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Abstract : Origin—destination (OD) matrices are essential for forecasting and capacity planning in
transportation and communication networks, yet they are not directly observable and must be inferred
from limited measurements. Classical gravity and power-law models capture broad distance effects but
lack theoretical grounding and enough practical precision, while data-driven approaches require large
training sets and are brittle under architectural change. We introduce a probabilistic framework
that derives OD flows from individual interactions. The model separates end-to-end traffic into two
observable components: how often individuals in two locations interact (their attractiveness) and the
average traffic carried by each interaction. This decomposition provides a physically interpretable,
data-fusable structure that remains valid regardless of network architecture. To evaluate the model,
we focus on the empirically dominant case in which interaction probabilities decay with distance
according to a power law. From this, we derive an origin-specific attractiveness measure in which
the effective distance is scaled by the origin’s population density and calibrated independently for
each origin. Applied to large-scale county—pair social-interaction data, the resulting origin-specific fits
substantially outperform classical, globally parameterized power-law models and recover exponents
consistent with independent empirical estimates. These findings reinforce the core implications of
the model: OD flows scale linearly with population, and the dominant source of heterogeneity stems
from origin-specific interaction behavior rather than nonlinear population effects. This provides a
practical pathway for robust, high-precision, end-to-end OD estimation, especially given the widespread
availability of large-scale statistical records.

Keywords : Origin—destination (OD) matrices; gravity models; attractiveness; social connectedness;
probabilistic OD modeling
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1 Introduction

An origin-destination (OD) matrix quantifies the flow demand between origins and destinations in a
network. In digital communication, this represents the volume of data traffic over a period, while in
transportation, it represents the number of trips over specific intervals (e.g., hourly or daily). OD
matrices are essential tools in network modeling, capacity planning, and forecasting across transporta-
tion [28] and communication networks [16, 25]. However, OD matrices are not directly observable; only
aggregate link counts (total traffic on each link or road) are typically measured. Thus, estimating OD
matrices from limited observations is inherently an under-determined inverse problem, as many matri-
ces can produce identical observed link loads. To address this challenge, classical structural methods
(gravity [12], power-law [40], entropy-based [36]) and data-driven methods [16, 28, 34, 38, 41] have
been developed. Data-driven (Al-based) methods can achieve high precision, but they require large
training data bulks, limiting their utility in network provisioning contexts where data are sparse or un-
available. Moreover, exclusive reliance on currently observed network data is increasingly problematic
amid potential architectural shifts: in transportation (e.g., drones and other urban air mobility) and in
digital communications (e.g., satellite backbones and heterogeneous access technologies). Under such
evolving conditions, usage forecasts and origin—destination (OD) matrices cannot be reliably extrap-
olated from historical measurements alone. High-precision planning, therefore, requires end-to-end
traffic measurements or models that remain valid under architectural change. In contrast, structural
models exploit structural properties of OD flows, particularly their heavy-tailed distributions, often
modeled using power-law decay [11]. Structural methods share a common principle: flow between
two locations depends proportionally on their respective populations and inversely on a cost function
related to distance or hops. Despite their simplicity, these models currently lack a strong theoretical
foundation. Parameters are empirically determined without clear interpretation, creating ambiguity
regarding their exact relationship to real-world conditions such as geography, topography, or social
interactions, and consequently hampers efforts to improve their precision to a reliable level.

Addressing these gaps requires an OD framework that is grounded in the actual mechanisms through
which flows arise. We develop such a framework by starting at the level of individual interactions.
Each individual allocates a limited interaction budget across different applications, selects counter-
parts according to a probability distribution, and generates a measurable payload per application.
Aggregating these microscopic interaction events across the population yields a macroscopic OD flow
model in which traffic between two locations is the product of two conceptually distinct and observ-
able quantities: (i) the number of interactions between the two locations, and (ii) the average traffic
volume carried by each interaction. This decomposition replaces heuristic assumptions with physically
interpretable parameters and connects OD estimation directly to digital datasets that measure social
or communication interactions at scale. To evaluate how well this model aligns with real behavior, we
focus on the empirically dominant case in which interaction probabilities decay with distance follow-
ing a power-law. This decay pattern, repeatedly observed in large-scale datasets of social and digital
interactions [4, 6, 7, 19-24, 31], allows a clean analytical derivation of origin-specific attractiveness.
A key implication of this derivation is that attractiveness depends not only on distance but also on
origin-specific characteristics—particularly population density and the distribution of interaction in-
tensity—which together shape the mass and spatial intensity of interactions across both nearby and
distant destinations. This origin-specific structure explains why classical gravity and globally param-
eterized power-law models systematically miss important heterogeneity in real OD flows. We validate
these theoretical predictions using a large-scale county—pair dataset of social connectedness [5], which
yields substantially stronger correlations between the model and observed interaction data compared
with classical approaches. Our contributions are summarized as follows:

e We derive OD demand directly from individual interactions, separating total flow into the num-
ber of cross-location contacts and the average traffic per contact. This yields a simple and
interpretable structure that remains valid under architectural change, and reveals that the ap-
parent complexities in classical gravity and power-law models arise not from nonlinear population
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effects but from origin-specific behavioral and socioeconomic factors. By identifying where het-
erogeneity truly resides (at the origin) and where structure is universal (linearity in population
and probability normalization), the framework provides a principled basis for more accurate and
extensible OD modeling.

e We use the dominant power-law decay in human interactions to derive an origin-specific at-
tractiveness measure. It calibrates each origin separately by transforming actual distance into
an effective distance through normalization with origin population density, with attractiveness
intensity decaying as a function of effective distance from the origin. Applied to large-scale
county—pair data [5], the results show that the proposed origin-specific formulation substantially
improves correlation with observed interaction patterns compared to classical power-law mod-
els, particularly when each origin is calibrated independently. This demonstrates that the core
implications of the probabilistic model—linearity with population, origin-specific normalization,
and per-origin behavioral weighting—are indeed reflected in real-world data.

The rest of this paper is structured as follows: Section 2 reviews background and foundational
concepts. Section 3 formally derives the probabilistic OD model. Section 4 formulates attractiveness
for the case of a power-law distribution. Section 5 validates the theoretical model with empirical
datasets. Finally, Section 6 summarizes findings and suggests avenues for future research.

