Les Cahiers du GERAD

ISSN: 0711-2440

Dynamic constraint aggregation for the multiple-depot

bus scheduling problem

N. Rasouli, G. Desaulniers, M. Saddoune, F. Soumis

G-2025-82

December 2025
Revised: January 2026

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
travail a été soumis a des revues avec comité de révision. Lorsqu'un
document est accepté et publié, le pdf original est retiré si c'est
nécessaire et un lien vers I'article publié est ajouté.

Citation suggérée : N. Rasouli, G. Desaulniers, M. Saddoune,
F. Soumis (Décembre 2025). Dynamic constraint aggregation for
the multiple-depot bus scheduling problem, Rapport technique, Les
Cahiers du GERAD G- 2025-82, GERAD, HEC Montréal, Canada.
Version révisée: Janvier 2026

Avant de citer ce rapport technique, veuillez visiter notre site Web
(https://www.gerad.ca/fr/papers/G-2025-82) afin de mettre a
jour vos données de référence, s'il a été publié dans une revue sci-
entifique.

The series Les Cahiers du GERAD consists of working papers
carried out by our members. Most of these pre-prints have been
submitted to peer-reviewed journals. When accepted and published,
if necessary, the original pdf is removed and a link to the published
article is added.

Suggested citation: N. Rasouli, G. Desaulniers, M. Saddoune,
F. Soumis (December 2025). Dynamic constraint aggregation for
the multiple-depot bus scheduling problem, Technical report, Les
Cahiers du GERAD G-2025-82, GERAD, HEC Montréal, Canada.
Revised version: January 2026

Before citing this technical report, please visit our website (https:
//vww.gerad.ca/en/papers/G-2025-82) to update your reference
data, if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grace
au soutien de HEC Montréal, Polytechnique Montréal, Université
McGill, Université du Québec a Montréal, ainsi que du Fonds de
recherche du Québec — Nature et technologies.

Dépét légal — Bibliotheque et Archives nationales du Québec, 2025
— Bibliotheque et Archives Canada, 2025

The publication of these research reports is made possible thanks
to the support of HEC Montréal, Polytechnique Montréal, McGill
University, Université du Québec a Montréal, as well as the Fonds de
recherche du Québec — Nature et technologies.

Legal deposit — Bibliotheque et Archives nationales du Québec, 2025
— Library and Archives Canada, 2025

GERAD HEC Montréal
3000, chemin de la Céte-Sainte-Catherine
Montréal (Québec) Canada H3T 2A7

Tél.: 514 340-6053
Téléc.: 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2025-82
https://www.gerad.ca/en/papers/G-2025-82
https://www.gerad.ca/en/papers/G-2025-82

Dynamic constraint aggregation for the multiple-depot

bus scheduling problem

Nadia Rasouli '

Guy Desaulniers 2'°

Mohammed Saddoune 2'b:¢

Francois Soumis '°

2 Département de mathématiques et de génie

industriel, Polytechnique Montréal, Montréal,
(Qc), Canada, H3T 1J4
b Group for Research in Decision Analysis

(GERAD), Montréal (Qc), Canada, H3T 1J4

¢ Department of Computer Science, University of
Hassan I, FST of Mohammedia, Casablanca,
Morocco

nadia.rasouli@gerad.ca
guy.desaulniers@gerad.ca

December 2025

Revised: January 2026

Les Cahiers du GERAD

G-2025-82

Copyright (©) 2025 Rasouli, Desaulniers, Saddoune, Soumis

Les textes publiés dans la série des rapports de recherche Les Cahiers
du GERAD n'engagent que la responsabilité de leurs auteurs. Les
auteurs conservent leur droit d’auteur et leurs droits moraux sur leurs
publications et les utilisateurs s'engagent a reconnaitre et respecter
les exigences légales associées a ces droits. Ainsi, les utilisateurs:
e Peuvent télécharger et imprimer une copie de toute publica-
tion du portail public aux fins d'étude ou de recherche privée;
o Ne peuvent pas distribuer le matériel ou I'utiliser pour une
activité a but lucratif ou pour un gain commercial;
e Peuvent distribuer gratuitement I'URL identifiant la publica-
tion.
Si vous pensez que ce document enfreint le droit d'auteur, contactez-
nous en fournissant des détails. Nous supprimerons immédiatement
I'acceés au travail et enquéterons sur votre demande.

The authors are exclusively responsible for the content of their re-
search papers published in the series Les Cahiers du GERAD. Copy-
right and moral rights for the publications are retained by the authors
and the users must commit themselves to recognize and abide the
legal requirements associated with these rights. Thus, users:
e May download and print one copy of any publication from the
public portal for the purpose of private study or research;
e May not further distribute the material or use it for any profit-
making activity or commercial gain;
e May freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.

Les Cahiers du GERAD G-2025-82 — Revised ii

Abstract : Bus scheduling problem is a core optimization problem for public transit agencies. Given
a set of timetabled trips to cover during a day and a homogeneous bus fleet assigned to multiple
depots, the multiple-depot vehicle scheduling problem (MDVSP) counsists in finding least-cost feasible
schedules that cover each trip exactly once. To solve large-scale MDVSPs, we develop a column
generation (CG) heuristic that is applied to a block-based set-partitioning model, where a block starts
and ends at a depot without intermediate returns. To reduce degeneracy and improve performance, we
combine CG with an improved dynamic constraint aggregation procedure (IDCA). We further devise
a hybrid dual-disaggregation (HDD) step to accelerate convergence. Computational results on real-
world instances with up to 6,296 trips show significant speed ups resulting from i) using a block-based
model rather than a schedule-based model, ii) integrating CG with IDCA, and iii) applying HDD.
Together, the these techniques yield an average speed up factor of 12.4 compared to CG alone applied
to a schedule-based model, with only marginal degradation in the solution cost.

Keywords : Public transportation; bus scheduling; integer programming; column generation; dynamic
constraint aggregation

Acknowledgements: We would like to thank the personnel of GIRO Inc. for providing the datasets
and exchanging with us throughout the project. This work was funded by GIRO Inc. and the Natural
Sciences and Engineering Research Council of Canada under the grants RDCPJ 524922-18 and RGPIN-
2023-03791. This financial support was greatly appreciated.

Les Cahiers du GERAD G-2025-82 — Revised 1

1 Introduction

Among the various operations planning problems faced by transit agencies, the bus scheduling problem
stands out due to its direct impact on both service quality and operational efficiency. This problem
is a specific case of the vehicle scheduling problem (VSP), which is classified as the single-depot VSP
(SDVSP) when all buses are assigned to a single depot, and the multiple-depot VSP (MDVSP) when
they are shared by multiple depots. While the SDVSP can be solved in polynomial time, the MDVSP
is known to be NP-hard (Bertossi et al., 1987).

