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l’accès au travail et enquêterons sur votre demande.
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Abstract : This work studies constrained blackbox optimization problems that cannot be solved
in reasonable time due to prohibitive computational costs. This challenge is especially prevalent in
industrial applications, where blackbox evaluations are costly. However, constraints can be evaluated
at various fidelities at a lower computational cost. More specifically, this work targets situations in
which the infeasibility of each individual constraint can be detected at lower fidelities, and where a
large discrete number of fidelities are available. Moreover, highly discontinuous problems which may
fail to evaluate are considered, such that direct search methods are preferred to model-based ones. To
this effect, the Interruptible Direct Search (IDS) and the Dynamic Interruptible Direct Search (DIDS)
algorithms are proposed to leverage feasibility assessments from various fidelity levels to avoid high
cost evaluations. The results show highly increased performances from NOMAD when it is paired with
IDS or DIDS.

Keywords: Blackbox optimization; derivative-free optimization; multi-fidelity; constrained optimiza-
tion; direct search methods; static surrogates

Résumé : Ce travail étudie les problèmes d’optimisation de bôıte noire contraints qui ne peuvent
pas être résolus dans un temps raisonnable en raison de coûts de calcul prohibitifs. Ce défi est partic-
ulièrement présent dans les applications industrielles, où les évaluations de bôıte noire sont coûteuses.
Cependant, les contraintes peuvent être évaluées à différents niveaux de fidélité, pour un coût de cal-
cul inférieur. Plus précisément, ce travail cible des situations dans lesquelles l’irréalisabilité de chaque
contrainte peut individuellement être détectée à des niveaux de fidélité plus faibles, et où un grand
nombre discret de niveaux de fidélité est disponible. De plus, des problèmes fortement discontinus
pouvant échouer lors de l’évaluation sont considérés, de sorte que les méthodes de recherche directe
sont préférables aux méthodes basées sur des modèles. À cette fin, les algorithmes Interruptible Direct
Search (IDS) et Dynamic Interruptible Direct Search (DIDS) sont proposés afin d’exploiter les estima-
tions de réalisabilité issues de différents niveaux de fidélité pour éviter des évaluations à coût élevé.
Les résultats montrent une haute augmentation des performances de NOMAD lorsqu’il est couplé avec
IDS ou DIDS.

Mots clés : Optimisation de bôıte noire; optimisation sans dérivées; multifidélité; optimization sous
contraintes; méthodes par recherche directe; substituts statiques
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1 Introduction

This work studies constrained multi-fidelity optimization problems of the form

P(ϕ) min
x ∈ Ω

f(x, ϕ), where Ω = {x ∈ X : cj(x, ϕ) ≤ 0, j ∈ J},

in which X ⊆ Rn is the bound constrained domain of the objective function f : X × [0, 1] → R =

R ∪ {∞} and of the m relaxable quantifiable [25] constraint functions cj : X × [0, 1] → R, for j ∈ J =

{1, 2, . . . ,m}. The set of feasible points is denoted by Ω. The parameter ϕ ∈ [0, 1] is the fidelity level

at which these functions are evaluated. Hence, by convention, the problem that one wishes to solve

is denoted by P(1) and is called the truth. The objective and constraint functions are provided by a

blackbox process. They have no accessible analytical formulation, they might be highly discontinuous,

and their derivatives are unavailable or may be non-existent [10]. This is why a direct search approach

is adopted [17]. Moreover, the blackbox is expensive to evaluate, and may fail to execute. The set R
allows the use of common blackbox optimization tools. Notably, f is assigned an infinite value by an

extreme barrier method at infeasible points, and the vector c(x, ϕ) = (c1(x, ϕ), c2(x, ϕ), . . . , cm(x, ϕ))

may posses one or more infinite values when an evaluation fails.

The specificity of this work is that Problem P(ϕ) is multi-fidelity, meaning that evaluating the

blackbox requires not only specifying a trial point x ∈ X, but also selecting a fidelity value ϕ ∈ [0, 1]

that controls the accuracy and computational cost of the evaluation. Lower fidelities correspond to

lower precision, and generally, lower evaluation cost, and vice-versa. An evaluation using fidelity ϕ < 1

can be interpreted as calling a static surrogate model [10, Ch. 13] that provides point-wise approxi-

mations of f and c. The computational cost required to evaluate a trial point x ∈ X using fidelity

level ϕ ∈ [0, 1] is denoted by λ(x, ϕ), where λ : X × [0, 1] → R+. This cost function is assumed to be

unknown, but is usually increasing with respect to ϕ.

This work considers a finite and discrete subset of L ∈ N fidelities. It is described by the set

of fidelity indices I = {1, 2, . . . , L}, where the sequence {ϕi}i∈I is strictly increasing and ϕL = 1.

Two novel optimization algorithms are introduced: Interruptible Direct Search (IDS) and Dynamic

Interruptible Direct Search (DIDS). They propose a strategy to reduce the computational cost of solving

the optimization problem by identifying and exploiting the minimal fidelities required to determine

that a trial point is deemed infeasible. This approach avoids costly high-fidelity evaluations in a context

where solving the true Problem P(1) directly is impossible, as the computational effort is prohibitive.

While IDS is applicable to any multi-fidelity problem, DIDS targets problems with intermediary outputs.

Definition 1. A multi-fidelity blackbox with domain X is said to return intermediary outputs for I if

during an evaluation of trial point x ∈ X at fidelity 1, all f(x, ϕi) and c(x, ϕi) values for i ∈ I become

sequentially available during an evaluation. The evaluation can be interrupted after reaching ϕ1, ϕ2

up until the maximal fidelity ϕL = 1.

Such a blackbox can easily be built for a stochastic problem where the fidelity controls the number

of Monte-Carlo (MC) draws using Sample Average Approximation (SAA) [15]. When one queries a

stochastic blackbox function f(x) at a point x ∈ X for a MC draw, a noisy value fξ(x) is obtained,

where ξ is a random variable. A set of L increasing amounts of MC draws {ηi}i∈I that correspond

to L fidelities is determined, where ηL is considered as the truth and ϕi =
ηi

ηL
∈ [0, 1] for each i ∈ I.

When using SAA, a predefined set of noise observations {ξω}ω∈{1,2,...,ηL} randomly sampled from the

distribution of ξ is considered. This allows the definition of a deterministic multi-fidelity value for

each x ∈ X and each i ∈ I.

f(x, ϕi) =


1
η1

η1∑
ω=1

fξω (x) if i = 1,

1
ηi

(
ηi−1f(x, ϕi−1) +

ηi∑
ω=ηi−ηi−1

fξω (x)

)
otherwise.

(1)
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The same process applies to cj(x, ϕ) for each j ∈ J . A non-deterministic framework is presented in [2],

where the observations ω are not predefined. When this new multi-fidelity blackbox is called at a

trial point x ∈ X, the first η1 draws are performed and f(x, ϕ1) and c(x, ϕ1) are made available. If

the evaluation is not interrupted, only the η2 − η1 next draws are performed, and the outputs for ϕ2

are computed using f(x, ϕ1), c(x, ϕ1) and these new draws. Then, to continue the evaluation, the

next η3 − η2 draws are performed, and so on until ϕL is reached. This behaviour corresponds to

Definition 1.

Figure 1 illustrates a classification of some known problems with respect to Definition 1 and the

applicability of SAA, as well as the classes for which the IDS and DIDS algorithms are applicable.

PRIAD is an electrical equipment maintenance optimization problem, and solar is a concentrated solar

power plant design optimization problem.

• Multi-fidelity problems. In finite element analysis, fidelity usually controls the coarseness of

the mesh [20]. The solar2 problem [6] is deterministic when its seed and number of MC draws

are predetermined. Then, the fidelity controls the convergence criteria of numerical methods.

• With intermediary outputs. A neural network hyper-parameter optimization problem can

be formulated such that the accuracy is returned after different number of epochs (different

fidelities) during training [24]. Sequential blackboxes are problems where each output is given by

a distinct blackbox which corresponds to a fidelity level, and they are each called sequentially [5].

• Stochastic problems. PRIAD’s blackbox problem [16], solar2 [6] and the cookie recipe opti-

mization problem [31] are stochastic multi-fidelity problems where SAA may be applied. Ad-

ditionally, this last problem is a laboratory experiment where intermediary outputs are easily

accessible during a blackbox evaluation.