2 Background

Mathematically, an OD matrix quantifies traffic volumes from origins to destinations, where each entry
T;; represents the flow from origin ¢ to destination j. Unlike data-driven methods [16, 28, 34, 38, 41]
that infer T;; indirectly from aggregate link measurements, structural methods such as gravity and
power-law models estimate T;; directly based on theoretical assumptions and limited empirical data.
The gravity model, inspired by Newton’s law of gravitation, assumes the flow between two locations is
proportional to their respective attractiveness (analogous to mass) and inversely proportional to a cost
function, typically distance or travel impedance. Formally, the general gravity model is expressed as:

Ty = KO} D f(di),

where O; and D; represent the attractiveness measures of origin ¢ and destination j, respectively, d;;
represents the separation or effective distance between the pair, and K, 3;, and 3; are empirical model
parameters. Often, for simplicity, 3; = 5; = 1, and the normalization constant K ensures the OD
matrix aligns with the total observed flow. Common forms for the impedance function f(-) include
exponential decay, f(d;;) = e~*%i and power-law decay, f(d;;) = d;;*, with the parameter o derived
from empirical data. Gravity models are attractive for their simplicity, minimal data requirements, and
reasonable predictive accuracy. However, they inherently assume a smooth, monotonically decreasing
relationship between distance and flow, which may oversimplify real-world complexities and variability.
Power-law models explicitly recognize heavy-tailed distributions in flow patterns. Such models assume
either that the distance impedance f(-) follows a power-law form or, more broadly, that the flow
ranked by size follows a power-law distribution. For example, the k-th largest flow might follow a
proportional relationship to k™% for some exponent «. While power-law models capture the highly
skewed nature of OD flows effectively, they typically require additional calibration or integration with
other modeling techniques to accurately represent real-world scenarios. Devlin et al. [11], for instance,
incorporated a preferential attachment mechanism into their model to better match observed traffic
distributions. Despite their simplicity, both gravity and power-law models suffer from significant
theoretical limitations. Key parameters like the normalization constant K and exponents 3; and §; lack
rigorous theoretical foundations. For instance, the gravity model does not provide clear justification as
to why the constant K should remain uniform across all OD pairs, nor why exponents 3; and 3; might
vary independently—an issue absent in Newtonian gravity analogues. Furthermore, the definition
and measurement of effective distance or cost functions remain ambiguous, lacking a well-established
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theoretical grounding. These deficiencies create an analytical impasse: heuristic formulations without
a solid physical interpretation offer limited insight into how model accuracy or generality can be
systematically improved for reliable use in network planning. In particular, the so-called structural
models—including both classical gravity and its power-law variants—are not derived from the intrinsic
mechanisms governing human or societal attractiveness and interaction. As a result, their parameters
lack behavioral or physical meaning, making it difficult to refine or extend these models in a principled
way. Without a formulation anchored in the fundamental nature of interaction between populations,
any improvement remains empirical and ad-hoc rather than theoretically justified.

On the other hand, data-driven OD estimation methods often rely on large volumes of historical
traffic data measured on a given network topology, which makes them notoriously topology-dependent.
These models typically infer origin-destination demands from link-level measurements (e.g. counts on
network links), implicitly assuming the current routing and network structure remain fixed [37, 39].
As a result, a model trained or calibrated on one network environment can fail to generalize when
the network layout or technology changes [8]. In fact, simply feeding more historical data from the
same topology does not overcome this limitation— the model still “learns” patterns tied to that
specific network structure [37]. This sensitivity to historical topology and measurements is a critical
weakness of data-driven approaches: their predictions and inferences degrade if the underlying graph of
routes changes even moderately. The fundamental issue is that many more OD flows exist than direct
observations, so inferring end-to-end traffic from aggregated link counts is an ill-posed problem without
strong assumptions [29]. In other words, link-level data alone cannot always distinguish different origin-
destination pairs, meaning a model trained on those link metrics is biased by the current topology and
routing pattern.

These weaknesses become particularly problematic when designing new network topologies or tech-
nologies, where past link-level trends cannot be directly leveraged. For example, consider developing
a global satellite communication network, which has a fundamentally different topology from the ter-
restrial Internet backbone, or a drone-based transportation system that relies on aerial routes instead
of road networks. In such cases, using historical traffic measurements from existing Internet or road
infrastructures can be misleading, as those measurements are inherently biased by the current terres-
trial topology and aggregate many end-to-end flows along legacy routes [14]. They fail to reveal the
true independent OD demands that would arise in the new infrastructure. To predict traffic under
topology changes or in novel networks, one must incorporate end-to-end demand patterns and avoid
topological bias. Advanced modeling frameworks instead attempt to estimate demand and routing
jointly to capture how flows reroute or redistribute when the graph changes [37]. Such approaches
implicitly recognize that pure data-driven models must either be topology-agnostic or retrained with
new domain data to remain accurate in the face of network reconfigurations.

To address these limitations and develop a model that captures end-to-end traffic patterns while
remaining topology-independent, we propose a framework grounded in the fundamental nature of
human interaction. The model leverages statistical data on end-to-end human connectivity to predict
OD flows. Specifically, we derive the entries of the origin—destination (OD) matrix by aggregating
pairwise interactions between individuals in two entities (e.g., cities), where the total OD flow results
from the sum of mutual attractiveness between origins and destinations multiplied by the average
flow per end-to-end connection. Each parameter can be measured independently of the underlying
network topology using the vast and diverse statistical datasets now available for different types of
flows and applications. This formulation ensures that every model parameter has a clear physical or
social interpretation, thereby enhancing its empirical measurability and theoretical transparency.
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3 Social-interaction probabilistic OD modeling

To establish a solid theoretical foundation for OD flows, we propose a probabilistic model of individual-
level interactions and derive macroscopic flows between entities (e.g., cities) as the aggregation of these
microscopic interactions.

We fix a time period (e.g., one day) and let each individual k allocate a finite interaction budget
across all potential counterparts and application types. For an application type ¢ € {1,..., ¢max},
individuals produce interaction events at an average rate ¥4 (events per period), and each such event
carries an average payload T (e.g., bytes in digital traffic).

We introduce non-negative weights wj which represent the share of individual &’s interaction budget
devoted to application g. Since each person has limited resources (time, attention, money, etc.), the
total budget allocated across all applications is bounded:

gmax

ng < Wy, (1)
q=1

for some finite constant W, common to all individuals. The constraint in Equation (1) prevents any
single individual from contributing an unbounded amount of flow to the aggregate OD traffic.