Given a fixed timetable of trips over a day and a homogeneous fleet of buses, the MDVSP aims at
constructing feasible bus schedules, ensuring that each trip is covered exactly once while minimizing the
total of fixed vehicle and variable travel costs. A bus schedule is a feasible sequence of trips starting and
ending at the same depot. Despite the growing interest in electric bus scheduling due to environmental
considerations (Gerbaux et al., 2025; Ricard et al., 2025), we focus on diesel buses which remain widely
used by public transit agencies and continue to be the subject of active research (Mousavi et al., 2025;
Sadrani et al., 2025). We believe that the main ideas of our work can be applied to a next generation
of algorithms for electric bus scheduling and, therefore, we also see our effort as a preliminary step
towards these future algorithms.

To reduce the complexity of the MDVSP, several studies have proposed using a time-space network
representation and solving the problem either exactly with a mixed-integer programming (MIP) solver
(Kliewer et al., 2006) or using heuristics such as fix-and-optimize (Gintner et al., 2005). However,
our industrial partner GIRO Inc., a leader in the development of optimization software for public
transportation, requires a more flexible network representation that allows penalizing or forbidding
some direct connections between trips because the connection time is too long or the connection links
trips of two bus lines that should not be connected. In this case, it is difficult to rely on a time-
space network. Instead, we adopt a connection-based network that explicitly models all feasible direct
connections between trips.

In this work, we address the MDVSP using a connection-based network structure, which introduces
significant computational challenges, particularly for large-scale instances involving thousands of trips
(more than 6,000 in our case). In this context, column generation (CG) heuristics offer a suitable
algorithmic framework for handling the problem’s complexity and scale. Within this framework, we
develop both modeling and solution strategies to devise an efficient CG approach. Indeed, instead
of using a set-partitioning model where each column (variable) is associated with a complete bus
schedule that potentially includes intermediate returns to the bus’ depot, we propose a model in which
columns represent bus blocks (sequences of trips without intermediate depot returns) and additional
flow conservation constraints links these blocks to form implicit bus schedules. While the schedule-
based model is comprehensive, it results in long columns that significantly increase degeneracy and
the computational time. In contrast, the block-based model involves shorter columns, inducing faster
CG convergence, reduced computational time in the pricing subproblems and overall, as confirmed by
our computational experiments.

To further enhance performance, we integrate CG within an improved dynamic constraint aggre-
gation (IDCA) algorithm that uses a novel hybrid dual disaggregation (HDD) strategy. As its name
says, IDCA aggregates the trip covering constraints into clusters of trips that have a high probability
of being serviced by the same bus and revises dynamically the proposed aggregation. To generate new
variables, IDCA requires disaggregated dual variables, which are typically obtained by solving a linear
program, called the complementary problem (CP), that considers a subset of the generated columns.
In early IDCA iterations, this column subset is often not sufficiently diversified, resulting in arbitrary
disaggregated dual values for many covering constraints. To address this limitation, we post-process
the dual values obtained by the CP using HDD. Finally, to obtain integer solutions, the CG-IDCA
framework is embedded within a diving heuristic that performs variable and inter-trip fixing.

Les Cahiers du GERAD G-2025-82 — Revised 2

The rest of this paper is organized as follows. Section 2 reviews the literature relevant to the
MDVSP and outlines our main contributions. Section 3 formally defines the problem and presents
the proposed block-based formulation. Section 4 describes the proposed solution algorithm, whereas
Section 5 reports the computational results obtained on real-life instances. Finally, Section 6 concludes
the paper and discusses future research directions.

2 Literature review

Introduced by Bodin et al. (1978), the MDVSP is a well-studied problem as surveyed in Ibarra-Rojas
et al. (2015) and Perumal et al. (2022). Several exact algorithms have been devised over the years.
The following two main methodologies have emerged: branch-and-price (B&P) embeds CG within a
branch-and-bound search tree and branch-and-cut (B&C) as found in commercial MIP solvers. B&P
has been first proposed by Ribeiro and Soumis (1994) and further applied in subsequent works on the
MDVSP (Hadjar et al., 2006) or the MDVSP with time windows (Desaulniers et al., 1998; Hadjar and
Soumis, 2009). All these works exploit a connection-based networks to generate schedule variables.
With this methodology, the largest artificial instances solved to optimality contains around 900 trips.
On the other hand, Kliewer et al. (2002, 2006) showed that, using time-space networks and an arc-flow
model, B&C can solve to optimality real MDVSP instances involving more than 7,000 trips.

With the goal of improving the performance of the CG algorithm embedded in B&P algorithms
for the MDVSP, Oukil et al. (2007) and Benchimol et al. (2012) have focused on solving the linear
relaxation of a schedule-based model. In Oukil et al. (2007), the SPs rely on connection-based networks
and the authors develop a dual variable stabilization (DVS) technique to control the oscillation of the
dual values from one CG iteration to the next. This technique requires a good initial dual solution,
which is computed by solving one or several SDVSPs. On artificial MDVSP instances with 3 depots and
500 trips, the stabilized CG algorithm yields an impressive speedup factor of more than 1000 for highly
degenerate instances (with an average of 25 trips per schedule). This research avenue was pursued by
Benchimol et al. (2012) who first designed a dynamic constraint aggregation (DCA) method to speed
up CG and proposed to combine DVS and DCA to further accelerate CG. Employing time-space
networks for the SPs, their tests on randomly generated instances with 3 depots and up to 1000 trips
(around 19 trips per schedule on average) showed a speedup factor of 3.9 induced by DCA over CG.
On larger instances with up to 3000 trips, integrating DCA and DVS yielded an average acceleration
of 1.5 over DVS alone.

To compute integer solutions in fast computational times, a wide variety of heuristics have also been
proposed. In particular, Gintner et al. (2005) developed a two-phase heuristic, called fix-and-optimize,
that relies on time-space networks. In the first phase, several problem relaxations are solved and their
solutions are examined to identify chains of trips that are present in all these solutions. In the second
phase, these chains are fixed and the restricted MDVSP is solved using a MIP solver. This heuristic
was able to solve instances with up to 11,062 trips in a few hours of computational time. Pepin et al.
(2009) compared five heuristics, namely: CG heuristic, CG-based large neighborhood search (LNS),
tabu search, truncated B&C, and Lagrangian heuristic. Their computational experiments on artificial
instances with up to 1,500 trips showed that the CG heuristic yields the best solutions when sufficient
time (at least 20 minutes) is available. Otherwise, the LNS heuristic outperforms the other ones. CG
heuristics were also proposed by Guedes and Borenstein (2015) and Guedes et al. (2016), while Laurent
and Hao (2009) designed an iterated local search heuristic that yields better results than the LNS and
tabu search metaheuristics of Pepin et al. (2009).

