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recherche du Québec – Nature et technologies.
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Abstract : Origin–destination (OD) matrices are essential for forecasting and capacity planning in
transportation and communication networks, yet they are not directly observable and must be inferred
from limited measurements. Classical gravity and power-law models capture broad distance effects but
lack theoretical grounding and enough practical precision, while data-driven approaches require large
training sets and are brittle under architectural change. We introduce a probabilistic framework
that derives OD flows from individual interactions. The model separates end-to-end traffic into two
observable components: how often individuals in two locations interact (their attractiveness) and the
average traffic carried by each interaction. This decomposition provides a physically interpretable,
data-fusable structure that remains valid regardless of network architecture. To evaluate the model,
we focus on the empirically dominant case in which interaction probabilities decay with distance
according to a power law. From this, we derive an origin-specific attractiveness measure in which
the effective distance is scaled by the origin’s population density and calibrated independently for
each origin. Applied to large-scale county–pair social-interaction data, the resulting origin-specific fits
substantially outperform classical, globally parameterized power-law models and recover exponents
consistent with independent empirical estimates. These findings reinforce the core implications of
the model: OD flows scale linearly with population, and the dominant source of heterogeneity stems
from origin-specific interaction behavior rather than nonlinear population effects. This provides a
practical pathway for robust, high-precision, end-to-end OD estimation, especially given the widespread
availability of large-scale statistical records.

Keywords : Origin–destination (OD) matrices; gravity models; attractiveness; social connectedness;
probabilistic OD modeling
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1 Introduction

An origin-destination (OD) matrix quantifies the flow demand between origins and destinations in a

network. In digital communication, this represents the volume of data traffic over a period, while in

transportation, it represents the number of trips over specific intervals (e.g., hourly or daily). OD

matrices are essential tools in network modeling, capacity planning, and forecasting across transporta-

tion [28] and communication networks [16, 25]. However, OD matrices are not directly observable; only

aggregate link counts (total traffic on each link or road) are typically measured. Thus, estimating OD

matrices from limited observations is inherently an under-determined inverse problem, as many matri-

ces can produce identical observed link loads. To address this challenge, classical structural methods

(gravity [12], power-law [40], entropy-based [36]) and data-driven methods [16, 28, 34, 38, 41] have

been developed. Data-driven (AI-based) methods can achieve high precision, but they require large

training data bulks, limiting their utility in network provisioning contexts where data are sparse or un-

available. Moreover, exclusive reliance on currently observed network data is increasingly problematic

amid potential architectural shifts: in transportation (e.g., drones and other urban air mobility) and in

digital communications (e.g., satellite backbones and heterogeneous access technologies). Under such

evolving conditions, usage forecasts and origin–destination (OD) matrices cannot be reliably extrap-

olated from historical measurements alone. High-precision planning, therefore, requires end-to-end

traffic measurements or models that remain valid under architectural change. In contrast, structural

models exploit structural properties of OD flows, particularly their heavy-tailed distributions, often

modeled using power-law decay [11]. Structural methods share a common principle: flow between

two locations depends proportionally on their respective populations and inversely on a cost function

related to distance or hops. Despite their simplicity, these models currently lack a strong theoretical

foundation. Parameters are empirically determined without clear interpretation, creating ambiguity

regarding their exact relationship to real-world conditions such as geography, topography, or social

interactions, and consequently hampers efforts to improve their precision to a reliable level.

Addressing these gaps requires an OD framework that is grounded in the actual mechanisms through

which flows arise. We develop such a framework by starting at the level of individual interactions.

Each individual allocates a limited interaction budget across different applications, selects counter-

parts according to a probability distribution, and generates a measurable payload per application.

Aggregating these microscopic interaction events across the population yields a macroscopic OD flow

model in which traffic between two locations is the product of two conceptually distinct and observ-

able quantities: (i) the number of interactions between the two locations, and (ii) the average traffic

volume carried by each interaction. This decomposition replaces heuristic assumptions with physically
interpretable parameters and connects OD estimation directly to digital datasets that measure social

or communication interactions at scale. To evaluate how well this model aligns with real behavior, we

focus on the empirically dominant case in which interaction probabilities decay with distance follow-

ing a power-law. This decay pattern, repeatedly observed in large-scale datasets of social and digital

interactions [4, 6, 7, 19–24, 31], allows a clean analytical derivation of origin-specific attractiveness.

A key implication of this derivation is that attractiveness depends not only on distance but also on

origin-specific characteristics—particularly population density and the distribution of interaction in-

tensity—which together shape the mass and spatial intensity of interactions across both nearby and

distant destinations. This origin-specific structure explains why classical gravity and globally param-

eterized power-law models systematically miss important heterogeneity in real OD flows. We validate

these theoretical predictions using a large-scale county–pair dataset of social connectedness [5], which

yields substantially stronger correlations between the model and observed interaction data compared

with classical approaches. Our contributions are summarized as follows:

• We derive OD demand directly from individual interactions, separating total flow into the num-

ber of cross-location contacts and the average traffic per contact. This yields a simple and

interpretable structure that remains valid under architectural change, and reveals that the ap-

parent complexities in classical gravity and power-law models arise not from nonlinear population
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effects but from origin-specific behavioral and socioeconomic factors. By identifying where het-

erogeneity truly resides (at the origin) and where structure is universal (linearity in population

and probability normalization), the framework provides a principled basis for more accurate and

extensible OD modeling.

• We use the dominant power-law decay in human interactions to derive an origin-specific at-

tractiveness measure. It calibrates each origin separately by transforming actual distance into

an effective distance through normalization with origin population density, with attractiveness

intensity decaying as a function of effective distance from the origin. Applied to large-scale

county–pair data [5], the results show that the proposed origin-specific formulation substantially

improves correlation with observed interaction patterns compared to classical power-law mod-

els, particularly when each origin is calibrated independently. This demonstrates that the core

implications of the probabilistic model—linearity with population, origin-specific normalization,

and per-origin behavioral weighting—are indeed reflected in real-world data.

The rest of this paper is structured as follows: Section 2 reviews background and foundational

concepts. Section 3 formally derives the probabilistic OD model. Section 4 formulates attractiveness

for the case of a power-law distribution. Section 5 validates the theoretical model with empirical

datasets. Finally, Section 6 summarizes findings and suggests avenues for future research.

2 Background

Mathematically, an OD matrix quantifies traffic volumes from origins to destinations, where each entry

Tij represents the flow from origin i to destination j. Unlike data-driven methods [16, 28, 34, 38, 41]

that infer Tij indirectly from aggregate link measurements, structural methods such as gravity and

power-law models estimate Tij directly based on theoretical assumptions and limited empirical data.

