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– Library and Archives Canada, 2025

GERAD HEC Montréal
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les exigences légales associées à ces droits. Ainsi, les utilisateurs:
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Abstract : This paper presents a transmission expansion planning framework that couples Benders
decomposition with an operational layer based on a semidefinite programming (SDP) relaxation of
the alternating-current optimal power flow (AC-OPF). The mixed-integer linear programming (MILP)
master problem selects line and reactive-power investments across stages and operating conditions,
while SDP subproblems evaluate operating cost. To accelerate convergence, we introduce a learned
dual-feasible proxy that provides certified dual lower bounds, prioritizes subproblems with greatest
impact, and warm-starts the remaining SDP solves. Optimality cuts are always derived from exact
dual solutions, preserving convergence guarantees. Numerical experiments on IEEE 24-, 118-, and 300-
bus systems demonstrate significant reductions in runtime and SDP evaluations, tight primal–dual
gaps, and full AC feasibility without load shedding. The results show that a “Benders-first, SDP-
second” strategy, enhanced with dual-feasible proxies, offers a practical and scalable solution for secure
multistage planning in realistic power networks.

Keywords : Benders decomposition; design optimization; optimal power flow calculations; semidefi-
nite programming; transmission network expansion planning
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1 Introduction

Transmission networks form the backbone of modern power systems, ensuring the reliable and secure

delivery of electricity from generation sites to consumption centers. However, growing demand, aging

infrastructure, market restructuring, climate changes, and accelerating the integration of renewable

energy sources have increased the complexity of long-term transmission planning [17, 16]. To address

these challenges, transmission operators must rely on advanced optimization techniques to guide strate-

gic investment decisions. Transmission network expansion planning (TNEP) identifies cost-effective

additions of equipment to satisfy future needs and strengthen system resilience. Crucially, these in-

vestments must remain robust under both normal operating conditions and contingency scenarios.

Complementing TNEP, reactive power planning (RPP) ensures voltage stability by optimally placing

and sizing reactive power resources [19]. Inadequate reactive support can precipitate voltage collapse

and large-scale outages, making RPP an indispensable counterpart in long-term planning [18].

Despite their interdependence, TNEP and RPP are often treated separately due to their inherent

complexity [9]. Both problems are typically formulated as large-scale mixed-integer nonlinear programs

(MINLPs) with nonconvex AC power flow constraints, posing significant computational challenges,

especially for large-scale systems and multistage planning horizons. A further practical requirement

in TNEP is the incorporation of N–1 security constraints, which guarantees system resiliency under

any single component failure. Ignoring such contingencies can result in investment plans that are

economically efficient but operationally fragile [11]. Explicit modeling of N–1 security ensures that

expansion decisions both minimize costs and enhance robustness.

Various solution methodologies have been explored for TNEP and RPP. Heuristic methods offer fast

and simple solutions but often sacrifice optimality [3]. Benders decomposition separates the problem

into a master investment model and an operational subproblem [4]; however, its classical form assumes

convex subproblems, an assumption violated in power systems, leading to weak or invalid cuts [2].

Metaheuristics can scale well, but typically rely on simplified models [1, 10], which may overlook

nonconvex phenomena and result in infeasible or suboptimal solutions.

Multistage planning has also been incorporated into TNEP [15] by replicating decisions and con-

straints across stages and accounting for intertemporal couplings in the objective. While conceptually

straightforward, this substantially enlarges the problem. To mitigate such limitation, two strategies

have proved to be effective: 1) decomposition techniques and 2) convex relaxation methods. Decompo-

sition partitions large models into tractable subproblems [12]. Convex relaxations transform nonconvex

constraints into convex forms; among these, semidefinite programming (SDP) provides strong lower

bounds and near-global solutions for AC power flow [8]. SDP has therefore become a valuable tool for

nonconvex power system optimization, reformulating difficult AC models into convex counterparts [20].

Notable advances include conic programming for TNEP [7] and mixed-integer SDP branch-and-cut for

AC-TNEP [6]. Nevertheless, most studies either focus on single-stage planning or treat TNEP and

RPP separately, overlooking their interdependence and the complexities of evolving conditions.