In the last decade, research has focused on electric bus scheduling, considering that electric buses
have a limited driving range and may require to recharge at dedicated locations (see Perumal et al.,
2022; Gkiotsalitis et al., 2023; Gerbaux et al., 2025). As reported in these papers, some exact algorithms
and several types of (meta)heuristics have been proposed for multiple problem variants. We highlight
that CG algorithms have been developed in several studies (van Kooten Niekerk et al., 2017; Zhang

Les Cahiers du GERAD G-2025-82 — Revised 3

et al., 2021; Yildirim and Yildiz, 2021; Gerbaux et al., 2025), as keeping track of the battery state-of-
charge can be better handled in the CG pricing subproblem.

To the best of our knowledge, no bus scheduling studies have compared block-based and schedule-
based models solved by CG. On the other hand, such a comparison was conducted by Mingozzi et al.
(2013) for the multi-trip vehicle routing problem (MTVRP), where least-cost daily schedules composed
of several non-overlapping routes (trips starting and ending at the depot) must be computed to service
a set of customers. Their computational results obtained using exact column-and-cut generation
algorithms show that it is much easier to solve a route-based model than a schedule-based model due
to the length of the columns (a schedule contains much more customers than a route). Applying exact
B&P algorithms, Hernandez et al. (2016) draw a similar conclusion for another variant of the MTVRP.

To sum up, CG solution approaches for the MDVSP has considered schedule-based formulations.
Moreover, time-space networks reduce the size of arc-flow models, enabling the solution of very large-
scale MDVSP instances by MIP solvers, but they lack the flexibility required to incorporate practical
connection-specific soft or hard restrictions. In contrast, motivated by the practical needs of our partner
GIRO, we adopt a connection-based network for solving large-scale MDVSP instances involving up
to 6,296 trips, 3 depots, and 281 bus stations. To manage this complexity and efficiently solve large
real-world instances, we introduce a compact block-based model and develop a CG heuristic, enhanced
with IDCA and a novel HDD strategy. Despite the high potential of the DVS technique studied in
Oukil et al. (2007) and Benchimol et al. (2012), we have decided to not consider DVS in our work
because it requires a good initial dual solution. As shown in these works, such a solution is available
for the MDVSP but would not be easily available for an electric bus variant of the problem.

3 Problem statement and mathematical formulation

In this section, we state the MDVSP, present a block-based formulation for it, and introduce a time-
point aggregation to reduce model size.

3.1 Problem statement

Let T be a set of n bus trips to operate over a one-day time horizon. A trip is defined by a start
location £7, a start time hY, an end location ¢F, and an end time h¥. A bus fleet is available to
operate these trips and shared by a set of depots D. We assume that a sufficiently large number of
buses is available at each depot and that the bus fleet is homogeneous. The proposed methodology
can be easily adapted if these assumptions do not hold.

The MDVSP consists in finding least-cost feasible bus schedules such that each trip in T is covered
by a single bus. A bus schedule is defined as a complete daily sequence of trips assigned to a bus,
starting from a depot and ending at the same depot. A schedule may include one or more intermediate
returns to the bus’ depot during the day. In this case, the schedule is divided into a sequence of
bus blocks, each representing a continuous sequence of trips operated without returning to the depot
between them.

A connection occurs between two trips if they are covered consecutively by the same bus. A
connection is said to be direct if it does not contain a return to the depot between the two trips.
Denoting by d;; the travel time between two locations ¢ and j, a direct connection between trips ¢;
and t, is feasible if hfz — hg > 5451 45 To limit excessive unproductive driver time, connection time

hts2 — hf; must not exceed a given maximum duration (45 minutes for our tests). In certain cases,
specific direct connections may be forbidden or penalized to reflect operational preferences or network
restrictions, or to discourage undesirable routing options. Indirect connections are not forbidden or
penalized.

Les Cahiers du GERAD G-2025-82 — Revised 4

The cost structure comprises fixed and variable components. Each bus used incurs a fixed cost C
that is sufficiently large to minimize the number of buses used. Variable costs (proportional to travel
distance for the buses and to travel and waiting times for the drivers) are accounted for deadheads, pull-
outs, pull-ins, and waiting times outside the bus’ depot (i.e., during direct connections). A deadhead
refers to the movement of a bus without passengers, directly from the end of a trip to the start of
another. Similarly, a pull-out and a pull-in refer to movements without passengers between the depot
and the start of a trip and between the end of a trip and the depot, respectively. Waiting at a depot
is not penalized, as buses are not assigned drivers when they are parked there. Variable costs also
include penalties for undesirable connections when applicable. Note that no variable costs are incurred
by the trips as their total cost is a constant.

3.2 Block-based formulation

In this section, the MDVSP is formulated as a block-based set partitioning model with additional flow
conservation constraints to count the number of buses in operation at any time of the day. The flow
conservation constraints at each depot d € D are defined according to a list of time points that includes
two times for each trip t € T hy — (5d7¢§, the latest start time from depot d to arrive on time to operate
trip ¢, and hE + 5e,E,d7 the earliest end time at the depot after operating trip ¢. Let I = {1,2,...,2n}
be the index set of the 2n time points. We denote these points by Mld 1 € I, and we assume Wlthout
loss of generality that they are sorted in chronological order (i.e., Mﬂ < M]‘.i if i < j), positioning end
times before start times in case of ties. Let i+ and i~ denote the indices of the time points immediately
following and preceding index i, respectively, with 2nt = 1 and 1~ = 2n to indicate the wrap-around
between the last and first time points. For each i € I, we define a non-negative integer variable uiﬁ
to count the number of buses idling at depot d between the consecutive time points Mg and M i‘i. In
particular, variable ugn,l specifies the total number of buses used from depot d. Figure 1 illustrates
time points and corresponding variables at a depot d, where the white (resp., grey) nodes represent
arrivals (resp., departures).