The gravity model, inspired by Newton’s law of gravitation, assumes the flow between two locations is

proportional to their respective attractiveness (analogous to mass) and inversely proportional to a cost

function, typically distance or travel impedance. Formally, the general gravity model is expressed as:

Tij = KOβi

i D
βj

j f(dij),

where Oi and Dj represent the attractiveness measures of origin i and destination j, respectively, dij
represents the separation or effective distance between the pair, and K, βi, and βj are empirical model

parameters. Often, for simplicity, βi = βj = 1, and the normalization constant K ensures the OD

matrix aligns with the total observed flow. Common forms for the impedance function f(·) include

exponential decay, f(dij) = e−αdij , and power-law decay, f(dij) = d−α
ij , with the parameter α derived

from empirical data. Gravity models are attractive for their simplicity, minimal data requirements, and

reasonable predictive accuracy. However, they inherently assume a smooth, monotonically decreasing

relationship between distance and flow, which may oversimplify real-world complexities and variability.

Power-law models explicitly recognize heavy-tailed distributions in flow patterns. Such models assume

either that the distance impedance f(·) follows a power-law form or, more broadly, that the flow

ranked by size follows a power-law distribution. For example, the k-th largest flow might follow a

proportional relationship to k−α for some exponent α. While power-law models capture the highly

skewed nature of OD flows effectively, they typically require additional calibration or integration with

other modeling techniques to accurately represent real-world scenarios. Devlin et al. [11], for instance,

incorporated a preferential attachment mechanism into their model to better match observed traffic

distributions. Despite their simplicity, both gravity and power-law models suffer from significant

theoretical limitations. Key parameters like the normalization constantK and exponents βi and βj lack

rigorous theoretical foundations. For instance, the gravity model does not provide clear justification as

to why the constant K should remain uniform across all OD pairs, nor why exponents βi and βj might

vary independently—an issue absent in Newtonian gravity analogues. Furthermore, the definition

and measurement of effective distance or cost functions remain ambiguous, lacking a well-established
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theoretical grounding. These deficiencies create an analytical impasse: heuristic formulations without

a solid physical interpretation offer limited insight into how model accuracy or generality can be

systematically improved for reliable use in network planning. In particular, the so-called structural

models—including both classical gravity and its power-law variants—are not derived from the intrinsic

mechanisms governing human or societal attractiveness and interaction. As a result, their parameters

lack behavioral or physical meaning, making it difficult to refine or extend these models in a principled

way. Without a formulation anchored in the fundamental nature of interaction between populations,

any improvement remains empirical and ad-hoc rather than theoretically justified.

On the other hand, data-driven OD estimation methods often rely on large volumes of historical

traffic data measured on a given network topology, which makes them notoriously topology-dependent.

These models typically infer origin-destination demands from link-level measurements (e.g. counts on

network links), implicitly assuming the current routing and network structure remain fixed [37, 39].

As a result, a model trained or calibrated on one network environment can fail to generalize when

the network layout or technology changes [8]. In fact, simply feeding more historical data from the

same topology does not overcome this limitation— the model still “learns” patterns tied to that

specific network structure [37]. This sensitivity to historical topology and measurements is a critical

weakness of data-driven approaches: their predictions and inferences degrade if the underlying graph of

routes changes even moderately. The fundamental issue is that many more OD flows exist than direct

observations, so inferring end-to-end traffic from aggregated link counts is an ill-posed problem without

strong assumptions [29]. In other words, link-level data alone cannot always distinguish different origin-

destination pairs, meaning a model trained on those link metrics is biased by the current topology and

routing pattern.

These weaknesses become particularly problematic when designing new network topologies or tech-

nologies, where past link-level trends cannot be directly leveraged. For example, consider developing

a global satellite communication network, which has a fundamentally different topology from the ter-

restrial Internet backbone, or a drone-based transportation system that relies on aerial routes instead

of road networks. In such cases, using historical traffic measurements from existing Internet or road

infrastructures can be misleading, as those measurements are inherently biased by the current terres-

trial topology and aggregate many end-to-end flows along legacy routes [14]. They fail to reveal the

true independent OD demands that would arise in the new infrastructure. To predict traffic under

topology changes or in novel networks, one must incorporate end-to-end demand patterns and avoid

topological bias. Advanced modeling frameworks instead attempt to estimate demand and routing

jointly to capture how flows reroute or redistribute when the graph changes [37]. Such approaches

implicitly recognize that pure data-driven models must either be topology-agnostic or retrained with

new domain data to remain accurate in the face of network reconfigurations.

To address these limitations and develop a model that captures end-to-end traffic patterns while

remaining topology-independent, we propose a framework grounded in the fundamental nature of

human interaction. The model leverages statistical data on end-to-end human connectivity to predict

OD flows. Specifically, we derive the entries of the origin–destination (OD) matrix by aggregating

pairwise interactions between individuals in two entities (e.g., cities), where the total OD flow results

from the sum of mutual attractiveness between origins and destinations multiplied by the average

flow per end-to-end connection. Each parameter can be measured independently of the underlying

network topology using the vast and diverse statistical datasets now available for different types of

flows and applications. This formulation ensures that every model parameter has a clear physical or

social interpretation, thereby enhancing its empirical measurability and theoretical transparency.
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3 Social–interaction probabilistic OD modeling

To establish a solid theoretical foundation for OD flows, we propose a probabilistic model of individual-

level interactions and derive macroscopic flows between entities (e.g., cities) as the aggregation of these

microscopic interactions.

We fix a time period (e.g., one day) and let each individual k allocate a finite interaction budget

across all potential counterparts and application types. For an application type q ∈ {1, . . . , qmax},
individuals produce interaction events at an average rate γq (events per period), and each such event

carries an average payload T̄ q (e.g., bytes in digital traffic).

We introduce non-negative weights wq
k which represent the share of individual k’s interaction budget

devoted to application q. Since each person has limited resources (time, attention, money, etc.), the

total budget allocated across all applications is bounded:

qmax∑
q=1

wq
k ≤ W0, (1)

for some finite constant W0 common to all individuals. The constraint in Equation (1) prevents any

single individual from contributing an unbounded amount of flow to the aggregate OD traffic.

Conditional on generating a type-q event, individual k selects a counterpart l from the global

population L according to probabilities P q
kl, so that∑

l∈L

P q
kl = 1. (2)

The probability law constraint in Equation (2) induces a natural trade-off: for a given individual

and application, increasing probability mass on nearby counterparts necessarily reduces probability

mass on distant ones. In other words, local and remote interactions must share a common probability

budget.