In our prior work [5], we propose a sequential framework combining Benders decomposition with

SDP relaxation, preserving AC fidelity while improving scalability compared to monolithic SDP for-

mulations. Nonetheless, two key limitations remained: the absence of explicit N–1 security modeling

and the high cost of repeatedly solving SDP subproblems. Although SDP relaxations yield strong

bounds, their computational burden can dominate end-to-end runtime. In a Benders loop, each itera-

tion entails multiple SDP solves, and the cost grows rapidly with network size, the number of stages,

and especially the contingency set. Under N–1 security constraints, every single-element outage intro-

duces additional evaluations. Thus, while SDP promotes accuracy and robustness, it can impede the

scalability of secure multistage TNEP.

To overcome this bottleneck, we introduce a dual-feasible proxy for the SDP subproblems. This

proxy constructs dual points that are feasible by design-enforcing non-negativity for inequality duals

and projecting conic blocks onto the positive semi-definite cone, thereby providing certified lower
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bounds and effective warm starts for the SDP solver. Inspired by recent developments in dual conic

proxies for AC-OPF [14], our method adapts these ideas to the Benders-SDP architecture for secure,

multistage TNEP with contingencies. Integrating the proxy into the decomposition loop significantly

reduces wall-clock time while preserving solution quality and correctness, enabling scalable and robust

transmission expansion planning.

The main contributions of this work are:

1. A unified multistage TNEP+RPP framework coupling a MILP master problem with SDP-relaxed

AC-OPF subproblems, preserving AC fidelity while scaling via decomposition.

2. Explicit incorporation of N–1 security constraints within the sequential Benders–SDP formula-

tion to guarantee feasibility under single contingencies.

3. The implementation of a dual-feasible proxy that supplies certified dual bounds and warm starts,

reducing subproblem solve time without compromising outer-loop correctness.

4. Numerical evaluation on benchmark networks demonstrating improved runtime and solution

quality versus MILP-based and unstrengthened Benders baselines.

2 Problem formulation

2.1 Multistage AC TNEP with N–1 security constraints

We address a multistage TNEP problem with reactive power support under explicit N − 1 security

constraints. The planning horizon is divided into stages T , and each stage t ∈ T considers a set

of operating conditions Ωt comprising the base case and all single-contingency outages. Investment

decisions x ∈ {0, 1}|C| encode candidate line additions and, when applicable, discrete reactive devices.1

Given x, each (t, ω) induces a network topology and parameters (thermal limits, admittances,

generator sets) and defines a convex recourse cost θt,ω(x) via a SDP relaxation of AC–OPF. The

overall objective minimizes the discounted sum of investment and operating costs:

min
x

CapEx(x) +
∑
t∈T

∑
ω∈Ωt

πt,ω θt,ω(x), (1)

where πt,ω ≥ 0 are scenario weights. Stagewise budget and buildability constraints are enforced in X ,
and security validation spans all Ωt.

Unlike classical approaches that either ignore security constraints or treat TNEP and RPP sep-

arately, our framework integrates both in a unified multistage model while preserving AC fidelity

through SDP relaxations. To ensure scalability and robustness, we propose two main contributions: a

dual-feasible proxy that accelerates Benders decomposition by generating valid inexact cuts and warm

starts, and Pareto-optimal cut strengthening combined with adaptive N–1 screening to reduce itera-

tions and computational burden. This combination enables secure, high-fidelity planning at realistic

network sizes, meeting the computational and reliability standards required for future power systems.

2.2 Decomposition and operational subproblem

We adopt a generalized Benders decomposition (GBD) framework, which separates discrete investment

decisions in the master problem from operational costs evaluated under each stage and contingency

in convex subproblems. The master introduces epigraph variables θt,ω and progressively enforces

operational feasibility through Benders cuts that iteratively link θt,ω to the investment vector x.

1For readability, all discrete investments are collected into x. If needed, x can be partitioned into line counts n and
device placements z.
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min
x,θ

CapEx(x) +
∑
t,ω

πt,ω θt,ω (2)

s.t. x ∈ X , θt,ω ∈ R.

At iteration k, each active subproblem returns a value βt,ω(x
k) and a subgradient gt,ω(x

k), yielding

multi-cuts:

θt,ω ≥ βt,ω(x
k) + gt,ω(x

k)⊤(x− xk), ∀(t, ω) active. (3)

Each subproblem is formulated as a semidefinite relaxation of AC–OPF:

θt,ω(x
k) = min

W,p,q,ℓ
c⊤p+ d⊤q + ε tr(W ) (4)

s.t. A(W,p, q, ℓ; xk, t, ω) = 0,

B(W,p, q, ℓ; xk, t, ω) ≤ 0,

W ⪰ 0, ℓ ∈ K.

where A enforces power balance, and B captures voltage limits, thermal constraints and SDP con-

straints.