4 h 4
7’ 7’ 7’
7’ 7’ 7’
4 4 4
4 4 4
d d d d d d
U2 Uz 3 U3 4 Ug,5 Us,6 U2n—1,2
M (g (08 = (=2 () e —— g
4 4 14
7’ 4 4
4 4
4 4 4
7 ugn’l 7 7

Figure 1: Example of time points and related ufﬁ variables at a depot d

The following additional notation is also needed. Let By be the set of feasible blocks for buses from
depot d € D. For each block b € By, we define a binary variable xﬁ that takes value 1 if b is selected
in the solution and 0 otherwise, and we denote by ¢, its total variable cost. Furthermore, for each trip
t € T', the binary parameter oy, ; indicates whether block b covers or not trip ¢, and for each time point
index i € I, binary parameter g";t (resp., Bgnz) is set to 1 if b starts from (resp., ends at) depot d at
time point M. Using this notation, the MDVSP can be formulated as follows:

Z Z cbxg +C Z ugml (1a)

deD beBy deD
s.t. Z Z gl =1, vteT, (1b)
deD beBy
cE D Bmat —ud = Bt = vd e D,i € I, (1c)
beBy beBy
z$ € {0,1}, € {0,1}, Yd e D,b e By, (1d)

iy = 0,integer, Vd € D,ic I;. (1le)

Les Cahiers du GERAD G-2025-82 — Revised 5

The objective function (1a) minimizes the total cost, including block variable costs and bus fixed costs.
Constraints (1b) ensure that each trip is covered by a bus exactly once. Setting I; = I for all d € D,
constraints (1c) enforce flow conservation at each time point for each depot. Sets I; are redefined
below. Finally, constraints (1d) and (1le) restrict the domain of the variables.

3.3 Time-point aggregation

For network flow problems especially those defined on time-space networks, node aggregation is com-
monly used to reduce network size without compromising feasibility and optimality. In our context,
we propose to apply time-point aggregation to reduce the number of flow conservation constraints (1c)
(and ufﬁ variables) in the block-based model. More precisely, for each depot d € D, the sequence of
time points { M, Mg, ..., Mg } is partitioned into a set Sy = {s1, S2, . . ., Sm, } of my maximum length
subsequences, with mg < 2n, such that each subsequence in S; contains time points associated with ar-
rivals at depot d, followed by time points associated with departures from d. Given that the operations
at a depot starts the day with departures and ends it with arrivals, the first subsequence in S; contains
only departure time points, while its last only arrival time points. Re-defining I; = {1,2,...,m4} as
the set of subsequence indices for depot d, the time points in a subsequence s;, i € I;, are merged into
a single aggregated time point 7%, and the variables uzﬁ are re-defined for the indices ¢ € 1.

Figure 2 illustrates this aggregation process for a depot d with 8 initial time points (top part) that
are replaced by 3 aggregated time points (bottom part). Thus, for this depot, the numbers of flow
conservation constraints and ufﬁ variables drop from 8 to 3 each.

14 A4
v 7 v 7
7 7 7 7
. v . v
/47 /47
A A1 4
’ ‘7
’ /'/,
’
,/ ,///

Figure 2: Time-point aggregation (initial on top, aggregated at bottom)

4 Solution algorithm

This section presents the solution algorithm that we propose for solving large-scale practical MDVSP
instances. This algorithm combines CG and IDCA, embedded in a diving heuristic. We describe CG
in Section 4.1, IDCA in Section 4.2, and the diving heuristic in Section 4.3.

4.1 Column generation

Because block-based model (1a)—(1le) involves a large number of variables (one per feasible bus block),
its linear relaxation, also called the master problem, can be solved using CG like in Ribeiro and Soumis

Les Cahiers du GERAD G-2025-82 — Revised 6

(1994) (see also Desrosiers et al., 2024). CG is an iterative method that solves at each iteration a
restricted master problem (RMP) and one pricing subproblem (SP) per depot in our case. The RMP
is the master problem restricted to a subset of its variables xl‘f, those that have been generated so far.
Solving it yields a pair of primal and dual solutions. The dual solution is then used to generate new
columns (variables) with a negative reduced cost by solving the SPs. The generated columns are then
added to the current RMP before starting a new iteration. The algorithm continues until no negative
reduced cost columns are found, proving that the current RMP primal solution is also optimal for the
master problem. In our CG heuristic, the CG algorithm is halted prematurely when the decrease in
the RMP optimal value becomes negligible over a predefined number of iterations.

There is one SP per depot d € D. Each SP aims at finding negative reduced cost blocks and is
formulated as a shortest path problem defined on an acyclic connection-based network G4 = (N9, A%)
as illustrated in Figure 3. Node set N¢ contains a source node 6%, a sink node 0%, and one node for
each trip t € T. Arc set A? contains three types of arcs: pull-out arcs (6%,t), t € T; pull-in arcs
(t,0%), t € T; and connection arcs (t1,t2), t1,t2 € T, when trip ¢; can be directly followed by trip ¢,
in a bus block, i.e., if the connection between t; and t, is feasible. In network G¢, a path from &%
to o represents a feasible block b € B,. To ensure that its cost is equal to the reduced cost of its
corresponding variable x{, we define the adjusted cost of an arc a € A? as follows:

Cq + qﬁgout if a is a pull-out arc
g
Co =R Cq — Tytail if a is a connection arc (2)
a

Ca — Tysail — qﬁfm if a is a pull-in arc,
where c, is the variable cost incurred along arc a, i (resp. i) is the time point index associated
with the pull-out (resp., pull-in) arc a, t'*! is the trip associated with the tail node of arc a, and
(7)o and (¢f) scpy sy, ave the dual vectors associated with constraints (1b) and (1c), respectively.

Legend: O source/sink node O trip node

--> pull-in/pull-out arc —> connexion arc

Figure 3: Connection-based network

The SP can be solved using a standard label-setting algorithm for a shortest path problem on an
acyclic network. However, this algorithm allows to generate one column per depot at each iteration
because a single path (label) is retained at the sink node. It is well known that generating many
columus (say, more than 100) at each iteration accelerate the CG process. To do so, instead of keeping
only the reduced cost of a path in a label, we also keep track of the number of trips the path covers.
The label definition then becomes: a partial path p from 6% to a node j € N? is represented by a
label L, = (Zp, Vp), where Zp denotes the reduced cost of path p (equal to the sum of the adjusted
costs of its arcs) and V}, is the number of trips covered along p. This second label dimension is called
a resource (which is unbounded in our case) and transforms the SP into a shortest path problem with

Les Cahiers du GERAD G-2025-82 — Revised 7

resource constraints. It is solved by a labeling algorithm on an acyclic network (see, e.g., Irnich and
Desaulniers, 2005). Omitting label dominance at the sink node o (i.e., keeping all labels reaching o?)
allows to generate multiple paths at each iteration.

4.2 Dynamic constraint aggregation

Set partitioning constraints (1b) often induce high degeneracy, especially when the blocks can contain a
sufficiently large number of trips, say, more than 10. This issue is more pronounced in large real-world
cases involving numerous constraints. To address this challenge and enhance the efficiency of CG, we
resort to IDCA (Bouarab et al., 2017), which is an improved varaint of the DCA method designed
by Elhallaoui et al. (2005). IDCA mitigates degeneracy by introducing an aggregated RMP (ARMP),
which is derived from a partition @ of the set of trips T into disjoint clusters. In the ARMP, each
cluster is represented by a single set partitioning constraint. IDCA begins with initial clusters and
dynamically adjust partition () throughout the solution process. In our case, the initial clusters are
generated using the following greedy algorithm. Trips are first sorted by their start times for each
bus line, and then round trips (i.e., in both directions along a line) are sequentially connected to form
clusters, ensuring that trips within a cluster are operationally compatible and belong to the same bus
line.

