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Abstract : Large-scale distributed wireless networks offer infrastructure-free and cost-effective con-
nectivity. Recent theoretical work has shown that scalability critically depends on underlying user
interaction patterns; however, a fundamental gap remains between asymptotic feasibility results and
concrete, numerically grounded performance metrics. This paper presents a comprehensive numerical
evaluation of very large-scale distributed wireless networks by decomposing the cross-layer P2P ca-
pacity analysis into two tightly coupled components: the expected hop count E(h) and the effective
single-hop transmission capacity E(Ceff). Leveraging network symmetry and geometric partitioning,
we transform the discrete hop-count problem into a continuous formulation and derive a closed-form
integral upper bound on E(h) using convex optimization. This enables efficient numerical evaluation
even for networks with millions of nodes and reveals that, despite network diameters spanning hun-
dreds of kilometers, typical communication paths traverse only a small fraction of this extent under
real-world interaction patterns. To quantify E(Ceff), we develop a cross-layer wireless model with full
spatial reuse and derive a closed-form upper bound on aggregate interference, allowing optimization
of the resource-sharing parameter that maximizes per-node throughput. Combining both components
yields explicit numerical bounds on link-level capacity, end-to-end P2P throughput, delay, spectral
efficiency, and energy consumption. The results demonstrate that large-scale distributed networks
can sustain substantial per-user data volumes while operating with limited spectrum and ultra-low
transmit power. Short-range links enable aggressive spatial reuse and high energy efficiency, and natu-
rally align with millimeter-wave technologies that provide large bandwidths. Overall, this work shows
that large-scale distributed wireless networks are not only theoretically scalable but also practically
competitive with infrastructure-based systems.

Keywords : Large-scale distributed wireless networks; multi-hop routing; point-to-point capacity;
spatial reuse; energy-efficient networking
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1 Introduction

Distributed wireless networks—capable of supporting vast numbers of devices over wide geographic

areas without relying on fixed infrastructure—represent one of the most transformative directions

in next-generation communication. Distributed wireless networks operate through multi-hop com-

munication, in which devices cooperatively relay data for one another across multiple wireless links,

enabling end-to-end connectivity. Numerous emerging applications increasingly depend on such ar-

chitectures. Distributed networking underpins a wide range of modern systems, including real-time

vehicular coordination [38], cooperative UAV sensing and control [10, 36], and large-scale agricul-

tural monitoring and automation [20, 51]. It is also a core enabler of smart-city infrastructures and

massive IoT deployments [6, 7], while forming the foundation of edge and collaborative computing

paradigms [26, 43] and decentralized, federated, and swarm-based artificial intelligence [11, 37]. Many

of these applications involve extremely large numbers of devices and demand real-time or near-real-time

communication—making scalable distributed wireless networking increasingly indispensable. Recent

technological progress strengthens the case for large-scale distributed networks. Advances in artificial

intelligence, precise positioning, blockchain, and distributed processing [54] enhance network auton-

omy. Higher device density improves connectivity even as it complicates routing. Modern devices

provide more accurate sensing, larger memory, and longer battery life, enabling reliable neighborhood

estimation, efficient route computation [8, 44], and increased buffering capacity. Reinforcement learn-

ing methods implemented in a distributed fashion [12, 13, 22, 52, 56] have shown strong potential for

managing dynamic topologies and highly variable interference environments, paving the way toward

scalable distributed wireless networks [44].

For more than two decades, theoretical works have doubted on whether such networks can scale

at all. Gupta and Kumar [19] famously disagreed on scalability, whereas later studies [2, 31] argued

that scalability may be achievable under specific distance-dependent interaction models. However,

these conditions were never validated using real-world interaction data. In our earlier work [24], we

addressed this gap by focusing on the core abstraction governing scalability: the expected number

of hops and its impact on point-to-point (P2P) capacity. Using real-world human interaction models

and power-law kernels extracted from statistical datasets, we demonstrated—for the first time—that

distributed wireless networks may indeed scale without catastrophic capacity collapse. This result

established a solid theoretical foundation, but left open the numerical and practical questions that arise

when moving toward real engineering constraints. The challenge is that asymptotic results alone are

insufficient. Quantifying delay, spectrum requirements, achievable throughput, and energy feasibility

for real devices (e.g., smartphones or low-power IoT nodes) requires explicit modeling of physical-
layer effects, exact hop counts, interference, and the energy cost of multi-hop forwarding—factors that

cannot be abstracted away. Moreover, engineering-oriented evaluation demands concrete numerical

values rather than scaling laws: What data rates are achievable per node? How does delay behave in

practical regimes? Can current hardware sustain continuous connectivity? And how much bandwidth

is required to meet real-time and non-real-time QoS constraints?

To answer such questions in manageable way, some analytical structure must be preserved. Follow-

ing our earlier approach [24], we adopt a symmetric hexagonal network topology, which captures the

geometric essence of dense networks while avoiding unnecessary routing complexities. Although ideal-

ized, this topology naturally appears in real scenarios such as UAV formations, satellite constellations,

smart agriculture, and planned mesh deployments [9, 33]. Most importantly, its symmetry enables

exact numerical evaluation of hop count and cross-layer interference, providing a fundamental baseline

for what is theoretically achievable under optimal structural conditions in a massive scale distributed

networking . Building on this structured model, we deliver the first numerical, cross-layer assessment

of practical P2P capacity for large-scale distributed wireless networks. Specifically, we introduce a

rigorous capacity framework that decomposes the problem into two tightly coupled components: the

expected hop count E(h) in a P2P connection and the effective per-node transmission capacity E(Ceff).

The term E(Ceff) represents the average amount of traffic that a node can successfully transmit over
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an active link in one hop, after accounting for spatial reuse and the area dedicated to each active

transmission. Our main contributions are summarized as follows:

• Leveraging network symmetry, we derive a closed-form integral expression that upper-bounds

E(h), enabling efficient numerical evaluation even for extremely large networks. To compute

E(h), we adopt a power-law interaction model with parameters extracted from real-world data.

By transforming the discrete hop-count problem into a continuous geometric formulation and

applying convex-analytic techniques, we obtain an expression that is validated by discrete hop-

count simulations across a wide range of interaction parameters. The numerical results further

reveal that, under empirically observed interaction patterns, even when the physical network

spans hundreds of kilometers, typical end-to-end communications traverse only a small fraction

of this extent. Beyond numerical accuracy, the closed-form expression offers structural insight

into how the interaction pattern behaves across different regions of the network—highlighting,

in particular, boundary effects and the concentration of interactions near the network center.

• We construct a cross-layer wireless model that permits full resource sharing among active links

and derive a closed-form upper bound on cross-interference. This formulation allows us to op-

timize the resource-sharing factor that maximizes the effective per-node single-hop transmission

capacity E(Ceff). Unlike previous heuristic choices, the optimized sharing value yields substantial

improvements in network throughput. This analysis also characterizes the spatial structure of

interference in dense distributed networks. By quantifying how interference accumulates across

concentric transmitter rings, we show that the dominant contribution arises from nearby trans-

mitters, while aggregate interference from distant nodes is negligible.

• Combining the results for E(h) and E(Ceff), we obtain the first numerical evaluation of point-

to-point capacity in large-scale distributed wireless networks, enabling explicit upper bounds on

the expected hop count, link-level capacity, and end-to-end P2P throughput. Beyond the specific

network model and assumptions, the analysis provides detailed insight into achievable delay, data

rate, spectral efficiency, and energy consumption, and shows that even at extreme scales and with

low-power devices, distributed networks can remain efficient and resilient. The performance gains

arise from two fundamental properties shared by nearly all network topologies and physical-layer

technologies. First, realistic interaction patterns reveal that expected hop counts are orders

of magnitude smaller than classical pessimistic estimates, removing the presumed scalability

bottleneck of multi-hop communication. Second, short communication links inherently optimize

network performance by enabling aggressive spatial reuse and ultra-low power operation. This

short-link regime naturally aligns with millimeter-wave technologies, unlocking large bandwidths

while sustaining high throughput and energy efficiency in large-scale distributed networks.

The rest of the paper is organized as follows. Section 2 presents the related work and provides the

necessary preliminary background. Section 3 describes the network model and the overall problem for-

mulation. Section 4 details the computation of the numerical expected hop count. Section 5 explains

the calculation of the effective per-node single-hop transmission capacity and the corresponding opti-

mization procedure. Section 6 presents the numerical performance evaluation results, and Section 7

concludes the paper.

2 Background and problem overview

The central question in large-scale distributed wireless networking is whether a fully infrastructure-free

system can sustain meaningful communication rates as the number of nodes grows. Classical capacity-

scaling results for ad hoc networks—starting from the seminal work of Gupta and Kumar [19] and

followed by numerous extensions [1, 14, 16, 17, 29, 41, 42, 50, 55]—have shown that multi-hop routing,

interference, and spatial reuse jointly determine the point-to-point (P2P) capacity of large networks.
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In our previous work [24], we formalized this dependence through the inequality

CP2P ≤ E(CL)

E(h)E(Aρ)
, (1)

where CP2P denotes the expected P2P capacity (average rate available to communicate with an arbi-

trary destination), E(CL) is the expected capacity of an active wireless link, E(h) is the expected hop

count between random source–destination pairs, and E(Aρ) is the expected normalized area per active

link, which captures spatial reuse and hence the effective number of simultaneously active links. The

density parameter ρ = n/Anet relates E(Aρ) to the node placement and transmission range. Existing

capacity studies have repeatedly shown that, across a wide variety of physical-layer and MAC-layer

models, E(Ceff) typically scales as Θ(W ), where W is the available bandwidth [16, 19, 48, 50], while

the expected hop count E(h) and the underlying interaction model over distance can fundamentally

change the asymptotic behavior of CP2P : depending on the power-law exponent α, capacity can range

from strongly decreasing with n to remaining essentially constant [2, 18, 23, 31, 50, 55]. In [24], we

exploited realistic, data-driven power-law interaction models to extract α from empirical studies of

social interactions [3–5, 25, 27, 28, 30, 32, 40, 45], and showed that large-scale distributed networks are

asymptotically feasible: even for tens of millions of nodes, the expected hop count remains bounded

by a constant or grows only very slowly, implying that the order of CP2P can remain practically

acceptable.

In the present work, our goal is no longer limited to asymptotic feasibility. We seek numerical

estimates of P2P capacity and Quality-of-Service (QoS) metrics (data rate, delay, energy efficiency)

for realistic network sizes. To keep the notation focused on the two dominant factors—path length and

per-node transmission capability—we group the geometric reuse term E(Aρ) with the link capacity

and define an effective per-node transmission term

E(Ceff) ≜
E(CL)

E(Aρ)
. (2)

With this definition, the bound (1) can be rewritten as

CP2P ≤ E(Ceff)

E(h)
. (3)

The key challenge is therefore twofold: (i) to accurately compute the expected hop count E(h), and
(ii) to model and optimize a realistic effective per-node single-hop transmission capacity E(Ceff) for

a dense, multi-hop wireless system. Only limited prior work has jointly examined physical-layer and

MAC-layer effects in a unified capacity estimation framework. In [35], the authors investigate the

link-layer throughput capacity of MIMO ad hoc networks by evaluating how each link utilizes spatial

resources based on its actual interference impact on other links. Their analysis derives the number

of simultaneously active links and the achievable data rates within a given region. Similarly, [47]

derives upper and lower bounds on the transmission capacity of ad hoc networks where nodes employ

multiple antennas. Other studies have examined transmission capacity under different PHY/MAC

assumptions. For instance, [49] analyzes CDMA-based ad hoc networks in which nodes are distributed

according to a Poisson point process, deriving upper and lower bounds for both FH-CDMA and DS-

CDMA systems. In another related work, [34] develops a stochastic-geometry framework to evaluate

the performance of SCMA ad hoc networks. The improvements introduced in this work for computing

E(Ceff)—relative to a simple unidirectional model—provide a foundation for evaluating the numerical

performance of large-scale distributed networks when equipped with modern transmission technologies

that can significantly enhance distributed networking capacity.

Directly estimating CP2P is a cross-layer problem: routing decisions, spatial reuse, interference, and

physical-layer constraints all interact in a highly non-linear way. To keep the analysis tractable while

preserving the essential physics, we decompose the problem into two tightly coupled subproblems:
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• Subproblem 1: Expected hop count for P2P connections. Given a network of n nodes and an

interaction model P (d), we compute E(h) between a random source–destination pair under

optimal routing.

• Subproblem 2: Expected transmission rate per node. For a given spatial reuse pattern and in-

terference model, we determine the expected per-node transmission rate E(Ceff), accounting for

cross-layer constraints such as SINR thresholds, scheduling, and resource sharing.

Although these subproblems are interdependent, treating them separately enables a modular anal-

ysis: Subproblem 1 captures the large-scale geometric and probabilistic structure of multi-hop commu-

nication, while Subproblem 2 encapsulates PHY/MAC-layer constraints and resource allocation. Fur-

thermore, our goal here is to obtain a numerical characterization of performance. This is intrinsically a

multi-layer problem: for general network settings a closed-form solution is unlikely, and faithful large-

scale simulations (millions of nodes, billions of potential connections) are computationally prohibitive.

Moreover, optimal routing algorithms and metrics for such scales are not yet available; consequently,

performance achieved by currently available algorithms can be orders of magnitude sub-optimal at

million-node scales and may not reflect the true potential of large-scale distributed networking. To

address these challenges, we adopt a symmetric node arrangement. First, this symmetry markedly re-

duces modeling complexity and enables closed-form expressions for per-node capacity across network

sizes. Second, under this arrangement the physical shortest path coincides with the optimal route

(under our interference and path-loss assumptions), allowing us to evaluate the actual potential of the

architecture without confounding algorithmic sub-optimality. This provides a pragmatic shortcut to

quantify QoS KPIs and energy consumption with limited computational resources.

Finally, We estimate the average P2P capacity CP2P by combining the expected number of hops

E(h) and the expected link capacity E(Ceff). We evaluate network performance based on Quality of

Service (QoS) parameters, using the estimated CP2P . This evaluation provides insights into how such

a massive-scale could preform for different data usage and its energy efficiency and flexibility.

3 Network model and problem structure

We consider a large-scale distributed wireless network composed of n nodes arranged on a hexagonal

lattice. This symmetric topology—depicted in Figure 1—serves two purposes. First, it preserves the

geometric essence of dense networks while avoiding the irregularities and routing ambiguities that

arise in random deployments. Second, it enables closed-form analysis of both hop-count scaling and

interference, thereby providing a clean upper bound on performance under ideal spatial organization.

Each node occupies a hexagonal region of area d20
√
3/2, where d0 is the nearest–neighbor spacing.