Let Mj ⊂ L denote the set of individuals belonging to city j. For a given origin individual k and

application q, the probability that a type-q event is directed to some individual in city j is∑
l∈Mj

P q
kl.

Assuming that the payload per event is independent of the choice of counterpart, the expected type-q

traffic generated by individual k towards city j over the period is

E
[
T

(q)
k→j

]
= γq T̄ q wq

k

∑
l∈Mj

P q
kl. (3)

Aggregating over all applications yields the total expected traffic generated by individual k towards

city j:

E
[
Tk→j

]
=

qmax∑
q=1

γq T̄ q wq
k

∑
l∈Mj

P q
kl. (4)

This individual-level description serves as the building block for our macroscopic origin–destination

(OD) flow model. We then extend this framework to the macroscopic OD level to derive intercity

flows. Specifically, instead of a single individual, we consider two cities with populations Mi and Mj .

The total traffic flowing from City i to City j is obtained by summing the expected contributions of

all individuals located in i:

Tij =
∑
k∈Mi

E[Tk→j ] =
∑
k∈Mi

qmax∑
q=1

γqT̄ q wq
k

∑
l∈Mj

P q
kl. (5)
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It is convenient to reorganize Equation (5) by grouping terms associated with the same application q.

This yields the decomposition

Tij =

qmax∑
q=1

T q
ij , T q

ij = γqT̄ q
∑
k∈Mi

wq
k

∑
l∈Mj

P q
kl

 , (6)

where T q
ij denotes the OD traffic associated with application q. The inner summation

∑
l∈Mj

P q
kl

gives the probability that an event generated by individual k is directed to any individual in City j.

Weighting this probability by wq
k and aggregating over all individuals in i yields a natural measure of

the attractiveness between the two cities:

E(Cq
ij) =

∑
k∈Mi

wq
k

∑
l∈Mj

P q
kl. (7)

We refer to E(Cq
ij) as the type-q attractiveness between i and j. It corresponds to the expected number

(or expected rate) of type-q contacts between the two cities. With this definition, Equation (6) takes

the compact form

T q
ij = (γqT̄ q)E(Cq

ij), (8)

which expresses the OD traffic of application q as the product of two statistically measurable and

conceptually independent quantities:

• E(Cq
ij): the expected number of contacts between City i and City j;

• γqT̄ q: the average payload generated per period for application q.

Aggregating again over all applications yields the macroscopic OD law

Tij =

qmax∑
q=1

(γqT̄ q)E(Cq
ij). (9)

Equation (9) reveals a fundamental decomposition of OD traffic: flow volumes depend only on

(i) the attractiveness between origins and destinations, and (ii) the per-contact payload of each ap-

plication. Importantly, both components are observable in practice. Many modern datasets directly

measure attractiveness, including counts of online friendships [3, 4, 6, 7, 21], intercity call and SMS vol-

umes [19, 20, 24], and interaction frequencies in online games or other digital platforms [10, 22, 23, 31].

These datasets provide precisely the type of information captured by E(Cq
ij). Similarly, the average

per-contact payload γqT̄ q can be estimated directly from a sample of connections (e.g., the mean

number of passengers per trip, or the average data volume per digital interaction). Taken together,

these observations imply that end-to-end traffic between any OD pair can be estimated entirely from

interaction data and per-contact load statistics, without relying on assumptions about the underlying

transmission network or routing structure.

The probabilistic formulation above establishes a direct bridge between measurable attractiveness

E(Cq
ij) and OD traffic. As illustrated in Figure 1, once the expected number of application-q contacts

between two cities is known, multiplying it by the per-contact payload γqT̄ q immediately yields the

corresponding OD traffic T q
ij . Thus, this decomposition provides a practical basis for predicting end-to-

end OD flows even when the underlying transmission network or routing is unknown. In many cases,

attractiveness data for one application q also serve as a proxy for other applications q′ for which direct

records are unavailable. This is because E(Cq
ij) captures the underlying social or interaction intensity

between two regions, a structure that tends to be similar across applications. Hence, the factorization

T q
ij = (γqT̄ q)E(Cq

ij) naturally supports extrapolation, as depicted in Figure 1, across applications—a

capability not shared by traditional curve-fitting gravity or power-law models.
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Aggregate traffic (target) Tij

Probabilistic model

Tij =
∑
q

(γqT̄ q)E(Cq
ij),

E(Cq
ij) =

∑
k∈Mi

wq
k

∑
l∈Mj

P q
kl

Per-application
attractiveness

Per-contact
payloads

Observed data

Observed
attractiveness

E(Cq1
ij )

Observed
attractiveness

E(Cq2
ij )

Extrapolated
attractiveness
E(Cq3

ij ), E(Cq4
ij )

× × ×

Observed per-contact pay-
loads γqT̄ q (for applications q)

+

Aggregate traffic

Tij =
∑
q

(γqT̄ q)E(Cq
ij)

Figure 1: The probabilistic model separates OD flow into two measurable components: the expected attractiveness
between origin and destination and the corresponding per-contact payload. Each observed or extrapolated attractiveness
E(Cq

ij) multiplies with its per-contact payload (γqT̄ q) (× nodes) to yield the traffic contribution of application q. These

contributions are then summed (+) to produce the aggregate OD flow Tij .

Analysis and the Implications of the model

To connect the proposed probabilistic framework with classical OD models, we adopt a standard behav-

ioral assumption also underlying gravity and power-law formulations: interaction probabilities decay

with distance. This assumption is widely used in the analysis of wireless network capacity—a distinct

but mathematically related traffic modeling problem—where distance-based probabilistic interactions

are central [2, 9, 13, 17, 18, 26, 35, 42]. Importantly, it is also strongly supported by extensive empirical

evidence on human social interactions [4, 6, 7, 19–24, 31]. In most real-world OD settings, the dis-

tance between cities is large relative to their internal spatial extent. Under this geometric separation,

individuals in City i perceive all individuals in City j as being approximately equidistant. As a result,

the interaction probability between any individual pair k ∈ Mi and l ∈ Mj can be approximated by a

common city-to-city interaction probability,

P q
kl ≈ P q

ij , ∀ k ∈ Mi, l ∈ Mj .
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Substituting this approximation into the expression for OD traffic,

Tij =

qmax∑
q=1

γqT̄ q
∑
k∈Mi

wq
k

∑
l∈Mj

P q
kl


≈

qmax∑
q=1

γqT̄ q P q
ij Mj

∑
k∈Mi

wq
k.