Conditional on generating a type-g event, individual k£ selects a counterpart [ from the global
population £ according to probabilities PJ}, so that

> Py =L (2)

lel

The probability law constraint in Equation (2) induces a natural trade-off: for a given individual
and application, increasing probability mass on nearby counterparts necessarily reduces probability
mass on distant ones. In other words, local and remote interactions must share a common probability
budget.

Let M; C L denote the set of individuals belonging to city j. For a given origin individual k¥ and
application ¢, the probability that a type-q event is directed to some individual in city 7 is

Z Py

leM;

Assuming that the payload per event is independent of the choice of counterpart, the expected type-q
traffic generated by individual k towards city j over the period is

E[1;3;] = 2" T7wf Y P (3)
IGM]’

Aggregating over all applications yields the total expected traffic generated by individual k& towards
city j:

Gmax

Tkﬁa Z NI T wj, Z Py (4)
leM;
This individual-level description serves as the building block for our macroscopic origin—destination
(OD) flow model. We then extend this framework to the macroscopic OD level to derive intercity
flows. Specifically, instead of a single individual, we consider two cities with populations M; and M;.
The total traffic flowing from City ¢ to City j is obtained by summing the expected contributions of
all individuals located in 4:

dmax

Ti; = Z Tk—>] Z Z ,quq wk; Z Pfl (5)

keM; keM; q=1 leM;
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It is convenient to reorganize Equation (5) by grouping terms associated with the same application g.
This yields the decomposition

dmax

Tyy= Y T& — Th=~1T" > wi| > Pi|, (6)
q=1

keM, leM;

where T}, denotes the OD traffic associated with application ¢. The inner summation =, M, Pl
gives the probability that an event generated by individual k is directed to any individual in City j.
Weighting this probability by w} and aggregating over all individuals in ¢ yields a natural measure of
the attractiveness between the two cities:

E(C]) = Y wi ) P (7)

keEM;  leM;

We refer to E(ij) as the type-q attractiveness between ¢ and j. It corresponds to the expected number
(or expected rate) of type-q contacts between the two cities. With this definition, Equation (6) takes
the compact form

T = (979 B(CE), ®)

which expresses the OD traffic of application g as the product of two statistically measurable and
conceptually independent quantities:

o E(ij): the expected number of contacts between City ¢ and City j;

e 1T the average payload generated per period for application q.

Aggregating again over all applications yields the macroscopic OD law

gmax

Ty =Y (T E(C}). (9)

q=1

Equation (9) reveals a fundamental decomposition of OD traffic: flow volumes depend only on
(i) the attractiveness between origins and destinations, and (ii) the per-contact payload of each ap-
plication. Importantly, both components are observable in practice. Many modern datasets directly
measure attractiveness, including counts of online friendships [3, 4, 6, 7, 21], intercity call and SMS vol-
umes [19, 20, 24], and interaction frequencies in online games or other digital platforms [10, 22, 23, 31].
These datasets provide precisely the type of information captured by E(ij) Similarly, the average
per-contact payload 97?7 can be estimated directly from a sample of connections (e.g., the mean
number of passengers per trip, or the average data volume per digital interaction). Taken together,
these observations imply that end-to-end traffic between any OD pair can be estimated entirely from
interaction data and per-contact load statistics, without relying on assumptions about the underlying
transmission network or routing structure.

The probabilistic formulation above establishes a direct bridge between measurable attractiveness
E(C’fj) and OD traffic. As illustrated in Figure 1, once the expected number of application-g contacts
between two cities is known, multiplying it by the per-contact payload 4979 immediately yields the
corresponding OD traffic Tg Thus, this decomposition provides a practical basis for predicting end-to-
end OD flows even when the underlying transmission network or routing is unknown. In many cases,
attractiveness data for one application g also serve as a proxy for other applications ¢’ for which direct
records are unavailable. This is because E(C’fj) captures the underlying social or interaction intensity
between two regions, a structure that tends to be similar across applications. Hence, the factorization
TZ‘ = (y1T9) E(C’fj) naturally supports extrapolation, as depicted in Figure 1, across applications—a
capability not shared by traditional curve-fitting gravity or power-law models.
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( Aggregate traffic (target) T;; )
Probabilistic model
Ti; = Z(’YQTQ)E(C%%
q

ECEH) = D w2 P

keM; leM;

\ J/
' A
Per-application Per-contact
attractiveness payloads

Observed data

Observed Observed : Extrapolated :
attractiveness attractiveness : attractiveness :
q q q q
E(C’Z.j1 E(Cij2 : E(Cif), E(C’i;1 ’.
Observed per-contact pay-
loads ~9T7Y (for applications q)

Aggregate traffic
T; = S (T E(CY)
q

Figure 1: The probabilistic model separates OD flow into two measurable components: the expected attractiveness
between origin and destination and the corresponding per-contact payload. Each observed or extrapolated attractiveness
E(ij) multiplies with its per-contact payload (v77%) (x nodes) to yield the traffic contribution of application gq. These
contributions are then summed (+) to produce the aggregate OD flow Tj;.

Analysis and the Implications of the model

To connect the proposed probabilistic framework with classical OD models, we adopt a standard behav-
ioral assumption also underlying gravity and power-law formulations: interaction probabilities decay
with distance. This assumption is widely used in the analysis of wireless network capacity—a distinct
but mathematically related traffic modeling problem—where distance-based probabilistic interactions
are central [2, 9, 13, 17, 18, 26, 35, 42]. Importantly, it is also strongly supported by extensive empirical
evidence on human social interactions [4, 6, 7, 19-24, 31]. In most real-world OD settings, the dis-
tance between cities is large relative to their internal spatial extent. Under this geometric separation,
individuals in City ¢ perceive all individuals in City j as being approximately equidistant. As a result,
the interaction probability between any individual pair k € M; and [ € M; can be approximated by a
common city-to-city interaction probability,

q - p4
Py = Py,

Vke M, ZEM]‘.
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Substituting this approximation into the expression for OD traffic,

Gmax

T = ZVqTq Z wi Z By
qg=1

keM; leM;

dmax

~ Z ~IT PZ%- M; Z wZ.
g=1 keM;