Consequently, the total network area is Anet = n
√
3
2 d

2
0, and the equivalent square side length is

L =
√
Anet =

√√
3
2 d0

√
n. (4)

3.1 Subproblem 1: Expected hop count E(h) upper bound

In this arrangement, communication between nodes follows a distance-dependent interaction probabil-

ity P (d). Motivated by empirical studies of social and human mobility networks [3, 5, 28], we adopt a

modified power-law form

P (d) =
P0

(d+ β0)α
. (5)

Here, α is the power-law exponent governing the decay of long-range interactions, and β0 is a small offset

derived from real-world datasets to account for short-distance saturation effects. The normalization

parameter P0 ensures that the interaction probabilities of each node sum to one.
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√√
3

2
d0

√
n

d0

√ 3
2
d
2
0

Figure 1: Regular hexagonal lattice used to model a large-scale distributed network. Nodes are uniformly spaced by

distance d0, inducing a network diameter that scales as
√√

3
2

d0
√
n. The shaded hexagon represents the area per node.

To make the expected hop count computation tractable, we leverage the symmetry of the lattice and

decompose the process into two phases. In the first phase, we compute the hop count for a source at the

network center, where rotational symmetry simplifies normalization and interaction calculations. In

the second phase, we extend this result to the entire network by analyzing how normalization constants

vary with the source location and showing that the central value serves as a tight global upper bound.

The technical details of each phase are summarized below.

3.1.1 Phase 1: Expected hop count for the central node

The source node is positioned at the geometric center of the network. Under this placement, symmetry

ensures uniform angular distribution of nodes at equal distance.

1. Probability normalization parameter P c
0 : Compute the value of P0 that ensures∑

j ̸=i

P (dj) = 1,

where i is the central node. This yields an upper-bound normalization constant P c
0 , because the

center has the largest number of nodes at each distance d.

2. Central hop-count expression: Using P c
0 , compute the expected hop count for the central

node, E(h)c.

Nodes are first aggregated into concentric rings centered at the source node. For each ring, the

distance-dependent interaction probability is evaluated, and its contribution to the expected hop count

is computed based on the corresponding hop distance. The resulting discrete summation over rings is

then approximated by a continuous integral in the radial domain. Solving this integral yields a closed-

form expression for the expected hop count E(h)c. Finally, the derived expression is validated against

discrete hop-count simulations over a wide range of (α, β0) parameters, demonstrating close agreement

and confirming that the model accurately captures structural effects such as boundary sensitivity and

the central concentration of interactions.

3.1.2 Phase 2: Extending result to the entire network

1. Location-dependent normalization: Using convex-analytic and geometric arguments, we

characterize how the normalization constant P0 varies with the source location. Its maximum

occurs at network corners, while it decreases rapidly when moving toward the center.
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2. Dominance of the central hop count: For almost all interior nodes, the normalization

constant is close to P c
0 , implying that their expected hop count cannot exceed E(h)c by more

than a small margin.

3. Global approximation: We show that E(h)c forms a tight upper bound for the network-wide

average hop requirement.

Because normalization constants and hop distances converge quickly to their central-node values for

almost all source locations, the average expected hop count for the entire network is well approximated

by the analytically derived central hop count E(h)c.

3.2 Subproblem 2: Effective per-node transmission capacity

The second component of the capacity problem concerns the rate at which each node can transmit

information over an active link. We model a fully reusable wireless medium in which concurrent trans-

missions share the entire available spectrum, subject to spatial separation constraints. To guarantee

signal quality—analogous to the protocol model—we reserve a protection area around each active

transmission. This reserved area scales as (1 + ∆)2, where ∆ denotes the reuse spacing parameter.

Accordingly, the expected normalized area consumed per active link is

E(Aρ) = (1 + ∆)2.

Under this reuse model, let E(CL) denote the expected link capacity. Normalizing by the spatial

reuse factor yields the effective per-node capacity (using Equation (2))

E(Ceff) =
E(CL)

(1 + ∆)2
. (6)

A larger value of ∆ improves SINR and therefore increases E(CL), but simultaneously decreases

reuse by enlarging the exclusion area. We derive the upper bound on aggregate interference experienced

by a central receiver, approximate its average value across the network, compute E(CL) as a function

of ∆ and the path-loss exponent, and identify the optimal ∆ that maximizes E(Ceff). Additional

details of the communication model are provided in Section 5.

3.3 Problem integration

The upper bound of overall point-to-point capacity for a random source–destination pair satisfies

CP2P ≤ E(Ceff)

E(h)
.

Thus, the network’s performance depends jointly on (i) how far information must travel (captured by

E(h)), and (ii) how efficiently nodes can transmit information in each hop (captured by E(Ceff)). In

the remainder of the paper, we derive these two quantities in detail and use them to estimate numerical

P2P capacity and QoS metrics.

4 Subproblem 1: Expected number of hops estimation

The quantity E(h) represents the average expected number of hops between a node and all other nodes

in a P2P connection across the entire network. To estimate this, we first calculate the upper bound of

the hop count for the central node, denoted E(h)c, and then prove that E(h)c also bounds the average

E(h) over the entire network.
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As discussed in Section 3, the interaction probability between a source and destination depends

solely on their distance d and follows a power-law distribution with an offset parameter β0. For the

central node, this distribution is written as

P (d) =
P c
0

(d+ β0)α
. (7)

where P c
0 ensures the total interaction probability sums to 1 for the central node and P0 may differ

for nodes in other network locations.

4.1 E(h) for the node at the center of the network

4.1.1 Compute the P0 constant

We consider a source node located at the center of the network, as depicted in Figure 2, which selects

a destination node j from the n− 1 nodes with probability pj . The sum of all interaction probabilities

with the source node must satisfy:
n−1∑
j=1

pj = 1 . (8)

L =

√√
3

2
d0

√
n

d0i

d
0
(
i
−

0
.5

)

d 0
(i

+
0.
5)

A(i) = πd20i

Source node

Figure 2: Geometric partitioning of the hexagonal lattice into concentric rings centered at the source node. All nodes
within ring i lie at approximately the same distance id0 from the source, allowing the interaction probability to be evaluated
ring-by-ring.

According to the interaction probability model in Equation (7), all nodes at the same distance from

a given source node have the same interaction probability. Building on this idea and the reformulation

in Equation (8), we partition the network area into concentric rings around the source node, as shown

in Figure 2. Each ring i is centered at the source node with radius id0, covering the area between two

circles of radii d0(i− 0.5) and d0(i+ 0.5). We approximate that all nodes within ring i have the same

interaction probability P (id0). Thus, the total interaction probability for ring i is

P (id0) ·N(id0),

where N(id0) is the number of nodes in ring i. By Covering the entire network with these rings

Equation (8) is written as:
imax∑
i=1

P (id0) ·N(id0) =

n−1∑
j=1

pj = 1. (9)
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As shown in Figure 1, each node effectively occupies an area of d20
√
3/2, implying a node density

of ρ = 2/(
√
3d20). To find the number of nodes in ring i, we calculate the area A(i) between circles of

radii d0(i− 0.5) and d0(i+ 0.5) (see Figure 2). Thus, the number of nodes in ring i is

N(id0) = ρA(i) = ρ π
[
(d0(i+ 0.5))2 − (d0(i− 0.5))2

]
=

4π√
3
i, (10)

To account for the network node interaction probability with the source node, which should equals

to 1 , we substitute N(id0) from Equation (10) and P (id0) from Equation (7) into Equation (9), giving:

imax∑
i=1

4πi√
3
· P c

0

(id0 + β0)α
=
P c
04π

dα0
√
3

imax∑
i=1

i

(i+ β0

d0
)α

= 1. (11)

Since the network is square, the area cannot be covered exclusively by complete circular rings; hence a

single global imax does not satisfy Equation (11). Thus, we partition the rings into small angular arcs

of width δϑ for 0 ≤ ϑ ≤ 2π, let imax(ϑ) denote the maximum number of rings along direction ϑ, and

then sum over all arcs. In the limit δϑ→ 0, this yields the integral

2P c
0√

3 dα0

∫ 2π

0

imax(ϑ)∑
i=1

i(
i+ β0

d0

)α dϑ = 1. (12)

Now set β = β0d0 and define f(r, ϑ) = r/(r + β)α, which is symmetric in ϑ and monotonically

decreasing in r for r ≫ β. Based on Theorem 11, we lower-bound the area integral over the square by

integrating over 12 polar sectors (anchored at the origin): eight sectors with radial extent L/2 and four

sectors with radial extent L/
√
3, each with angular width π/6. Substituting the network side length

L from Equation (4), the corresponding ring counts are

i(8)max =
L

2d0
=

√√
3n

8
, i(4)max =

L√
3 d0

=

√
n

2
√
3
.

Therefore, the integral over network is lower bounded by

∫
Square

f(r, ϑ) dr dϑ ≥ (8π
6

∫ √√
3n
8

0

r

(r + β)α
dr

+ 4π
6

∫ √
n

2
√

3

0

r

(r + β)α
dr).

(13)

Moreover, from Theorem 8, which provides a lower bound by replacing the discrete series with an

integral, reintegrating over ϑ from both sides yields

∫ 2π

0

i(ϑ)∑
i=1

i

(i+ β)α
dϑ ≥

∫ 2π

0

∫ i(ϑ)

0

(
r

(r + β)α
− (α− 1)α−1

ααβα−1

)
dr dϑ. (14)

The left-hand side of Equation (14) equals
√
3
2 P

c
0 times the total interaction probability with all nodes

(normalized to 1), see Equation (11). Therefore, using the lower bound of the integral over the square

form Equation (13), we obtain

4πP c
0

3
√
3dα0

( 2
∫√√

3n
8

0
r

(r+β)α dr +
∫√ n

2
√

3

0
r

(r+β)α dr

− 3(α−1)α−1

ααβα−1

) ≤ 1.
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Now, the indefinite integral W is

W (r, α, β) =

∫
r

(r + β)α
dr = − (r + β)1−α((α− 1)r + β)

(α− 1)(α− 2)
. (15)

For compactness, define

U(α, β) =W (0, α, β)− (α− 1)α−1

ααβα−1
. (16)

Thus, the refined upper bound for P c
0 can be written as

P c
0 ≤

√
3dα0

4π(U(α, β)− 1
3
(2W (

√√
3n
8
, α, β) +W (

√
n

2
√
3
, α, β)))

. (17)

Finally, as the network size grows without bound (n→ ∞), the asymptotic upper bound simplifies

to

lim√
n→∞

P c
0 ≤

√
3dα0 (α− 1)(α− 2)

4π( 1
βα−2 − (α−2)(α−1)α

ααβα−1 )
. (18)

4.1.2 Compute E(h) using P0

To calculate E(h)c, we adopt a methodology analogous to the computation of P c
0 in the previous

subsection. Instead of circular rings based on equal physical distances, we consider nested hexagonal

rings that each represent equal graph metric distances (hop counts) from the source node. In fact,

nodes equidistant in terms of hop count from the source node form hexagons centered on the source

node. For example, in Figure 3, we can see that all nodes with a two-hop distance from the central

node (h2j = 2) form a hexagon. Constructing these hexagons for all possible hop counts results in a

series of nested hexagonal rings around the source node. The expected value E(h) can be expressed

using the law of total expectation:

E(h)c =

imax∑
i=1

E(h | h = i)P (h = i),

where i ∈ {1, 2, . . . , imax} represents the ring number corresponding to the hop count. Since all nodes

within the same ring have the same hop count (hij = i), the conditional expectation simplifies to

E(h | h = i) = i. Substituting this into the equation, we obtain:

E(h)c =

imax∑
i=1

i · P (h = i).

Here, P (h = i) is the probability that a node belongs to the ith ring, which can be calculated as:

P (h = i) =

j(i)∑
j=1

P (dij),

where j(i) denotes the number of nodes in the ith ring, and P (dij) is the probability associated with

each node j in that ring. Consequently, the expected number of hops per ring, E(hi), is defined as:

E(hi) = i ·
j(i)∑
j=1

P (dij).
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Summing over all possible rings, the total expected number of hops is given by:

E(h) =

imax∑
i=1

E(hi). (19)

In each ring, the hop count distance of node j from the source node (hij) equals the ring number

(hij = i). Substituting the interaction probability from Equation (7) yields:

E(hi) =

j(i)∑
j=1

i
P c
0

(dij + β0)α
. (20)

For the first hexagon (i = 1), there are six nodes (j(1) = 6), all located at a distance d1j = d0 from

the source node. The expected number of hops for the first ring is thus:

E(h1) =
6∑

j=1

P c
0

(d0 + β0)α
=

6P c
0

(d0 + β0)α
. (21)

S

h2j = 2

k = 0

d(i, φj)

φj +
π
6

Figure 3: Sectorization of the ith hexagonal ring used in the computation of E(h). Each ring with i ≥ 2 is divided into six
identical sectors, each spanning π/3 radians and containing i nodes. The figure illustrates the sector indexed by k = 0,
where the position of node ij is parameterized by the angular offset φj from the sector’s central axis. The distance from
the source to node ij is thus given by d(i, φj) in Equation (22), with −π/6 < φj ≤ π/6.

For each hexagonal ring with ring number i ≥ 2 surrounding the source node, we divide the ring

into six identical sectors. Each sector spans an angle of π
3 radians and contains i nodes. In Figure 3, we

illustrate the nodes within the sector labeled k = 0 of the ith ring. The distance from the source node

to a node ij within this sector is denoted by d(i, φj). The angle φj is defined as the angle between the

sector’s central axis (the line bisecting the sector) and the line segment connecting the source node to

node ij. In other words, φj measures the deviation of node ij from the sector’s central direction. This

angle satisfies:

−π
6
< φj ≤

π

6
.

As derived in Theorem 1, the distance between any node in the sector and the source node is given

by:

d(i, φj) =
d0i cos(

π
6 )

cos(φj)
. (22)
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Now, each ring contains six sectors, and each sector consists of i nodes. The expected hop distance,
E(hi), by substituting d(i, φj) into Equation (20) and defining β = β0/d0, can be expressed as:

E(hi) = 6(

i∑
j=1

P c
0 i

(d(i, φj) + β0)α
) = 6

i∑
j=1

P c
0 i

dα0 (
i cos(π

6
)

cos(φj)
+ β)α

. (23)

Now, by multiply and dividing to π/3i, we can create a Riemann sum approximation as:

E(hi) =
18P c

0

πdα0
(
π

3i

i∑
j=1

i2

(
i cos(π

6 )

cos(φj)
+ β)α

).

The term inside the parentheses approximated by:∫ π
6

−π
6

i2

(
i cos(π

6 )

cos(φ) + β)α
dφ = 2

∫ π
6

0

i2

(
i cos(π

6 )

cos(φ) + β)α
dφ.