Introducing the origin-specific mean weight

w̄q
i =

1

Mi

∑
k∈Mi

wq
k,

we obtain the simplified OD form

Tij ≈
qmax∑
q=1

(γqT̄ q)
(
P q
ijMiMjw̄

q
i

)
. (10)

Equation (10) yields several important conclusions. In traditional gravity models, population ex-

ponents are treated as free parameters and are often fitted to values larger or smaller than one. In

contrast, in our framework OD flows scale linearly with Mi and Mj , since population enters only

through the explicit counting of individuals. Any departure from linearity must therefore arise from

origin-specific application weights or interaction probabilities, w̄q
i and P q

ij , rather than from introduc-

ing nonlinear population exponents. In particular, the factor w̄q
i captures the interaction culture of

the origin, including the prevalence of specific applications and the socioeconomic structure of City i.

Because these characteristics vary systematically across origins, w̄q
i cannot be treated as a universal

constant. In addition, the interaction probabilities P q
ij are inherently origin-specific. For each origin i

and interaction type q, they must satisfy the probability constraint∑
j

P q
ij = 1.

As a consequence, individuals (or origins) with highly concentrated local interactions must necessar-

ily have fewer remote interactions, while individuals who interact more broadly must allocate less

probability mass locally. This probability constraint produces a fundamental local–remote trade-off,

conceptually illustrated in Figure 2, using a Gaussian distance decay distribution with standard devi-

ation σ. For any radius r, the total probability mass can be decomposed as∑
j: d(i,j)≤r

P q
ij︸ ︷︷ ︸

local mass

+
∑

j: d(i,j)>r

P q
ij︸ ︷︷ ︸

remote mass

= 1.

As depicted in Figure 2, sharper kernels ( smaller σ) allocate more probability locally and therefore

reduce remote probabilities, while broader kernels do the opposite. This behavior is an unavoidable

consequence of probability normalization and cannot be guaranteed by unconstrained gravity fits. It

implies that local community structure fundamentally shapes long-range OD interactions.

In summary, the city–city approximation reveals that the key sources of heterogeneity in OD flows

are origin-specific interaction patterns (w̄q
i ) and origin-specific in distance-based probabilities (P q

ij).

These effects arise directly from the probabilistic foundations of the model and suggest that OD es-

timation methods should treat rows of the OD matrix on a per-origin basis rather than imposing

global parameters across all entries. This perspective fundamentally changes how OD flows should

be modeled. Classical gravity and power-law formulations typically introduce nonlinear population
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Figure 2: Origin-specific normalization with half-Gaussian share densities on d ≥ 0. The smaller variance (solid) has a
taller peak and concentrates probability locally; the larger variance (dashed) shifts mass to longer distances. For any
radius r, the local and remote masses sum to 1.

exponents or universal scaling coefficients to fit empirical data. In contrast, the probabilistic model

developed here shows that such complexity does not arise from population effects but from systematic

per-origin differences in behavioral, technological, and socioeconomic factors encoded in w̄q
i and in

the origin-specific probabilities P q
ij . Because these origin-specific terms stem directly from the under-

lying logic of individual human interactions, they provide a physically interpretable and extensible

basis for model refinement. More detailed representations—incorporating heterogeneous application

types, temporal variability, or demographic structure—can be added without altering the fundamental

decomposition into expected contacts and per-contact payload. Thus, this probabilistic model not

only enables end-to-end estimation of OD flows from digital traces but also offers a clear conceptual

pathway for improving precision. Unlike purely empirical curve-fitting methods, it identifies where

heterogeneity resides (at the origin) and where structure is universal (linear scaling in populations and

normalization-constrained distance effects).

Finally, although comprehensive validation would ideally require joint access to interaction records,

per-application payloads, and ground-truth OD flows, such datasets are rarely available together.

Nevertheless, the model makes testable predictions that can be verified using more accessible social-

interaction data. A central implication is the linear relationship between attractiveness and OD traffic,

which allows attractiveness—much easier to measure than traffic—to serve as an effective proxy for

flow. Empirical studies consistently show that intercity communication frequencies, online friendships,

and other digital interactions exhibit stable, distance-decaying patterns that align closely with this

structure [4, 6, 7, 19–24, 31]. Building on these observations, we develop a power-law attractiveness

model in Section 4 and demonstrate that incorporating origin-specific features significantly improves

fit relative to classical global power-law formulations. This provides meaningful empirical support for

the probabilistic model: its key predictions—linear population scaling, per-origin heterogeneity, and

normalized distance decay—yield substantially better alignment with real interaction patterns than

traditional approaches.

4 Per-origin power-law attractiveness

Empirical studies consistently show that the frequency of social and digital interactions decays with

distance according to a power law [4, 6, 7, 19–24, 31]. Consistent with this empirically established

pattern, we derive in Section 4.1 an explicit per-origin attractiveness function under the assumption of

power-law interaction probabilities. The resulting expression is a normalized attractiveness measure
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that depends on distance, the power-law exponent, and a normalization factor enforcing that each

individual’s interaction probabilities sum to one. To express this normalization factor in terms of

meaningful and observable quantities, we analyze it in detail in Section 4.2. This factor generally de-

pends on several structural features, including city geometry, inter-city distances, the global population

distribution, and the power-law exponent itself. We therefore examine a simplified yet generalizable

scenario that isolates these dependencies and clarifies the role of normalization in shaping per-origin

attractiveness.

4.1 Per-origin attractiveness over distance

Now, we compute the attractiveness around an origin for the special case of a power-law interaction

probability between individuals. We consider the interaction probability of an individual ik with

application q in origin i with any other person at distance d to follow

P q
ik(d) =

λq
ik

dαq
, (11)

where λq
ik is a normalization constant ensuring that the total interaction probability for each individual

sums to one, and αq is the power-law exponent for the given application. As will be derived in

Section 4.2 and supported empirically in Figures 5 and 6, under the assumption of a nearly uniform

interaction opportunity over the area of origin i, the normalization constant λq
ik is approximately

uniform across all individuals in city i. Therefore, we write

λq
ik ≈ λq

i , ∀k ∈ Mi.

where |Mi| = Mi is the population size of origin i. Moreover, as illustrated in Figure 3, we focus

on the case in which the characteristic interaction distance d is much larger than the diameter of the

focal city d0. In this case, the spatial extent of origin i is negligible compared with d, and therefore

all individuals in origin i effectively experience the same distance d to any location at that radius.

To account for heterogeneity in the contribution of individuals to a given application, we associate

to each individual k ∈ Mi a non-negative weight wq
k. Under this assumption, the weighted aggregate

interaction probability of all individuals in origin i at distance d for application q becomes∑
k∈Mi

wq
kP

q
ik(d) ≈

∑
k∈Mi

wq
k

λq
i

dαq
=

λq
i

dαq

∑
k∈Mi

wq
k. (12)

In this definition, we introduce the average weight

w̄q
i ≜

1

Mi

∑
k∈Mi

wq
k, (13)

and rewrite the summation as ∑
k∈Mi

wq
kP

q
ik(d) ≈ Miw̄

q
i λ

q
i

dαq
. (14)

Now, to compute the attractiveness of origin i, we consider a spatially continuous model as illus-

trated in Figure 3, where a focal city i is located at the origin with population Mi. Consider a thin

annular ring centered at the origin with radius d and differential width δd. The area of this annulus is

δA = 2πd δd.