Multi-fidelity problems
(x, ϕ) → f(x, ϕ), c(x, ϕ)

With intermediary outputs
(x, 1) → f(x, ϕ1), c(x, ϕ1),

f(x, ϕ2), c(x, ϕ2),

. . . , f(x, 1), c(x, 1)
Stochastic problems with SAA
f(x, ϕi) = 1

ηi

∑ηi
ω=ηi−ηi−1

fξω (x)

c(x, ϕi) = 1
ηi

∑ηi
ω=ηi−ηi−1

cξω (x)

IDS

DIDS

• Finite element analysis [20]
• Deterministic solar2 [6]

• Neural network hyper-
parameter tuning [24]

• Sequential blackboxes [5]• solar2 [6]
• PRIAD [16]
• Cookies [31]

Figure 1: Classification of a few multi-fidelity problems with domains of application of IDS and DIDS.

1.1 Motivation

The primary motivation for this work is an asset management blackbox optimization problem encoun-

tered at Hydro-Québec as part of the PRIAD project [14, 16, 18, 23]. Its objective is to develop a

periodic maintenance strategy optimization framework that relies on blackbox optimization methods.

As the project is under development, the blackbox simulator involved is not yet available. Preliminary

tests suggest that a single high fidelity evaluation of this simulator could take up to 145 days [23].

For an optimization of 2,000 evaluations, parallel computing can reduce the optimization time to one

week if 45,000 CPUs are used [23]. To this effect, this work presents a new cost reduction method
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based on the idea that the feasibility of some constraints may be estimated with low fidelities. When

it is estimated that a point is infeasible from low fidelity information, high fidelity information is not

computed to avoid high evaluation costs.

The second motivation of this work is to improve on the Inter-DS algorithm presented in [3]. Inter-DS
served as a first step towards an algorithmic approach that exploits information from a broad range

of available fidelities in the context of direct search methods for constrained blackbox optimization.

The IDS algorithm of the present work is a strict upgrade from Inter-DS in a theoretical analysis sense.

Many assumptions necessary to [3] are lifted for IDS, and in addition, some pathological cases are

avoided without negatively impacting the algorithmic performance. In Figure 1, Inter-DS would lie in

the same class as IDS. An important observation from [3] is that the sample point selection, required

to solve an assignment subproblem, is crucial to the method. A second algorithm, DIDS, is proposed to

periodically solve the subproblem as the optimization process proceeds. This new method is expected

to perform better, but it requires the blackbox problem to have intermediary outputs, as described in

Definition 1.

1.2 Contribution

Scientific literature on the subject of costly multi-fidelity blackbox problems predominantly studies the

unconstrained case, or considers constraints along with a penalty in the objective function. Moreover,

multi-fidelity frameworks sometimes allow for more than two fidelity levels, but a single high fidelity

and a single low fidelity are almost always considered in benchmarks. Lastly, to the knowledge of the

authors, all current multi-fidelity approaches use a low fidelity source to approximate gradients. This

is usually achieved by fitting a model on the low fidelity data [26]. Conversely, this research approaches

multi-fidelity problems under radically different lens:

• A finite and discrete set of fidelities is considered. The benchmarks in Section 5 use up to 11

fidelity levels.

• Direct-search methods are preferred to model-based approaches due to noisy, highly discontinuous

and unpredictable blackbox problems which may fail to evaluate.

• Constraints are handled directly rather than being penalized in the objective function. As a

matter of fact, the handling of constraints is the main focus of this work, and multi-fidelity

information of the objective function is not used to improve the optimization process.

Future work will integrate multi-fidelity information of the objective function into the presented

methods.

1.3 Organization

The document is structured as follows. Section 2 contains a short literature review on interruptible

methods in blackbox optimization and on the use of multi-fidelity in the constrained case. Section 3

presents each of the new algorithmic components. They are assembled in Section 4 to create the two

distinct optimization algorithms, IDS and DIDS. Finally, Section 5 compares IDS and DIDS to other

methods on problems from the solar benchmarking collection [6]. On average, DIDS outperforms IDS
which in turn outperforms Inter-DS. Concluding remarks follow in the final section.

2 Literature review

This work uses the KARQ (Known/hidden, A priori/simulated, Relaxable/unrelaxable, Quantifi-

able/nonquantifiable) taxonomy of constraints [25]. Notably, a constraint is said to be a priori if

it has an explicit analytical formulation. When evaluating a point, a priori constraints are checked

first at a negligible cost, and the blackbox process is only launched if they are satisfied. When counting
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evaluations during an optimization, points where the blackbox process is not launched are not consid-

ered. This work also considers direct search methods for blackbox optimization, which are categorized

into directional, mesh-based and line-search algorithms [17]. For these methods, the quantitative con-

straints cj(x) ≤ 0, j ∈ J are often handled through the constraint violation function h : Rm → R
introduced in [8]:

h(x) :=


m∑
j=1

(max{cj(x), 0})2 if x ∈ X

∞ otherwise.

The extreme barrier (EB) [10] algorithm is a two-phase method that first minimizes h(x) in X for

as long as the incumbent solution is infeasible. When it reaches feasibility, the second phase minimizes

the extended-value function

fΩ(x) :=

{
f(x) if x ∈ Ω

∞ otherwise

on X from the feasible starting point. This approach is employed to reject infeasible points. The

progressive barrier [8] is a more advanced constraint handling method. It consists of maintaining two

incumbent solutions, a feasible and an infeasible one. The infeasible solution is progressively pushed

towards the feasible domain by decreasing a threshold on h(x), above which trial point x ∈ X is

rejected. The infeasible incumbent often has a better objective function value, which leads to the

discovery of new feasible incumbent solutions.

The two phase interruptible EB [5] is a barrier method that applies to sequential blackboxes prob-

lems described above Figure 1. During an evaluation of trial point x ∈ X, the constraint violation

function h(x) is updated after each constraint value is computed. When this value is greater than h(xk)

where xk is the incumbent solution, the evaluation is interrupted. In the case where the ordering of

the blackboxes can be chosen, the hierarchical satisfiability EB [5] suggests a sequence of optimization

problems to solve with a similar interruption mechanism. These methods are built on the principle

that costly evaluations should be interrupted when it is recognized through intermediate processes that

a solution will not benefit the search strategy [30]. This principle is relevant to multi-fidelity blackbox

problems, since fidelity levels correspond to such intermediate processes. The Inter-DS algorithm [3]

is designed to leverage multi-fidelity information to quickly identify infeasible points and interrupt

their evaluation. An important contribution introduced a trust region algorithm that incorporates

multi-fidelity constraints and objective function into a sufficient decrease framework [27]. An in-depth

review of the relevant blackbox optimization and multi-fidelity literature is presented in [3].

In the recent literature, a trust region method for stochastic problems where each level of fidelity

corresponds to a different stochastic simulation subject to different numbers of MC draws is presented

in [21]. Constrained stochastic problems are also tackled under a multi-fidelity framework by the Scout-

Nd algorithm [1]. In the field of Bayesian optimization, the expected constrained improvement [19]

was introduced as an extension to the expected improvement for constrained problems. It consists of

multiplying the expected improvement with a probability of feasibility, and it was recently used in the

context of multi-fidelity constrained Bayesian optimization [22, 29, 32]. Building on this work, new

acquisition functions which are easier to implement by not solely relying on the expected constraint

improvement were proposed [33].

3 Algorithmic components

The methods presented herein exploit multi-fidelity information from a blackbox problem with the

primary goal of reducing evaluation costs during the optimization process. They are designed to

work in conjunction with an existing direct search solver that does not natively support multi-fidelity

evaluations. In order to efficiently leverage information across fidelity levels, it is essential that data

from previous evaluations at various fidelities is accessible. Section 4 proposes the IDS and DIDS
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algorithms, each applicable under different assumptions regarding the nature of this accessibility, and

to different problems as classified in Figure 1. These algorithms share several components, which are

described individually in the present section, before introducing the complete frameworks.

Section 3.1 introduces the fidelity controller algorithm, which performs the feasibility estimations.

These estimations are guided by a key parameter of the fidelity controller: the assignment vector.

Then, Section 3.2 describes the assignment vector computation process by solving an optimization

subproblem. Section 3.3 presents theoretical guarantees of the subproblem.