Thus,E(hi) the discrete summation can be approximated as follows:

E(hi) ≈
36P c

0

πdα0

∫ π
6

0

i2

(
i cos(π

6 )

cos(φ) + β)α
dφ. (24)

Thus, by substitute this integral in Equation (23) the expected hop count for all rings beyond the

first (i = 2 to imax) can be approximated as:

imax∑
i=2

E(hi) =
36P0

πdα0

imax∑
i=2

∫ π
6

0

i2

(
i cos(π

6 )

cos(φ) + β)α
dφ . (25)

Further, as shown in Theorem 9, the upper bound
∑imax

i=2

∫ π
6

0
i2/(

i cos(π
6 )

cos(φ) +β)α dφ of this summation

can be expressed as: ∫ imax

2

∫ π
6

0

r2

(
r cos(π

6 )

cos(φ) + β)α
dφ dr +

(α− 2)α(2
√
3 + 4π

3 )

3βα−2αα
. (26)

Finally, by substituting the value of E(h1) from Equation (21) and the upper bound of
∑imax

i=2 E(hi)

using Equations (25) and (26), the upper bound of E(h)c can be computed as:

E(h)c ≤ 6P c
0

dα0

(
6

π

∫ imax

2

∫ π
6

0

r2

(
r cos(π

6 )

cos(φ) + β)α
dφ dr

+
(α− 2)α(2

√
3 + 4π

3 )

3βα−2αα
+

1

(1 + β)α

)
=

6P0

dα0
(
6

π

∫ imax

2

∫ π
6

0

r2

(
r cos(π

6 )

cos(φ) + β)α
dφ dr +A(α, β)). (27)

In Equation (27), we denote A(α, β) to (α− 2)α(2
√
3+ 4π

3 )/(3βα−2αα) + 1/(1+ β)α that does not

depend on the network size n.
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Upper bound for expected hop count : Now, we determine the value of imax to establish an upper

bound for E(h)c. To compute E(h)c, we integrate the function

f(r, φ) =
r2

(
r cos(π

6 )

cos(φ) + β)α

over the network area. It can be easily shown that for r ≫ β, f(r, φ) ∝ 1/rα−2, which implies that for

α > 2 and r ≫ 1, the derivative satisfies
∂f

∂r
< 0.

Under these conditions, by utilizing the network side length L defined in Equation (4) and as proven

in Theorem 11, we approximate the network area with a circle of radius R = L/
√
π. Integrating over

this circle provides an upper bound for E(h)c. Therefore, imax is defined as

imax =
L√
πd0

=

√√
3n

2π
.

we can approximate the upper bound of the E(h)c. For α > 2 and α ̸= 3, the integral over r could
computed as and represented by B(φ, α, β, r) so that

B(φ, α, β, r) =

∫
r2

(
r cos(π

6
)

cos(φ)
+ β)α

dr =

− cos3(φ)

(
(α− 2)(α− 1) sec2(φ) cos2(π

6
)r2

+2(α− 1)β sec(φ) cos(π
6
)r + 2β2

)
(sec(φ) cos(π

6
)r + β)α−1(α− 3)(α− 2)(α− 1) cos3(π

6
)
+ C0. (28)

Finally, by substituting P c
0 upper bound from Equation (17) the numerical upper bound values of

E(h)c for different α cases is achievable. The upper bound of E(h)c for α ̸= 3 can be written as:

E(h)c ≤ 3
√
3

2π(U(α, β)− 1
3
(2W (α, β,

√√
3n
8

) +W (α, β,
√

n

2
√
3
)))[

A(α, β) +
6

π

∫ π
6

0

∣∣∣∣∣B(φ, α, β,

√√
3n

2π
)−B(φ, α, β, 2)

∣∣∣∣∣ dφ
]
. (29)

For α = 3, the we represent the result of integral over r as C(φ, β, r) that could be computed as

C(φ, β, r) =

∫
r2

(
r cos(π

6
)

cos(φ)
+ β)3

dr =

2(sec2(φ) cos2(π
6
) + β) ln

∣∣sec(φ) cos(π
6
)r + β

∣∣
+4β sec(φ) cos(π

6
)r + 3β2

2(sec(φ) cos(π
6
)r + β)2 sec3(φ) cos3(π

6
)

+ C0. (30)

Similarly, the numerical value can, for α = 3 is expressed as:

E(h)c ≤ 3
√
3

2π(U(3, β)− 1
3
(2W (α, β,

√√
3n
8

) +W (α, β,
√

n

2
√
3
)))[

A(3, β) +
6

π

∫ π
6

0

∣∣∣∣∣C(φ, β,

√√
3n

2π
)− C(φ, β, 2)

∣∣∣∣∣ dφ
]
. (31)

If
√
n ≫ β, which typically occurs in very large-scale distributed networks, and as shown in

Section 6, where the typical value of β is around 10, B(φ, α, β,
√
n
√
3/(2π)) simplifies to:

B(φ, α, β,

√
n
√
3

2π
) ≈ cosα(φ) secα(π6 )

(α− 3)(n
√
3

2π )
α−3
2

.



Les Cahiers du GERAD G–2026–03 13

Considering the definition of W from Equation (B.24), could be easily shown that

lim
r≫β

W (α, β, r) =
α− 1

r(α−2)
. (32)

Thus, the final approximation for E(h)c is:

E(h)c ≤ 3
√
3(α− 1)(α− 2)

2π(U(α, β)− (α−1)
3 ( 2√√

3n
8

+ 1√
n

2
√

3

)))

[
A(α, β) +

∣∣∣∣∣B′(α, β)− B′′(α)

(α− 3)(n
√
3

2π )
α−3
2

∣∣∣∣∣
]
. (33)

where the value B′(α, β), are B′′(α) are only rely on interaction probability parameters and not network

size.

For α = 3, substituting A(3, β) and simplifying:

E(h)c ≤
3
√
3(A′(3, β) +

11 ln( 3n
2π )

6π
√
3

)

2π(U(3, β)− 2
√
2

3
√
n
( 1

4√3
+ 4

√
3))

. (34)

4.1.3 Analysis and numerical evaluation

The results presented in Equations (33) and (34) provide closed-form expressions for the upper bound

of the expected hop count, E(h), in P2P connections within large-scale distributed networks. These

findings are consistent with our previous work [24], which analyzed the asymptotic behavior of network

capacity as n→ ∞. Specifically, both studies demonstrate that

E(h) =


Θ
(
n

3−α
2

)
, if α < 3,

Θ(lnn), if α = 3,

Θ(1), if α > 3.

Numerical results in Figure 4, obtained for several values of α and β, use α–values drawn from

real-world interaction–distance studies discussed in [24]. The figure illustrates the expected hop count

across a wide range of network sizes on a logarithmic scale. The empirical curves align closely with
the theoretical predictions for both α = 3 and α ̸= 3, confirming the robustness of our analytic upper

bound in capturing the relationship between network size, interaction probabilities, and hop distances.

From a physical-intuition perspective, Figure 4 shows that for typical values of α and β, the expected

hop count remains surprisingly small even for extremely large networks. For example, when n = 108,

the network diameter is
L

2d0
=

4
√
3
√
n ≈ 13160

(see Equation (4)), whereas the expected hop count ranges only from 57 to 136, averaging around

100 hops across the tested α values and β = 10. This contrast underscores the dominant role of

the interaction-probability model in determining network performance. The results further highlight

the influence of the power-law exponent α, whose value significantly shapes the hop distribution and

ultimately becomes a bottleneck for the scalability of large-scale distributed networks. The offset

parameter β also plays an important role: differences in β reflect how real social-interaction data must

be calibrated, and these differences noticeably shift the expected hop count.

Additionally, Figure 5 compares the analytic upper bound Ean(h)
c with the discrete lattice compu-

tation Elat(h)
c, both evaluated at the central node using symmetry. Across all β values, the true hop

count is consistently about 10% lower than the analytic bound. This deviation arises almost entirely
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Figure 4: Analytic upper-bound estimates Eub(h)
c of the expected hop count from the network center as a function of

the network size n. Each curve corresponds to a different pair (α, β). For n = 108, the horizontal indicators mark the
range of Ean(h)c obtained across the considered values of α, showing that the expected hop count remains on the order
of 102 even in ultra-large networks. In particular, for β = 10, the values of Ean(h)c lie between 57 and 136.
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Figure 5: Relative deviation between the analytic upper-bound model and the lattice-based computation of the central-
node hop count, (Ean(h)c − Elat(h)

c)/Ean(h)c. For each offset parameter β, the solid curve shows the mean deviation
over all considered exponents α, while the shaded band indicates the corresponding standard deviation.

from the approximation of discrete ring summations by continuous integrals, with the largest discrep-

ancy occurring in the innermost rings where the approximation is least precise. As expected, the

standard deviation is largest for β = 3, since smaller offset values place greater weight on near-source

nodes, amplifying the effect of early-ring approximation errors. Despite these small discrepancies, the

approximation is sufficiently accurate for our purpose. First, it achieves the primary goal of providing

the first numerically tractable estimate of the expected hop count in ultra-large networks. Second, the

dominant source of sensitivity comes not from the upper-bound approximation but from the empirical

uncertainty in α and β, which can change E(h) by factors—not by mere percentages. Third, since

wireless topologies are inherently dynamic, extremely fine-grained precision is neither meaningful nor

actionable for system design.
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Most importantly, the results fundamentally reshape intuition: in a network that is 13,160 hops

wide, the average communication path is roughly 100 hops—less than 1% of the network diameter.

This reveals that large-scale distributed wireless networking can provide far shorter effective paths

than previously assumed, dramatically improving the plausibility of scalable point-to-point capacity.

4.2 Average E(h) over the whole network

The previously derived value of E(h) applies only to a source node located at the network center. To

extend the analysis to any node in the network, we consider a source positioned at polar coordinates

(a, θ) with respect to the center, where

0 ≤ a ≤
√
2n

2
, 0 ≤ θ < 2π,

as illustrated in Figure 6. In this general configuration, the maximum hop index imax along each

direction now depends on the source location (a, θ). Following the same reasoning used for the central-

node case in Equation (12), the normalization condition for a general node becomes

2P0(a, θ)√
3 dα0

∫ 2π

0

imax(ϑ|(a,θ))∑
i=1

i(
i+ β0

d0

)α dϑ = 1. (35)

To make this computation tractable, we partition the angular domain 0 ≤ ϑ < 2π into K = 12

sectors of width π
6 , as shown in Figure 6. Within each sector k, the value of imax(ϑ | (a, θ)) is

approximated by a constant ikmax. Substituting this approximation into Equation (35) gives

P0(a, θ)π

3
√
3dα0

12∑
k=1

ikmax∑
i=1

i(
i+ β0

d0

)α ≈ 1.

Using the discrete-to-continuous approximation of Theorem 8, we rewrite this as

P0(a, θ)π

3
√
3dα0

12∑
k=1

(∫ ikmax

0

r

(r + β)α
dr − (α− 1)α−1

ααβα−1

)
≤ 1.

The integral term represents the continuous approximation of the hop contributions in each sector.

Using the closed-form expressions U(α, β) and W (rk, α, β) from Equations (16) and (B.24), we define

the sector contribution function

F (rk) =
π

3
√
3 dα0

(U(α, β)−W (rk, α, β)) , (36)

where rsk is the radial extent needed to cover the network boundary within sector k. Thus, the resulting

upper bound for the normalization constant at an arbitrary node is

P0(a, θ) ≤
1

12∑
k=1

F (rsk)

.

This formulation generalizes the computation of P0 to all possible node positions in the network

and enables the evaluation of the average hop count E(h) over the entire network area.
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Figure 6: Network sectoring for a general source node position. The source node S is located at the polar position (a, θ)
with respect to the network center. Relative to S, the network can be divided into 6 pairs of sectors with radii (r1k, r2k).

4.2.1 Convex optimization and geometric analysis for determining extreme values of P0

To study the extremal values of P0(a, θ), we examine the dependence of the sector contribution F (rk)

on the radial extent rk. For α > 2 and rk > 1, one can verify that

∂U

∂rk
= 0,

∂(−W )

∂rk
< 0,

∂2(−W )

∂r2k
< 0,

so that F (rk) is a strictly decreasing and concave function of rk. Intuitively, sectors that extend farther

from the source contribute less to the normalization sum, while shorter sectors contribute more. To

obtain a tractable geometric bound, we first embed the square network in a circle of radius

R =
4
√
3

2
d0
√
n

and extend each sector until it intersects this circle. Let rk denote the resulting radial extent in sector

k for a given source location (a, θ). The geometry of the construction implies the quadratic constraint

12∑
k=1

r2k = 12R2.

Because F (·) is concave in r (and, equivalently, in r2), the sum
∑12

k=1 F (rk) is maximized when

all radii are equal. By symmetry of the circular embedding, this happens when the source is at the

center, in which case rk = R for all k, and hence

12∑
k=1

F (rk) ≤ 12F (R),

with equality if and only if the source is located at the center. In the actual square network, the

effective radial lengths rsk in each sector are never larger than those of the encompassing circle, i.e.,

rsk ≤ rk for all k. Since F is decreasing, this implies

F (rsk) ≥ F (rk), for all k,

and thus
12∑
k=1

F (rsk) ≥
12∑
k=1

F (rk) for any source position (a, θ).
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Combining these observations, we obtain the bound

12∑
k=1

F (rsk) ≥ 12F (R),

and therefore, from P0(a, θ) ≤ 1/
(∑12

k=1 F (r
s
k)
)
, we see that

P0(a, θ) ≤
1

12F (R)
,

with equality at the network center. In other words, the central node attains the smallest normalization

constant P0, while nodes away from the center yield larger values of P0. This is consistent with

the intuition that a centrally located node experiences the largest aggregate interaction weight and

therefore requires the smallest normalization factor.

In contrast, the maximum P0 value occurs at the network corners, where only three sectors (each

with rk ≤ 2R) cover all nodes. Since the number of nodes per ring is reduced to π
2 i rather than 2πi,

the maximum value of P0 is calculated as:

lim√
n→∞

Pmax
0 ≤

√
3dα0 (α− 1)(α− 2)

π(U(α, β)−W (
√

n
π , α, β))

=

√
3dα0 (α− 1)(α− 2)

πU(α, β)
= 4Pmin

0 . (37)

This indicates that Pmax
0 is approximately four times greater than Pmin

0 , calculated for the center

node. More precisely, there are three π
6 sectors instead of 12, with two sectors bounded by 2

√
n/3 and

one by
√
2n.