We assume that the population density at distance d in an annulus of width δd around the city is

uniform and denote it by ρ(d). Although this assumption is somewhat idealized, it underlies most

power-law and gravity models. Under this assumption, the expected number of individuals in this

differential ring is

δN = ρ(d) · δA = 2πρ(d) d δd.
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Focal City

δdd0

d

Figure 3: A focal city (origin) centered in a 2D plane. Individuals located in a thin annulus at distance d have the
probability of interaction proportional to d−αq .

Each individual in the ring interacts with origin i with probability given by the origin-level kernel

in (14), so the expected attractiveness contributed by the ring, denoted δCi(d), for a city of population

Mi is

δCq
i (d) = δN · Miw̄

q
i λ

q
i

dαq
= 2πρ(d)Miw̄

q
i λ

q
i d

1−αq δd.

To account for spatial heterogeneity, we note that ρ(d)—the population density as a function of dis-

tance—can vary with location. To avoid the oversimplification of classical power-law and gravity

models, which effectively assume a uniform environment, we normalize the term δCi(d) by ρ(d). Con-

sequently, the attractiveness is computed as

Cq
i (d)− Cq

0 =

∫
δCi(d)

ρ(d)
= 2πMiw̄

q
i λ

q
i

∫
d1−αq δd. (15)

To compute Cq
i (d) within distance d for αq > 2, we integrate from a reference distance with contact

number Cq
0 :

Cq
i (d) = Miw̄

q
i

2π λq
i

αq − 2
d2−αq + Cq

0 . (16)

[18] has shown that, for any realistic power-law distribution, αq should be strictly greater than two,

which guarantees the convergence of the above integral. Taking the logarithm of both sides yields

log
(
Cq

i (d)− Cq
0

)
= log

(
Miw̄

q
i 2π λq

i

αq − 2

)
+ (2− αq) log d . (17)

Equation (17) shows that, in a log–log plot of per-origin attractiveness versus distance, the slope

equals 2−αq. Since the interaction probability itself is not directly observable from empirical data [18],

most empirical studies instead report measures of attractiveness, contact distributions, or equivalent

quantities. Consequently, when empirical studies fit a line to such data, the estimated exponent satisfies

αq = 2− slope.

Hence, Equation (17) provides a crucial link between the theoretical interaction probability model and

observational data for estimating the power-law exponent. Indeed, all measurements in studies such

as [4, 6, 7, 19–24, 31] reflect contact distributions rather than direct interaction probabilities. Therefore,

to avoid misleading interpretations, this distinction must be taken into account. For example, if the

contact distribution decays as 1/d, the corresponding interaction probability actually decays as 1/d3.

Equally important, even in an idealized setting where all origins share the same power-law exponent,

heterogeneity persists due to the term log
(

Mi 2π λq
i

αq−2

)
, which induces origin-dependent offsets as Miλ

q
i w̄

q
i

varies. This effect is confirmed empirically in Section 5, where per-origin correlations at the best-fit αq

are substantially higher than those obtained from the full OD matrix. Consequently, unlike classical

gravity or power-law models that impose a single global normalization, OD flows must be modeled at

least on a per-origin basis, with each origin characterized by its own normalization constant.
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4.2 Power-law probability normalization parameter

The probability normalization parameter is defined individually for each person such that the total

probability of interaction across the entire population equals one. For example, if an individual S

interacts, under application q, with any other individual v at distance dv according to a power-law

model P q
S(dv) = λq

S/d
α
v , then ∑

v ̸=S

P s
S(dv) =

∑
v ̸=S

λq
S

d
αq
v

= 1.

To generalize this formulation spatially, we map each individual S to a physical location (x0, y0). There

exists a one-to-one correspondence between individuals and their spatial coordinates, allowing us to

express the normalization term as a spatially dependent function λq(x0, y0) instead of λq
S .

Under this formulation, while the normalization condition is originally expressed as a discrete sum

over all individuals, it can be approximated by a continuous integral over space. Specifically, we

integrate the product of the interaction probability and the local population density ρ(x, y) across the

spatial domain centered at the individual’s position (x0, y0):∫∫
domain

P q(x, y;x0, y0) ρ(x, y) δx δy = 1.

In this formulation, the population density ρ(x, y) is assumed to be zero in unpopulated regions.

To simplify the integration, we switch to polar coordinates centered at (a cos θ0, a sin θ0). In these

coordinates,

x = a cos θ0 + r cos θ, y = a sin θ0 + r sin θ .

For any point (r, θ), the interaction probability can be expressed as

P q(r, θ; a, θ0) = P q(x, y;x0, y0) = λq(a, θ0) r
−αq ,

where λq(a, θ0) is the normalization parameter at the reference point (a, θ0). The differential area

element is δA = r δr δθ, and the population density at the corresponding position is

ρ(a cos θ0 + r cos θ, a sin θ0 + r sin θ).

Therefore, the normalization condition can be written explicitly as

1

λq(a, θ0)
=

∫ 2π

0

∫ ∞

r0

ρ(a cos θ0 + r cos θ, a sin θ0 + r sin θ) r1−αq δr δθ. (18)

Conceptually, this integral sums up the contributions of all people in the plane, weighted by a

distance-decay power-law factor. Points that are nearby contribute a term ρ(a cos θ0+r cos θ, a sin θ0+

r sin θ) r1−αq which is relatively large (since r is small), whereas distant points contribute much less

due to the r−αq decay. Furthermore, the integral will generally yield a larger value for points that

are more centrally located in a city than for points near the city’s edge, because a centrally located

individual is surrounded by population in all directions. In contrast, an individual near the edge of

a city has a portion of their surrounding circle falling outside the populated area (which contributes

nothing).

Equation (18) presents a general formulation that can be applied to compute the normalization

parameter of the power-law model for any spatial point. To gain deeper insight into how this parameter

varies within a population center (e.g., a city) relative to the rest of the world, we now examine a sim-

plified representation of a real-world scenario. This setup incorporates all relevant factors—including

inter-city distances, global population distribution, and the power-law decay of interactions—within a

tractable framework illustrated in Figure 4.
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In this model, we consider a circular city of radius R and population M , surrounded by an empty

annular gap extending from R to R+dg, where dg denotes the isolation distance separating the city from

its surroundings. Beyond this gap lies another annular region representing the remainder of the global

population, modeled as a uniform ring of thickness dmax. We assume a constant population density ρ1
inside the city, ρ2 in the outer global region, and zero density in the intermediate gap. Consequently,

the effective area contributing to the integral for λq(a, θ0) comprises two distinct regions.