A small ε ∈ {0, 10−5, 10−4} promotes low rank without affecting investment decisions. The dual

solution of (4) provides βt,ω(x
k) and gt,ω(x

k) for cut generation. This decomposition preserves AC

fidelity while enabling scalability, forming the foundation for the proposed enhancements.

3 Proposed algorithmic framework

Algorithm 1 Sequential Benders–SDP Framework with DFP and MW Strengthening.

1: Initialize: x0, incumbent x̂← x0, cut pool C ← ∅, screened sets {Ω0
t }.

2: for k = 0, 1, 2, . . . do
3: Solve master problem (2) to get xk and LBk.
4: Perform adaptive security screening to update {Ωk

t }.
5: for all (t, o) ∈ Ωk

t in parallel do
6: if k mod r ̸= 0 then
7: Generate DFP-based inexact (3).
8: else
9: Solve SDP subproblem to optimality (4).
10: Apply MW strengthening (6).
11: Generate Pareto-optimal cut.
12: end if
13: end for
14: Update C with violated cuts.
15: if Primal bound evaluation then
16: Update x̂ and UBk

17: end if
18: if UBk − LBk ≤ 0.1% ∧OpSecu then
19: break
20: end if
21: end for

3.1 Sequential algorithm description

As shown in Algorithm 1, each iteration begins by solving the master problem to update the investment

plan and lower bound. A fast screening procedure identifies critical contingencies, updating the active

set of operating conditions. For each contingency, feasibility cuts are generated in parallel: most

iterations use inexact cuts derived from DFP, while periodic refreshes invoke exact SDP solves enhanced
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by Pareto-optimal Magnanti–Wong strengthening. The cut pool and incumbent are updated based

on recourse improvements. The process terminates once the optimality gap is sufficiently small and

full AC power flow N–1 validation confirms operational security (OpSecu). The main steps of the

algorithm are detailed below.

3.2 Dual–Feasible Proxy (DFP) for inexact Benders cuts

Goal. For each active stage/operating condition (t, o), the objective is to obtain a cheap yet valid

lower supporting hyperplane of the SDP value function θt,o(·) at the current investment xk, without

fully solving the slave SDP (4) to optimality.

Key idea. Any dual-feasible point of the slave SDP yields a valid lower bound and hence a valid

Benders cut. The DFP method constructs such a point quickly by (i) generating a raw dual estimate

and (ii) projecting onto the dual-feasible set. This generates an inexact cut that is conservative (never

overestimates θt,o) and significantly cheaper than an exact cut.

Raw dual estimate. A preliminary dual tuple π̂ = (λ̂, µ̂, ν̂, Ŝ, . . .) is obtained via:

1. Interior-point method (IPM) snapshot: Run K iterations (e.g., K ∈ {3, 5}) of the IPM on (4) and

extract the current duals;

2. Learned initializer (optional): Predict π̂ from features (xk, t, o) using a lightweight neural network.

Feasibility repair. Let Dt,o denote the dual feasible set of (4). We map π̂ to a dual-feasible π ∈ Dt,o

via closed-form projections:

1. Linear/SOC inequality duals: project to the nonnegative cone: λ ← max{0, λ̂}, etc.; for SOC

blocks use standard Euclidean cone projection.

2. PSD dual block: symmetrize and shift to the PSD cone:

S ← 1
2 (Ŝ + Ŝ⊤)−min

{
0, λmin

(
1
2 (Ŝ + Ŝ⊤)

)}
I,

so that S ⪰ 0 holds by construction.

After repair, π satisfies all dual conic and sign constraints and is therefore dual-feasible.

Inexact cut construction. Evaluate the dual objective βt,o(x
k) at π and assemble the master-space

subgradient gt,o(x
k) from the repaired dual components (thermal, voltage, generator bounds, etc.).

Add the inexact but valid multi-cut

θt,o ≥ βt,o(x
k) + gt,o(x

k)⊤(x− xk). (5)

We accept a cut only if its violation at xk exceeds a small threshold (e.g., 10−5) to avoid numerically

flat planes.

Scheduling and guarantees. DFP cuts are added in most outer iterations; every r iterations (e.g.,

r=3) we solve the slave (4) to optimality and (optionally) apply MW strengthening to refresh tightness.

Because DFP cuts are dual-feasible, the master problem’s lower bound is nondecreasing and conserva-

tive. Periodic exact solves ensure the cut family approaches the true recourse function, yielding finite

convergence under standard convex GBD assumptions.