Introducing the origin-specific mean weight

we obtain the simplified OD form

qlna
Ty ~ Y (V'T9)(PfMM;wf). (10)

i

Q
—

Equation (10) yields several important conclusions. In traditional gravity models, population ex-
ponents are treated as free parameters and are often fitted to values larger or smaller than one. In
contrast, in our framework OD flows scale linearly with M; and M, since population enters only
through the explicit counting of individuals. Any departure from linearity must therefore arise from
origin-specific application weights or interaction probabilities, w] and PZ%, rather than from introduc-
ing nonlinear population exponents. In particular, the factor w{ captures the interaction culture of
the origin, including the prevalence of specific applications and the socioeconomic structure of City 1.
Because these characteristics vary systematically across origins, w; cannot be treated as a universal
constant. In addition, the interaction probabilities Pi‘é are inherently origin-specific. For each origin i

and interaction type ¢, they must satisfy the probability constraint
a _
D Pi=1
J

As a consequence, individuals (or origins) with highly concentrated local interactions must necessar-
ily have fewer remote interactions, while individuals who interact more broadly must allocate less
probability mass locally. This probability constraint produces a fundamental local-remote trade-off,
conceptually illustrated in Figure 2, using a Gaussian distance decay distribution with standard devi-
ation o. For any radius r, the total probability mass can be decomposed as

Y. Pi+ ) Pi=1

Jrd(i,j)<r Jrd(i,g)>r

local mass remote mass

As depicted in Figure 2, sharper kernels ( smaller o) allocate more probability locally and therefore
reduce remote probabilities, while broader kernels do the opposite. This behavior is an unavoidable
consequence of probability normalization and cannot be guaranteed by unconstrained gravity fits. It
implies that local community structure fundamentally shapes long-range OD interactions.

In summary, the city—city approximation reveals that the key sources of heterogeneity in OD flows

are origin-specific interaction patterns (w?) and origin-specific in distance-based probabilities (PZZ)

K3
These effects arise directly from the probabilistic foundations of the model and suggest that OD es-
timation methods should treat rows of the OD matrix on a per-origin basis rather than imposing
global parameters across all entries. This perspective fundamentally changes how OD flows should

be modeled. Classical gravity and power-law formulations typically introduce nonlinear population
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—— Small o (local-biased)
--- Large o (remote-open)

Local mass ~--

o 05 1 15 2 25 3 35 4 45 5 55 6
Distance d from origin &

Share density P;,(d) (half-Gaussian)

Figure 2: Origin-specific normalization with half-Gaussian share densities on d > 0. The smaller variance (solid) has a
taller peak and concentrates probability locally; the larger variance (dashed) shifts mass to longer distances. For any
radius r, the local and remote masses sum to 1.

exponents or universal scaling coefficients to fit empirical data. In contrast, the probabilistic model
developed here shows that such complexity does not arise from population effects but from systematic
per-origin differences in behavioral, technological, and socioeconomic factors encoded in w{ and in
the origin-specific probabilities PZ%. Because these origin-specific terms stem directly from the under-
lying logic of individual human interactions, they provide a physically interpretable and extensible
basis for model refinement. More detailed representations—incorporating heterogeneous application
types, temporal variability, or demographic structure—can be added without altering the fundamental
decomposition into expected contacts and per-contact payload. Thus, this probabilistic model not
only enables end-to-end estimation of OD flows from digital traces but also offers a clear conceptual
pathway for improving precision. Unlike purely empirical curve-fitting methods, it identifies where
heterogeneity resides (at the origin) and where structure is universal (linear scaling in populations and
normalization-constrained distance effects).

Finally, although comprehensive validation would ideally require joint access to interaction records,
per-application payloads, and ground-truth OD flows, such datasets are rarely available together.
Nevertheless, the model makes testable predictions that can be verified using more accessible social-
interaction data. A central implication is the linear relationship between attractiveness and OD traffic,
which allows attractiveness—much easier to measure than traffic—to serve as an effective proxy for
flow. Empirical studies consistently show that intercity communication frequencies, online friendships,
and other digital interactions exhibit stable, distance-decaying patterns that align closely with this
structure [4, 6, 7, 19-24, 31]. Building on these observations, we develop a power-law attractiveness
model in Section 4 and demonstrate that incorporating origin-specific features significantly improves
fit relative to classical global power-law formulations. This provides meaningful empirical support for
the probabilistic model: its key predictions—linear population scaling, per-origin heterogeneity, and
normalized distance decay—yield substantially better alignment with real interaction patterns than
traditional approaches.

4 Per-origin power-law attractiveness

Empirical studies consistently show that the frequency of social and digital interactions decays with
distance according to a power law [4, 6, 7, 19-24, 31]. Consistent with this empirically established
pattern, we derive in Section 4.1 an explicit per-origin attractiveness function under the assumption of
power-law interaction probabilities. The resulting expression is a normalized attractiveness measure
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that depends on distance, the power-law exponent, and a normalization factor enforcing that each
individual’s interaction probabilities sum to one. To express this normalization factor in terms of
meaningful and observable quantities, we analyze it in detail in Section 4.2. This factor generally de-
pends on several structural features, including city geometry, inter-city distances, the global population
distribution, and the power-law exponent itself. We therefore examine a simplified yet generalizable
scenario that isolates these dependencies and clarifies the role of normalization in shaping per-origin
attractiveness.

4.1 Per-origin attractiveness over distance

Now, we compute the attractiveness around an origin for the special case of a power-law interaction
probability between individuals. We consider the interaction probability of an individual ik with
application ¢ in origin ¢ with any other person at distance d to follow

A
Pi(d) = =k
zk;( ) daq?