R

ρ1

ρ2

a

dg

dmax

Figure 4: A central city of radius inscribed in an annular ring at distance dg, which isolates it from the rest of the world.

As discussed in Theorem 2, it is sufficient to analyze a single representative directional

arc—specifically, θ0 = 0, corresponding to the direction from the city boundary toward its center.

The general approximation for this scenario is computed in Theorem 2 and given by Equation (19):

1

λq(a, θ0 = 0)
=

π

6(αq − 2)

5∑
k=0

[
2ρ1

r
αq−2
0

+

ρ2(

√
d2max + a2(

cos2(kπ6 )

4
− 1)± a cos(kπ6 )

2
)2−αq

− ρ1

√
R2 + a2(

cos2(kπ6 )

4
− 1)± a cos(kπ6 )

2
)2−αq

− ρ2(

√
(R+ dg)2 + a2(

cos2(kπ6 )

4
− 1)± a cos(kπ6 )

2
)2−αq

]
. (19)

As previously discussed, this integral serves as a continuous approximation of the discrete sum-

mation that accounts for the contribution of all individual interaction probabilities with respect to

a specific individual. Therefore, the integration domain must exclude the area corresponding to the

specific individual. To satisfy this condition, we set the lower limit of integration just outside the circle

that contains exactly one individual. This condition implies ρ1πr
2
0 ≥ 1, and we consider the minimum

value as the lower integral value as

r0 =

√
1

ρ1π
. (20)

We now perform a numerical analysis based on Equations (19) and (20) for the configuration

illustrated in Figure 4, to examine how various factors influence the normalization parameter λq.

First, we focus on the position change inside the city. In this regard, Figure 5 illustrates the variation

of the value λq(R− a, θ = 0) as a node shifts from the corner to the center of the city. In this setting,
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we fix the densities ρ1 and ρ2 with ρ1 = ρ2 = 42000 per km2, set the isolation gap to dg = 100 km,

and consider cities with populations ranging from 1,000 to 50 million. We perform this evaluation on

several values of the power-law exponent αq. Across all values of αq, the expected behavior is observed:

the value of λq is largest at the city corner due to the sparser surrounding population, but it quickly

converges to λq(0, 0) as the node moves toward the city center. Interestingly, although we examine

cities with vastly different populations (from 1,000 to 50 million), as long as the population density

and αq remain constant, the variation in λq is minimal. The curves nearly overlap and are difficult to

distinguish. For instance, as highlighted for the case αq = 3.4, the ratio of λq between the most and

least populous cities is approximately 99%. However, a small shift in the exponent—e.g., changing αq

by just 0.2—can cause a significant change in the λq value.
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Figure 5: Effect of population size and power-law exponent on λq(R − a, 0) for dg = 100 km and ρ1 = ρ2 =

42,000 persons/km2, as a node moves from the city boundary toward its center, for cities with populations ranging
from 1,000 to 50 million people.

Next, we perform another analysis using Equation (19), which covers the effect of the isolation

distance dg and population density on the value of λq. Figure 6 depicts the results of this numerical

analysis, where the isolation distance dg is varied from 1 km to 1000 km for a city with a fixed population

of 100,000. As illustrated in Figure 6, the results indicate that the impact of isolation distance on λq is

negligible, even when examined with a magnified view—no meaningful difference can be observed across

the different values of dg. In contrast, variations in population density exhibit a substantial influence

on the value of λq, comparable to that of the power-law exponent αq. These findings reinforce the

conclusion that the dominant factors affecting λq are local parameters, specifically: (i) the population

density ρ, and (ii) the distance decay parameter αq. This holds true even though the full theoretical

expression for λq may appear complex. Indeed, under the assumption of a sufficiently large population

mass—implying that the contribution of the rest of the world to the interaction probability is negligible,

which holds in most cases when the city diameter satisfies R ≫ r0—one can show, for an origin city i,

from Equation (19), that

λq
i ∝ (αq − 2) ρ

−αq
2

i , (21)

given that r0 =
√

1
ρiπ

from Equation (20). This asymptotic relationship further emphasizes the domi-

nant role of local population density and the power-law decay exponent in determining λq
i . Intuitively,

under uniform population inter-city density, the normalization parameter follows the same power-law

behavior as the underlying interaction kernel, scaling with the square root of the origin’s population

density.
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Figure 6: Effect of isolation distance dg and population density on λq(R− a, 0). The isolation distance dg is varied from
1 km to 1000 km for a city with a fixed population of 100,000, under different population densities (ρ1 = ρ2), as a node
moves from the city boundary toward its center.

5 Data, validation and analysis

In this section, we examine the attractiveness power-law model introduced in Section 4 and vali-

date it using a clean, high-coverage dataset: county-to-county Facebook friendship links across the

entire United States, publicly available online [5]. The goal of this analysis is to test whether ori-

gin–destination attractiveness can be explained by the origin-specific structure embedded in OD flows

and attractiveness. Because the probabilistic model presented in Section 3 predicts a linear relation-

ship between flow and attractiveness, empirical alignment between the Social Connectedness Index

data [5] and the theoretical attractiveness formulation in Section 4 would provide strong evidence that

macroscopic attractiveness and flow patterns arise directly from microscopic individual interactions,

consistent with the structure of our probabilistic model.

The Social Connectedness Index (SCI) dataset [5] provides a high-coverage, anonymized mea-

sure of social ties between nearly all pairs of U.S. counties. For an origin county i and destination

county j, SCIij ≥ 0 captures the relative prevalence of social connections (e.g., Facebook friend-

ships) linking residents of i to those of j, normalized by the total number of users in both counties.