4.2.2 P0 distribution: Rapid convergence to the central value from network corners

Here, we examine the behavior of P0 for nodes located well within the network, sufficiently distant

from the edges such that their distance from all boundaries is at least κβ. While the maximum value

of P0 is observed at the network corners, our primary focus is on its behavior as the position shifts

from a corner toward the center along the diagonal line x = y. We denote P0 at a distance κβ from

all boundaries as Pκβ
0 . To quantify this behavior, we calculate the ratio Pmin

0 /Pκβ
0 , as detailed in

Theorem 10:

Pmin
0

Pκβ
0

≥
{
1− 1+ 1

π

κ+1 , if α ≥ 3

1− 0.75α−1.25+ 1
π

(κ+1)α−2 , if α ≈ 3

For both cases, as κ≫ 1:

lim
κ≫1

Pmin
0

Pκβ
0

= 1

This result indicates that for nodes located at least κβ hops away from any network boundary, P0

can be effectively approximated by Pmin
0 . Despite P0 being four times larger at the network corners

than its central value, Pmin
0 , the rapid convergence ensures that P0 for most nodes in the network

closely matches the value at the center.

4.2.3 Global maximum of E(h) at the network center (except near corners)

The expression derived in Equation (27) gives the expected hop count E(h)c for a source node located at

the network center, obtained by dividing the network into 12 symmetric sectors in which the maximum

hop count imax is identical across all sectors. Thus, each sector contributes exactly one–twelfth of the

total value E(h)c. For a source node located at an arbitrary position (a, θ), this symmetry no longer
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holds: the maximum hop count in each sector, denoted ikmax, differs with k. The hop-count expression

can therefore be generalized as

E(h)(a, θ) ≤ P0(a, θ)

dα0

12∑
k=1

(
3

π

∫ ikmax

2

∫ π
6

0

r2( r cos(π/6)
cosφ + β

)α dφdr +
A(α, β)

2

)
. (38)

For all nodes away from the four corner regions, the normalization factor satisfies P0(a, θ) ≈ Pmin
0 ,

as shown previously. Define the sector contribution

G(rk) =
3

πdα0

(∫ rk

2

∫ π/6

0

r2( r cos(π/6)
cosφ + β

)α dφdr +
πA(α, β)

2

)
. (39)

Using this notation, and writing rsk for the radial extent of sector k required to cover the network

area, we obtain the bound

E(h)(a, θ) ≤ Pmin
0

12∑
k=1

G(rsk).

For α > 2, the function G(r) is strictly decreasing and concave for r > 1. As in the analysis of

P0(a, θ), geometric symmetry implies that the radii {rk} satisfy the quadratic constraint

12∑
k=1

(rsk)
2 = 12R2,

where R is the radius of the smallest circle enclosing the square network. Because G is concave, the

sum
∑12

k=1G(r
s
k) is maximized when all rsk are equal, i.e., rsk = R for all k, which occurs when the

source node is exactly at the center of the network. Thus, the expected hop count is maximized at the

network center:

E(h)(a, θ) ≤ Pmin
0

12∑
k=1

G(R) =
G(R)

F (R)
= E(h)c,

where E(h)c denotes the analytic value derived for a source at the center. Except for nodes located

in small regions near the network corners (where normalization effects dominate), E(h)c therefore

represents the global maximum of the expected hop count over the entire network.

Conclusion: The central-node value E(h)c as an upper bound for the network-wide average

We now show that the expected hop count averaged over all nodes in the network converges to the

central-node value E(h)c as the network grows. This establishes E(h)c as an asymptotically tight

upper bound for the network-wide average E(h). For all nodes whose distance from every network

boundary exceeds κβ, the normalization constant satisfies P0(a, θ) ≈ Pmin
0 , and the sector radii satisfy

the same geometric constraints as those of the central node. From the concavity analysis in the previous

subsection, these nodes satisfy

E(h)(a, θ) ≤ E(h)c, except a vanishing fraction of nodes.

The total number of nodes located within distance κβ of the network boundary is

Nbdry ≈ 2κβ
√
n+ κ2β2,

whereas the remaining n − Nbdry interior nodes have hop count at most E(h)c. Hence the average

satisfies

E(h) ≤ (
√
n− κβ)2 E(h)c + (2κβ

√
n+ κ2β2)E(h)max

n
,
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where E(h)max is the value obtained at the network corner. Since β is constant and
√
n≫ κβ, taking

the limit gives

lim
n→∞

E(h) = lim
n→∞

((
1− 2κβ√

n

)
E(h)c + 2κβ√

n
E(h)max

)
= E(h)c.

Although the expected hop count achieves its maximum at the corners of the network, their con-

tribution to the average vanishes as n → ∞. For completeness, closed-form expressions for E(h)max

at the corner are given in Equation (40) for α = 3 and Equation (41) for α ̸= 3.

E(h) =
3
√
3

π(U(3, β)− 4

3
√

n
3

− 2

3
√

n
2

)

[
A′(β) +

22 ln(3n)

π9
√
3

+
11 ln(4n)

π9
√
3

]
. (40)

E(h) =
3
√
3(α− 1)(α− 2)

π(U(α, β)− 2(α−1)

3(
√

n
3 )α−2

− (α−1)

3(
√

n
2 )α−2

)

[
A(α, β) +

∣∣∣∣∣B′(α, β)− B′′(α)

3(α− 3)
(

2

( 4n3 )
α−3
2

+
1

(2n)
α−3
2

)

∣∣∣∣∣
]
.

(41)

These formulas confirm that E(h)max exceeds E(h)c by only a constant factor. Thus, for all α ≥ 2.5,

the central-node value E(h)c serves as the global upper bound for E(h) over almost all nodes and equals

the network-wide average in the limit n→ ∞.

4.3 E(h) distribution across the network and numerical validation

To validate the analytical results and to understand how the expected hop count varies across the

entire network area, we compute and visualize the spatial distribution of the upper bound of E(h) for

both disk- and square-shaped networks. Our goal is not to obtain the exact value of E(h) for each

node, but rather to examine how the analytically derived upper bound behaves across the domain

and to confirm that the central-node value E(h)c indeed acts as a tight upper bound for almost all

nodes. For any node at position (a, θ) relative to the network center, the expected hop count can be

approximated using the sector-based decomposition developed earlier:

E(h | a, θ) ≈
∑12

k=1G(rk(a, θ))∑12
k=1 F (rk(a, θ))

,

where F (·) and G(·) are defined in Equations (36) and (39). The quantities rk(a, θ) denote the sector

radii determined by geometry. For a disk-shaped network of radius R =
√
n/π, this yields

rk(a, θ) =

√
R2 + a2

(
cos2(θ + φk)

4
− 1

)
± a cos(θ + φk)

2
,

with φk = (k − 1)π/6, 0 ≤ a ≤ R, and 0 ≤ θ < 2π.

The disk geometry allows evaluating the upper bound uniformly over all possible node positions. As

illustrated in Figure 7, the central value E(h)c is the global maximum for almost the entire domain. The

expected hop count decreases toward the edge of the disk, reaching its minimum near the boundary.

This confirms the analytical conclusion that the central-node value forms an upper bound for the

network-wide average when α > 2, because local interactions dominate and distant nodes contribute

weakly to hop count.

For square networks, the interior region behaves similarly to the disk case: nodes sufficiently

far from the boundary satisfy E(h | x, y) ≈ E(h)c. Near the boundary, however, the hop count

exhibits directional variation. To visualize these effects, Figure 8 plots E(h) along the most informative

boundary directions: the diagonal (x = y) and the vertical/horizontal edges (x = L or y = L). Along

these lines, E(h) first decreases as one approaches the edge, then increases sharply near the corners,

where the longest radii appear.
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Figure 7: Numerical upper-bound approximation of E(h | x, y) for a disk network with n = 108, α = 3.05, and β = 10.
The central node exhibits the highest expected hop count, confirming that E(h)c upper-bounds the values for almost all
nodes.

Figure 8: Upper-bound approximation of E(h | x, y) for a square network with n = 108, α = 2.65, and β = 10. The value
decreases from the center toward the boundary and rises sharply near the corners.

A common intuition is that nodes near the center of the network should have smaller expected

hop counts because they are closer, on average, to other nodes. Our analysis shows the opposite: the

center exhibits the larges expected hop count, and therefore forms the global upper bound for E(h)

over almost the entire network. The reason is the power-law interaction model with α > 2. Most

communication events occur locally; distant nodes contribute marginal probability mass. A node at

the center is surrounded symmetrically by the largest total number of nodes at all distances, and

the cumulative effect of long-distance contributions—though individually small—accumulates more at

the center than at any other location. Nodes away from the center have a truncated far-field region,

reducing the total expected hop count compared to the center. Because E(h)c serves as a tight upper

bound for nearly all nodes, we use this value in the numerical performance evaluation as the “worst-

case representative” for the expected hop count. For square networks, the diagonal profile of E(h)(x, y)

along the line x = y, shown in Figure 8, provides a tight upper bound. Specifically, for any x = a,

the value E(h)(x, y)|x=y=a upper-bounds the average hop count over a thin square of side length
√
2 a

centered at the network center. By taking a weighted average of aE(h)(x, y)|x=y=a as a varies from

the center to the network corner, we obtain a bound that is tighter than E(h)c.This refined bound is

used to improve the numerical results reported in Section 6.
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Overall, the numerical evidence strongly supports the analytical conclusion: the hop-count distri-

bution is sharply peaked around the central-node value, and E(h)c is a reliable upper bound for almost

all network nodes.

5 Expected transmission capacity

In this section, we compute the expected transmission rate per node, denoted E(Ceff), under the as-

sumption that all nodes use identical wireless technologies and experience uniform attenuation through-

out the network. The symmetric network topology is illustrated in Figure 9. For a given node density

ρ, the total network area is n
ρ . In this scenario, we assume that all available frequency resources may

be reused by any active link; hence, all simultaneously active links share the entire spectrum through

spatial reuse. To control cross-interference, each active link is allocated a reserved spatial region of area

proportional to (1+∆)2, where ∆ > 1 is the space-reservation parameter (analogous to protocol-model

guard zones, but not based on circular exclusion regions). As shown in Figure 9, each active link with

length r = d0 occupies an area
(1 + ∆)2

ρ
=

√
3

2
r2(1 + ∆)2.

Thus, only one active link may exist within each such reserved region. The practical implementation

may rely on RTS/CTS signaling or a distributed TDMA scheduler. However, our objective here is

not to model the MAC protocol itself, but rather to characterize the maximum possible transmission

capacity under ideal spatial reuse. Let bt denote the total concurrent transmission rate at time t. If

nL(t) links are active and each link has instantaneous rate Ci
L(t), then

bt =

nL(t)∑
i=1

Ci
L(t).

Assuming ergodicity, so that time averages equal ensemble averages, we obtain

E(b) = E

(
nL∑
i=1

Ci
L

)
=

nL∑
i=1

E(Ci
L) = E(nL)E(CL). (42)

Here, E(nL) represents the spatial reuse factor, i.e., the expected number of links that can be active

simultaneously. The maximum spatial reuse is achieved when the entire network area is fully covered

with non-overlapping reserved regions. In that case,

E(nL) ≤
Total Network Area

Area per Link
=

n
ρ

(1+∆)2

ρ

=
n

(1 + ∆)2
. (43)

This upper bound may not always be achievable due to suboptimal scheduling or an uneven distribution

of nodes with buffered data. Nevertheless, in this work we adopt it as an upper bound on the total

transmission capacity, providing a reference against which distributed network performance may be

evaluated.

The effective per-node capacity, denoted E(Ceff), represents the maximum average transmission

rate that each node can sustain continuously. Using Equation (42) and dividing the total rate by n,

we obtain

E(Ceff) =
E(b)

n
=

E(nL)E(CL)

n
=

E(CL)

(1 + ∆)2
. (44)

This expression is consistent with the general formulation in Equation (2), where the effective

reserved area per link, E(Aρ), equals (1 + ∆)2 in this symmetric setting. In other words, each active

transmission consumes an area (1 + ∆)2 times the node density.
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Communication model: In the symmetric arrangement considered in this work, such as the hexagonal

lattice shown in Figure 9, all active links operate in the same frequency band f and have identical

link lengths r. Since our objective is to maximize the number of simultaneous transmitters, the

network operates in an interference-limited regime, where aggregate interference—rather than ther-

mal noise—dominates the received signal quality.In this work we focus on the large-scale behavior

of distributed wireless networks, where the dominant factors shaping interference are the geometric

arrangement of nodes and the classical path-loss model. Since all transmitters experience statistically

identical fading, the expected SINR is determined primarily by distance attenuation, and incorporat-

ing fading into the analytical interference derivation provides little additional structural insight while

greatly complicating the closed-form expressions. For this reason, we omit fading in the analytical

model and characterize interference using only path-loss and geometry. However, to capture the exact

achievable throughput, our simulations incorporate a full channel model—including path-loss, lognor-

mal shadowing, and Rayleigh small-scale fading—applied to every interfering distance derived from

the analytical geometry. This ensures that while the theory describes the fundamental large-scale

behavior, the simulation reflects the true upper bound on network throughput under realistic wireless

channels.

All nodes employ identical antenna characteristics, with receiving gain gr and transmitting gain

gt, and the medium exhibits uniform attenuation with path-loss exponent αp. The received power at

distance r is therefore

Pr =
Pt(4πf)

2grgt
c2rαp

=
Ptg0
rαp

, (45)

where c is the speed of light, Pt is the transmission power, and g0 = (4πf)2grgt/c
2 represents the

overall gain parameter.

Given the uniformity in transmitter and receiver characteristics and the homogeneous propagation

environment, all nodes use the same transmission power Pt = P . Since the network is interference-

limited, equalizing the transmit power across all nodes ensures fair spatial reuse and avoids biasing

the interference field. Accordingly, the received power for any transmitter–receiver pair at distance r

simplifies to:

Pr =
Pg0
rαp

. (46)

For any link L, the Shannon capacity CL is calculated as:

CL =W log2(1 + SINR), (47)

where W is the channel bandwidth and SINR denotes the Signal-to-Interference-plus-Noise Ratio at

the receiver. Since all links operate over the same bandwidth W , evaluating the SINR is sufficient

to determine the link rate CL. Furthermore, in our symmetric setting the received signal power

S is identical across all active links because they share the same link length, antenna gains, and

transmission power. Hence, differences in link capacity arise solely from variations in the interference

power I. Therefore, to characterize CL, it suffices to compute the interference level at each receiver,

which we derive in the following subsection.

5.0.1 Computing the upper bound of cross-interference

We focus on the receiving node of the central link in the network. The interference experienced by

this node comes from all other active transmitters in the network. Given the symmetric topology

and uniform parameters, we can compute an upper bound of the cross-interference I by summing

the contributions from all interfering transmitters. The interference power from a single interfering

transmitter at a distance d is:

I(d) =
Pg0
dαp

. (48)
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The total interference I is then the sum over all interfering transmitters:

I =
∑
i ̸=0

Pg0

d
αp

i

, (49)

where di is the distance from the interfering transmitter i to the receiver of the central link.

To compute the upper bound, we consider the closest possible arrangement of interfering trans-

mitters, which occurs when they are placed at the minimum allowable distance determined by ∆. By

integrating over the network area and considering the spatial distribution of interfering nodes, we can

derive an expression for I as a function of ∆ and αp.

