations made by the hybrid

CNT-BBO approach. The boxplots show the observed distribution of nucleation times, while the

curves represent the three CNT-based predictions: (i) the Wenzel model (green solid line), (ii) the

Cassie-Baxter model (orange dotted line), and (iii) the partial-wetting transition model proposed in

this work (blue dotted line). The blue dotted line shows the nucleation times calculated using optimized

θIWp by blackbox optimization. For each value of S, the boxplots show the experimental variability.

The whiskers indicate the minimum and maximum values, the horizontal line inside the box represents

the median, and the lower and upper parts of the box correspond to the 25% and 75% of the data,

respectively.
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(a) T = −10◦C, H = 10 µm
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(b) T = −20◦C, H = 10 µm
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(c) T = −10◦C, H = 20 µm
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Figure 9: Ice nucleation times on the micropillar silicon wafer surfaces with H = 10 µm at (a) T = −10 ◦C and (b) T =
−20 ◦C, and H = 20 µm at (c) T = −10 ◦C and (d) T = −20 ◦C.

As illustrated, the transition-based model fits well with the experimental nucleation times across all

pillar spacings, temperatures, and pillar heights. While the transition model does not perfectly follow

the median of the data, it captures the overall variability and trends. The predicted trends match the

observed increase in freezing delay as spacing increases from 5 to 20 µm, followed by a decrease at

larger spacings. This aligns with the wetting behavior discussed earlier. In contrast, the two classical

CNT models do not capture the measured trends. The Wenzel model consistently underestimates

nucleation times because it assumes full liquid penetration and maximum solid-liquid contact. The

Cassie-Baxter model, on the other hand, reliably overestimates nucleation times, especially at larger

spacings, due to its ideal assumption of minimal contact area. These differences are clear under all

experimental conditions shown in Figures 9, where both limiting models diverge significantly from the

observed distributions.

A quantitative error analysis further highlights the strength of the transition-based model. Using

the predicted intermediate contact angle, the framework achieved a mean absolute percentage error

(MAPE) of 27.3%, a median absolute percentage error of 16.2%, and an overall coefficient of determina-

tion of R2 = 0.75 across all geometries and temperatures.The predicted θIWp were 49.6918425404838◦

for −10 ◦C and 83.38854995304851◦ for −20 ◦C. Notably, using experimentally measured contact
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angle values instead of predicted ones led to slightly worse performance (MAPE = 28.7%, median =

19.8%, R2 = 0.70). This indicates that the contact-angle approximation model improves the accuracy

of the nucleation-time estimation.

Overall, the results show that the hybrid CNT- BBO framework provides reliable, strong, and phys-

ically consistent approximations of ice nucleation time across a wide range of micropillar geometries.

By combining heterogeneous nucleation theory with data-driven optimization, the approach effectively

captures both the geometric dependence of wetting states and the thermodynamics involved in ice

formation. This validated predictive ability supports the reliable design of microstructured surfaces

aimed at maximizing freezing delay.

3.4 Optimal surface design

While using the blackbox optimisation on our model at −10 ◦C and −20 ◦C, we obtain that the

optimal surface design for the domain of our data at −10 ◦C is a diameter D of 10 µm, a height H

of 20 µm and a spacing S of 16 µm, which gives a nucleation time of 4,479 s. At a temperature of

−20 ◦C, the optimal surface design is very similar with only the spacing changing from 16 µm to 15

µm which gives a nucleation time of 808 s.

Based on these results, synthetic data was generated using the theoretical equations and the

methodology used in the paper, more precisely calculation of the transition function and then the nu-

cleation time. The following domain of the data was used to generate new data: D = 10, H ∈ [10, 20]

and S ∈ [5, 100], which actually relects the range of the experimental data.

Results are reported with cumulative probability functions for fixed temperatures of T=−10 ◦C and

T=−20 ◦C as shown in Figures 10 and 11, respectively. Bars show the probability of nucleation times

within each bin with the left y-axis, and the red curve shows the cumulative probability distribution

(CDF), with the right y-axis. For example, in Figure 11a, there is a 0.005 probability that the

nucleation time is rougly between to 675 s to 677 s and a probability of 1 that the nucleation time is

below 800 s.

Only S between 13 µm to 18 µm are shown since these values are close to the optimal surface

design of 16 µm. These figures illustrate the cumulative distribution function of the nucleation time,

highlighting the probability that it remains below a given threshold. For instance, Figure 10d shows

that there is a 0.45 probability that the nucleation time is less than 4,000 s.