3.1 The fidelity controller algorithm

The fidelity controller algorithm is a wrapper around the blackbox. Its purpose is to reduce evaluations

costs by estimating the feasibility of a candidate using different fidelities with indices stored in I, for the

case when the solver does not natively handle fidelity. Hence, rather than solving Problem P(1) directly,

the wrapper problem P is provided to the solver. Problem P is an accelerated version of Problem P(1),

with the intention of conserving feasibility. Through this document, for any optimization problem P,

evaluating P is a shorthand used for evaluating the blackbox from which Problem P is derived.

P min
x ∈ X

f̄(x) s.t. c̄j(x) ≤ 0, j ∈ J.

The functions f̄(x) and c̄(x) correspond to values of f(x, ϕ) and c(x, ϕ), where ϕ ∈ [0, 1] is determined

by the fidelity controller.

Consider an assignment of the constraint cj ≤ 0, j ∈ J , to the fidelity level ϕi, i ∈ I, with vector

a ∈ Im, where aj = i if constraint cj ≤ 0 is assigned to ϕi. An assignment of a constraint to a fidelity

indicates the lowest fidelity for which it is estimated that the constraint’s violation is accurately

asserted. Section 3.2 shows how this assignment vector a is computed. As I can be large, a subset of

fidelities are selected, which depends on this vector a. This subset is denoted by Φ(a) ⊆ {ϕi}i∈I , the

set of fidelities of interest for the fidelity controller. Two distinct descriptions of this subset and of I

are given in Section 4.1 for IDS and Section 4.2 for DIDS.

This assignment is at the core of the fidelity controller algorithm. Whenever P is evaluated at a

point x ∈ X during the optimization, P(ϕ) is sequentially evaluated at increasing fidelity levels ϕ ∈
Φ(a) by the fidelity controller algorithm. After an evaluation at fidelity ϕ, only the constraints assigned

to ϕ or a lower fidelity are checked. If any of those constraints is violated, the sequence of evaluations

is interrupted, and the evaluated point is deemed infeasible. The goal is to identify infeasible points

as cheaply as possible, and to stop investing computational costs into their evaluation. When all

evaluations of P(ϕ) are completed without interruption, the evaluated point is deemed feasible.

When an interruption occurs, the most recent outputs are returned to the solver. If the subset of

fidelities Φ(a) does not contain 1, then it is possible that a point deemed feasible becomes the new

incumbent solution, while being infeasible in reality. The assignment computation method proposed

in Section 3.2 is such that this event is rare, but it may occur. Since finishing the optimization with

an infeasible point as the incumbent is highly undesirable, an additional evaluation at ϕL = 1 is

performed whenever this situation could arise. The complete process is described in Algorithm 3.1

and schematized in Figure 2.

This interruption mechanism is such that the solver may unknowingly receive blackbox output

values from various fidelities. Nevertheless, outputs for points deemed feasible are only returned to the

solver at the highest fidelity level in Φ(a). It may help solver performance to use the extreme barrier

function fΩ, to reject points deemed infeasible, which are more susceptible to have outputs returned

at low fidelity. Note that the use of the extreme barrier with the fidelity controller algorithm allows

for the use of some direct search unconstrained optimization solvers.
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Algorithm 3.1: Fidelity controller algorithm (Blackbox wrapper problem P).
Inputs: trial point x ∈ X; assignment vector a ∈ Im; incumbent value f∗ ∈ R
Outputs: f̄(x) ∈ R; c̄(x) ∈ Rm

For each fidelity level ϕ ∈ Φ(a) in increasing order∣∣∣∣∣∣∣
Evaluate f(x, ϕ) and c(x, ϕ)

If there exists a j ∈ J such that ϕ ≥ ϕaj and cj(x, ϕ) > 0∣∣∣ Return f̄(x) = f(x, ϕ), c̄(x) = c(x, ϕ)

If ϕ < 1 and f(x, ϕ) < f∗∣∣∣ Evaluate f(x, 1) and c(x, 1)

Return f̄(x) = f(x, 1), c̄(x) = c(x, 1)

The fidelity controller algorithm is presented with the intention of reducing computational costs

by causing interruptions on infeasible points while avoiding costly evaluations at ϕL = 1. Constraints

should be assigned to minimal fidelities, while being assigned to fidelities sufficiently high to perform

feasibility estimations. Moreover, it may occur that estimations are incorrect, which can have an

impact on the solver’s performance. For these reasons, choosing a good assignment is not a trivial

task.

Blackbox problem P(ϕ)

Solver

For each
ϕ ∈ Φ(a) in
increasing

order

Set ϕ
to 1

a, f∗ f̄(x) = f(x, ϕ)
c̄(x) = c(x, ϕ)

Blackbox wrapper problem P

Fidelity controller algorithm

Is the
for loop

completed
? Is

cj(x, ϕ) > 0
for a j ∈ J where

ϕ ≥ ϕaj

?

Are
f(x, ϕ) < f∗

and ϕ < 1
?

x is deemed
feasible

interruption,
x is deemed
infeasible

yes

no

yes

noyes

no

x

x, ϕ

f̄(x), c̄(x)

f(x, ϕ), c(x, ϕ)

Figure 2: Flow chart diagram of the fidelity controller algorithm. The for loop is completed when ϕ is greater or equal to
the greatest element of Φ(a), where a ∈ Im is the assignment vector.

3.2 The assignment computation

Before using the fidelity controller algorithm from Section 3.1, the assignment vector a ∈ Im must be

computed. This section proposes a method to compute this assignment that minimizes the computa-
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tional cost of an evaluation of P, subject to constraints on the probability that a feasibility estimation

is erroneous. Consider a finite set of sample points H. The indicator function

1(cj(x, ϕ) > 0) :=

{
1 if cj(x, ϕ) > 0

0 otherwise
∀j ∈ J

is used to define representativity, a useful concept to determine the lowest fidelity at which the feasibility

of a constraint can be correctly identified.

Definition 2. Fidelity ϕ ∈ [0, 1] is said to be representative for a constraint cj(x, ϕ) ≤ 0, j ∈ J at

point x ∈ X if

1(cj(x, ϕi) > 0) = 1(cj(x, 1) > 0) ∀ i ∈ I where ϕi ≥ ϕ.

For example, if the constraint values of c1 for L = 4 fidelities are (c1(x, ϕi))i∈I = (−0.2, 10, 0,−3),

then ϕ3 and ϕ4 are the only two representative fidelities for constraint c1 ≤ 0 at point x ∈ X.

To compute the assignment vector a, statistical estimations are performed using the sample set

H ⊂ X. Define Xap as the subset of points from X where all a priori constraints are satisfied,

and Hap = H ∩ Xap. When H ∩ Ω = ∅, all constraints are assigned to ϕL = 1, i.e., aj = L for

each j ∈ J . In that case, P is identical to P(1). If no information about feasible points is available,

then multi-fidelity information as a whole should not be exploited. This allows DIDS and IDS to avoid

cases that are pathological for Inter-DS. Otherwise, given Algorithm 3.1’s interruption mechanism, the

vector a ∈ Im that minimizes the expected computational cost of an evaluation of P is found by solving

the assignment Subproblem Q.

Q min
a ∈ Im

fQ(a) =
∑

i:ϕi∈Φ(a)

λi

∏
j:aj<i

pajj

 (2a)

s.t. aj ≥ i(j) ∀ j ∈ J (2b)

where, each pajj , j ∈ J is assumed independent, and for each i ∈ I and j ∈ J ,

λi : =
1

|Hap|
∑

x∈Hap

λ(x, ϕi) ≈ Ex∈Xap [λ(x, ϕi)], (3)

pij : =
1

|Hap|
|{x ∈ Hap : cj(x, ϕi) ≤ 0}| ≈ P[cj(x, ϕi) ≤ 0, x ∈ Xap], (4)

rij : =
1

|H ∩ Ω|
|{x ∈ H ∩ Ω : ϕi is representative for cj ≤ 0}| (5)

≈ P[fidelity ϕi is representative for constraint cj ≤ 0, x ∈ Ω],

i(j) := min{i ∈ I : rij = 1}. (6)

In Q, λi is an estimation of the expected computational cost of evaluating P(ϕi), pij is an estimation

of the probability that cj ≤ 0 is satisfied at ϕi, rij is an estimation of the probability that ϕi is

representative for cj ≤ 0, and i : J → I is a function that returns the lowest fidelity index i ∈ I for

which ϕi is representative for cj ≤ 0 for all feasible points in H. In Equation (2a), fQ(a) expresses an

expected evaluation cost of P, which depends on the evaluated fidelities. As an illustrative example,

suppose L = m = 4, a = [1, 2, 2, 4] and Φ(a) = [ϕ1, ϕ2, ϕ4]. Then, fQ([1, 2, 2, 4]) = λ1 + λ2p11 +

λ4p11p22p23. To evaluate x ∈ H, the evaluation at ϕ1 of cost λ1 always occurs, then the evaluation

at ϕ2 of cost λ2 occurs if there was no interruption when evaluation at ϕ1, i.e., if c1(x, ϕ1) ≤ 0, which

happens with probability p11, and so on for ϕ4.