A block b and its associated variable acg are said to be compatible with a cluster q € @ if the trips
covered by b include either all or none of the trips in q. They are considered compatible with partition @
if they satisfy this condition for every cluster ¢ € Q. Otherwise, they are deemed incompatible.

The ARMP involves only variables that are compatible with the current partition (). Let B,(Q)
be the subset of generated blocks associated with depot d that are compatible with @ and oy 4 be a
binary parameter equal to 1 if block b covers all trips in cluster ¢, and 0 otherwise. The ARMP is
formulated as:

Z Z cbmb +C Z U 1 (3a)

deD beB deD
s.t. DD aneri=1, VgeQ, (3b)
deD beB(Q)
’L N3 + Z /Bb zmb - 'U, Z Bout Vd S D,'L S Id, (SC)
bEB/(bEB(Q)
zd >0, Vde D,be By(Q), (3d)
ul;, >0, VdeD,i€l,. (3e)

Constraints (3b) ensure that each trip cluster ¢ € @ is covered by one compatible block. All the other
constraints and the objective function remain the same as in model (1a)—(1le), except that here, the
model is linear and restricted to the set of compatible generated blocks in B/(Q), d € D. The ARMP
is solved using the simplex algorithm, which provides a primal solution and a so-called aggregated dual
solution as there is one dual variable 7y, ¢ € @, for each cluster covering constraint (3b).

When IDCA is combined with CG, the ARMP primal solution computed at a CG iteration is also

optimal for the master problem if there exists a disaggregated dual solution ((m) et (qﬁf) deD.ic Id)

such that the reduced cost of every variable in the master problem (generated or not) is non-negative.
To do so, CG-IDCA computes a disaggregated dual solution as discussed below and solves the SPs,
searching for negative reduced cost columns. If such columns are found, the compatible ones are always
added to the ARMP. The incompatible ones are only added if no negative reduced cost compatible
columns have been generated or Z¢/Z! < (, where Z¢ (resp, Z!) denotes the least reduced cost
of a compatible (resp., incompatible) column and ¢ €]0,1] is a predetermined threshold. In this
case, partition @ is updated to ensure the compatibility of all columns in the ARMP. The CG-IDCA

Les Cahiers du GERAD G-2025-82 — Revised 8

process continues until no more columns with negative reduced cost are generated or, as mentioned in
Section 4.1, when the decrease of the ARMP optimal value is not sufficient over a predefined number
of iterations (e.g, less than 0.05% over the last five iterations). Note that all incompatible columns
that are not added to the ARMP are stored in a pool of incompatible columns and can be added to
the ARMP in a subsequent iteration when a partition update makes them compatible. These columns
are also used to compute a disaggregated dual solution as explained next.

4.2.1 Dual variable disaggregation

Several algorithms have been devised to compute disaggregated dual values. In the initial DCA algo-
rithm, Elhallaoui et al. (2005) uses a sequence of shortest path problems that aim at finding a dual
solution for which a subset of the known incompatible columns, with specific properties, have a non-
negative reduced cost. Later, Bouarab et al. (2017) introduces a linear program, called the CP, that
seeks a disaggregated dual solution such that all variables with a positive value in the current ARMP
solution have a zero reduced cost with respect to this disaggregated solution and that maximizes the
reduced cost of the least reduced cost incompatible variable among the known ones. The equivalent
primal version of the CP looks for a convex combination of the known incompatible columns that can
replace a linear combination of the positive-valued compatible columns, with the objective of minimiz-
ing the reduced cost of the former convex combination with respect to the variable disaggregated dual
solution. Compared to solving a sequence of shortest path problems, using the CP helps reducing the
number of iterations because it can take into account a larger subset of incompatible columns. In the
following, we formulate the primal CP that we use.

For each depot d € D, let B; (@) be the set of the block indices of the variables xl‘f with a positive
value in the ARMP solution and let Ju(Q) represent the subset of the block indices of the known
incompatible variables with respect to partition Q. For a block b € B (Q) U J4(Q), we define the cost
coeflicient

Cp =cCp+ é?gut - ”;_ii;” (4)

where 9" and i})“ are the pull-out and pull-in time point indices associated with block b, respectively,

and (éf) dep.icr, Are the dual values of constraints (3c) in the ARMP dual solution. Further, for
depot d € D, we introduce the non-negative variables x;, j € Jq(Q), and the unrestricted variables
Ap, b€ B; (Q), which are the weights used in the respective convex and linear column combinations.

Using this additional notation, the CP writes as follows:

min Z Z éjX;l—Z Z b (5a)

deD jeJa(Q) deD pe BT (Q)
s.t. Z Z aj,tX? = Z Z oA, VEET, (5b)
deD jeJq(Q) deD pe BH (Q)
> D x=1 (5¢)
deD]EJd(Q)
X§ =0, Vde D, j € Ja(Q). (5d)

Constraints (5b)—(5c) ensure that the selected convex combination of incompatible columns can replace
the linear combination of the positive-valued columns. As mentioned above, the objective function
seeks to minimize the reduced cost of this convex combination with respect to the computed disaggre-
gated dual solution. The CP is solved using the dual simplex algorithm (shown to be more efficient than
the primal simplex algorithm in preliminary tests) to yield dual values (7~rt) el for the constraints (5b).

The disaggregated dual solution is given by ((m)tET, (gbf)deD ield) = ((ﬁ—t)teT’ (q@f)deD z‘eld>’

Note that the CP does not take into account an equivalent form of the flow conservation con-
straints (1c). Although this would have given more leeway to determine the disaggregated dual solution

Les Cahiers du GERAD G-2025-82 — Revised 9

by not fixing the ¢¢ values to those obtained from the ARMP, we have preferred this CP formulation
because handling these additional constraints increased significantly the time required to solve the CP
in preliminary computational experiments.

The dual variable disaggregation process using the CP depends on the set of available incompatible
columns. When this set is too poor (i.e., it does not contain columns that break the clusters in every
possible way), some of the disaggregated dual values become somewhat arbitrary, yielding further
disaggregation of partition @) and increased degeneracy. As generating a diversified set of incompatible
columns is not necessarily an easy task, using the CP helps but has some limitations. Suggested by
Elhallaoui et al. (2005) and recently used by Sudoso and Aloise (2025), a simple alternative to compute
disaggregated dual values consists in distributing evenly the aggregated dual value of a cluster on the
trips it contains. We propose to hybridize these two approaches to disaggregate the aggregated dual

values (#,) gcq 3 follows.