(11)

where A}, is a normalization constant ensuring that the total interaction probability for each individual
sums to one, and g is the power-law exponent for the given application. As will be derived in
Section 4.2 and supported empirically in Figures 5 and 6, under the assumption of a nearly uniform
interaction opportunity over the area of origin ¢, the normalization constant A}, is approximately
uniform across all individuals in city 7. Therefore, we write

X~ AL Ve M,

where |M;| = M; is the population size of origin i. Moreover, as illustrated in Figure 3, we focus
on the case in which the characteristic interaction distance d is much larger than the diameter of the
focal city dy. In this case, the spatial extent of origin ¢ is negligible compared with d, and therefore
all individuals in origin ¢ effectively experience the same distance d to any location at that radius.
To account for heterogeneity in the contribution of individuals to a given application, we associate
to each individual k € M; a non-negative weight w}. Under this assumption, the weighted aggregate
interaction probability of all individuals in origin i at distance d for application ¢ becomes

by A
D wiPi(d) & Y wit = 25y wj (12)

keM; keM; keM;

In this definition, we introduce the average weight

1
-4 A Z q
w; = ] wk7 (13)
MZ keM,;
and rewrite the summation as MopA
i Wi Ay
> wiPi(d) = T (14)
keM,;

Now, to compute the attractiveness of origin 7, we consider a spatially continuous model as illus-
trated in Figure 3, where a focal city i is located at the origin with population M;. Consider a thin
annular ring centered at the origin with radius d and differential width dd. The area of this annulus is

0A = 2nd dd.

We assume that the population density at distance d in an annulus of width dd around the city is
uniform and denote it by p(d). Although this assumption is somewhat idealized, it underlies most
power-law and gravity models. Under this assumption, the expected number of individuals in this
differential ring is

ON = p(d) - 6A = 27p(d) d od.
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¥ do ®od

Figure 3: A focal city (origin) centered in a 2D plane. Individuals located in a thin annulus at distance d have the
probability of interaction proportional to d~“q.

Each individual in the ring interacts with origin ¢ with probability given by the origin-level kernel
in (14), so the expected attractiveness contributed by the ring, denoted dC;(d), for a city of population
AL is
M;wI\]

d%a
To account for spatial heterogeneity, we note that p(d)—the population density as a function of dis-
tance—can vary with location. To avoid the oversimplification of classical power-law and gravity
models, which effectively assume a uniform environment, we normalize the term 6C;(d) by p(d). Con-
sequently, the attractiveness is computed as

0C;(d
et -y = [ 24
p(d)
To compute C(d) within distance d for o, > 2, we integrate from a reference distance with contact
number C¢:

5CI(d) = 6N - = 2mp(d) MywI\? d* = §d.

— 2 MywIN] / 40 5d, (15)

2 !
Ci(d) = My =20 &~ + G (16)
q

[18] has shown that, for any realistic power-law distribution, «, should be strictly greater than two,
which guarantees the convergence of the above integral. Taking the logarithm of both sides yields

M;wi 2w \?
log(CY(d) — CJ) = 1og(wz_7”> +(2— ay) logd. (17)

Qq

Equation (17) shows that, in a log—log plot of per-origin attractiveness versus distance, the slope
equals 2 —cy,. Since the interaction probability itself is not directly observable from empirical data [18],
most empirical studies instead report measures of attractiveness, contact distributions, or equivalent
quantities. Consequently, when empirical studies fit a line to such data, the estimated exponent satisfies

oy = 2 — slope.

Hence, Equation (17) provides a crucial link between the theoretical interaction probability model and
observational data for estimating the power-law exponent. Indeed, all measurements in studies such
as [4, 6,7, 19-24, 31] reflect contact distributions rather than direct interaction probabilities. Therefore,
to avoid misleading interpretations, this distinction must be taken into account. For example, if the
contact distribution decays as 1/d, the corresponding interaction probability actually decays as 1/d>.

Equally important, even in an idealized setting where all origins share the same power-law exponent,
M; 27 !
ag—2
varies. This effect is confirmed empirically in Section 5, where per-origin correlations at the best-fit o,
are substantially higher than those obtained from the full OD matrix. Consequently, unlike classical
gravity or power-law models that impose a single global normalization, OD flows must be modeled at

least on a per-origin basis, with each origin characterized by its own normalization constant.

heterogeneity persists due to the term log( ), which induces origin-dependent offsets as M; \]w!
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4.2 Power-law probability normalization parameter

The probability normalization parameter is defined individually for each person such that the total
probability of interaction across the entire population equals one. For example, if an individual S
interacts, under application g, with any other individual v at distance d, according to a power-law

model P(d,) = A% /d%, then
S >\q
> R - ¥ A 1

v
v#£S v#£S Y

To generalize this formulation spatially, we map each individual S to a physical location (zg, yo). There
exists a one-to-one correspondence between individuals and their spatial coordinates, allowing us to
express the normalization term as a spatially dependent function A?(zg, yo) instead of \%.

Under this formulation, while the normalization condition is originally expressed as a discrete sum
over all individuals, it can be approximated by a continuous integral over space. Specifically, we
integrate the product of the interaction probability and the local population density p(x,y) across the
spatial domain centered at the individual’s position (z, yo):

// Pq(myy;$07y0) p(ﬂf,y) 5$6y =L
domain

In this formulation, the population density p(z,y) is assumed to be zero in unpopulated regions.
To simplify the integration, we switch to polar coordinates centered at (acosfy, asinfy). In these
coordinates,

x =acosbfy+ rcosb, y=asinfy+ rsinf.

For any point (r, 0), the interaction probability can be expressed as
Pq(,,,’ 97 a, 90) = Pq(x7 Y5, Zo, yO) = )\q(a7 90) ,,,—Olq7

where \(a,fy) is the normalization parameter at the reference point (a,6y). The differential area
element is A = r dr 66, and the population density at the corresponding position is

p(acosby + rcosb, asinby + rsind).

Therefore, the normalization condition can be written explicitly as

1 2 00 ) ) a
m:/{) /TO placosby+ rcosf,asinby + rsinf)r or 06. (18)

Conceptually, this integral sums up the contributions of all people in the plane, weighted by a
distance-decay power-law factor. Points that are nearby contribute a term p(a cos 6y +r cos 8, asin 6y +
rsinf) r1~% which is relatively large (since r is small), whereas distant points contribute much less
due to the r—% decay. Furthermore, the integral will generally yield a larger value for points that
are more centrally located in a city than for points near the city’s edge, because a centrally located
individual is surrounded by population in all directions. In contrast, an individual near the edge of
a city has a portion of their surrounding circle falling outside the populated area (which contributes
nothing).