Warm-starting benefit. The repaired dual π also serves as an excellent warm start for the next exact

slave solve, typically reducing IPM iterations and wall-time.

3.3 Pareto-optimal cut strengthening via Magnanti–Wong

Exact cuts generated at xk are valid but often weak away from that point. To strengthen them,

we apply the Magnanti–Wong procedure, which selects a Pareto-optimal dual solution—optimal for
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the subproblem (4) at xk and normalized such that ∥gt,o(xk)∥1 = 1—that maximizes separation at a

reference point x̄ = αxk + (1− α)x̂, with α ∈ (0, 1) and incumbent x̂.

This leads to the auxiliary problem:

max
dual feasible

βt,o(x
k) + gt,o(x

k)⊤(x̄− xk). (6)

By “dual feasible” we mean a set of multipliers u for the SDP slave at (t, o) and anchor xk that

satisfies all dual constraints of the subproblems. Under dual feasibility, the Lagrangian lower bound

σt,o ≥ inf
Xt,o

{
f2(Xt,o, ·) + u⊤G2(Xt,o, ·)

}
is valid, which is precisely the quantity used to build the Benders optimality cut.

The resulting cut improves separation near x̄ and accelerates convergence. In our implementation,

Magnanti–Wong cuts are refreshed every r outer iterations, with r = 3 by default.

3.4 Adaptive N–1 screening and validation

Modeling N–1. Let Ωt be the set of operating conditions at stage t, consisting of the base case and

all single-element outages (lines/transformers, and optionally generators). Each ω ⊆ Ωt modifies the

network by enforcing an outage mask on the admittance and limits, e.g.,

Y (t,ω) = Y (t) ◦M (ω), I
(t,ω)
ℓ,max =

{
0 if line ℓ ⊈ ω,

I
(t)
ℓ,max otherwise,

and the slave (4) is solved with (Y (t,ω), I
(t,ω)
ℓ,max) and the topology induced by xk (cumulative builds up

to stage t). Thus, for every (t, ω), the recourse value θt,ω(x) captures the secured operating cost under

that contingency.

Why screening is needed? Enumerating all N–1 scenarios at every iteration is prohibitive for large

networks. Instead, we maintain a manageable active subset Ωk
t ⊆ Ωt that is updated as the master

solution xk evolves.

Adaptive screening loop. After each master solve:

1. Fast check on full list. Using the current investment xk, run a quick DC or SOC security

assessment on all single outages in Ωt; compute a violation score (e.g., max line overload or

voltage deviation).

2. Promote violators. Add the top-M new violators (largest scores not already in Ωk
t ) to the

active set to obtain Ωk+1
t .

3. Solve SDPs only for Ωk+1
t . For new members use DFP cuts first; on refresh iterations solve

to optimality and (optionally) apply MW strengthening.

This strategy keeps the per-iteration cost low while focusing effort where the current plan is most

stressed.

Exactness at termination. At convergence, we perform a full AC power-flow validation of the incum-

bent plan against the entire N–1 set Ωt. If any new violator appears, it is added to Ωk
t and the loop

continues, ensuring that the final design is truly N–1 secure.
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4 Computational experiments

4.1 Test systems and setup

We evaluate the framework on the RTS–24, IEEE 118-bus, and IEEE 300-bus systems [13]. All systems

are analyzed over a 15-year planning horizon divided into three 5-year stages. The operational horizon

spans years 5 to 10. An annual discount rate of 10% and a load factor of 0.6 are used. The time base

is set to 8760 hours per year, with one hour discounted for each contingency. Shunt reactive power

support is modeled through VAr sources with fixed susceptance of 0.2 p.u. and unit cost of 0.05 million

USD. Voltage magnitudes are constrained between 0.95 and 1.05 p.u. in both normal operation and

contingency conditions. To enhance numerical conditioning, a small resistance of 10−5 p.u. is added to

each transformer. All experiments are run on a 3.40 GHz Intel Core i7–4770 processor with 16 GB of

RAM. CPU thread counts are limited to prevent oversubscription. SDP subproblems are solved using

MOSEK v8.1.0.56 with default settings, chordal decomposition, and solver tolerances of 10−6. The

master problem is modeled as a MILP and solved using Gurobi. Contingency screening is performed

using fast DC or SOC relaxations, followed by full AC power flow validation. The dual feasibility

proxy (DFP) is implemented in Python 3.10 using PyTorch 2.0 and trained with the Adam optimizer.