5.0.2 Approximating the average cross-interference

Due to the symmetry and uniformity of the network, the interference experienced by a centrally located

receiver serves as an upper bound for all other nodes. Moreover, the average interference at any receiver

converges to the value computed for the central link as the network grows. This property allows the

interference upper bound to be generalized to all network nodes, significantly simplifying the analysis.

5.0.3 Computing and maximizing E(Ceff)

With the expressions for S and I after regulating transmitting power , we can compute the SINR:

SINR =
S

I +N0
, (50)

where N0 is the noise power. Substituting S and I into the Shannon capacity formula (47), we obtain

E(CL) as a function of ∆ and αp. Finally, we aim to maximize E(Ceff) with respect to ∆:

E(Ceff) =
E(CL)

(1 + ∆)2
maximize over ∆. (51)

A larger ∆ results in a greater Signal-to-Interference-plus-Noise Ratio (SINR) and higher link

capacity for active links but reduces the number of concurrent links. Therefore, we can determine the

optimal ∆opt that yields the maximum expected transmission rate per node.

5.1 Calculation of total interference at the central receiver

The interference I experienced by a receiver depends on its location within the network. For a receiver

situated at the network center, interference arrives uniformly from all directions due to the network’s

symmetry. In our scenario, transmitter-receiver pairs are arranged in a regular hexagonal lattice, as

illustrated in Figure 9. To limit cross-interference, each link reserves a hexagonal area of
√
3(1 +

∆)2r2/2, centered at the midpoint between the transmitter and receiver.

Because nodes equidistant from the receiver contribute equally to the interference, we group inter-

fering nodes into nested hexagonal rings based on their distances from the receiver. Let I(i) denote

the total interference from the ith ring of active transmitters. Therefore, the total interference at the

central receiver is given by

I =

imax∑
i=1

I(i). (52)

In each ith ring surrounding the central link, there are 6i interfering transmitters, as shown in

Figure 11. Each sector k (where 1 ≤ k ≤ 6) contains i transmitter-receiver pairs. The distance between

an interfering transmitter j (with 1 ≤ j ≤ i) and the receiver varies slightly with the angle φj . Here, φj
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Figure 9: Symmetric arrangement of transmitter–receiver pairs in a hexagonal lattice. Each link has identical length r
and operates under the same transmission power and antenna characteristics. The shaded hexagons illustrate the spatial
reuse pattern, where only one transmitter–receiver pair is activated per a reservation region. The highlighted central link
and its surrounding interferers define the geometric structure used to compute the interference at the receiver. r(φj)
appearing in the interference expression are derived from the local geometry shown in Figure 10.
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2

Figure 10: Local geometry used to calculate the distance from the receiver of the central link to an interferer located in
the first ring of the hexagonal lattice. Given that all link lengths are r, the triangle (A,B,C) relates the reserved-space
parameter ∆ and the angular offset φj to the actual positions of interfering nodes. The auxiliary point D allows closed-
form derivation for r(φj) used in the interference computation.

represents the angle between the sector’s perpendicular bisector and the line connecting the bisector of

the central receiver-transmitter pair to that of the jth receiver-transmitter pair within the same sector.

In the first ring (i = 1), six interfering transmitters are located at angles φj ∈ {0, π/3, . . . , 5π/3}.
To calculate the distances to the interfering nodes, we refer to Figure 10, which shows a magnified

view of triangle △ABC from Figure 9. In this triangle, r(φj)/2 = BC, and r(φj) is expressed as

r(φj) = 2BC =

√
(AC −DC)2 +BD

2

= 2

√
(
(1 + ∆)r

2
− r

2
cos(φj))2 + (

r

2
sin(φj))2

= r
√

(1 + ∆− cos(φj))2 + (sin(φj))2 ,

which leads to the interference power from transmitter j being

I(1, j) =
Pg0

rαp((1 + ∆− cos(φj))2 + (sin(φj))2)
αp
2

. (53)
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Figure 11: Illustration of the interfering transmitters surrounding the central link and the sectorization of each interference
ring in the hexagonal lattice. Concentric hexagons represent successive rings (i = 2, 4, . . .), and each ring is partitioned into
6 identical sectors. The dashed arrows indicate the distances rij1 from the receiver of the central link to representative
interferers in each ring. The shaded elliptical region highlights the range of angular deviations (φj − π

6
) arising from

the geometric offset of the hexagonal grid. This sectorized structure is used to derive closed-form expressions for the
interference contributed by each ring in the analytical model.

Thus, the total interference from the first ring is given by

I(1) =

6∑
j=1

Pg0
r(φj)αp

=
Pg0
rαp

6∑
j=1

1

ξ(∆, φj)αp
, (54)

where P is the transmission power, g0 is the overall gain parameter, αp is the path loss exponent, and

ξ(∆, φj) is defined as

ξ(∆, φj) =
√

[(1 + ∆)− cos(φj)]2 + sin2(φj). (55)

For rings with i ≥ 2, each ring is divided into six identical sectors, each containing i transmitters.

According to Theorem 3, the distance from the receiver to an interfering transmitter in ring i, sector

k, at angle φj is given by

rijk = r ψ(i, φj , k), (56)

with

ψ(i, φj , k) =

[( i(1 + ∆) cos
(
π
6

)
cos
(
φj − π

6

) − cos
(
φj +

(k − 1)π

3

))2
+ sin2

(
φj +

(k − 1)π

3

)] 1
2

. (57)

Therefore, the total interference from ring i is

I(i) =

6∑
k=1

i∑
j=1

Pg0

r
αp

ijk

=
Pg0
rαp

6∑
k=1

i∑
j=1

1

(ψ(i, φj , k))αp
. (58)

Combining the contributions from all rings, the cumulative interference at the central receiver is

I = I(1) +

imax∑
i=2

I(i) =
Pg0
rαp

[
6∑

j=1

1

(ξ(∆, φj))αp
+

imax∑
i=2

6∑
k=1

i∑
j=1

1

(ψ(i, φj , k))αp

]
. (59)
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To simplify and bound the interference from distant rings (i > κ/1+∆), we introduce the function

χ(∆, αp, κ), which aggregates the interference contributions beyond a certain threshold κ with:

χ(∆, αp, κ, Ck) =

Q(αp)(1 + ∆)−1(αp − 1)(

⌈
κ

1 + ∆

⌉
− 0.5)− Ck(1 + ∆)−2[

(1 + ∆)(

⌈
κ

1 + ∆

⌉
− 0.5)− Ck

]αp−1

(αp − 2)(αp − 1)

. (60)

where Ck are constants that ensure upper interference upper bound specific to each sector k provided

in Table A.1, and Q(αp) =
∫ π

3

0

cosαp (φ−π
6 )

cosαp (π
6 ) dφ.

The detailed expression for χ(∆, αp, κ) and the derivation process are provided in Theorem 5.

Then, the upper bound of the total interference is then expressed as

I ≤ Pg0
rαp

[

6∑
j=1

1

(ξ(∆, φj))αp
+

⌊
κ

1 + ∆

⌋
∑
i=2

6∑
k=1

i∑
j=1

1

(ψ(i, φj , k))αp
+

3

π

6∑
k=1

χ(∆, αp, κ)]. (61)

Here, f(∆, αp) represents the total interference function and is defined as

f(∆, αp) =

6∑
j=1

1

(ξ(∆, φj))αp
+

3

π

6∑
k=1

χ(∆, αp, κ) +

⌊
κ

1 + ∆

⌋
∑
i=2

6∑
k=1

i∑
j=1

1

(ψ(i, φj , k))αp
. (62)

Thus, the upper bound of the total interference can be succinctly expressed as

I ≤ Pg0
rαp

f(∆, αp). (63)

This expression provides a manageable way to estimate the total interference at the central receiver,

accounting for both the contributions from nearby rings and the bounded interference from distant

rings.

5.2 Average cross-interference approaching the upper bound

We first derived an upper bound on the interference experienced by a receiver located at the center

of the network. Such a receiver is exposed to interfering transmissions from all directions, and there-

fore experiences the maximum possible interference in this symmetric setting. Hence, Equation (63)

provides the upper bound of the maximum interference in the network, denoted Iumax.

In this subsection, we show that the expected interference E(I) over all receiving nodes converges

to the same value Iumax as the network size increases. Consequently, using Equation (45) and Equa-

tion (63), a lower bound on the Signal-to-Interference Ratio (SIR) is given by

S

Imax
=

1

f(∆, αp)
. (64)

A receiver located at the network center experiences interference from all directions, covering a full

angular span of 2π radians. Receivers near the boundary, however, may not have active interferers

in every direction. For example, a receiver located at a corner of a square-shaped network, such as

the one illustrated in Figure 9, experiences interference from approximately one-quarter of the angular

domain (π/2 radians). In this case,

Imin =
Imax

4
. (65)
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For the vast majority of receivers that lie sufficiently far from network boundaries, the interference

they experience is close to that of the central receiver. Let I(i > κ/(1 + ∆)) denote the interference

contributed by all nodes beyond radius κ. This term is linearly related to
∑6

k=1 χ(∆, αp, κ, Ck),

defined in Theorem 5. The ratio of this truncated interference to the total upper-bound interference

is bounded by

I(i > κ/(1 + ∆))

Iumax

≤ 3
∑6

k=1 χ(∆, αp, κ, Ck)

π f(∆, αp)
. (66)

When κ≫ 1, the function χ(∆, αp, κ, Ck) admits the approximation

χ(∆, αp, κ, Ck) ≃
Q(αp)

(1 + ∆)2(αp − 2)καp−2
,

from which Equation (66) implies

I(i > κ/(1 + ∆))

Iumax

∝ κ 2−αp .

Numerical evaluation of this ratio is shown in Figure 12 for various values of κ and realistic path-

loss exponents αp. The ratio decays rapidly toward zero with increasing κ, indicating that receivers

located at least κ hops from the network boundary experience interference that is nearly identical to

Imax. For example, with αp = 3, n = 108, and ∆ = 2, the network contains approximately 3333

links along each axis. Setting κ = 50, any receiver located at least 50 hops away from every network

boundary lies inside a square of side length 3333− 2× 50. Such a receiver experiences full interference

from all directions up to ring κ, whereas nodes closer to the boundary miss at most one quarter of

the interferers beyond this radius. Hence, if the residual interference ratio is I(K > 50) = 0.0345, as

shown in Figure 12, then every receiver obtains at least

1− 3

4
I(K > 50) = 1− 0.75× 0.0345 = 0.975

of the central interference level. Since more than 95% of all receivers lie in this region, the average

interference converges to the central value as n → ∞. Nodes at the network boundary experience

strictly less interference than Imax, with a lower bound of Imin = Imax/4. For all other boundary

nodes,

Imin ≤ I ≤ Imax.

The number of nodes located at least κ hops from all network edges is proportional to (
√
n− κ)2.

The remaining boundary nodes number approximately 2κ
√
n + κ2. Thus, the expected interference

satisfies
(
√
n− κ)2Imax + (2κ

√
n+ κ2)Imin

n
≤ E(I) ≤ Imax. (67)

For fixed κ and
√
n≫ κ, the lower bound becomes

lim
n→∞

(
√
n− κ)2Imax + (2κ

√
n+ κ2)Imin

n
= (68)

lim
n→∞

((
1− 2κ√

n

)
Imax +

2κ√
n
Imin

)
= Imax.

Therefore,

lim
n→∞

E(I) = Imax. (69)
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Figure 12: Tail interference ratio I(i > κ/(1 + ∆)) /Iumax as a function of κ for several path-loss exponents αp with ∆ = 2.
For each αp, the curve quantifies the fraction of total interference contributed by rings lying beyond the radius κ/(1+∆)
in the hexagonal lattice. Smaller ratios indicate that most interference originates from nearby rings, while larger ratios
imply a slower spatial decay.

5.3 Computation and optimization of E(Ceff) over ∆

According to Equation (69), the upper bound of the ratio of the signal to the expected total interference,

S/E(I), can be calculated as 1/f(∆, αp), similar to Equation (64):

S

E(I)
=

S

Iumax

=
1

f(∆, αp)
. (70)

Equation (70) shows that S/E(I) is independent of the transmission distance r(n). For a given

path loss exponent αp and ∆, this ratio is a constant, denoted as K0. Therefore, the expected link

capacity E(Ceff) can be expressed as:

E(CL) =W log(1 +
S

N0 +
S

K0

) =W log(1 +

S

N0

1 +
S

N0K0

) .

For fixed bandwidth W and noise power N0, increasing the received signal power S = g0P/r(n)
αp

increases the expected link capacity E(CL). Since S ∝ r(n)−αp , reducing the transmission range

r(n) directly maximizes E(CL). Moreover, as shown in [24], minimizing r(n) also maximizes the

expected end-to-end point-to-point capacity E(CP2P). In essence, the optimal strategy is for nodes to

communicate with their closest neighbors, even in a multi-hop communication scenario. To optimize

CP2P, links with the minimum possible length should be selected to reduce path loss. In this context,

we can increase the transmit power such that limP→Pmax N0/S = 0 or limP→Pmax N0/I = 0. Therefore,

the Signal-to-Interference-plus-Noise Ratio (SINR) becomes:

lim
P→Pmax

SINR =
S

I
.

However, by setting the power level so that N0 = I, we achieve both adequate SINR and energy

efficiency:

SINR =
S

2I
.

Finally, the lower bound of limn→∞ E(Ceff) is given by:

lim
n→∞

E(CL) =W log(1 +
1

2f(∆, αp)
) , (71)
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Equation (71) conforms to Θ(W ) under the condition that αp > 2. Since CP2P = E(Ceff)/E(h), and

using Equation (44), we can write:

CP2P(∆, αp) =

W log(1 +
1

2f(∆, αp)
)

E(h)(1 + ∆)2
. (72)

Equation (72) demonstrates that for large-scale ad hoc networks with symmetrically arranged nodes

and uniform attenuation patterns, CP2P is asymptotically proportional to Θ(W/E(h)). We define the

normalized P2P capacity Cn
P2P as:

Cn
P2P =

CP2PE(h)

W
=

log(1 +
1

2f(∆, αp)
)

(1 + ∆)2
. (73)

To evaluate the normalized point-to-point capacity Cn
P2P, we numerically solved Equation (73) and

compared the analytical predictions with simulations based on the full fading model over the symmetric

topology of Figure 9 with link length of r = 31.5 m. The simulation uses the same hexagonal

geometry as the analytical expression: interferer distances are computed using the exact ring–sector

functions (ξ, ψ) in Equation (55) and Equation (57), while small-scale fading is modeled by lognormal

shadowing (σ = 6 dB) and Rayleigh fading (unit mean). For each value of ∆, the instantaneous SINR

is sampled over 5× 104 realizations. For typical urban path-loss exponents (αp ≲ 3.5), the normalized

P2P capacity Cn
P2P falls in the range 0.15–0.30 bit/s/Hz. This value is obtained under a deliberately

simple physical-layer setting (single-antenna, omnidirectional transmission), which keeps the analysis

tractable for multi-parameter, large-scale network evaluation. More advanced PHY techniques can

increase these values substantially. For example, [35] reports that with 6 transmit antennas and an

MMSE MIMO receiver, 0.2–0.3 bit/s/Hz can increase to about 1.5 bit/s/Hz, and [47] shows that

beamforming can raise the spectral efficiency further, reaching up to ≈ 3 bit/s/Hz.