Equation (18) presents a general formulation that can be applied to compute the normalization
parameter of the power-law model for any spatial point. To gain deeper insight into how this parameter
varies within a population center (e.g., a city) relative to the rest of the world, we now examine a sim-
plified representation of a real-world scenario. This setup incorporates all relevant factors—including
inter-city distances, global population distribution, and the power-law decay of interactions—within a
tractable framework illustrated in Figure 4.
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In this model, we consider a circular city of radius R and population M, surrounded by an empty
annular gap extending from R to R+-d,, where d, denotes the isolation distance separating the city from
its surroundings. Beyond this gap lies another annular region representing the remainder of the global
population, modeled as a uniform ring of thickness d,.x. We assume a constant population density p;
inside the city, p2 in the outer global region, and zero density in the intermediate gap. Consequently,
the effective area contributing to the integral for A?(a,y) comprises two distinct regions.

Figure 4: A central city of radius inscribed in an annular ring at distance d4, which isolates it from the rest of the world.

As discussed in Theorem 2, it is sufficient to analyze a single representative directional
arc—specifically, 8y = 0, corresponding to the direction from the city boundary toward its center.
The general approximation for this scenario is computed in Theorem 2 and given by Equation (19):

1 ™ 2p1
|: aq—2+
To

A(a,0p=0) 6(ag—2)

=~
Il o
<

) ) cos?(km) acos(Em) -,
pQ(\/dmax +a (TG - ) T(S)
5 o cos?(km) acos(km) ey
pl\/R +a (T671)iT6)2
—p2<\/<R+dg>2+a2<c°S2(kg) s 2D e )

As previously discussed, this integral serves as a continuous approximation of the discrete sum-
mation that accounts for the contribution of all individual interaction probabilities with respect to
a specific individual. Therefore, the integration domain must exclude the area corresponding to the
specific individual. To satisfy this condition, we set the lower limit of integration just outside the circle
that contains exactly one individual. This condition implies p;7rd > 1, and we consider the minimum

value as the lower integral value as
1
rg =4/ —. 20
0=y (20)

We now perform a numerical analysis based on Equations (19) and (20) for the configuration
illustrated in Figure 4, to examine how various factors influence the normalization parameter A9.
First, we focus on the position change inside the city. In this regard, Figure 5 illustrates the variation
of the value A?(R — a,0 = 0) as a node shifts from the corner to the center of the city. In this setting,
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we fix the densities p; and pe with p; = p2 = 42000 per km?, set the isolation gap to d, = 100 km,
and consider cities with populations ranging from 1,000 to 50 million. We perform this evaluation on
several values of the power-law exponent a,. Across all values of g, the expected behavior is observed:
the value of A7 is largest at the city corner due to the sparser surrounding population, but it quickly
converges to \9(0,0) as the node moves toward the city center. Interestingly, although we examine
cities with vastly different populations (from 1,000 to 50 million), as long as the population density
and a, remain constant, the variation in A? is minimal. The curves nearly overlap and are difficult to
distinguish. For instance, as highlighted for the case ay = 3.4, the ratio of A? between the most and
least populous cities is approximately 99%. However, a small shift in the exponent—e.g., changing «,,
by just 0.2—can cause a significant change in the A7 value.

%101

: ay =34 === Popul. = 1.0 x 10°
144 % —— Popul. = 1.0 x 10*
----- Popul. = 1.0 x 10°
—+= Popul. = 1.0 x 10¢
1.29 13050 - 7
‘ v Popul. = 1.0 x 10
13000 ‘e}\{} Popul. = 5.0 x 107
1290504
< 1.0 “a,
< 12900 o, o
| 12850 4,
&2 0.84  12s00 PR,
= . 0 100 4,32
0.61
0.4
&M ol
10? 10 10 10°

R-a (m)

Figure 5: Effect of population size and power-law exponent on A4 (R — a,0) for d; = 100km and p; = p2 =
42,000 persons/km2, as a node moves from the city boundary toward its center, for cities with populations ranging
from 1,000 to 50 million people.

Next, we perform another analysis using Equation (19), which covers the effect of the isolation
distance d, and population density on the value of A?. Figure 6 depicts the results of this numerical
analysis, where the isolation distance dj is varied from 1km to 1000 km for a city with a fixed population
of 100,000. As illustrated in Figure 6, the results indicate that the impact of isolation distance on A? is
negligible, even when examined with a magnified view—mno meaningful difference can be observed across
the different values of d,. In contrast, variations in population density exhibit a substantial influence
on the value of A9, comparable to that of the power-law exponent c,. These findings reinforce the
conclusion that the dominant factors affecting A? are local parameters, specifically: (i) the population
density p, and (ii) the distance decay parameter . This holds true even though the full theoretical
expression for \? may appear complex. Indeed, under the assumption of a sufficiently large population
mass—implying that the contribution of the rest of the world to the interaction probability is negligible,
which holds in most cases when the city diameter satisfies R > ro—one can show, for an origin city ¢,
from Equation (19), that

g
2

X o (o —2)p; * (21)

?

given that ro = , /p%r from Equation (20). This asymptotic relationship further emphasizes the domi-

nant role of local population density and the power-law decay exponent in determining A{. Intuitively,
under uniform population inter-city density, the normalization parameter follows the same power-law
behavior as the underlying interaction kernel, scaling with the square root of the origin’s population
density.
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Figure 6: Effect of isolation distance d, and population density on A\?(R — a,0). The isolation distance d, is varied from
1km to 1000 km for a city with a fixed population of 100,000, under different population densities (p1 = p2), as a node
moves from the city boundary toward its center.

5 Data, validation and analysis

In this section, we examine the attractiveness power-law model introduced in Section 4 and vali-
date it using a clean, high-coverage dataset: county-to-county Facebook friendship links across the
entire United States, publicly available online [5]. The goal of this analysis is to test whether ori-
gin—destination attractiveness can be explained by the origin-specific structure embedded in OD flows
and attractiveness. Because the probabilistic model presented in Section 3 predicts a linear relation-
ship between flow and attractiveness, empirical alignment between the Social Connectedness Index
data [5] and the theoretical attractiveness formulation in Section 4 would provide strong evidence that
macroscopic attractiveness and flow patterns arise directly from microscopic individual interactions,
consistent with the structure of our probabilistic model.