This normalization yields a scale-free index that is comparable across county pairs. Because SCIij is

population-normalized, it is naturally aligned with the origin-normalized attractiveness Ci(dij) derived

in Equation (19). Using the asymptotic form of λq
i from Equation (21), the attractiveness expression

in Equation (19) implies

Cq
i (dij) ∝ w̄q

i

ρi ρ
−αq/2
i

d
αq−2
ij

= w̄q
i

(√
ρi dij

) 2−αq
, αq > 0, (22)

corresponding to a power-law decay in distance, normalized by the origin’s population density. Because

we do not impose a parametric model for w̄q
i , we focus on the minimal geographic component by defining

the predictor

xij(αq) =
(√

ρi dij
) 2−αq

, (23)

where dij is the great-circle distance between county centroids, ρi is the origin’s population density, and

αq > 0 is the decay exponent. The predictor xij(αq) thus represents a density-normalized power-law

distance term. We next evaluate how well this minimal geographic predictor aligns with empirical social

connectivity patterns. To quantify agreement between theory and data, we compute the pooled Pearson
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correlation between SCIij and a distance-based predictor over a grid αq ∈ [2.01, 6.5]. Specifically, we

consider two predictors: the density-normalized power-law term xij(αq) defined in Equation (23), and

the unscaled distance term d
2−αq

ij . The corresponding correlations are

Rscaled(αq) = corr
(
xij(αq), SCIij

)
, (24)

Rraw(αq) = corr
(
d
2−αq

ij , SCIij
)
. (25)

The analysis of the SCI data is conducted on a merged dataset comprising Nc = 3,132 counties (in-

cluding county equivalents) and approximately Np ≈ 107 ordered county pairs after standard validity

checks. County land area and centroid coordinates are obtained from the 2020 Census Gazetteer [32],

while population counts are taken from the Census Population Estimates, Vintage 2024 [33]. Popula-

tion density ρi is computed as population divided by land area. Self-pairs (i = j) are removed, and

correlations are computed over valid county pairs only. Beyond these minimal joins and positivity

constraints, we do not alter or reweight the inputs.

The retained sample satisfies basic harmonization conditions, including i ̸= j, dij > 10 km, ρi > 0,

and SCIij > 0. The resulting correlations are reported in Figure 7. The scaled predictor exhibits a

clear unimodal maximum,

max
αq

Rscaled(αq) ≈ 0.596 at α⋆
q ≈ 3.51,

whereas the unscaled distance achieves a substantially lower peak correlation,

max
αq

Rraw(αq) ≈ 0.365 (near αq ≈ 3.3).

This gap demonstrates that normalizing distance by origin density ρi effectively captures the dom-

inant source of cross-origin heterogeneity (Section 4.2), aligning geographic separation with each ori-

gin’s intrinsic interaction scale. Our predictor xij(αq) incorporates this effect by replacing the raw

distance dij with the density-scaled term
√
ρi dij . This formulation arises naturally from the the

per-origin attractiveness analysis in Section 4. Although the raw distance term d
2−αq

ij also exhibits a

clear unimodal correlation peak consistent with power-law behavior, such heuristic models—lacking a

probabilistic foundation—fail to capture the phenomenon with comparable precision.

Moreover, empirically, the Rscaled(αq) behavior in Figure 7 is consistent with prior slope estimates.

For the same dataset, [4] report a contact–distribution slope of −1.48. Using the mapping in [18], this

corresponds to αq ≈ 3.48, which is very close to our data–driven optimum α⋆
q = 3.51.

To further illustrate the effect of origin-specific scaling, Figure 8 compares the distance dependence

of the raw Social Connectedness Index (SCI) with that of a density-scaled SCI. The scaled SCI is

defined as SCIij(ρi/ρ)
(α⋆

q−2)/2, where ρi denotes the population density of the origin county and ρ is

the mean U.S. population density. In both cases, median values are computed within logarithmically

spaced distance bins and displayed on log–log axes. The comparison highlights how origin-density

normalization modifies the observed distance-decay behavior. Under an ideal power-law relationship,

the plot is expected to be linear with a slope of α⋆
q − 2. In practice, heterogeneity induces curvature

(and even peaks) in the unscaled case, whereas the density–scaled SCI aligns much more closely

with a straight line and is well approximated by the theoretical slope. This improvement reflects

the role of density normalization in absorbing per–origin diversity, particularly at shorter distances

where destinations share similar environmental and social features with their origins. The scaled SCI

clearly captures this effect. An important observation is that, in a power-law model, most of an origin’s

connections are concentrated at nearby destinations. Consequently, for estimating attractiveness or OD

matrices, these short-range entries are the most critical and must be determined with high precision.
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Figure 7: Pooled Pearson correlation R(αq) over a grid of αq for two predictors: Rscaled(αq) = corr
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)
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)
. The scaled predictor, which incorporates origin density, peaks at α⋆

q = 3.51 with
Rmax = 0.60, while the unscaled predictor exhibits a consistently lower correlation across all αq.
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Figure 8: Median slope of the Social Connectedness Index (SCI) versus distance, shown on log–log axes for both the raw

and scaled cases. The scaled SCI is computed as SCIij × (ρi/ρ)
(α⋆

q−2)/2, where ρi is the population density of origin i
and ρ is the mean U.S. population density.

Considering the observed dependence of attractiveness on origin characteristics, we compute

within–origin correlations Ri using vectorized group statistics to reveal robust distance–decay be-

havior. Specifically, for each origin i, we evaluate

Ri = corrj
(
xij(α

⋆
q), SCIij

)
,

where Ri measures how closely the empirical social–connectedness patterns around each origin fol-

low the theoretical predictor at the optimal exponent α⋆
q . Figure 9 shows the distribution of these

per–origin correlations between SCIij and the density–scaled predictor xij(α
⋆
q). Figure 9 shows that

the distribution of Ri is substantially higher than the pooled (all–pairs) correlation, with most counties

exhibiting consistently high values (mean R ≈ 0.8). This indicates that OD behavior becomes consid-

erably more predictable once conditioned on the origin, underscoring the importance of origin-specific

factors such as w̄q
i . This is fully consistent with the role of origin-level scaling in absorbing heterogene-

ity, as discussed in Section 4. Such per–origin treatment is absent in classical power-law and gravity

models. Furthermore, although the density–scaled predictor xij(αq) markedly improves estimation

precision compared to heuristic power-law models, there remain important real-world factors influenc-
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ing attractiveness that are difficult to capture theoretically. These factors, while partially calibrated

through per–origin analysis, highlight the essential role of large-scale statistical data in bridging this

gap and achieving higher practical accuracy.
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Figure 9: Distribution of per-origin correlations between SCI and
(√

ρi dij
) 2−α⋆

q . The mean R value is approximately 0.8.