3.5 Model validation

To further assess the methodology proposed in this work, a dataset from a previously published study

was used for validation [44]. The dataset includes ice nucleation time and contact angle of silicone

rubber surfaces patterned with cylindrical pillar arrays, obtained at T = −20◦C. The investigated

samples were made of two series of micropillar geometries. In the first series, the pillars had D = 80

± 5 µm with H = 85 ± 5 µm and S = 45, 70, 95, 120, and 145 µm. In the second series, the pillar

diameter was increased to D = 110 ± 5 µm, while the pillar height remained constant at H = 85 ± 5

µm; the corresponding spacing were S = 15, 40, 65, 90, 115, 140, 165, and 190 µm.

Because the experimental data showed no variation in D and this new validation dataset had a

constant H, Equation (17) was modified as follow:

f =
1

1 + e−c3(
S

D0.6 −c4)
, (21)

This modification ensures that the transition function captures the characteristics of the new

dataset. The methodology remains consistent with Section 2.5: first, the parameters c1 throught

c4 in Equation (16) and Equation (21) were optimized using the blackbox optimization solver, and
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(f) S = 18µm

Figure 10: Cumulative distribution functions of ice nucleation times at T = −10◦C.

then θIWp
was optimized to approximate the nucleation times. The resulting optimal values were

found to be c1 = 0.850612298291391, c2 = 14.04238361348403, c3 = 31.26153083647016, and c4 =

0.87504551822843.

Figure 12 presents the results: the red surface shows the Cassie-Baxter contact angles, for different

values of spacing and diameter and a fixed temperature T = −20◦C, the green surface shows the

Wenzel contact angles, and the blue surface corresponds to the transition function for intermediate

wetting states. The yellow dots indicate the validation dataset point. The close proximity of the

transition surface to these data points confirms an accurate estimation of the contact angles, and
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Figure 11: Cumulative distribution functions of ice nucleation times at T = −20◦C.

validates the methodology. The MAPE for the approximation of the contact angle in intermediate

wetting state is 1.55%, with a median of 1.17% and an R2 is 0.88, further demonstrating the reliability

of the methodology.

Using the optimized transition function, θIWp was estimated via blackbox optimization to calculate

the nucleation time on the new validation dataset. Figure 13 presents these results, where the boxplots

indicate the experimental validation data and the green line represnt the approximate nucleation

time predicted using the transition function. Although the dataset exhibits significant variability, the
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Figure 12: Validation of water contact angle on silicone rubber surfaces at T = −20◦C with pillar diameters of (a)
D = 80 µm and (b) D = 110 µm.

transition function captures the underlying distribution well and follows the overall trend of the data,

closely aligning with the allure of the boxplots, leading to a validation of the proposed methodology.

The Statistics for the nucelation delay time showed a MAPE of 29.97, a median of 28.35 and an R2

of 0.55. While the correlation is moderate, it is reasonable considering the variability in the validation

dataset. For comparison, using the experimental contact angle from the validation dataset in the

theoretical equations produced a MAPE of 20.57, a median of 25.84, and an R2 of 0.61. The similarity

between these results confirms the validity of the proposed methodology.
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Figure 13: Validation of ice nucleation time approximations for silicone rubber surfaces at T = −20◦C with pillar diameters
of (a) D = 80 µm and (b) D = 110 µm.
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4 Conclusion

This study introduced a hybrid framework that combines experimental measurements, Classical Nu-

cleation Theory, and blackbox optimization to estimate contact angles, ice nucleation times, and help

design microstructured icephobic surfaces. By directly addressing intermediate wetting states found

on micropatterned surfaces, which Wenzel and Cassie-Baxter models do not accurately represent, this

approach tackles a major limitation in current ice nucleation models. We developed a sigmoid-based

analytical transition function to interpolate between different wetting regimes. This function was cali-

brated using blackbox optimization. Our model effectively matched experimentally measured contact

angles with low errors and strong correlations. It demonstrated the ability to capture the geomet-

ric influence on partial wetting without needing complex fractal analysis or direct measurements of

penetration parameters. When paired with CNT, the framework offered consistent predictions of ice

nucleation times. It successfully matched experimental trends concerning pillar spacing, height, and

temperature.

In addition to predictions, the introduced approach identified optimal surface designs that maxi-

mize nucleation delays. It showed that intermediate pillar spacings lead to the longest freezing times

under the tested conditions. Validation with an independent dataset with different materials and ge-

ometries confirmed the reliability and applicability of the method, despite the natural variability of ice

nucleation.

Overall, this work shows that merging physics-based models with data-driven blackbox optimiza-

tion is a strong and effective approach for exploring complex design challenges in icephobic surface

engineering. The framework serves as a practical tool for predicting ice nucleation behavior on new

surface geometries and can easily adapt to other materials, environmental conditions that involve

stochastic nucleation and intricate surface interactions.
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