The Social Connectedness Index (SCI) dataset [5] provides a high-coverage, anonymized mea-
sure of social ties between nearly all pairs of U.S. counties. For an origin county ¢ and destination
county j, SCIL;; > 0 captures the relative prevalence of social connections (e.g., Facebook friend-
ships) linking residents of 7 to those of j, normalized by the total number of users in both counties.
This normalization yields a scale-free index that is comparable across county pairs. Because SCI;; is
population-normalized, it is naturally aligned with the origin-normalized attractiveness C;(d;;) derived
in Equation (19). Using the asymptotic form of A\! from Equation (21), the attractiveness expression
in Equation (19) implies

Cldiy) o wfP L =l (Vpidi) ™, ag >0, (22)

l

corresponding to a power-law decay in distance, normalized by the origin’s population density. Because
we do not impose a parametric model for w}, we focus on the minimal geographic component by defining
the predictor

zij(ag) = (Vpidy) ™, (23)

where d;; is the great-circle distance between county centroids, p; is the origin’s population density, and
ag > 0 is the decay exponent. The predictor x;;(cy) thus represents a density-normalized power-law
distance term. We next evaluate how well this minimal geographic predictor aligns with empirical social
connectivity patterns. To quantify agreement between theory and data, we compute the pooled Pearson
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correlation between SCI;; and a distance-based predictor over a grid o, € [2.01, 6.5]. Specifically, we

consider two predictors: the density-normalized power-law term z;;(eq) defined in Equation (23), and
2—ay

the unscaled distance term d;; . The corresponding correlations are

Recaled(0g) = corr(xij(aq), SCIij), (24)
Reaw(ag) = corr(d ", SCIL;). (25)

The analysis of the SCI data is conducted on a merged dataset comprising N, = 3,132 counties (in-
cluding county equivalents) and approximately N, ~ 107 ordered county pairs after standard validity
checks. County land area and centroid coordinates are obtained from the 2020 Census Gazetteer [32],
while population counts are taken from the Census Population Estimates, Vintage 2024 [33]. Popula-
tion density p; is computed as population divided by land area. Self-pairs (i = j) are removed, and
correlations are computed over valid county pairs only. Beyond these minimal joins and positivity
constraints, we do not alter or reweight the inputs.

The retained sample satisfies basic harmonization conditions, including ¢ # j, d;; > 10 km, p; > 0,
and SCI;; > 0. The resulting correlations are reported in Figure 7. The scaled predictor exhibits a
clear unimodal maximum,

max Recaled () = 0.596  at o ~ 3.51,

whereas the unscaled distance achieves a substantially lower peak correlation,

max Ryaw(ay) = 0.365 (near g ~ 3.3).

This gap demonstrates that normalizing distance by origin density p; effectively captures the dom-
inant source of cross-origin heterogeneity (Section 4.2), aligning geographic separation with each ori-
gin’s intrinsic interaction scale. Our predictor z;;(cg) incorporates this effect by replacing the raw
distance d;; with the density-scaled term ,/p;d;;. This formulation arises naturally from the the
per-origin attractiveness analysis in Section 4. Although the raw distance term dfj_aq also exhibits a
clear unimodal correlation peak consistent with power-law behavior, such heuristic models—Ilacking a
probabilistic foundation—fail to capture the phenomenon with comparable precision.

Moreover, empirically, the Rgcatcd(ctq) behavior in Figure 7 is consistent with prior slope estimates.
For the same dataset, [4] report a contact—distribution slope of —1.48. Using the mapping in [18], this
corresponds to a, & 3.48, which is very close to our data—driven optimum o = 3.51.

To further illustrate the effect of origin-specific scaling, Figure 8 compares the distance dependence
of the raw Social Connectedness Index (SCI) with that of a density-scaled SCI. The scaled SCI is
defined as SCI,;(p; /@(%—2)/ 2 where p; denotes the population density of the origin county and 7 is
the mean U.S. population density. In both cases, median values are computed within logarithmically
spaced distance bins and displayed on log—log axes. The comparison highlights how origin-density
normalization modifies the observed distance-decay behavior. Under an ideal power-law relationship,
the plot is expected to be linear with a slope of aj — 2. In practice, heterogeneity induces curvature
(and even peaks) in the unscaled case, whereas the density—scaled SCI aligns much more closely
with a straight line and is well approximated by the theoretical slope. This improvement reflects
the role of density normalization in absorbing per—origin diversity, particularly at shorter distances
where destinations share similar environmental and social features with their origins. The scaled SCI
clearly captures this effect. An important observation is that, in a power-law model, most of an origin’s
connections are concentrated at nearby destinations. Consequently, for estimating attractiveness or OD
matrices, these short-range entries are the most critical and must be determined with high precision.
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Figure 7: Pooled Pearson correlation R(cy) over a grid of a4 for two predictors: Rscaied(ctq) = corr{z;j(ayg), SCl;j)
and Rraw(aq) = corr(dfj_a“, SCI;;). The scaled predictor, which incorporates origin density, peaks at ay = 3.51 with

Rmax = 0.60, while the unscaled predictor exhibits a consistently lower correlation across all aq.
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Figure 8: Median slope of the Social Connectedness Index (SCI) versus distance, shown on log—log axes for both the raw

and scaled cases. The scaled SCI is computed as SCI;; x (pi/ﬁ)(a;72>/2, where p; is the population density of origin ¢
and p is the mean U.S. population density.

Considering the observed dependence of attractiveness on origin characteristics, we compute
within—-origin correlations R; using vectorized group statistics to reveal robust distance-decay be-
havior. Specifically, for each origin i, we evaluate

R, = corrj(xij(ag)a SCIij)’

where R; measures how closely the empirical social-connectedness patterns around each origin fol-
low the theoretical predictor at the optimal exponent . Figure 9 shows the distribution of these
per—origin correlations between SCI;; and the density—scaled predictor xij(a;). Figure 9 shows that
the distribution of R; is substantially higher than the pooled (all-pairs) correlation, with most counties
exhibiting consistently high values (mean R = 0.8). This indicates that OD behavior becomes consid-
erably more predictable once conditioned on the origin, underscoring the importance of origin-specific
factors such as wy. This is fully consistent with the role of origin-level scaling in absorbing heterogene-
ity, as discussed in Section 4. Such per—origin treatment is absent in classical power-law and gravity
models. Furthermore, although the density-—scaled predictor x;;(c,) markedly improves estimation
precision compared to heuristic power-law models, there remain important real-world factors influenc-
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ing attractiveness that are difficult to capture theoretically. These factors, while partially calibrated
through per—origin analysis, highlight the essential role of large-scale statistical data in bridging this
gap and achieving higher practical accuracy.
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Figure 9: Distribution of per-origin correlations between SCI and (\/pﬁ dij)