The results, shown in Figure 13, demonstrate that Cn
P2P is maximized at an optimal reserved–space

parameter ∆opt ∈ (2., 2.5), and this maximizer is remarkably stable across different path-loss exponents

αp. This reveals a central insight: choosing a non-optimal ∆ can reduce the achievable throughput

significantly, whereas selecting ∆opt ensures that spatial reuse and interference are jointly balanced

to maximize capacity. The invariance of ∆opt with respect to αp further indicates a robust geometric

property of the interference field, simplifying network design since the same reserved–space parameter

is nearly optimal for a wide range of propagation environments. Substituting ∆opt into Equation (43)

yields the optimal spatial reuse factor fr, representing the number of simultaneously active links per

unit area. The resulting values lie between

n

(3.)2
and

n

2(3.5)2
,

meaning roughly n/10 to n/12 transmitters can operate concurrently on the same frequency band

under optimal reuse.

Finally, the curves show that increasing αp improves Cn
P2P in interference-limited ad hoc networks,

primarily because stronger distance attenuation reduces long-range interference. The close agreement

between analytical and simulated results confirms that the large-scale capacity behavior is governed

mainly by geometric interference structure and the path-loss law, whereas precise estimates require

incorporating fading.

6 Numerical analysis

To assess the practical relevance of the proposed distributed system architecture, we carry out a numer-

ical evaluation tailored to a realistic large-scale scenario and explicitly quantify end-to-end performance
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Figure 13: Normalized point-to-point capacity Cn
P2P versus the reserved–space parameter ∆ for several path-loss exponents

αp. Solid curves with markers show the analytical model (geometry and path loss only), while dashed curves with matching
markers show simulations including lognormal shadowing (σ = 6 dB) and Rayleigh fading (unit mean).

in terms of throughput, delay, spectrum usage, and energy feasibility. We consider a hypothetical

megacity with a population of 100 million inhabitants. While such cities do not yet exist, projections

indicate that rapid urbanization could lead to megacities of this scale by the end of the 21st cen-

tury [46]. This extreme scenario highlights the potential of fully distributed networking to handle very

high node densities and vast network diameters.

For concreteness, we assume a population density of 4,800 persons/km2, similar to that of Montréal,

Canada [15], and an average building height of 15 m (approximately four floors) [21]. Normalizing per

floor yields an effective density of 1,200 persons/km2 per floor. We assume that each person may act

as a wireless node, with a distance-dependent interaction probability as described in Section 4.

6.1 Hop count and spatial scale

We first compute the area per person Ap from the normalized population density:

Ap × 1,200 = 1 km2 =⇒ Ap =
1 km2

1,200
=

252 × 22

3
m2.

Assuming each user occupies a regular hexagon in a hexagonal lattice, the area Ap satisfies

Ap =
3
√
3

2
l20,

where l0 is the hexagon side length. In this lattice, the distance between adjacent nodes, d0, is related

to l0 via d0 =
√
3 l0. Substituting l0 = d0/

√
3 yields

Ap =
3
√
3

2

( d0√
3

)2
=

√
3

2
d20.

Equating this with the computed Ap gives

√
3

2
d20 =

252 × 22

3
=⇒ d0 =

√
961.94 ≈ 31 m.

Following the empirical measurements in [3], we take the reference distance β0 = 313 m, yielding

the normalized parameter

β =
β0
d0

=
313

31
≈ 10.1.
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In [3], the social-interaction probability over distance follows a power law with exponent α = 3.05.

Substituting (α, β, n) into the closed-form upper bound in Section 4.1.3 on the expected hop count,

we obtain

E(h) < 86.

The corresponding expected communication range is

E(h) d0 < 2.7 km.

The network diameter D (maximum source–destination separation) is estimated as

D = d0

√
2
(√3(n/4)

2

)
= d0

√
n 30.25

2
≈ 204 km.

Although the network diameter is on the order of hundreds of kilometers, the typical end-to-end

communication path spans only about 1.3% of this distance. This striking disparity highlights the

critical role of realistic, distance-dependent interaction probabilities: while the network is physically

large, most communications remain highly local. As emphasized in this work and in [24], ignoring this

behavioral locality has historically led to overly pessimistic assessments of multi-hop ad hoc networks

and a systematic underestimation of their true scalability potential.

6.2 Throughput, rate services, and delay performance

For an urban environment with high building density, we adopt a path-loss exponent αp = 4. Using

the interference analysis in Section 5.3 and the optimized reserved-space parameter ∆opt, the maximal

normalized P2P capacity is

Cn
P2P ≈ 0.20 bit/s/Hz

(see Figure 13). For a total system bandwidth of W = 200 MHz allocated to the distributed network,

the average end-to-end P2P rate, , by using Equation (73) is

CP2P =
Cn

P2PW

E(h)
≈ 0.47 Mbps.

Even with this modest average rate per P2P connection, each user can obtain several gigabytes of data

per day:

Cdaily = 86,400× CP2P ≈ 4 GBytes/day.

If all frequency resources are temporarily allocated to a single active link, the peak link capacity is

Cmax
L = Cn

P2PW (1 + ∆opt)
2 ≈ 400 Mbps,

where (1 + ∆opt)
2 ≈ (3.2)2 corresponds to ∆opt ≈ 2.2 (see Equation (73)). When the spectrum is

divided among simultaneously active links, the average per-link capacity is

Cav
L = Cn

P2PW ≈ 40 Mbps.

Consider a high-bandwidth video service with packet size Lpkt = 576 bytes and a frame rate of

30 fps. We focus on the transmission component of the end-to-end delay over a typical P2P connection

spanning E(h) hops. Assuming that, at each hop, the active link can temporarily access the full

available bandwidth, the minimum achievable average end-to-end transmission delay is given by

τavmin =
8Lpkt E(h)

Cmax
L

≈ 1ms.
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which is far below the 33 ms frame interval. This expression represents a lower bound, as practical

operation incurs additional queuing and medium-access delays at each relay. Propagation delay is

negligible in this short range link cases. With average link capacity Cav
L , the mean delay is

τavav =
8Lpkt E(h)

Cav
L

,≈ 10ms

This delay remains well below typical real-time service thresholds. Even for worst-case long-distance

communications—which occur with very low probability, as shown in Section 4.1.3, since the vast

majority of connections are local—the resulting end-to-end delay remains bounded, with the maximum

delay given by

τmax
max =

8LpktD

d0 Cmax
L

,= 115ms

which remains acceptable for most non-interactive services. This level of performance for most com-

munication (expected value) is comparable to that reported for 5G networks, whose end-to-end delays

typically fall in the range of 30–35 ms [39].

6.3 Energy efficiency and spectral efficiency

We now examine the energy consumption per node. Under the optimal operating point, each node

is active for approximately 24/(3.2)2 ≈ 2.4 hours per day, since each active link occupies a fraction

1/(1 + ∆opt)
2 of the total time due to spatial resource sharing. We consider a carrier frequency

fc = 2 GHz, a path-loss exponent αp = 4, and the optimal reserved-space parameter ∆opt. For this

configuration, the normalized point-to-point capacity is Cn
P2P = 0.2. Using Equation (73), where

f(∆opt, αp) = N/S, the resulting target signal-to-noise ratio is S/N = 6. Accordingly, the link budget

yields the following path-loss term:

Lpath = 10αp log10(d0) + 20 log10(fc) + 32.45 ≈ 98.1 dB.

The corresponding noise power is

N0 = kTW = 1.38× 10−23 × 300× 200× 106 ≈ 8.28× 10−13 W,

and the required received signal power is

S =
S

N
N0 ≈ 5× 10−12 W.

Compensating for path loss, the required transmit power is

Pt = S × 10Lpath/10 ≈ 5× 10−12 × 109.81 ≈ 32.3 mW.

If a node actively transmits for approximately 2.4 hours per day, the daily energy consumption per

node is

Eday = Pt × 2.4 h ≈ 77.5 mWh.

Assuming a typical smartphone battery voltage of 3.7 V, this corresponds to

Eday ≈ 21 mAh,

which is negligible compared to a typical smartphone battery capacity of 4,000 mAh. This allows

operation for many days without recharging, an important advantage in emergency situations or in-

frastructure outages.

Given a daily traffic volume of approximately 4 GBytes per user, the resulting energy cost for

end-to-end delivery of one bit is on the order of

Ebit ≈ 8.8 nJ/bit,
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which is dramatically lower than the best reported values for 5G downlink (≈ 20 nJ/bit) and LTE

(≈ 70 nJ/bit) [53]. This highlights the intrinsic energy advantage of short-range, interference-managed

multi-hop communication.

The spectral efficiency achieved mainly through dense resource reuse with population density
4,800 persons/km

2
is

F =
Cn

P2P × ρ

E(h)
=

0.2× 4,800

86
≈ 11.1 bit/s/Hz/km2.

As the population density ρ increases, the normalized point-to-point capacity Cn
P2P remains fixed,

while the expected hop count E(h) scales at most with the typical link length, i.e., E(h) = O(
√
ρ) when

interaction patterns do not become more localized. In this conservative case, the spectral efficiency

scales as ρ/
√
ρ =

√
ρ. In practice, however, increasing density typically leads to more localized commu-

nications, causing the expected hop count to grow slowly or remain nearly constant. Consequently, the

spectral efficiency can scale almost linearly with population density ρ, reflecting the strong potential

for aggressive spatial resource reuse. This demonstrates that the achieved spectral efficiency remains

robust—and can even improve—as the network becomes denser.

6.4 Discussion: Practical implications and potential

These results show that a very large-scale distributed network, operating with limited spectrum and

a simple physical layer (no MIMO and no beamforming), can deliver user data volumes comparable

to many current cellular offerings. It is important to emphasize that this value represents an idealized

upper bound. In practice, several factors must be taken into account. Link utilization cannot be

continuously full, and increased contention may lead to higher waiting times and packet losses. Conse-

quently, even under favorable conditions, only a fraction of this capacity—on the order of 50%–70%—is

likely to be achievable in a stable network. Moreover, suboptimal scheduling, heterogeneous traffic de-

mand (with some areas experiencing significantly higher load than average), and the need for protocol

overhead and guard intervals between transmitters further reduce the effective throughput. Deviations

from the assumed symmetric topology also make optimal resource sharing more complex and harder

to achieve in practice. These effects are unavoidable and must be acknowledged.

At the same time, the reported values do not capture the full potential of large-scale distributed

networking. As discussed in Section 5.3 and demonstrated in [35, 47], advanced transmission tech-

niques such as beamforming and MIMO can increase Cn
P2P from 0.2–0.3 bit/s/Hz to 2–3 bit/s/Hz, far

exceeding what is achievable with an omnidirectional physical layer. In fact, the main point behind

achieving these numerical results is not the optimality or simplicity of the considered scenario. Even

higher performance could be achieved under realistic conditions if the network is properly designed.

The observed performance gains stem from two fundamental properties that hold for virtually any

network topology and physical-layer technology.

First, we show that realistic interaction patterns yield expected hop counts and communication

distances that are nearly two orders of magnitude smaller than classical pessimistic estimates, trans-

lating directly into substantial improvements in P2P capacity and power efficiency. This property is

largely independent of the specific network topology: for networks with the same physical dimensions

and node density, the expected number of hops remains approximately the same regardless of node po-

sition. As a result, the widely cited performance degradation attributed to multi-hop communication

is largely a consequence of overly pessimistic modeling assumptions.

Second, the fact that shorter links optimize overall network performance [19, 24] creates significant

potential for aggressive spatial reuse and ultra-low-power operation, effectively alleviating traditional

battery-life concerns and, in many cases, outperforming cellular architectures. This property is inde-

pendent of the particular network or physical-layer technology. To illustrate this effect, in our model

the typical link length is approximately 30 m. Although cellular link lengths in LTE or 5G depend on
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cell type, even an optimistic average link length of 300 m leads to a dramatic difference in path loss.

For example, with a path-loss exponent αp = 4, the ratio is(
300

30

)4

= 104.

Even though part of this loss is mitigated by antenna height and directional gain in cellular systems,

with an expected hop count of E(h) < 100 in massive-scale distributed networks, the total power

consumption can still be significantly lower. A similar argument applies to spatial reuse: since the reuse

factor scales approximately with the square of the link length, the reuse efficiency in the distributed

network is about two orders of magnitude higher than in the cellular case. This gain is sufficient to

offset the resource reduction caused by multi-hop forwarding and enables performance competitive

with cellular systems in terms of aggregate throughput. Furthermore, this short-link regime naturally

identifies millimeter-wave technologies— whose performance is strongest at short ranges—as ideal

candidates for distributed networks, especially given the orders-of-magnitude larger bandwidths they

offer compared to conventional sub-6 GHz systems.

Therefore, the key insights of this work directly address classical concerns regarding the practicality

of large-scale ad hoc networking. Consequently, the use of a symmetric topology and a simplified

physical-layer model should not be interpreted as an oversimplification. Rather, it is a deliberate

choice to expose the fundamental large-scale behavior, design principles, and performance potential of

distributed networking—insights that cannot be captured through narrow or small-scale analyses.

7 Conclusion and future work

In this work, we derived closed-form performance bounds for very large-scale distributed ad hoc net-

works, providing explicit numerical estimates of the expected hop count, link-level and end-to-end

capacity, delay, energy consumption, and spectral efficiency. The analysis combines stochastic geome-

try, Riemann sum approximation, integration, and convex optimization to obtain tractable closed-form

upper bounds on the expected hop count, aggregate interference, and achievable transmission capacity

under optimal resource sharing.

A key finding is that, under realistic interaction patterns, the expected hop count and communica-

tion distance are nearly two orders of magnitude smaller than classical pessimistic estimates, leading

directly to substantial gains in throughput and energy efficiency. Moreover, the analysis shows that

the in optimal operating regime in distributed networking corresponds to forwarding data, the energy

required for a single long-range cellular transmission can exceed—by several orders of magnitude—the

aggregate energy of many short multi-hop transmissions. As a result, even with on the order of 102

forwarding hops per connection, the total power consumption of a distributed P2P session remains

well below that of state-of-the-art centralized systems such as LTE and 5G. The same short-link prin-

ciple applies to spatial reuse. Since reuse efficiency scales approximately with the square of the link

length, distributed networks achieve reuse gains of nearly two orders of magnitude compared to cel-

lular architectures. These properties are inherent to distributed wireless networking and are largely

independent of the specific network topology or physical-layer technology. Consequently, large-scale

distributed networks can sustain per-user data volumes comparable to current cellular systems while

operating with limited spectrum and extremely low transmit power. These insights directly address

long-standing concerns regarding the practicality of large-scale ad hoc networking. Accordingly, the

use of a symmetric topology is a deliberate analytical choice, designed to isolate and expose the fun-

damental large-scale behavior, core design principles, and intrinsic performance limits of distributed

wireless networks.