Let ¢ = {t1,t2,...,tw,} € Q be a cluster containing w, trips and assume that they are sorted in
chronological order of their start time. An incompatible block j € ;e p Ja(@Q) breaks cluster ¢ after
a trip tp € q, £ < wy, if j covers t, but not ¢y ;. These breakpoints allow to partition cluster ¢ into &,
unbroken sub-clusters r1(q),72(q), ..., 7x,(q) of consecutive trips.

The HDD procedure starts by solving the CP to obtain disaggregated dual values (frt) e for
the constraints (5b). Then, for each trip ¢ in each sub-cluster r(q) of each cluster ¢ € @, the final
disaggregated dual value for the corresponding constraint (5b) is equal to the average of the duals 7

associated with the trips ¢’ in r(q), i.e.,

R Zt’ET(q) Ty
[ar—
Ir(q)]

In this way, the trips in each sub-cluster are equally attractive in the SPs and there are less chance to
generate highly incompatible columns that cover strict subsets of trips in several sub-clusters.

(6)

4.2.2 Multi-phase dynamic constraint aggregation

To avoid disaggregating partition @) too rapidly when incompatible columns are added to the ARMP,
Elhallaoui et al. (2010) has proposed to proceed in phases, each phase restricting the set of columns
that can be generated by the SPs less and less, except in the last phase where no restriction is
typically applied. More precisely, let 0,(Q) be the degree of incompatibility of a block b with respect
to partition @, which is computed as the number of times that block b breaks a cluster as defined in
Section 4.2.1. In a phase k, only the blocks b with 6,(Q) < k can be generated. This restriction is
imposed in the SPs by adding an additional resource that counts the number of cluster breakpoints
induced by the block and that is upper bounded by k. The resulting algorithm is called the multi-phase
DCA. In our implementation, we consider four phases, namely, phases 0, 1, 2, and co. Phase 0 means
that only compatible columns can be generated, whereas there is no restriction in phase co. Each
phase ends when the CG stopping criterion stated in Section 4.1 is met.

4.3 Diving heuristic

To obtain integer solutions, we use a diving heuristic that explores a single branch of a branch-and-
bound search tree (see Sadykov et al., 2019). After solving each linear relaxation (master problem),
one or several decisions are permanently fixed before solving the updated linear relaxation, possibly
generating new columns. The diving algorithm typically stops when the CG-IDCA algorithm ends
with a linear relaxation solution that is integer.

When the solution of a linear relaxation is fractional, two types of decisions can be fixed. When
at least one x,‘f variable takes a fractional value greater or equal to a predetermined threshold (set to
0.6 for our tests), we fix to 1 all variables that satisfy this condition. Otherwise, when there exists

Les Cahiers du GERAD G-2025-82 — Revised 10

at least one connection arc for which the sum of its flows over all depots is greater than or equal to
another predefined threshold (set to 0.7), we fix to 1 the total flow of each connection arc satisfying
this condition. For arc (¢,t2) linking trips ¢; and to, this decision is imposed by removing all arcs
(t1,v) with v # t5 and all arcs (v,t2) with v # t; from all networks G¢, d € D. Finally, when the
above two cases fail (this rarely occurred in our tests), the 2 variable with the largest fractional value
is rounded up to 1.

5 Computational results

In this section, we present computational results to assess the proposed CG heuristic and evaluate the
performance of some of its components. We first describe the instances used for our tests. We then
present results for instances with forbidden direct connections induced only by a maximum unproduc-
tive time rule. Finally, we report results on instances that account for additional forbidden/penalized
connections.

All our experiments were carried out on a Linux machine equipped with an Intel Core i7-10700
processor (2.90 GHz) and 64 GB of RAM. The implementation was developed in C++ using version
4.5 of the commercial column generation library GENCOL. The RMPs are solved with CPLEX 20.1.0.

5.1 Test instances

We first conducted computational experiments on 8 instances with 1 depot, 6 instances with 2 depots
and 3 instances with 3 depots, that are derived from a real trip timetable of the Société des Transports
de Montréal (STM). For these instances, all direct connections must respect a maximum duration
constraint. No other direct connections are forbidden or penalized. The SDVSP instances were created
by selecting each of the 8 STM depots and all the trips of bus lines in the neighborhood of this depot,
ensuring that every line is assigned to a single depot. The 2-depot and 3-depot MDVSP instances were
obtained by merging two and three SDVSPs. Notice that the SDVSP instances can be solved much
more efficiently using a polynomial-time algorithm than with our CG heuristic. They are, however,
used here to assess some of the algorithmic components of the proposed algorithm.

The characteristics of these test instances are summarized in Table 1. For each instance, we report
the number of depots, the number of bus stations (line ends), the number of trips, and the number of
clusters used to initialize IDCA. Furthermore, the last three columns provide the number of rows in
the master problem (MP) for the CG algorithm (without IDCA), in the first iteration of CG-IDCA,
and on average in all the root node CG iterations of CG-IDCA (with HDD), respectively. The largest
3-depot instances has close to 6,300 trips, linking 281 stations. It induces large SP networks involving
more than 6,000 nodes and 550,000 arcs. We observe that IDCA reduces significantly the number of
rows in the master problem, starting with an average reduction of 51.6% and maintaining an average
reduction of 30.2% over all CG iterations at the root node. This helps solving the RMPs faster and
mitigating degeneracy.

To further test the proposed methodology, we have conducted a second series of experiments on
modified instances. These instances are the same as the ones above, except that we penalize or forbid
additional direct connections according to the two following scenarios:

Forbidden Arcs: A portion of the connection arcs involving a deadhead is removed. Specifically,
we randomly remove 15% or 30% of these arcs to generate new instances for both SDVSP and
MDVSP.

Penalized Arcs: A portion of the connection arcs involving a deadhead (15% or 30%) is randomly
selected to be penalized. The penalty cost p, for such a connection arc a = (t1,%2) consists
of a fixed component v and a variable component, with a maximal value vV, that depends
on the risk of being late to the subsequent trip. This risk is inversely related to the available

Les Cahiers du GERAD G-2025-82 — Revised 11

waiting time between the trips involved in the connection. Specifically, if the travel time 5@{3 o5
b1 t2

occupies most of the connection time hfg - hfl, the likelihood of tardiness increases, and the arc

is assigned a larger penalty to discourage its selection. For a connection arc a = (t1,t2), this

penalty is computed as:
ooy [
Pa=7"+7" X :
’ hi, = by

To be able to compare the impact of forbidding or penalizing such arcs on the performance of
the proposed algorithms, we have generated instances for both scenarios that forbid or penalize the
same arcs.