In other words, although the density—scaled predictor x;;(c,)—derived from the power-law interac-
tion model in Section 4—demonstrates that the precision of classical formulations such as the power-
law and gravity models can be enhanced, there also exist alternative or complementary approaches to
address geographic heterogeneity that affects travel difficulty between cities and, consequently, their
mutual attractiveness. For instance, some models calibrate effective distance using measures such as
driving time or accessibility. Yet the number of effective factors in social interaction extends far beyond
geography itself: [4] shows that societal boundaries shaped by cultural and political contexts must also
be accounted for. Consequently, there will always be limitations in theory to capture all influential
factors. A practical path to higher, truly applicable precision is therefore to leverage contemporary
statistical evidence from diverse digital interaction sources, now widely available; such data naturally
absorb the complex effects of multiple factors beyond idealized theory. Furthermore, social-interaction
data are no longer limited to a few classic social networks. Today, many diverse sources extend beyond
social media—for example, routing and navigation apps, ride-hailing platforms, and online delivery
services—which can reveal end-to-end traffic flows in transportation. Combining these heterogeneous
statistical data sources on social interaction can substantially improve the precision of end-to-end OD
flow estimation. At the same time, a well-defined theoretical framework remains essential: it clari-
fies the structure of traffic patterns and provides principled guidelines for designing and interpreting
measurements in social-interaction datasets.

6 Conclusion

We developed a probabilistic OD framework that derives end-to-end traffic flows between cities directly
from individual-level interactions. In this framework, traffic between an origin and a destination is
proportional to two quantities: how frequently individuals in those locations interact (their “attrac-
tiveness”) and the average amount of traffic generated by each interaction. The model explains why
OD flows scale linearly with origin and destination populations and shows that the true source of com-
plexity lies in origin-specific behavior, rather than in arbitrary nonlinear population exponents. To test
the framework, we focused on the empirically dominant case in which interaction probabilities decay
with distance according to a power law and derived a corresponding per-origin attractiveness model.
Applied to large-scale county—pair data, this formulation yields substantially higher correlations with
observed interaction patterns than classical power-law models based on a single global parameter set.
In other words, the core implications of the model—population linearity and per-origin calibration—are
clearly reflected in real data and lead to markedly improved explanatory power. This framework thus
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opens a new avenue for high-precision end-to-end OD flow prediction by leveraging large-scale digital
traces of communication and transportation interactions, independent of the underlying communica-
tion network. At the same time, the framework remains open to further refinement. It highlights three
fundamental ingredients shaping traffic: the probability that individuals in different locations interact,
the intensity of those interactions, and the amount of traffic generated per interaction. Origin-specific
interaction intensities, in particular, capture the “interaction culture” of each city and are themselves
objects of interest for the social and behavioral sciences. Improved empirical characterization of these
components can therefore advance OD prediction while preserving a transparent and interpretable
modeling foundation.

Appendix A

Theorem 1. If we consider any point inside a circle of radius R, and divide the circle into 12 sectors,
each of them covers 7/6 with respect to that point, then using the geometry of the plane, the distances
r1x and ror can be defined as:

2(0 0
T1k, T2k = \/R2 +a? (COS (6 +on) 1> + acos(t + or) JrSOk);

4 2

Proof. Consider a point inside a circle with radius R, and divide the circle into 12 sectors, each
covering /6. First, consider the distances r; and 7o in a pair of sectors. as shown in Figure A.1. For
r1 and ro, we have:

(r1 + acos(p + 0))? +asin(p +0) = R*,  and

(re — acos(p +0))? + asin(p + 0) = R
By summing these equations, we obtain,
72+ 12 4+ 2a* + 2(r; — ro) cos(p + ) = 2R%. (A1)
Due to symmetry, we have:
ro —acos(p +0) =ry +acos(p +6),

which implies
ro — 11 = 2acos(p + 0). (A.2)

Solving the set of Equations (A.1) and (A.2)for r1; and 7oy for any pair of sectors we get

2
ik o = \/R2+a2 (“’:W - 1) g acol0ton) (A.3)
wheregpke{(),...’@f..’%ﬂ_ .

Theorem 2 ( \%(a, ) estimation). Consider a circular city with radius R, internal node density p1,
surrounded by a region extending from a guard distance d, up to a maximum distance d;,,, with
density po, as shown in Figure 4. For a node located at a polar coordinate (a,8y = 0) relative to the
city center, the interaction normalization constant A\?(a, 8y = 0) in the power-law case can be estimated
by Equation (A.4).

Proof. We first divide the area around a node at position (a,fy) into 12 equal angular sectors, each
with angle 7/6. Due to symmetry, the integral of Equation (19) over these sectors with uniform

internal density p; is expressed as:
12 ey
Zi/ pirtT%6r.
k=1 6 Jro
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Figure A.1: Geometry for deriving the radial boundary distances r1; and r3; from an interior point at offset (a, ) inside
a circle of radius R. The circle is partitioned into 12 equal sectors of angle /6. For each sector pair symmetric about
the center, the distances to the circle boundary are measured along two opposite rays at angles 6 + ¢, and 6 + ;. + ,
with ¢, € {0,7/6,...,5m/6}.

Due to symmetry, it suffices to evaluate at 6y = 0, giving radial r1j, o5 calculated from Equation (A.3)

for0<k<5as:
2(km kx
Tk, T2k = 4 | R? +a? (cosi ¢ 1) iiacoz( 6 )

Evaluating the radial integral explicitly:

Tk
11—« P1 1 1
r%dr = - .
/7"0 n o —2 (7“8‘_2 r,f_2)

Therefore, the integral inside the city in Figure 4 becomes:

5 km

T 2 ) ) COSQ(%”) acos(EX) ,_,
Mkzogg—(\/R ta(— - E —— )T

For the outer region (from R + dy t0 dimqy), using density po, the integral similarly gives:

km) acos(EX) ,
5 6 )2

5
pPaT cos? (&E
6(a — 2) kZ: ((\/dz’““” ("

0

—1)+

cosQ(%”) acos(’%)

- (\/(R+ dg)? + GQ(T —-1)+ T)Q_a))

Combining these inner and outer integrals yields the total inverse normalization constant ﬁ:
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