Overall, this work demonstrates that large-scale distributed ad hoc networks are not only theoreti-

cally scalable but also practically competitive with infrastructure-based systems, particularly in dense

urban environments. Future research will extend this framework to random node placements and will
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incorporate advanced routing and interference coordination mechanisms to further refine performance

bounds and guide the design of deployable large-scale systems.

Appendix A Geometric characterization of interfering nodes and
interference bounds

Theorem 1 (Distance between central element and elements in a sector). Given that xj is the angle

between the perpendicular bisector of the sector and the line segment connecting the central node

to node j (as shown in Figure A.1), where −π
6 < xj ≤ π

6 , and r is the distance between immediate

neighbors, the distance between the central element to any element j is given by:

dij =
(1 +∆)ir cos(π6 )

cos(xj)
. (A.1)
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Figure A.1: Distance computation for interferers in the i-th ring of a hexagonal lattice, shown over a single π
6

sector
by symmetry. The ring index i determines the nominal radial distance i(1 + ∆)r, while the index j enumerates nodes
within the ring at different angular offsets on both sides of the symmetry axis. Nodes with j < i/2 and j > i/2 appear
symmetrically and yield identical interference contributions. Distances are obtained by combining the vertical component

i(1 + ∆)r
√
3

2
with a horizontal offset proportional to | j − i

2
| (1 + ∆)r, where 1 ≤ j ≤ i.

Proof. The distance between the central element and element j, in a sector from ring ith, defined as

dij , as depicted in Figure A.1, given by

dij = i(1 + ∆)r

√
(
j − 0.5i

i
)2 + (

√
3

2
)2, 1 ≤ j ≤ i . (A.2)

Considering xj as the angle shown in Figure A.1, we have

cos(xj) =
i(1 + ∆)r

√
3
2

i(1 + ∆)r

√
( j−0.5i

i )2 + (
√
3
2 )2

=

√
3

2

√
( j−0.5i

i )2 + (
√
3
2 )2

. (A.3)

By substituting cos(xj) from Equation (A.3) into Equation (A.2), we obtain:

dij =
(1 +∆)ir cos(π6 )

cos(xj)
. (A.4)
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Theorem 2 (Distance between Interfering Transmitters and the Central Receiver). For a node j in the

first sector, where 0 < φ ≤ π
3 , and the ith sector, the distance is calculated as:

rij = r

√
(
i(1 + ∆) cos(π6 )

cos(φ− π
6 )

− cos(φj))2 + sin2(φ) . (A.5)

Proof. From Theorem 1, if xj is the angle between the perpendicular bisector of the sector and the

segment connecting the central node to node j, where −π
6 < xj ≤ π

6 , the distance dij is given by:

dij =
(1 +∆)ir cos(π6 )

cos(xj)
. (A.6)

For i > 1, as depicted in Figure A.2, we have:

rij
2

=

√
(
dij
2

− r

2
cos(φj))2 + (

r

2
sin(φ))2.

According to Figure A.2, the relationship between xj and φj for 0 ≤ φj ≤ π
3 is xj = φj − π

6 .

Substituting dij from Equation (A.6), the distance rij of any interfering transmitter node from the

center receiver, for 0 < φj ≤ π
3 , is

rij = r

√
(
i(1 + ∆) cos(π6 )

cos(φ− π
6 )

− cos(φj))2 + sin2(φ) . (A.7)
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Figure A.2: Geometric construction for computing distances to node j-th on the i-th ring within a hexagonal lattice
sector. The angular index xj (angle φj) parameterizes node positions, and the resulting distance d(φj) is obtained from
projections along the sector geometry.

Theorem 3 (Distance to Interfering Transmitters ). Consider a symmetric network arranged in a hexago-

nal lattice, as depicted in Figure 11. For rings with i ≥ 2, each ring is divided into six identical sectors,

each containing i interfering transmitters. The distance from the central receiver to an interfering

transmitter in ring i, sector k, at angle φj is given by:

rijk = r ψ(i, φj , k), (A.8)

where

ψ(i, φj , k) =

[
(
i(1 + ∆) cos(

π

6
)

cos(φj −
π

6
)

− cos(φj +
(k − 1)π

3
))2 + sin2(φj +

(k − 1)π

3
)

] 1
2

. (A.9)
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Proof.

In sector k = 1, the angle φj is determined by:

cos(φj) =
i− j

2i

√
(
j − 0.5i

i
)2 + (

√
3

2
)2

, j = 1, 2, . . . , i. (A.10)

For other sectors k > 1 with
(k − 1)π

3
≤ φ ≤ kπ

3
, the expressions are obtained by applying a

phase shift of
(k − 1)π

3
to cos(φj) and sin(φj) in Equation (A.5) of Theorem 2, and by factoring out

ψ(i, φj , k) as Equation (A.9), Equation (A.8) is achieved.

Theorem 4 ( ψ(i, φ, k) approximation). For any sectors of 1 ≤ k ≤ 6 and φ ∈ [0, π3 ] the lower bound of

the ψ(i, φ, k) could be written as

ψ(i, φ, k) ≥ (i(1 + ∆)− Ck)
cos(π6 )

cos(φ− π
6 )
, (A.11)

where Ck ∈ { 1√
3
+ 1

2 ,
1
2 ,

−1
2 ,

−1
2 ,

1
2 ,

1√
3
+ 1

2} .

Proof. We start with the expression:

cos(φ − π
6

) cos(φ +
(k−1)π

3
)

cos(π
6

)
=

cos(2φ − π
6

+
(k−1)π

3
) + cos(π

6
+

(k−1)π
3

)

2 cos(π
6

)
.

As shown in Table A.1, the maximum of the expression for any sector is presented as Ck. Thus,

we can write:

i(1 + ∆)
cos(π6 )

cos(φ− π
6 )

− cos(φ+
(k − 1)π

3
) ≥

i(1 + ∆)
cos(π6 )

cos(φ− π
6 )

− Ck

cos(π6 )

cos(φ− π
6 )
.

Table A.1: Function extreme values per sector.

K Equation per sector Max value (Ck) Min value

1
cos(2φ−π

6
)+cos(π

6
)

2 cos(π
6
)

1√
3
+ 1

2
1
2

2
cos(2φ+π

6
)+cos(π

2
)

2 cos(π
6
)

1
2

− 1
2

3
cos(2φ+π

2
)+cos( 5π

6
)

2 cos(π
6
)

− 1
2

−( 1√
3
+ 1

2
)

4
cos(2φ+ 5π

6
)+cos( 7π

6
)

2 cos(π
6
)

− 1
2

−( 1√
3
+ 1

2
)

5
cos(2φ+ 7π

6
)+cos( 3π

2
)

2 cos(π
6
)

1
2

− 1
2

6
cos(2φ+ 3π

2
)+cos( 11π

6
)

2 cos(π
6
)

1√
3
+ 1

2
1
2

Squaring both sides of the inequality, adding sin2(φ), and then taking the square root, we obtain
Equation (A.12):

ψ(i, φ, k) = (i(1 + ∆)
cos(π

6
)

cos(φ− π
6
)
− cos(φ+

(k − 1)π

3
))2 + sin2(φ+

(k − 1)π

3
) ≥

((i(1 + ∆)− Ck)
2 cos2(π

6
)

cos2(φ− π
6
)
+ sin2(φ+

(k − 1)π

3
))

1
2

≥ (i(1 + ∆)− Ck)
cos(π

6
)

cos(φ− π
6
)
. (A.12)
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Theorem 5 (Upper Bound of Interference from Distant Rings). For a symmetric network arranged in a

hexagonal lattice, the total interference from all rings beyond a threshold i >
κ

1 + ∆
, where κ ≫ 1,

has an upper bound given by:

I(i >
κ

1 + ∆
) <

3Pg0Q(αp)

πrαp

6∑
k=1

χ(∆, αp, κ, Ck), (A.13)

with:

χ(∆, αp, κ, Ck) =

Q(αp)(1 + ∆)−1(αp − 1)(

⌈
κ

1 + ∆

⌉
− 0.5)− Ck(1 + ∆)−2[

(1 + ∆)(

⌈
κ

1 + ∆

⌉
− 0.5)− Ck

]αp−1

(αp − 2)(αp − 1)

. (A.14)

where:

• Ck are constants specific to each sector k provided in Table A.1,

• Q(αp) =
∫ π

3

0

cosαp (φ−π
6 )

cosαp (π
6 ) dφ.

Proof. For i≫ 1, the sum over j and k in the interference I(i) can be approximated using the Riemann

integral. The discrete sum:

π

3i

6∑
k=1

i∑
j=1

i

ψ(i, φj , k)αp
≈

6∑
k=1

∫ π
3

0

i

ψ(i, φ, k)αp
dφ, (A.15)

where ψ(i, φ, k) is as defined in Equation (57).

According to geometric considerations (details in Equation (A.11)), for the kth sector, ψ(i, φ, k)

has a lower bound:

ψ(i, φ, k) ≥ i(1 + ∆)− Ck

cos(π6 )
cos(φ− π

6
). (A.16)

Substituting the lower bound into the integral, we obtain:

I(i) <
3Pg0
πrαp

6∑
k=1

∫ π
3

0

i[
i(1 + ∆)− Ck

cos(π6 )
cos(φ− π

6 )

]αp
dφ

=
3Pg0
πrαp

6∑
k=1

i

[i(1 + ∆)− Ck]
αp

∫ π
3

0

cosαp(φ− π
6 )

cosαp(π6 )
dφ

=
3Pg0Q(αp)

πrαp

6∑
k=1

i

[i(1 + ∆)− Ck]
αp
, (A.17)

where Q(αp) is defined as:

Q(αp) =

∫ π
3

0

cosαp(φ− π
6 )

cosαp(π6 )
dφ. (A.18)

To compute the upper bound of the total interference from rings beyond i >
κ

1 + ∆
, we consider

the sum:

I(i >
κ

1 + ∆
) <

3Pg0Q(αp)

πrαp

∞∑
i=

⌈ κ

1 + ∆

⌉
6∑

k=1

i

[i(1 + ∆)− Ck]
αp
. (A.19)
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We define l(r) as:

l(r) =

6∑
k=1

r

[r(1 + ∆)− Ck]
αp
. (A.20)

Since l(r) is a convex decreasing function for r ≥
⌈

κ

1 + ∆

⌉
and κ ≫ Ck, we can use the integral

test for convergence:
∞∑

i=

⌈
κ

1 + ∆

⌉ l(i) ≤
∫ ∞⌈

κ

1 + ∆

⌉
−0.5

l(r) dr. (A.21)

Integrating l(r), we get:∫
l(r) dr = C0 −

6∑
k=1

(1 + ∆)(αp − 1)r − Ck

(1 + ∆)2 [r(1 + ∆)− Ck]
αp−1

(αp − 2)(αp − 1)
, (A.22)

where C is the constant of integration.

Therefore, the upper bound of I(i >
κ

1 + ∆
) is:

I(i >
κ

1 + ∆
) <

3Pg0
πrαp

6∑
k=1

χ(∆, αp, κ, Ck), (A.23)

where χ(∆, αp, κ, Ck) is as defined in Equation (A.14).

This completes the proof.

Appendix B Series to integral approximation

Theorem 6 (Mean Value Location for Convex Decreasing Functions). Let f : [a, b] → R be a continuous,

convex, and strictly decreasing function on the closed interval [a, b]. Let M be the mean value of f

over [a, b], i.e.,

M =
1

b− a

∫ b

a

f(x) dx.

Then, if c is a point in (a, b) such that f(c) =M , c is located in the left half of the interval [a, b], i.e.,

c ≤ a+b
2 .

Proof. Let f : [a, b] → R be a continuous, convex, and strictly decreasing function, and let M be the

mean value of f over [a, b]:

M =
1

b− a

∫ b

a

f(x) dx.

Suppose c ∈ (a, b) satisfies f(c) = M . We aim to show c ≤ a+b
2 . Assume, for contradiction, that

c > a+b
2 . Since f is strictly decreasing, f(x) > M for x < c and f(x) < M for x > c. Given f is

convex, Jensen’s inequality implies:

f(
a+ b

2
) ≤ 1

b− a

∫ b

a

f(x) dx =M.

However, if c > a+b
2 , the integral would be weighted more towards lower function values, contradicting

f(c) =M . Thus, c must satisfy c ≤ a+b
2 .
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Theorem 7 (Infinite integral for Convex Decreasing Functions). Let f : [a, b] → R be a continuous,

convex, and strictly decreasing function on the closed interval [a, b]. Let M be the mean value of f

over [a, b], i.e.,

M =
1

b− a

∫ b

a

f(x) dx.

Then, if c is a point in (a, b) such that f(c) =M , c is located in the left half of the interval [a, b], i.e.,

c ≤ a+b
2 . For a convex decreasing function f(x),

∑∞
i=a f(i) ≤

∫∞
a− 1

2
f(x) dx

Proof. Based on Theorem 7, for any interval [i− 1
2 , i+

1
2 ], f(i) ≤

∫ i+ 1
2

i− 1
2

f(x) dx. Therefore

∞∑
i=a

f(i) ≤
∞∑
i=a

∫ i+ 1
2

i− 1
2

f(x) dx ≤
∫ ∞

a− 1
2

f(x) dx

.

Theorem 8 (P0 series to integral). For α > 2,

√
n
π∑

i=1

i

(i+ β)α
≥
∫ √

n
π

1

r

(r + β)α
dr − (α− 1)α−1

ααβα−1
.

Proof. Considering f(r) = r
(r+β)α ,

d
drf(r) is given by

d

dr
f(r) =

β + (1− α)r

(r + β)α+1
.

f(r) has only one maximum at r = β
α−1 . For any i ≤

⌊
β

α−1

⌋
:

⌊ β
α−1⌋∑
i=1

f(i) =

⌊ β
α−1⌋∑
i=1

i

(i+ β)α
≥
∫ ⌊ β

α−1⌋

0

r

(r + β)α
dr ,

and for i ≥
⌊

β
α−1

⌋
:

√
n
π∑

i=⌊ β
α−1⌋+1

f(i) =

√
n
π∑

i=⌊ β
α−1⌋+1

i

(i+ β)α
≥
∫ √

n
π

⌊ β
α−1⌋

r

(r + β)α
dr .