Hereafter, we call the first set of instances (listed in Table 1), the original instances and the second
one, the instances with additional forbidden/penalized connections. Note that the latter instances
have the same numbers of depots, stations, and trips as the former instances, but the other statistics
reported in Table 1 may slightly differ.

Table 1: Instance Characteristics

MP Rows

Initial First Average
Instance Depots Stations Trips Clusters CG IDCA IDCA
Depot50 1 119 3,162 926 4,117 1,881 2,846
Depotb4 1 141 2,792 922 3,717 1,847 2,744
Depotb5 1 98 2,081 380 2,912 1,211 1,946
Depot56 1 116 3,430 900 4,460 1,930 2,843
Depot57 1 107 1,374 454 1,984 1,064 1,512
Depot58 1 124 2,647 767 3,514 1,634 2,477
Depot59 1 90 2,275 406 3,169 1,300 2,121
Depot60 1 78 1,525 318 2,163 956 1,536
Depot50_58 2 223 5,809 1,693 8,095 3,979 5,485
Depot50_60 2 168 4,687 1,242 6,868 3,423 4,870
Depot55_57 2 173 3,455 833 5,564 2,942 4,123
Depot55_58 2 200 4,728 1,144 6,976 3,392 4,710
Depot55_59 2 170 4,356 786 6,647 3,077 4,399
Depot57_59 2 173 3,649 854 5,777 2,982 4,215
Depot55_57_58 3 270 6,102 1,594 9,687 5,179 6,811
Depot55_57_59 3 234 5,730 1,233 9,361 4,864 6,540
Depot57_58_59 3 281 6,296 1,618 9,830 5,152 6,706

5.2 Results for the original instances

In this section, we present computational results obtained on the original instances that will allow to
assess the impact of using a block-based model instead of a schedule-based model, of combining CG
with IDCA, and of applying HDD to disaggregate the dual variables. To do so, we have solved these
instances using the following four solution approaches:

BM/CG: Block-based model (1a)—(1e) solved by the CG heuristic consisting of the CG algorithm
and the diving heuristic described in Sections 4.1 and 4.3, respectively.

SM/CG: A schedule-based model solved by a CG heuristic similar to that used for the block-based
model. The schedule-based model and the modifications to the CG heuristic are described in
Section 1 of the Supplementary Materials.

BM/CG-IDCA: Same as BM/CG except that CG is combined with IDCA (see Section 4.2). The
aggregated dual variables are disaggregated using only the CP.

BM/CG-IDCA-HDD: Same as BM/CG-IDCA except that HDD is used to disaggregate the dual
variables (see Section 4.2).

Les Cahiers du GERAD G-2025-82 — Revised 12

As mentioned in Section 4, the CG process ends when there are no more negative reduced cost
columns or when the (A)RMP optimal value has not decreased by a minimum percentage v of
the current (A)RMP optimal value over a predefined number of iterations n’. Based on preliminary
experiments, we have chosen the following values for v and n’: v” = 0.005% and n! = 5 for BM/CG;
vP =0.02% and n! = 20 for SM/CG which is more prone to degeneracy; and v = 0.05% and n! =5
for BM/CG-IDCA and BM/CG-IDCA-HDD. Note that, for BM/CG-IDCA and BM/CG-IDCA-HDD,
this early stopping criterion applies to each phase.

To assess the quality of the computed solutions by the four proposed algorithms, we have solved to
optimality the linear relaxation of each test instance to yield a lower bound z. This lower bound was
computed separately using a CG algorithm that stops when negative reduced cost columns cannot be
generated. Given an upper bound z provided by a feasible integer solution, the optimality gap of this
solution is calculated as Gap = (2 — z)/z.

We begin by presenting the results obtained for the SDVSP instances in Table 2. This table is split
into four blocks of rows, one for each algorithm. For each algorithm and each instance, the second
and third columns indicate the total numbers of CG iterations (Itr.) and nodes explored in the diving
heuristic, respectively. The next three columns provide the time in minutes devoted to solving the
(A)RMP, solving the SPs, and solving the whole problem (Total). Note that the total time can exceed
than the sum of the (A)RMP and SP times because it includes time for other processes (input parsing,
loading and unloading the network of each SP in each CG iteration, applying the fixing decisions,
etc.). The last three columns report the total cost of the computed solution, its optimality gap in
percentage, and the number of buses used.

The results clearly indicate that SM/CG is much slower than the others, yielding the maximum total
time for each SDVSP instance. At the opposite, BM/CG-IDCA-HDD requires the least computational
time for every tested instance, except one (Depot58) where it is slightly outperformed by BM/CG-
IDCA. Contrary to SM/CG where 55% of the total time is dedicated to the RMP, all solution methods
relying on the block-based model spend a much large proportion of the total time on the (A)RMP. This
can be explained by the use of SP networks that do not allow intermediate depot returns, reducing
the average length of the generated paths. We also make the following high-level observations: for
all methods, the number of nodes explored in the diving heuristic is quite small (at most 41) when
considering the size of the test instances; the optimality gaps are very small for SM/CG and BM/CG,
and small for the two methods applying IDCA; and all methods achieve the same number of buses for
each instance.

To ease the comparison of the four solution approaches, we provide additional average comparative
results in Table 3 for various pairs of approaches. To compare approach Al versus approach A2, we
report the average variations in percentage per instance obtained by Al with respect to A2 for the
number of CG iterations (Itr), the number of nodes explored, and the cost of the computed solution.
We also indicate the average speedup factor obtained by A1l over A2 for the (A)RMP time, the SP
time and the total time.

The BM/CG versus SM/CG results clearly show that adopting the block-based model yields a large
average speedup factor of 3.8 without changing solution quality. This gain is due to easier-to-solve
SPs and a faster convergence of the CG process (close to 70% less iterations) incurred by columns
with less trips that help to reduce degeneracy and induce a sparser constraint coefficient matrix in
the RMP. Because this confirms what has been previously observed in the literature for other types of
applications (see Section 2), we will not present other results for the SM/CG approach.

Next, comparing BM/CG-IDCA with BM/CG, we observe that IDCA brings an additional accel-
eration (average factor of 2.2) but with a slight cost deterioration. This speedup comes from a large
average reduction of the (A)RMP time that takes the largest portion of the total time. Note that the
average number of iterations increases substantially with IDCA as reported in previous studies (due

Les Cahiers du GERAD G-2025-82 — Revised 13

to a smaller number of compatible/incompatible columns added to the ARMP at each iteration), but
this increase is largely compensated by a much smaller average time per iteration.