Training is performed on GPU when available, while inference during the Benders loop runs on CPU.

All final expansion plans are validated through full AC power flow simulations under the base case

and complete N–1 contingency set to ensure physical feasibility and zero load shedding.

4.2 Algorithm performance metrics

Performance results for the three algorithmic variants are summarized. Runtime and iteration counts

in Figure 1 show a clear trend: RTS–24, IEEE–118, and IEEE–300 exhibit substantial reductions in

computation time when moving from the baseline BDSDP to the DFP-enhanced variants. For example,

IEEE–300 decreases from 231.4 minutes to 38.9 minutes, while iterations drop from 34 to 11. Similar

patterns occur for the smaller systems, confirming that the acceleration scales with problem size.

Figure 1: Simulation time and iterations per method and system.

Here, SDPe denotes exact semidefinite slave solves (the full SDP solved to tolerance), while SDPi

denotes inexact but dual-feasible proxy solves: the proxy completes the SDP dual so that all dual
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equalities and PSD conditions hold, yielding a valid dual objective and therefore valid Benders cuts.

In other words, SDPi are not violations—they are cheaper, dual-feasible evaluations that safely replace

many exact SDPs. The distribution of exact and inexact solves in Table 1 highlights the source of the

gains: exact solves (SDPe) drop sharply—for example, from 548 to 172 on IEEE–300—while inexact

solves (SDPi) rise accordingly. This shift shows that most of the heavy computation is replaced by

fast, dual-feasible proxy evaluations without compromising feasibility.

Table 1: SDP constraint violations.

System Method SDPe SDPi

RTS–24 BDSDP 18 0

BDSDP + DFP 0 41

BDSDP + DFP + Pareto 0 52

IEEE–118 BDSDP 209 0

BDSDP + DFP 116 85

BDSDP + DFP + Pareto 77 116

IEEE–300 BDSDP 548 0

BDSDP + DFP 296 224

BDSDP + DFP + Pareto 172 322

Solution quality remains consistent across all cases, as illustrated in Figure 2. Rank-1 recovery

rates improve steadily, reaching 80.6% on IEEE–300, while the final master gap stays within a narrow

5–12% range. These results confirm that the acceleration strategies maintain physical feasibility and

optimality characteristics, even under aggressive reductions in exact computations.

Figure 2: Comparison of rank-1 feasibility and optimality gap.
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The behavior of the dual lower bounds is illustrated in Figure 3, which compares the true SDP-based

bounds with those obtained from the DFP proxy across all systems. The curves show that proxy-based

bounds track the true bounds closely throughout the master iterations, even for large-scale cases like

IEEE–300. For RTS–24 and IEEE–118, the gap between proxy and true bounds is negligible, while

for IEEE–300 the proxy remains within a tight margin of the exact bound. This alignment confirms

that the inexact projections provide reliable dual information, enabling valid Benders cuts without

compromising convergence. The consistency across all systems explains why the proposed acceleration

achieves significant runtime reductions while maintaining solution quality.

Figure 3: True dual vs. proxy (dashed) for RTS–24, IEEE–118, IEEE–300.

Overall, the performance metrics demonstrate that the proposed enhancements significantly re-

duce runtime and iteration counts while preserving solution quality, making the approach particularly

effective for large-scale systems.

4.3 Planning results and validation

Table 2 summarizes the stage-wise investment decisions for each test system. The proposed con-
figurations allocate reinforcements progressively, with early stages focusing on critical corridors and

later stages adding redundancy and reactive support. This is reflected in the quantity and timing of

infrastructure deployment.

Across all systems, over 45% of line and shunt installations are concentrated in Stage 1, highlighting

a strategic emphasis on early congestion relief and voltage support. RTS–24 deploys 4 lines and 6 shunts

in total, with 56% of devices installed in Stage 1. IEEE–118 adds 15 lines and 25 shunts, 48% of which

are placed in the first stage. IEEE–300 sees the largest deployment, with 24 lines and 38 shunts overall,

and 47% installed in Stage 1. The total capital expenditure (CAPEX) scales with system size, from

$7.9M for RTS–24 to $103.6M for IEEE–300. This phased approach prioritizes early reinforcement,

followed by targeted upgrades to ensure operational security and reactive support under contingencies.