Minimal expected evaluation costs are obtained by assigning constraints to low fidelities. This is

balanced with Equation (2b) to ensure constraints are assigned to fidelities with maximal estimated
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representativity, therefore avoiding erroneous feasibility estimations. Let us then study the effects of

such errors on the optimization process.

• An infeasible point x ∈ X\Ω is deemed feasible. This only occurs if 1 is not an element

of Φ(a), all constraints are satisfied at all fidelities in Φ(a), and f̄(x) ≥ f∗. Hence, an infeasible

point can not become an incumbent solution. The only possible harm an infeasible point deemed

feasible can cause occurs when a solver mistakenly uses it to compute search directions.

• A feasible point x ∈ Ω is deemed infeasible. This can occur after any evaluation of P(ϕ)

where ϕ < 1. The main issue this can cause is when x would, if correctly identified as feasible,

become the new incumbent solution. Generally, misidentifying feasible points can cause the

solver to omit them to compute search directions. This is particularly harmful if an omitted

point has a good objective function value, missing an opportunity to point the solver towards a

minimum.

The drawbacks are more important and more frequent in the second case compared to the first.

To mitigate this, Equation (2b) imposes that a blackbox constraint can only be assigned to a fidelity

that is representative for all feasible points in H.

3.3 Theoretical analysis of the assignment problem

Subproblem Q is constructed to compute an assignment vector from a sample set H ⊂ X that ensures

some results when P evaluates x ∈ H. These results are shown here.

Lemma 1. When H ∩ Ω ̸= ∅, for each j ∈ J , {rij}i∈I is monotone increasing with respect to i.

Proof. For each i1, i2 ∈ I where i1 < i2, and for each j ∈ J ,

Rij := {x ∈ H ∩ Ω : 1(cj(x, ϕℓ) > 0) = 1(cj(x, 1) > 0)∀ ℓ ∈ I, ϕℓ ≥ ϕi} ∀ i ∈ I

=⇒ ri1j =
|Ri1j |
|H ∩ Ω|

and ri2j =
|Ri2j |
|H ∩ Ω|

.

Because {ϕi}i∈I is strictly increasing with respect to i, {ϕℓ : ℓ ∈ I, ϕℓ ≥ ϕi2} ⊂ {ϕℓ : ℓ ∈ I, ϕi ≥
ϕi1}, and therefore Ri1j ⊆ Ri2j . As a result, |Ri1j | ≤ |Ri2j | and ri1j ≤ ri2j .

Theorem 2. For a given H ⊂ X, when the fidelity controller performs an evaluation of x ∈ H ∩ Ω

with an assignment vector given by Subproblem Q, feasibility is conserved between P and P(1).

Proof. If H ∩ Ω = ∅, then P is identical to P(1). Otherwise, Equation (2b) ensures that each

constraint cj ≤ 0 is assigned to a fidelity ϕi where rij = 1, and Lemma 1 indicates that rℓj = 1 for

each ℓ ≥ i, ℓ ∈ I. A representativity of 1 means that the violation of a constraint is correctly identified

at points in H ∩ Ω. This implies that if a constraint is satisfied at the fidelity it is assigned to for a

point x ∈ Hap, then it is also satisfied at any higher fidelity, including the truth.

Moreover, if x ∈ H ∩ Ω and 1 ∈ Φ(a), c̄(x) = c(x, 1), and f̄(x) = f(x, 1).

Assumption 1. In Algorithm 3.1, the evaluation of P(1) that is conditional to 1 /∈ Φ(a) and f̄ < f∗

has no impact on the expected cost of evaluating P.

This evaluation ensures that only feasible points can become incumbent solutions in the solver.

The assumption is false, but since the moments where a solution could become a new incumbent are

unpredictable, it is necessary for the following theorem.

Theorem 3. Under Assumption 1, for a given H ⊂ X where H ∩ Ω ̸= ∅ and a given assignment vec-

tor a ∈ Im, the objective function fQ(a) of Subproblem Q expresses the expected cost of evaluating P
at a point x ∈ Hap.
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Proof. For any H ⊂ X where H ∩ Ω ̸= ∅ and any a ∈ Im,

Ex∈Hap

[
cost of evaluation of P at x

]
=

L∑
i=1

λiP [evaluation of P(ϕi) at x occurs for an x ∈ Hap]

=
∑

i:ϕi∈Φ(a)

λi

∏
ℓ:ϕℓ∈Φ(a), ℓ<i

P[no interruption occurs at (x, ϕℓ) for an x ∈ Hap].

This last result holds because the probability that an evaluation of P(ϕ) occurs is 0 if ϕ /∈ Φ(a), and

otherwise, it is the probability that no interruption happens beforehand.

According to Theorem 2, considering the fidelity at which a constraint is assigned is sufficient to

verify if this constraint would cause an interruption at higher fidelities. Therefore, assuming that

all pajj for each j ∈ J are independent and that the product of the elements of an empty set has

value 1,

P[no interruption occurs at (x, ϕℓ) for an x ∈ Hap] =
∏

j:aj=ℓ

pℓj ∀ℓ ∈ I

=⇒ Ex∈Hap

[
cost of evaluation of P at x

]
=

∑
i:ϕi∈Φ(a)

λi

∏
ℓ:ϕℓ∈Φ(a), ℓ<i

 ∏
j:aj=ℓ

pℓj


=

∑
i:ϕi∈Φ(a)

λi

∏
j:aj<i

pajj = fQ(a).

A priori constraints are ignored in Theorem 3 because their violation causes the cost of an evaluation

to be virtually null. For a new candidate x ∈ X\H that shares a similar behaviour with the points

inH, fQ(a) is an approximation of the expected cost of P, and this problem approximates the feasibility

of x. As noted in [3], richer sample sets H yield significantly better results.

4 Two interruptible direct search algorithms

For the approximations based on H to be effective, information about many evaluated points at many

fidelity levels must be available. In this section, two optimization algorithms are proposed, each

applicable under different assumptions regarding this availability. The first is the Interruptible Direct
Search (IDS) algorithm, which is presented in Section 4.1. The second is its dynamic counter-part,

the Dynamic Interruptible Direct Search (DIDS) algorithm, which is presented in Section 4.2. DIDS
relies on a stronger assumption, in order to exploit more fidelities and reach greater computational

cost reductions than IDS.

4.1 Interruptible Direct Search (IDS)

The IDS algorithm is applicable under Assumption 2a:

Assumption 2a. A set of sample points H ⊂ X, each evaluated at multiple fidelities with indices

forming the set I, is provided with Problem P(ϕ). An evaluation of P(ϕ) only returns information for

this fidelity level ϕ.

A setH may be the result of Latin Hypercube Sampling (LHS) or previous experiments. Using LHS

ensures an unbiased sample set, but it may represent a high computational cost. IDS is applicable to

any problem illustrated in Figure 1 where Assumption 2a is verified. The best solution fromH is chosen

as the initial optimization point. Whenever the fidelity controller calls P(ϕi) at trial point x ∈ X for

some i ∈ I during the optimization, it only receives the values f(x, ϕi) and c(x, ϕi) at cost λi. Fidelities
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with no assigned constraints are not used by IDS to avoid their cost. Thus, for a given assignment a,

the set ΦIDS(a) is given by

ΦIDS(a) ={ϕi : i ∈ a}. (7)

The definition of ΦIDS(a) implies that for a single evaluation of P, the fidelity controller could

perform calls to P(ϕ) at several fidelities, with total cost exceeding the cost of evaluating P(1). Con-

versely, using various fidelities may be relevant to interrupt evaluations on infeasible points. The

optimal solution of Subproblem Q is the assignment vector a that finds the best compromise.