In other words, although the density–scaled predictor xij(αq)—derived from the power-law interac-

tion model in Section 4—demonstrates that the precision of classical formulations such as the power-

law and gravity models can be enhanced, there also exist alternative or complementary approaches to

address geographic heterogeneity that affects travel difficulty between cities and, consequently, their

mutual attractiveness. For instance, some models calibrate effective distance using measures such as

driving time or accessibility. Yet the number of effective factors in social interaction extends far beyond

geography itself: [4] shows that societal boundaries shaped by cultural and political contexts must also

be accounted for. Consequently, there will always be limitations in theory to capture all influential

factors. A practical path to higher, truly applicable precision is therefore to leverage contemporary

statistical evidence from diverse digital interaction sources, now widely available; such data naturally

absorb the complex effects of multiple factors beyond idealized theory. Furthermore, social-interaction

data are no longer limited to a few classic social networks. Today, many diverse sources extend beyond

social media—for example, routing and navigation apps, ride-hailing platforms, and online delivery

services—which can reveal end-to-end traffic flows in transportation. Combining these heterogeneous

statistical data sources on social interaction can substantially improve the precision of end-to-end OD

flow estimation. At the same time, a well-defined theoretical framework remains essential: it clari-

fies the structure of traffic patterns and provides principled guidelines for designing and interpreting

measurements in social-interaction datasets.

6 Conclusion

We developed a probabilistic OD framework that derives end-to-end traffic flows between cities directly

from individual-level interactions. In this framework, traffic between an origin and a destination is

proportional to two quantities: how frequently individuals in those locations interact (their “attrac-

tiveness”) and the average amount of traffic generated by each interaction. The model explains why

OD flows scale linearly with origin and destination populations and shows that the true source of com-

plexity lies in origin-specific behavior, rather than in arbitrary nonlinear population exponents. To test

the framework, we focused on the empirically dominant case in which interaction probabilities decay

with distance according to a power law and derived a corresponding per-origin attractiveness model.

Applied to large-scale county–pair data, this formulation yields substantially higher correlations with

observed interaction patterns than classical power-law models based on a single global parameter set.

In other words, the core implications of the model—population linearity and per-origin calibration—are

clearly reflected in real data and lead to markedly improved explanatory power. This framework thus
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opens a new avenue for high-precision end-to-end OD flow prediction by leveraging large-scale digital

traces of communication and transportation interactions, independent of the underlying communica-

tion network. At the same time, the framework remains open to further refinement. It highlights three

fundamental ingredients shaping traffic: the probability that individuals in different locations interact,

the intensity of those interactions, and the amount of traffic generated per interaction. Origin-specific

interaction intensities, in particular, capture the “interaction culture” of each city and are themselves

objects of interest for the social and behavioral sciences. Improved empirical characterization of these

components can therefore advance OD prediction while preserving a transparent and interpretable

modeling foundation.

Appendix A

Theorem 1. If we consider any point inside a circle of radius R, and divide the circle into 12 sectors,

each of them covers π/6 with respect to that point, then using the geometry of the plane, the distances

r1k and r2k can be defined as:

r1k, r2k =

√
R2 + a2

(
cos2(θ + φk)

4
− 1

)
± a cos(θ + φk)

2
,

Proof. Consider a point inside a circle with radius R, and divide the circle into 12 sectors, each

covering π/6. First, consider the distances r1 and r2 in a pair of sectors. as shown in Figure A.1. For

r1 and r2, we have:

(r1 + a cos(φ+ θ))2 + a sin(φ+ θ) = R2 , and

(r2 − a cos(φ+ θ))2 + a sin(φ+ θ) = R2

By summing these equations, we obtain,

r21 + r22 + 2a2 + 2(r1 − r2) cos(φ+ θ) = 2R2 . (A.1)

Due to symmetry, we have:

r2 − a cos(φ+ θ) = r1 + a cos(φ+ θ) ,

which implies

r2 − r1 = 2a cos(φ+ θ) . (A.2)

Solving the set of Equations (A.1) and (A.2)for r1k and r2k for any pair of sectors we get

r1k, r2k =

√
R2 + a2

(
cos2(θ + φk)

4
− 1

)
± a cos(θ + φk)

2
, (A.3)

where φk ∈ {0, · · · , (k−1)π
6 , · · · , 5π

6 }.

Theorem 2 ( λq(a, θ) estimation). Consider a circular city with radius R, internal node density ρ1,

surrounded by a region extending from a guard distance dg up to a maximum distance dmax with

density ρ2, as shown in Figure 4. For a node located at a polar coordinate (a, θ0 = 0) relative to the

city center, the interaction normalization constant λq(a, θ0 = 0) in the power-law case can be estimated

by Equation (A.4).

Proof. We first divide the area around a node at position (a, θ0) into 12 equal angular sectors, each

with angle π/6. Due to symmetry, the integral of Equation (19) over these sectors with uniform

internal density ρ1 is expressed as:
12∑
k=1

π

6

∫ rk

r0

ρ1r
1−αδr.
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θ)
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Figure A.1: Geometry for deriving the radial boundary distances r1k and r2k from an interior point at offset (a, θ) inside
a circle of radius R. The circle is partitioned into 12 equal sectors of angle π/6. For each sector pair symmetric about
the center, the distances to the circle boundary are measured along two opposite rays at angles θ + φk and θ + φk + π,
with φk ∈ {0, π/6, . . . , 5π/6}.

Due to symmetry, it suffices to evaluate at θ0 = 0, giving radial r1k, r2k calculated from Equation (A.3)

for 0 ≤ k ≤ 5 as :

r1k, r2k =

√√√√R2 + a2

(
cos2(kπ6 )

4
− 1

)
± a cos(kπ6 )

2
.

Evaluating the radial integral explicitly:∫ rk

r0

ρ1r
1−αdr =

ρ1
α− 2

(
1

rα−2
0

− 1

rα−2
k

).

Therefore, the integral inside the city in Figure 4 becomes:

ρ1π

6(α− 2)

5∑
k=0

2

rα−2
0

− (

√
R2 + a2(

cos2( kπ
6
)

4
− 1)±

a cos( kπ
6
)

2
)2−α.

For the outer region (from R+ dg to dmax), using density ρ2, the integral similarly gives:

ρ2π

6(α− 2)

5∑
k=0

((

√
d2max + a2(

cos2(kπ6 )

4
− 1)± a cos(kπ6 )

2
)2−α

− (

√
(R+ dg)2 + a2(

cos2(kπ6 )

4
− 1)± a cos(kπ6 )

2
)2−α)).

Combining these inner and outer integrals yields the total inverse normalization constant 1
λq(a,θ) :

1

λq(a, θ0 = 0)
=

π

6(α− 2)

5∑
k=0

[
2ρ1

rα−2
0

+

ρ2(

√
d2max + a2(

cos2(kπ6 )

4
− 1)± a cos(kπ6 )

2
)2−α

− ρ1

√
R2 + a2(

cos2(kπ6 )

4
− 1)± a cos(kπ6 )

2
)2−α

− ρ2(

√
(R+ dg)2 + a2(

cos2(kπ6 )

4
− 1)± a cos(kπ6 )

2
)2−α

]
. (A.4)
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