By summing up both cases, we have
√

n
π∑

i=1

i

(i+ β)α
≥
∫ √

n
π

0

r

(r + β)α
dr −

∫ ⌊ β
α−1⌋+1

⌊ β
α−1⌋

r

(r + β)α
dr .

Furthermore,
∫
f(r) dr computed as∫

r

(r + β)α
dr = − (r + β)1−α((α− 1)r + β)

(α− 1)(α− 2)
+ C , (B.24)

that by using Equation (B.24), we have∫ ⌊ β
α−1⌋+1

⌊ β
α−1⌋

r

(r + β)α
dr ≤ (α− 1)α−1

ααβα−1
.
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Consequently, √
n
π∑

i=1

i

(i+ β)α
≥ (

∫ √
n
π

0

r

(r + β)α
dr − (α− 1)α−1

ααβα−1
) . (B.25)

Theorem 9 (Approximate E(h) series with an integral). For α > 2,
√

n
π∑

i=2

∫ π
6

0

i2

(
i cos(π

6 )

cos(φ) + β)α
dφ ≤

∫ √
n
π

2

∫ π
6

0

r2

(
r cos(π

6 )

cos(φ) + β)α
dφ dr +

(α− 2)α(2
√
3 + 4π

3 )

3βα−2αα
. (B.26)

Proof.

Considering the function f(r, φ) = r2

(
r cos(π

6
)

cos(φ)
+β)α

,

df(r, φ)

dr
=
r((2− α)

r cos(π
6 )

cos(φ) + 2β)

(
r cos(π

6 )

cos(φ) + β)α+1

The maximum of f(r, φ) occurs at rmax = 2β cos(φ)
(α−2) cos(π

6 ) . f(r, φ) is increasing for r ≤ 2β cos(φ)
(α−2) cos(π

6 ) and

decreasing for higher values of r. We can thus write:

⌊ 2β cos(φ)

(α−2) cos(π
6

)
⌋∑

i=2

∫ π
6

0

i2

(
i cos(π

6 )

cos(φ) + β)α
dφ ≤

∫ ⌊ 2β cos(φ)

(α−2) cos(π
6

)
⌋+1

2

∫ π
6

0

r2

(
r cos(π

6 )

cos(φ) + β)α
dφ dr , (B.27)

and for r ≥ 2β cos(φ)
(α−2) cos(π

6 ) , we have:

√
n
π∑

⌊ 2β cos(φ)

(α−2) cos(π
6

)
⌋+1

∫ π
6

0

i2

(
i cos(π

6 )

cos(φ) + β)α
dφ ≤

∫ √
n
π

⌊ 2β cos(φ)

(α−2) cos(π
6

)
⌋

∫ π
6

0

r2

(
r cos(π

6 )

cos(φ) + β)α
dφ dr. (B.28)

Summing up Equations (B.27) and (B.28), we get:

√
n
π∑

i=2

∫ π
6

0

i2( i cos(π
6 )

cos(φ) + β
)α dφ ≤ (

∫ √
n
π

2

∫ π
6

0

r2( r cos(π
6 )

cos(φ) + β
)α dφ dr

+

∫ ⌊ 2β cos(φ)

(α−2) cos(π
6

)
⌋+1

⌊ 2β cos(φ)

(α−2) cos(π
6

)
⌋

∫ π
6

0

r2( r cos(π
6 )

cos(φ) + β
)α dφ dr). (B.29)

We then have:∫ ⌊ 2β cos(φ)

(α−2) cos(π
6

)
⌋+1

⌊ 2β cos(φ)

(α−2) cos(π
6

)
⌋

∫ π
6

0

r2

(
r cos(π

6 )

cos(φ) + β)α
dφ dr

≤
∫ π

6

0

4β2 cos2(φ)/ cos2(π6 )

( 2β
α−2 + β)α

dφ =
(α− 2)α(2

√
3 + 4π

3 )

3βα−2αα
. (B.30)

It means the upper bound of the E(h) series could be given the below integral as
√

n
π∑

i=2

∫ π
6

0

i2

(
i cos(π

6 )

cos(φ) + β)α
dφ ≤

∫ √
n
π

2

∫ π
6

0

r2

(
r cos(π

6 )

cos(φ) + β)α
dφ dr +

(α− 2)α(2
√
3 + 4π

3 )

3βα−2αα
. (B.31)
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Appendix C Extreme values and upper bounds related to E(h)

Theorem 10. By moving away from the corner of the network to the center on the line of x = y as

Figure C.3 so that the minimum distance of the source node from all corners considered as κβ, then
Pmin

0

Pκβ
0

is given by

Pmin
0

Pκβ
0

≥
{
1− 1+ 1

π

κ+1 , if α ≥ 3

1− 0.75α−1.25+ 1
π

(κ+1)α−2 , if α ≈ 3, α < 3 .
(C.32)

Proof.

The integral for P0 can be rewritten as:∫ √
n
π

1

r

(r + β)α
dr =

∫ κβ

1

r

(r + β)α
dr +

∫ √
n
π

κβ

r

(r + β)α
dr

=
1

(α− 1)(α− 2)
(
α− 1 + β

(1 + β)α−1
− (α− 1)

√
n
π + β

(
√

n
π + β)α−1

)

If we consider the Pκβ
0 as the P0 constant for the point on the line x = y that is at least κβ away from

all network corners, and call A as the effective area for the integral, we should have P0(
∮
A
P (a) da +

C(α, β)) = 1. Here, P (a) is the interaction probability, and C(α, β) is the offset value of converting

series to integral. On the other hand, for the Pmin
0 the area of integral is the

∫√n
π

0
r

(r+β)α dr ≈∫∞
0

r
(r+β)α dr. Therefore, we can write,

Pmin
0

Pκβ
0

=

∮
A
P (a) da+ C(α, β)∫∞

0
r

(r+β)α dr + C(α, β)

As depicted in Figure C.3, the integral for the effective area of A could be written so that

Pmin
0

Pκβ
0

=

1
βα−2 − (α−2)(α−1)α

ααβα−1 − 3((α−1)κβ+β)
4((κ+1)β)α−1 + 1

π

∫∞
κβ

arcsin(κβ
r )r

π(r+β)α dr

1
βα−2 − (α−2)(α−1)α

ααβα−1

≈ 1− 3((α− 1)κ+ 1)

4(κ+ 1)α−1
+
βα−2

π

∫ ∞

κβ

arcsin(κβr )r

π(r + β)α
dr .

since always
Pmin

0

Pκβ
0

≤ 1, always:

3((α− 1)κ+ 1)

4(κ+ 1)α−1
≥ βα−2

π

∫ ∞

κβ

arcsin(κβr )r

π(r + β)α
dr .

Therefore, we can write:
Pmin
0

Pκβ
0

= 1− (1− C)
3((α− 1)κ+ 1)

4(κ+ 1)α−1

where 0 ≤ C ≤ 1. Now, we consider f(α) = 3((α−1)κ+1)
4(κ+1)α−1 , if we show d f

dα ≤ 0 for all α ≥ 3, then by

increasing α,
Pmin

0

Pκβ
0

increases. We have

d f

dα
=

3((1− (α− 1)2)κ2 + 2κ− α+ 1)

4(κ+ 1)α
,



Les Cahiers du GERAD G–2026–03 43

that shows that for any κ ≥ 1 and α ≥ 3,
Pmin

0

Pκβ
0

is increasing with respect to α. Therefore,
Pmin

0

Pκβ
0

∣∣∣∣∣
α=3

is a lower bound for all α ≥ 3. Furthermore,

1

π

∫ ∞

κβ

arcsin(κβr )r

π(r + β)3
dr =

κ2

πβ

(
(
−κ arcsin( κx

|x+κ|+
1

|x+κ| )√
κ2−1−κ2

√
κ2−1

−
√
1−κ2

−κ2x+x−κ3+κ

2
− arcsin(x)

2(x+ κ)2
)

∣∣∣∣∣
x=1

x=0

)
.

Could be shown the result of the integral if κ≫ 1, is approximated by

β

π

∫ ∞

κβ

arcsin(κβr )r

(r + β)3
dr =

(0.5− 1
π )κ− 1

π

(κ+ 1)κ
,

that if α ≥ 3;

Pmin
0

Pκβ
0

≥ 3((α− 1)κ+ 1)

4(κ+ 1)α−1
+

(0.5− 1
π )κ− 1

π

(κ+ 1)κ

≥ 1− 3(2κ+ 1)

4(κ+ 1)2
+

(0.5− 1
π )κ− 1

π

(κ+ 1)2
≥ 1− (1 + 1

π )κ+ 1
π + .75

(κ+ 1)2
.

Finally, the simplified ratio is given by

Pmin
0

Pκβ
0

≥ 1− (1 + 1
π )

κ+ 1
. (C.33)

For α ≤ 3, also could be written that

Pmin
0

Pκβ
0

≥ 1− 3((α− 1)κ+ 1)

4(κ+ 1)α−1
+
βα−3(0.5− 1

π )κ− 1
π

(κ+ 1)κ
≥

1− 3((α− 1)κ+ 1)

4(κ+ 1)α−1
+
βα−3(0.5− 1

π )κ− 1
π

(κ+ 1)2
≥

Pmin
0

P0
≥ 1− 3((α− 1)κ+ 1) + ((κ+ 1)β)α−3((0.5− 1

π )κ− 1
π )

4(κ+ 1)α−1
.

If α ≈ 3, ((κ+ 1)β)α−3 ≈ 1, then

Pmin
0

Pκβ
0

≥ 1− .75α− 1.25 + 1
π

(κ+ 1)α−2
. (C.34)

Hence, for both cases we have

Pmin
0

Pκβ
0

≥
{
1− 1+ 1

π

κ+1 , if α ≥ 3

1− 0.75α−1.25+ 1
π

(κ+1)α−2 , if α ≈ 3, α < 3 .
(C.35)

Theorem 11. Let f : R2 → R be a positive, radially decreasing function, i.e., f(r, ϑ) > 0 and ∂f
∂r < 0

for all sufficiently large r. Consider the integral of f over a square S centered at the origin with side

length L, as depicted in Figure C.4.

Then, the integral satisfies the following bounds:

12∑
k=1

∫ θk+
π
6

θk

∫ Rk

0

f(r, ϑ) r dr dϑ ≤
∫
S

f(r, ϑ) dA ≤
∫
C

f(r, ϑ) dA,

where:
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• C is a circle centered at the origin with radius R = L√
π
,

• The lower bound is obtained by dividing S into 12 sectors, each spanning an angle of π
6 . Specif-

ically, 8 sectors have radius Rk = L
2 and 4 sectors have radius Rk = L√

3
.

arcsin(κβ
r
)

κβ

Figure C.3: Geometric configuration used to bound edge effects in Theorem 10. The square represents the finite network
region, and the circumscribed circle defines the maximum possible distance to the boundary. The source node is placed
along the diagonal x = y, at a minimum distance κβ from all network corners.

Proof. Consider the square S centered at the origin with side length L. We partition S into 12 sectors,

each with an angular span of π
6 radians.

Lower bound:

• Among these 12 sectors, 8 sectors can be inscribed within the square with a radius R = L
2 .

• The remaining 4 sectors are inscribed with a radius R = L√
3
.

Since f(r, ϑ) is positive and radially decreasing, the integral of f over each sector is maximized

when the radius Rk is as large as possible within the sector. Therefore, the sum of the integrals over

these 12 sectors provides a lower bound for the integral over the entire square:∫
S

f(r, ϑ) dA ≥
12∑
k=1

∫ θk+
π
6

θk

∫ Rk

0

f(r, ϑ) r dr dϑ.

We ensure that the combined area of these sectors is entirely contained within the square. Since f is

positive and decreases with r, the integral over these sectors provides a conservative (lower) estimate

of the integral over the entire square.

Upper bound:

• Approximate the square S with a circle C centered at the origin such that both have the same

area. The radius of this circle is R = L√
π
, since Area(C) = πR2 = L2.

• For any point inside the square but outside the circle C, the radial distance r satisfies r > L√
π
.

Given that f(r, ϑ) is decreasing with r, the value of f at these points is less than or equal to f

at corresponding points inside C.

The integral of f over the square is bounded above by the integral of f over the circle since any

area outside the circle but inside the square contributes less to the integral than the corresponding

area inside the circle. Hence, integrating over the circle gives an upper bound for the integral over the

square. ∫
S

f(r, ϑ) dA ≤
∫
C

f(r, ϑ) dA.
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Combining both bounds, we obtain:

12∑
k=1

∫ θk+
π
6

θk

∫ Rk

0

f(r, ϑ) r dr dϑ ≤
∫
S

f(r, ϑ) dA ≤
∫
C

f(r, ϑ) dA.

Theorem 12. [Geometric relations of rk] If we consider a point inside a circle of radius R, and divide

the circle into 6 pair of sectors each of sectors covering π
6 concerning that point, then for any arbitrary

point inside the circle
6∑

k=1

r21k + r22k = 12R2

L √
3L

Figure C.4: Geometric construction used to derive upper and lower bounds on the integral of a radially decreasing function
over a square (Theorem 11). The square of side length L represents the network region. For the lower bound, the square
is partitioned into 12 angular sectors of width π/6: eight sectors admit a maximal inscribed radius Rk = L/2, while the
remaining four sectors admit Rk = L/

√
3. For the upper bound, the square is enclosed by an equal-area circle of radius

R = L/
√
π.

Proof. Consider a point inside a circle with radius R, and divide the circle into 12 sectors (6 pairs),

each covering π
6 . We aim to show that the sum of the squares of the distances from the node to the

boundaries of these sectors is 12R2.

First, consider the distances r1k and r2k in a pair of sectors. as shown in Figure 6. For r1kandr2k,

we have:

(r1k + a cos(φk + θ))2 + a sin(φ+ θ) = R2 , and

(r2k − a cos(φ+ θ))2 + a sin(φ+ θ) = R2

By summing these equations, we obtain,

r21k + r22k + 2a2 + 2(r1k − r2k) cos(φk + θ) = 2R2 .

Due to symmetry, we have:

r2k − a cos(φ+ θ) = r1k + a cos(φ+ θ) ,

which implies

r2k − r1k = 2a cos(φ+ θ) .
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Substituting this back into our sum, we get

r21k + r22k = 2R2 + 2a2 cos(2(φk + θ)) .

Since we have 6 pairs of such sectors, the total sum is

6∑
k=1

r21k + r22k =

6∑
k=1

2R2 + 2a2 cos(2(φk + θ)) .

As φk ∈ {0, · · · , (k−1)π
6 , · · · , 5π6 }, the sum of the cosines over a complete cycle averages out to zero,

regardless of the values of a and θ, leaving us with:

6∑
k=1

r21k + r22k = 12R2 .
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