Although a differentiable formulation of Subproblem Q exists [3], it remains a mixed-integer prob-

lem with a polynomial objective function. To help solving, Algorithm 4.1 is proposed to add constraints

toQ that cut down the size of the set of feasible solutions, without removing an optimal solution. Then,

an exhaustive search on this feasible set is sufficient in practice to solve the optimal assignment prob-

lem. This cutting algorithm introduces the set Jν ⊆ J , given by (8). It is the set of constraint indices

that are not significantly affected by multi-fidelity. These constraints may have values that change

with fidelity levels, but never such that their feasibility is affected.

Jν = {j ∈ J : ∀i ∈ I, pij = pLj and rij = 1}. (8)

Algorithm 4.1: Cutting algorithm.

Inputs: Subproblem Q; subset of constraint indices Jν

Outputs: Updated Subproblem Q
1. Blackbox constraints related cuts

If J = Jν , Add constraints “aj = 1, ∀ j ∈ J” to Subproblem Q
Else if pLj < 1 for some j ∈ Jν∣∣∣ Add constraints “aȷ̂ ≤ aj , ∀ (ȷ̂, j) ∈ Jν × J” to Subproblem Q
Else if Jν is not empty∣∣∣ Remove some decision variables of Subproblem Q with a← {aj ∈ a : j /∈ Jν}

2. Fidelity related cuts

For each fidelity index i ∈ I∣∣∣∣∣∣∣∣∣∣∣

If there exists a fidelity index ℓ ∈ I, ℓ > i, such that λℓ ≤ λi∣∣∣ Add constraints “aj ̸= i, ∀ j ∈ J” to Subproblem Q
If i /∈

⋃
j∈J

i(j)∣∣∣ Add constraints “aj ̸= i, ∀ j ∈ J” to Subproblem Q

The first category of cuts from Algorithm 4.1 follows from the observation that the feasibility

of constraints of indices in Jν can be asserted at any fidelity ϕi, i ∈ I. If all constraints are of

this nature, they are simply assigned to the lowest fidelity, ϕ1. Else, if pLj < 1 for some j ∈ Jν ,

constraints of indices in Jν are certainly assigned to the lowest fidelity in ΦIDS(a). Finally, if all

constraints cj ≤ 0, j ∈ Jν are such that pLj = 1, they will never cause an interruption according to the

parameters of Subproblem Q. As a result, in an optimal solution, these constraints can be assigned to

any fidelity where a constraint cj ≤ 0, j /∈ Jν is also assigned, therefore not causing a new call to P(ϕ).

Hence, Subproblem Q is solved without assigning them, and they are assigned to the lowest fidelity

where another constraint is assigned afterwards, as shown later in Algorithm 4.2.

The second category of cuts are related to fidelity levels. The first cuts have the effect of discarding

fidelities that are not cheaper than higher fidelity levels. This causes the remaining λi values to be

strictly increasing with respect to i ∈ I. Then, the last cuts follow from Theorem 5.

In the optimizations results presented in Section 5, with the cutting algorithm, Subproblem Q is

solved in at most one second.
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Lemma 4. For any sample H ⊂ X and for each constraint index j ∈ J , pij = pLj for each fidelity

index i ∈ I where i ≥ i(j).

Proof. For any sample H ⊂ X and for each constraint index j ∈ J , Equation (6) and Lemma 1 im-

ply rij = 1 for each fidelity index i ∈ I where i ≥ i(j). For those indices, for each x ∈ H, 1(cj(x, ϕi) >

0) = 1(cj(x, 1) > 0), meaning that the proportion of points where constraint cj(x, ϕi) ≤ 0 is violated

is the same across all fidelity indices i ∈ I where i ≥ i(j).

Theorem 5. In the particular case of Subproblem Q where ΦIDS(a) is given by (7), there exists an

optimal solution such that all blackbox constraints are assigned to fidelity of indices in
⋃
j∈J

i(j).

Proof. Two cases are considered. First, if there exists a constraint index j ∈ J such that pi(j)j = 0,

then constraint cj ≤ 0 is always violated for a feasible solution a ∈ Im. Consequently, a is optimal if

this constraint is assigned to ϕi(j), the lowest fidelity satisfying Equation (2b).

In the second case, let a be a feasible solution where there exists a fidelity index ı̂ ∈ I\
⋃

j∈J i(j)

such that at least one constraint is assigned to this fidelity. If a does not exist, then each feasible

solution is such that all constraints are assigned to fidelity indices in
⋃

j∈J i(j). Otherwise, let â be

a solution identical to a, except that all constraints assigned to ϕı̂ are assigned to ϕı̂−1 instead, as

defined by

âj =

{
ı̂− 1 if aj = ı̂

aj otherwise
∀ j ∈ J. (9)

Solution â is feasible because for each j ∈ J , if aj = ı̂ and a is feasible, then ı̂−1 ≥ i(j). Define Pi(a) =∏
j:aj<i pajj for each i ∈ I. Lemma 4 implies that Pi(â) = Pi(a) for each i ∈ I\{̂i}. Additionally,

definition (9) implies that ΦIDS(â)\{ı̂−1, ı̂} = ΦIDS(a)\{ı̂−1, ı̂}, meaning that except for indices ı̂−1

and ı̂, the terms of the sum in the objective function (2a) are identical for a and â. Moreover, if no

constraint is assigned to ı̂−1 in a, Pı̂−1(â) = Pı̂(a). Otherwise, Pı̂−1(â) = Pı̂−1(a) and the summation

terms for i = ı̂− 1 are also identical. As a result, with the indicator function 1(̂ı− 1 /∈ a) returning 1

if ı̂− 1 /∈ a and 0 otherwise,

fQ(a)− fQ(â) = λı̂Pı̂(a)− λı̂−1Pı̂−1(â)1(̂ı− 1 /∈ a) = (λı̂ − λı̂−11(̂ı− 1 /∈ a))Pı̂(a)

> 0 =⇒ a is not optimal.

This inequality holds because Pı̂(a) = 0 only happens in the first case, and λi is strictly increasing

with i ∈ I thanks to Algorithm 4.1. The contrapositive of this result is that a solution a is optimal

if there exists no fidelity index ı̂ ∈ I\ ∪j∈J i(j) such that at least one constraint is assigned to this

fidelity.

If there is no constraint cj ≤ 0, j ∈ J , such that i(j) = L, then the highest fidelity is not an

element of ΦIDS(a), meaning that evaluations of the truth by the fidelity controller only happen for

potential future incumbent solutions. This allows IDS to save computational costs. However, it may

be preferable to ensure that 1 ∈ ΦIDS(a), such that points deemed feasible are always truly feasible.

Indeed, if 1 ∈ ΦIDS(a), the true values f(x, 1) and c(x, 1) are necessarily returned by P when there

is no interruption for point x ∈ X. To this effect, IDS posses the include truth boolean parameter.

When it is true, the objective function (2a) of the assignment Subproblem Q is replaced with

λL +
∑

i:ϕi∈ΦIDS(a),i̸=L

λi

∏
j:aj<i

pajj (10)

to account for the mandatory evaluation using ϕL = 1. The IDS algorithm is shown in Algorithm 4.2.
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Algorithm 4.2: Interruptible Direct Search (IDS).

Inputs:∣∣∣∣∣∣∣∣∣
P(ϕ) : optimization problem defined by f, c and X ⊆ Rn;

H ⊂ X : finite sample set;

solver : direct search blackbox optimization solver;

include truth : boolean parameter that imposes 1 ∈ ΦIDS(a) when true. False by default.