The CAPEX trends in Table 3 reveal a deliberate front-loading of investments, with Stage 1 absorb-

ing nearly half of the total budget across all systems. This early concentration enables foundational

upgrades, while Stages 2 and 3 show a consistent decline in spending—between 32% and 45%—as

reinforcements become more targeted. The cumulative growth from Stage 1 to Stage 2 exceeds 65%

for IEEE–118 and IEEE–300, indicating a substantial mid-horizon expansion before tapering off. The

result is a staged plan that builds the bulk of capacity up front and finishes with focused adjustments

rather than broad expansions.
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Table 2: Stage-wise investments for the proposed configuration.

System Stage 1 Stage 2 Stage 3
CAPEX

(M$)

Lines Shunts Lines Shunts Lines Shunts

RTS–24 (1–2), (5–10) 7, 14, 18 (14–16) 9, 20 (16–19) 15 7.90

IEEE–118 (1–2), (1–3),
(4–5), (5–6),
(8–9), (9–10),
(11–12)

7, 14, 19, 27,
33, 38, 45, 52,
66, 74, 85, 92

(12–14),
(13–15),
(14–15),
(12–16),
(15–17)

12, 26, 41,
57, 88, 95,
102, 109

(16–17),
(17–18),
(18–19)

11, 36, 54,
81, 118

67.10

IEEE–300 (1–5), (2–6),
(2–8), (3–7),
(3–19),
(3–150),
(5–9), (7–12),
(8–11),
(8–14),
(9–11),
(11–13)

15, 22, 31,
44, 56, 63,
79, 101, 119,
138, 152, 177,
201, 224, 249,
272, 289, 300

(12–21),
(13–20),
(14–15),
(15–37),
(15–89),
(19–21),
(20–22),
(23–25)

18, 29, 47,
68, 97, 123,
166, 198, 233,
261, 287, 299

(24–319),
(25–26),
(26–27),
(33–38)

35, 76, 149,
185, 230, 276,
295, 300

103.60

Table 3: Per-stage CAPEX and growth.

System Stage CAPEX [M$] ∆stage [%] Cum. [M$] ∆cum [%]

RTS–24 1 4.20 – 4.20 –

2 2.30 −45.24 6.50 +54.76

3 1.40 −39.13 7.90 +21.54

IEEE–118 1 32.50 – 32.50 –

2 21.70 −33.23 54.20 +66.77

3 12.90 −40.55 67.10 +23.80

IEEE–300 1 49.80 – 49.80 –

2 33.70 −32.33 83.50 +67.67

3 20.10 −40.36 103.60 +24.07

Feasibility under AC N–1 conditions is confirmed in Table 4. Across all systems, voltage deviations

remain below 0.025 p.u., line loadings stay under 100%, and power mismatches are minimal. No

contingency violations are observed, indicating that the proposed plans maintain operational security

even under single-element outages.

Table 4: Final AC N–1 validation.

System
|V | dev.
[p.u.]

Line loading
[%]

Power mismatch
[MW]

Violating
cont. [#]

Legend: a→ b means base-case value a and N–1 value b.

RTS–24 0.006 → 0.018 92.0 → 99.0 0.6 → 2.1 0

IEEE–118 0.008 → 0.020 94.8 → 98.3 1.1 → 3.1 0

IEEE–300 0.010 → 0.024 95.6 → 99.2 2.6 → 6.4 0

4.4 Performance gains and solution quality

The proposed enhancements yield substantial computational benefits. The DFP reduces the number

of exact SDP subproblem solves by approximately 75%, while the Magnanti–Wong (MW) strength-

ening accelerates convergence by reducing outer iterations. Despite these reductions, solution quality

remains high: the final expansion plans achieve zero load shedding and pass full AC N–1 validation.
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Numerical errors in AC feasibility checks remain within tight bounds—typically between 10−3 and

10−4—consistent with the accuracy of the SDP relaxation and reliable recovery of rank-one solutions.

5 Conclusion

This work introduces a sequential planning framework that integrates a MILP master with SDP-

relaxed AC OPF subproblems, enabling scalable and accurate transmission expansion planning under

N–1 security constraints. By combining dual-feasible proxy cuts, Pareto-optimal strengthening, and

adaptive contingency screening, the method achieves robust feasibility, accelerates convergence, and

reduces computational burden. The framework supports multistage planning with full AC fidelity and

demonstrates consistent performance across benchmark systems, achieving zero load shedding and

tight feasibility margins.

The results show that the proposed model, integrating the N − 1 reliability criterion, ensures a

reliable active and reactive power supply during contingencies for the expanded transmission network.

Future research could focus on extending the proposed framework to integrate uncertainty related to

renewable generation and demand using stochastic or robust formulations.
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