Output: best solution found in X

1. Optimal assignment vector computation∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Initialize f∗ ←∞, the incumbent value

If H ∩ Ω is empty, aj = L, ∀ j ∈ J (equivalent to solving P(1) without interruptions)

Else∣∣∣∣∣∣∣∣∣∣∣

From H, (5), (4) and (3), evaluate the parameters of Subproblem Q
If include truth is true, use (10) as objective function for Subproblem Q
Compute Jν using (8), define Subproblem Q and apply Algorithm 4.1

Find a by performing an exhaustive search on the feasible set of Subproblem Q
If constraints of index in Jν are unassigned, aj ← minj∈J\Jν

{aj} for each j ∈ Jν

2. Direct search optimization∣∣∣∣∣∣∣∣∣
Launch solver on P with the blackbox provided by Algorithm 3.1 (parametrized by a and f∗)

- Use the best point of H as the initial point

- Update f∗ after each new incumbent

- If include truth is true, use ΦIDS(a) ∪ {1} instead of ΦIDS(a)

Return the solver output

As the incumbent value f∗ varies during the optimization, Problem P evaluated at the same point

at different moments may return different values. As a result, f̄(x) and c̄(x) require f∗ as a third

parameter to be functions, but they are considered as such to simplify the expressions.

4.2 Dynamic Interruptible Direct Search (DIDS)

The DIDS algorithm is applicable under an assumption regarding the accessibility of multi-fidelity

information that differs from IDS. The initial sample H is not necessary. Assumption 2a is replaced

with Assumption 2b. It is also later shown that Assumption 1 is no longer necessary.

Assumption 2b. Problem P(ϕ) has intermediary outputs for a set of multiple fidelity indices I, as

given by Definition 1.

The fidelity controller algorithm is given a more specific interpretation for an evaluation using ϕi, i ∈
I\{1}. In the case of available intermediary outputs, an evaluation of P(ϕi) at trial point x ∈ X means

that the blackbox continues its evaluation of x from ϕi−1 until fidelity ϕi is reached. Figure 3 illustrates

this case where Definition 1 is met with SAA. The cost λi represents the additional cost to reach ϕi

from ϕi−1.

Contrary to IDS, evaluating many fidelities cannot be more costly than evaluating P(1). When

evaluating P at point x ∈ X, fidelities are reached sequentially in increasing order, until ϕL = 1 is

reached. Then, c(x, ϕi) and f(x, ϕi) are known for every fidelity ϕi, i ∈ I. Consequently,

ΦDIDS(a) = {ϕi}i∈I =⇒ fQ(a) =

L∑
i=1

λi

∏
j:aj<i

pajj

 . (11)

This implies that a point is only deemed feasible when it is truly feasible. As a result, Algo-

rithm 3.1’s safeguard against an infeasible becoming an incumbent is never run, and Assumption 1 is

unnecessary.

Without Assumption 2a, no initial sample H ⊂ X is required. Rather, evaluated points deemed

feasible during the optimization are stored in a cache V, along with a vector of length m containing
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Solver

For each
i ∈ I in

increasing
order

f̄(x) = f(x, ϕ)
c̄(x) = c(x, ϕ)

Pull η1 samples of fξ(x) and cξ(x)

Pull ηi − ηi−1 samples of fξ(x) and cξ(x)

Average ηi samples
as in Equation (1),
for f and for c

Blackbox wrapper problem P

Fidelity controller algorithm

Blackbox problem P(ϕ)

Is
i = L
?

Is
cj(x, ϕi) > 0

for a j ∈ J where
ϕi ≥ ϕaj

?

x is deemed
feasible

interruption,
x is deemed
infeasible

Is
i = 1
?

a

no

yes

no

yes

yes

no

x

x, ϕi

f̄(x), c̄(x)

f(x, ϕi), c(x, ϕi)

Figure 3: Flow chart diagram showing a particular case of the fidelity controller with the DIDS algorithm and a stochastic
blackbox with SAA.

the lowest representative fidelity for each constraint for i(j) computations. Then, periodically during

the optimization process, points from V are selected to form a sample set H from which a is updated.

Before iteration k of solver, the smallest radius ∆ such that B∆(x
k) ∩ V ∩ Ω contains n + 1 feasible

points is computed. This ensures H is formed with points in close proximity to xk, while its size is

at least the size of an n-dimensional simplex. When this radius does not exist, every constraint is

assigned to ϕL = 1. The new optimal assignment a follows form the following theorem.

Theorem 6. The particular case of Subproblem Q where the objective function is given by (11) has

optimal solution a∗ defined by

a∗j = i(j). (12)

Proof. Two cases are considered. First, if pi(j)j = 1 for each j ∈ J , then no blackbox constraint is ever

violated for any feasible solution a ∈ Im. In that case, every feasible solution, notably a∗, is optimal.

If there exists a constraint index j ∈ J such that pi(j)j = 0, then constraint cj ≤ 0 is always violated.

Consequently, a solution a is optimal if this constraint is assigned to the lowest possible fidelity for a

feasible solution, which is the case for a∗.

In the second case, let a be a feasible solution where there exists a constraint index ȷ̂ ∈ J such

that pi(ȷ̂),ȷ̂ < 1 and aȷ̂ = ı̂ > i(ȷ̂). If such an a does not exist, then a∗ is the only feasible solution,

and it is therefore optimal. Let â be a solution identical to a, except that constraint cȷ̂ ≤ 0 is assigned

to ϕi(ȷ̂) instead of ϕı̂, as defined by

âj =

{
i(ȷ̂) if j = ȷ̂

aj otherwise
∀ j ∈ J.
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Solution â is feasible because a satisfies Equation (2b). Define Pi(a) =
∏

j:aj<i pajj for each i ∈ I.

Definition (12) and Lemma 4 imply that

Pi(â) =

{
Pi(a)pi(ȷ̂),ȷ̂ if i ∈ Î := {i(ȷ̂) + 1, i(ȷ̂) + 2, . . . , ı̂}
Pi(a) otherwise

∀ i ∈ I.

As a result, except for indices in Î, the terms of the sum in the objective function (11) are identical

for a and â.

fQ(a)− fQ(â) =
∑
i∈Î

λiPi(a)− pi(ȷ̂),ȷ̂
∑
i∈Î

λiPi(a) = (1− pi(ȷ̂),ȷ̂)
∑
i∈Î

λiPi(a) > 0

=⇒ a is not optimal.

The inequality holds because pi(j)j > 0 for each j ∈ J , implying that the summation is non zero,

and pi(ȷ̂),ȷ̂ < 1. The contrapositive of this result is that a solution a is optimal if aj = i(j) for

each j ∈ J where pi(ȷ̂),ȷ̂ < 1, which describes a∗.

As the assignment vector a varies during the optimization, Problem P evaluated at the same point

at different moments may return different values. As a result, f̄(x) and c̄(x) require a as a third

parameter to be functions, but they are considered as such to simplify the expressions. The DIDS
algorithm is shown in Algorithm 4.3.

Algorithm 4.3: Dynamic Interruptible Direct Search (DIDS).

Inputs:∣∣∣∣∣∣∣
P(ϕ) : problem containing X ⊆ Rn, f and c;

x0 : optimization starting point (if solver requires it);

solver : direct search blackbox optimization solver

Output: best solution found in X

1. Initialization∣∣∣∣∣∣∣∣∣
Initialize V ← ∅, the cache of evaluated points

Initialize k ← 1, the solver iteration counter

Initialize f∗ ←∞, the incumbent value

Initialize a← a0, the initial assignment vector in which all constraints are assigned to ϕL

2. Direct search optimization∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Launch solver on P with the blackbox provided by Algorithm 3.1 (parametrized by a and f∗)

- Use x0 as the initial point

- After each evaluation of P(ϕ), update V
After iteration k of solver with incumbent solution xk∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f∗ ← f(xk)

Find the minimal radius ∆ such that the ball B∆(xk) ∩ V ∩ Ω has at least n+ 1 points.

If ∆ does not exist, a← a0

Else∣∣∣∣∣∣∣
H ← B∆(xk) ∩ V
From H, compute the representativity probability rij for each (i, j) ∈ I × J with (5)

a← [i(j)]j∈J , with (6), as indicated by (12)

k ← k + 1

Return the solver output

The set H is updated dynamically such that it contains points in close proximity to xk, while H∩Ω

is at least the size of a simplex.
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5 Computational results

In this section, the proposed algorithms are compared on blackbox optimization benchmark problems.

Since the blackbox simulator from the Hydro-Québec project motivating this study is still under

development, benchmarks are conducted on the solar collection of test problems [6]. To the authors’

knowledge, the solar family of benchmarks is the only one containing realistic industrial problems in

which a fidelity parameter affects the constraint values. Moreover, selecting benchmark problems that

reflect real engineering optimization challenges is crucial. This suite provides ten blackbox simulators

of a concentrated solar power plant (CSP). Table 1 shows relevant characteristics for the three problems

selected for this study: solar2, solar3 and solar4. Problem solar7 is the only other problem with multi-

fidelity constraints. However, preliminary tests show that the optimal assignment vector computed

by IDS and DIDS is almost always aj = L for each j ∈ J . This means that fidelities that allow

relevant interruptions are rarely found, and both algorithms almost always simply solve P(1) directly.

Problem solar7 is not studied further.

Table 1: Number of variables and constraints for the three studied solar problems. In parentheses, the number of categorical
variables and multi-fidelity constraints are indicated.

Problem Number of variables Number of constraints

continuous integer (categorical) n a priori simulated (multi-fidelity) m

solar2 12 2 (0) 14 5 7 (4) 12

solar3 17 3 (1) 20 5 8 (5) 13

solar4 22 7 (1) 29 7 9 (6) 16

To conduct extensive benchmarks, the computational cost of using SAA with the selected solar
problems showed to be prohibitive. Instead, the solar problems are used deterministically by setting

the seed value to 0. For DIDS, intermediary outputs are made available by adding code to solar. To this

effect, the fidelity parameter, described in [6], controls the convergence criteria of numerical methods.

In PRIAD, evaluation times may be measured in days [23]. To emulate this context where solver

computing times are negligible, only blackbox evaluation times are considered. Time dependant data

profiles are used [11, 13, 28] for comparisons on numerous problem instances. For an algorithm, a data

profile plots the portion of τ -solved problem instances with respect to time. A problem instance is

said to be τ -solved at time T by algorithm A with initial point x0 if

f(x0)− fT

f(x0)− f∗ ≥ 1− τ,

where fT is the best feasible objective function value found by algorithm A as of time T , f∗ is the best

feasible solution found among all algorithms on the problem instance, and τ ∈ (0, 1) is a tolerance.

The IDS and DIDS algorithms are paired with the NOMAD blackbox optimization solver, ver-

sion 4.4.0 [12]. NOMAD is a freely available implementation of the MADS algorithm [7, 8] that

has shown to be successful on real engineering and industrial problems [4]. It is among the best

suited solvers for constrained, noisy and highly discontinuous problems where direct-search meth-

ods are preferred to model-based approaches [9]. The NOMAD parameters are left to their de-

fault values for all tested algorithms, except that the extreme barrier is used for all constraints

to ensure the rejection of points for which the evaluation is interrupted by the fidelity controller.

The fidelity indices used in this section are I = {1, 2, . . . , 11} with corresponding fidelity parame-

ters {ϕi}i∈I = {10−10, 0.1, 0.2, 0.3, . . . , 1}. A unique feasible initial solution is provided for each solar
problem.

IDS and DIDS are compared to two methods: a base case where NOMAD solves P(1) directly

without the fidelity controller, and the Inter-DS algorithm from [3], also paired with NOMAD. For IDS
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and Inter-DS, the set H is obtained via Latin Hypercube Sampling (LHS) with 1000 points for each

problem, and the LHS bounds are selected close to the starting point, as recommended in [3]. For

DIDS, the LHS set is not considered. Rather, intermediary outputs are available, as per Definition 1.

As the LHS is included in the Inter-DS algorithm and IDS assumes the LHS results already exist, no

LHS computation time is considered for fair comparison.

First, Section 5.1 shows benchmarks on solar3. Second, Section 5.2 presents results for solar4, a
problem where constraint behaviour with respect to fidelity is highly correlated with the blackbox

input. Last, Section 5.3 studies benchmarks on solar2, a problem where the impact of erroneous

feasibility estimations by the fidelity controller defies expectations. All optimizations are performed

using multiple Intel Xeon Gold 6150 CPUs operating at 2.70 GHz.

5.1 solar3 benchmarks

The optimization results of 20 solar3 problem instances, obtained with different NOMAD seeds and

a 16.3 hours budget, are shown in Figure 4 with two different values of τ . A first observation is

that pairing NOMAD with DIDS or IDS with include truth set to true necessarily improves its

performance. At any time, with τ = 0.01, DIDS τ -solves the most problem instances and IDS-truth τ -

solves the second most. With tolerance τ = 0.2, IDS performs the best with 100% of instances τ -solved.

With τ = 0.01, this percentage drops to 30%, which is significantly lower than the 70% of both DIDS
and IDS-truth. Inter-DS presents the same data profile as the base case with τ = 0.2, and τ -solves 5%

less problem instances than the base case with the lower tolerance.

(a) τ = 0.2 (b) τ = 0.01

Figure 4: Data profiles on Problem solar3 with 20 different problem instances.

To delve further into these results, Figure 5 illustrates the frequency at which evaluations through-

out all 20 optimizations ended. In solar3, the constraint that has lead to the most interruptions for

all algorithms throughout all optimizations is c2 ≤ 0, which verifies compliance to an energy demand.

For this constraint, higher fidelities best indicate if the energy produced is sufficient. As a result, low

fidelities are rarely used. DIDS leverages six different fidelity levels, resulting in the best performance

with τ = 0.01. IDS only uses ϕL = 1 in 28.86% of its evaluations, while the other algorithms use it for

at least 85.05% of their evaluations.

As discussed at the end of Section 3.2, IDS and DIDS are designed to ensure low probabilities that

feasibility errors occur. Ideally, an interruption method performs more evaluations than the base case

in the same time budget, and interruptions always occur on infeasible points. However, this can not be

guaranteed without additional hypotheses, and despite low probabilities of errors, they are expected

to occur during the optimization process (16.3 hours). Such errors sometimes cause the evaluation

sequence to differ from the base case. To study this phenomenon, Table 2 displays, for each interruption

algorithm, the average factor of number of base case evaluations, the percentage of problem instances
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where the sequence of points up to the base case’s last evaluation are different, and, for these instances,

the average percentage of base case evaluations before the first different point in the sequence.

Figure 5: Occurrence (%) of last used fidelities in solar3 evaluations.

Table 2: Evaluation sequence comparison with the base case for solar3.

Value compared with the base case Inter-DS IDS IDS-truth DIDS

Average number of evaluations factor 1.001 1.006 1.003 1.013
% of problem instances where an x differs 0 100 0 0
Average % of evaluations before an x differs - 2.26 - -

Where all other algorithms followed the same evaluation sequence as the base case for all opti-

mizations, IDS has differences for all 20 optimizations. These differences started after only 2.26% of

the base case evaluations on average. This is the result of IDS’s prevalent usage of fidelities inferior

to ϕL = 1. This way, IDS performs the most average number of evaluations at the cost of causing

numerous feasibility errors, and these errors lead to worse search directions, resulting in the worst

performance with τ = 0.01. Additionally, IDS’s average number evaluations is only 1.006 times that of

the base case. Activating the include truth parameter for IDS successfully prevents these feasibility

errors. With τ = 0.01, Inter-DS’s profile is below the base case’s at any time. This is because 98.97%

of its evaluation cost λ1 + λ5 + λ11. The use of fidelity ϕ5 = 0.4 is not sufficiently effective at causing

interruptions to overcome the λ5 cost, causing a constant delay in the optimization.

5.2 solar4 benchmarks

The optimization results of 20 solar4 problem instances, obtained with different NOMAD seeds and a

16.4 hours budget, are shown in Figure 6 with two different values of τ . For solar4, the assignment

vector found by IDS contains ϕL = 1, meaning that the include truth parameter is redundant. At any

time, the data profiles of Inter-DS, IDS and the base case are almost identical, even with low tolerance

values such as 10−3 and 10−5 (which usually help differentiating the profiles). The only exceptions

to this similitude are the last few minutes with tolerance τ = 10−5, where IDS suddenly reached 45%

of τ -solved problem instances, compared to 25% for Inter-DS and the base case. Conversely, DIDS
dominates both plots.

Further insights are found in Figure 7. Similarly to solar3, the constraint that has lead to the most

interruptions for all algorithms throughout all optimizations is c2 ≤ 0, which verifies compliance to

an energy demand and requires high fidelities to estimate. Inter-DS and IDS use ϕL = 1 for 99.51%

and 99.56% of their evaluations respectively. In that matter, they behave almost identically to the base

case. The leveraging of intermediary outputs by DIDS allowed it to interrupt evaluations at various

fidelities.

Table 3 describes some evaluation sequence statistics for these optimizations. Notice that Inter-DS
achieves less evaluations than unpaired NOMAD on average. Overall, the ineffectiveness of the non-
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(a) τ = 10−3 (b) τ = 10−5

Figure 6: Data profiles on Problem solar4 with 20 different problem instances.

Figure 7: Occurrence (%) of last used fidelities in solar4 evaluations.

dynamic interruption algorithms at levering multi-fidelity information is attributed to the fact that

the behaviour of the constraints relative to fidelity is heavily dependant on the solution space for

solar4 [3]. As such, the assignment vectors of Inter-DS and IDS can become ineffective, whereas the

dynamic adaptations of DIDS ensure a high quality assignment vector during the whole optimization.

This explains why DIDS is the only algorithm that leverages multiple fidelity levels other than 10−10

and 1 in Figure 7. This use of multi-fidelity for interruptions causes DIDS to not follow the base case’s

evaluation sequence for 90% of the problem instances, and the first difference occurs after only 6.61%

of base case evaluations on average. Nonetheless, deeper analysis shows the different search directions

result in similar solutions to those of the base case. Considering all factors, the reason for DIDS’s
highest portion of τ -solved instances is the 1.211 average factor in number of evaluations.

Table 3: Evaluation sequence comparison with the base case for solar4.

Value compared with the base case Inter-DS IDS DIDS

Average number of evaluations factor 0.991 1.039 1.211
% of problem instances where an x differs 70 70 90
Average % of evaluations before an x differs 10.91 10.37 6.61

5.3 solar2 benchmarks

The optimization results of 20 solar2 problem instances, obtained with different NOMAD seeds and

a 16.1 hours budget, are shown in Figure 8 with two different values of τ . All interruption methods

except Inter-DS allow NOMAD to reach better or equal solutions than by directly solving P(1) at any

time. The IDS algorithm dominates both plots by τ -solving 85% of instances with a tolerance of 0.1

and 60% of instances with a tolerance of 0.01. By decreasing the tolerance, DIDS and the base case
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are the algorithms with the largest decrease of τ -solved instances, going from 70% to 10% for DIDS
and from 50% to 0% for the base case.

(a) τ = 0.1 (b) τ = 0.01

Figure 8: Data profiles on Problem solar2 with 20 different problem instances.

To explain these results, Figure 9 illustrates how each algorithm used the available fidelities. It

indicates that IDS interrupted evaluations at the lowest fidelity the most: 75.93% of evaluations in-

terrupted at ϕ1 = 10−10. Throughout all problem instances and all algorithms, every interruption

at ϕ1 = 10−10 was caused by c6 ≤ 0, and by it only. It ensures that the number of heliostats to

place, x6, can fit in the field, for which the dimensions are computed from x1, x2 and x3. This is not

an a priori constraint, but its value is computed before any ray-tracing MC draw is realized. This

explains why ϕ1 = 10−10 is so heavily used by all interruption algorithms. The usage of all fidelity

levels by DIDS is not sufficient to overcome the other interruption methods. This is not surprising, as

the behaviour of the constraints relative to fidelity is fairly constant throughout the solution space of

solar2 [3], meaning that dynamic adjustments to the assignment vector are almost irrelevant.

Figure 9: Occurrence (%) of last used fidelities in solar2 evaluations.

Table 4 displays how the different multi-fidelity approaches affected the optimizations. A direct cor-

relation between the frequency of evaluations interrupted at ϕ1 = 10−10 in Figure 9 and the number

of evaluations in this table is observed. This is the first element explaining IDS’s success: it per-

formed 6.86 times more evaluations than the base case. The second is that IDS’s evaluation sequence

differed from the base case for all problem instances, and it does so the fastest: only the first 3.84%

of base case evaluations are identical before the first difference on average. A deeper analysis revealed

that the feasibility mistakes resulted in NOMAD exploring better solutions. This challenges the idea

that interruption methods should be designed to minimize feasibility estimation errors. Most errors

occurred on infeasible points x ∈ X where f(x, 1) is close to f∗ and the true h(x) value is close to 0.
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The fact that this lead to better solutions is most likely the result of chance. Data profiles with a

greater number of problem instances are required to confirm this observation.

Table 4: Evaluation sequence comparison with the base case for solar2.

Value compared with the base case Inter-DS IDS IDS-truth DIDS

Average number of evaluations factor 4.05 6.86 2.94 4.65
% of problem instances where an x differs 100 100 0 5
Average % of evaluations before an x differs 5 3.84 - 29

In contrast, DIDS differed from the base case in only 5% of instances, and for this 5%, the first 29%

of base case evaluations are identical before the first difference on average. It also performed 4.65 times

more evaluations than the base case on average. Yet, DIDS τ -solves only 10% of the problem instances

with tolerance τ = 0.01. Again, more tests would be needed to confirm these results. Activating

the include truth parameter in IDS decreases the number of optimizations with a different sequence

from 100% to 0%, all while performing 2.94 times more evaluations than the base case on average.

Similarly to solar3, this demonstrates that the parameter is efficient at reducing feasibility errors, but

contrary to solar3, IDS performs better here without the parameter. This is because it reduces the

number of evaluations factor from 6.86 to 2.94, but NOMAD’s performance is still improved when using

IDS with the parameter activated. In comparison, Inter-DS performed more evaluations, with a factor

of 4.05, but also had numerous feasibility errors (all problem instances differed from the base case),

resulting in a similar data profile with tolerance τ = 0.01.

5.4 Remarks on the computational effort

Recall that solver computing times are omitted in the data profiles to create conditions similar to

PRIAD’s. This explains the irregular optimization times in Figures 4, 6 and 8, as they are computed

a posteriori. Note that a total of 6333 hours (8.65 months, divided between multiple machines) of

optimization time was required to generate these figures. To this effect, only pairings with NOMAD
are tested. Numerical tests in [3] show that solvers implementing the Particle Swarm Optimization

and the Nelder-Mead algorithms are successfully used with fidelity controller-based algorithms.

When Inter-DS was introduced in [3], it was noted that when H contains no feasible points, Inter-DS
is extremely harmful to the optimization. These pathological cases are solved in IDS and DIDS by

assigning all constraints to ϕL = 1 when H ∩Ω = ∅. Because the solution is trivial, no additional test

is conducted.

6 Discussion

This work introduces two new algorithms for constrained multi-fidelity blackbox optimization problems

based on interruptible evaluations. They both perform feasibility estimations at various fidelity levels,

and interrupt the process when a point is deemed infeasible. The first, IDS, exploits a set of points

evaluated prior to the optimization to construct its interruption mechanism. The second, DIDS, relies
on intermediary information from previously evaluated points during the optimization. IDS is presented

as a theoretical improvement of Inter-DS, which is also based on pre-optimization evaluations. The

results show that for most problems, IDS also successfully improves on Inter-DS practically.

For the problems tested, IDS with the include truth parameter activated and DIDS both strictly

allow NOMAD to reach better solutions at the end of the same time budget. Without the include

truth parameter, IDS’s performance is highly variable because it performs interruptions more aggres-

sively. The solar3 Problem punishes this greediness, solar4 is indifferent to it, and solar2 rewards it. A

shortcoming of this study is that it is still unclear whetter feasibility estimation mistakes are desirable

for solar2, or if more optimizations should compose the data profiles to expose different global trends.
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Future work will address phenomenon, as well as study if a bias is introduced by successful interrup-

tions at low fidelities, leading to a lack of high fidelity information for infeasible points, which is used

for assignment vector updates.

An important takeaway is that the behaviour of the constraints relative to fidelity must be fairly

constant throughout the solution space for IDS to perform well. Otherwise, only DIDS can leverage

multi-fidelity information to an advantage.

The current literature in the field of multi-fidelity blackbox optimization mainly studies the un-

constrained case or model-based optimization approaches. This research proposes methods to handle

multi-fidelity constraints in the context of direct search methods. Later work will incorporate the afore-

mentioned objective function focused literature with the presented methods to consider the generalized

case where all available multi-fidelity information is leveraged.
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