Table 2: Detailed SDVSP Results

Time (min) Total Gap
Instance Itr. Nodes (A)RMP SPs Total Cost (%) Buses
SM/CG
Depot50 662 20 48.8 39.5 93.0 2,124,074 0.000 210
Depotb4 463 17 28.3 23.2 54.7 2,104,315 0.000 208
Depotb55 411 11 10.0 10.4 21.7 1,323,834 0.001 131
Depot56 568 23 55.9 47.5 107.7 2,094,086 0.001 207
Depot57 337 10 2.8 2.7 6.0 1,124,130 0.001 111
Depot58 389 15 17.7 15.6 35.6 2,213,098 0.000 219
Depot59 1005 18 222 256 49.1 1,173,996 0.001 116
Depot60 456 18 5.0 4.5 10.6 1,021,711 0.000 101
BM/CG
Depot50 240 16 25.7 1.2 27.0 2,124,117 0.002 210
Depotb4 142 10 11.8 0.5 12.4 2,104,315 0.000 208
Depot55 112 4 7.1 0.3 7.5 1,323,834 0.001 131
Depot56 186 11 24.7 1.4 26.1 2,094,073 0.000 207
Depot57 72 2 1.5 0.1 1.6 1,124,124 0.000 111
Depot58 157 12 9.7 0.5 10.1 2,213,092 0.000 219
Depot59 123 4 9.1 0.7 9.9 1,174,022 0.003 116
Depot60 187 12 3.5 0.2 3.7 1,021,710 0.000 101
BM/CG-IDCA
Depot50 595 41 18.0 3.1 21.4 2,124,168 0.005 210
Depotb4 413 33 8.3 1.3 9.7 2,104,339 0.002 208
Depotb55 214 14 1.0 0.5 1.7 1,324,348 0.040 131
Depot56 535 38 28.5 3.5 32.2 2,094,216 0.007 207
Depot57 242 14 0.9 0.2 1.2 1,124,153 0.003 111
Depot58 205 10 1.1 0.7 2.3 2,214,837 0.079 219
Depot59 388 25 2.9 1.1 4.2 1,174,086 0.008 116
Depot60 471 37 2.2 0.3 2.5 1,021,746 0.004 101
BM/CG-IDCA-HDD
Depot50 472 17 8.7 2.0 11.4 2,124,285 0.010 210
Depotb4 326 15 4.7 0.8 5.6 2,104,388 0.004 208
Depot55 252 21 07 02 1.1 1,3238%7 0005 131
Depot56 347 30 7.4 1.4 9.5 2,094,311 0.012 207
Depotb7 199 13 0.5 0.1 0.7 1,124,205 0.007 111
Depot58 277 23 1.4 0.4 2.6 2,213,338 0.011 219
Depot59 311 20 1.2 0.5 2.2 1,174,061 0.006 116
Depot60 471 40 1.4 0.2 1.9 1,021,784 0.007 101

Table 3: Pairwise Comparisons of Solution Approaches for the SDVSP

Variation (%) Speedup Factor
Itr Nodes Cost (A)RMP SP Total
BM/CG vs SM/CG -69.8 -48.5 0.000 1.9 38.2 3.8
BM/CG-IDCA vs BM/CG 156.4 274.8 0.017 3.2 05 2.2
BM/CG-IDCA-HDD vs BM/CG-IDCA -7.7 3.4 -0.011 20 1.9 1.8
BM/CG-IDCA-HDD vs BM/CG 1244 2411 0.007 49 09 3.3
BM/CG-IDCA-HDD vs SM/CG -33.9 389 0.007 9.2 336 124

The BM/CG-IDCA-HDD versus BM/CG-IDCA comparison indicates that using HDD slightly
reduces the average number of iterations and produces another additional average speedup factor of
1.8. This is due to a better dual variable disaggregation process that helps generating columns that
are more suitable (often compatible or incompatible with a small degree of incompatibility) to keep

Les Cahiers du GERAD G-2025-82 — Revised 14

the ARMP well aggregated. Indeed, for these instances, the average number of rows in the ARMP per
CG iteration compared to the number of rows in the RMP without aggregation is reduced by 30.2%
with HDD and by only 16.1% without HDD. Furthermore, more evenly spread dual values seem to
facilitate the solution of the SPs (SP time speedup factor of 1.9).

The last two rows of Table 3 allow to assess the combined average speedup of all proposed tech-
niques. Using BM/CG-IDCA-HDD yields an average speedup factor of 3.3 over BM/CG and of 12.4
over SM/CG. The latter is due to large reductions in the number of CG iterations, in the time devoted
to solving the (A)RMP, and, to a larger extent, in the time required by the SPs. Our results indi-
cate that every technique brings a significant contribution to this speedup. They enable to solve the
largest SDVSP instance (Depot56 with 3,430 trips and 116 stations) in less than 10 minutes, whereas
it requires 107 minutes using the basic SM/CG approach.

Let us mention a final observation about the number of nodes reported in these two tables, which
is also valid for the forthcoming MDVSP results. We can see that the average varies from one method
to another. It is difficult to identify the reason of this variation but it does not have a direct impact
on the total computational time. Indeed, for the SDVP instances, the two solution approaches with
the smallest average numbers of nodes (SM/CG and BM/CG) have the largest average total times.

Now, let us present the results obtained for the original MDVSP instances in Tables 4 and 5, which
are formatted like the previous two tables. From the detailed results in Table 4, we observe again that
BM/CG-IDCA-HDD is faster than the other methods as it yields the least total time for all tested
instances. Like for the SDVSP instances, most of the time is devoted to solving the (A)RMP for all
solution algorithms. Anew, all algorithms produce solutions with the same number of buses and with
optimality gaps that are very small for BM/CG and small for BM/CG-IDCA and BM/CG-IDCA-
HDD. For BM/CG-IDCA-HDD, this small cost increase remains acceptable given the large speedup
obtained.

The comparative results in Table 5 are similar to those presented in Table 3 for the original SDVSP
instances. However, for the comparison BM/CG-IDCA versus BM/CG, we observe that the average
speedup factor is less than for the SDVSP instances (1.4 instead of 2.2) because IDCA did not succeed
to reduce substantially the ARMP time. On the other hand, the average computational time gain
achieved by using HDD being more important for the MDVSP instances (speedup factor of 2.4 instead
of 1.8), the overall speedup factor yielded by BM/CG-IDCA-HDD over BM/CG is 3.4 and, thus, very
similar to the one observed for the SDVSP instances. Here again, this acceleration results from much
less average time dedicated to solving the (A)RMP despite a larger number of CG iterations.

By combining IDCA with CG and using the proposed HDD strategy to reduce degeneracy and
generate more suitable columns, the largest original MDVSP instance (Depot57_58_59 with 3 depots,
6,296 trips and 281 stations) is solved in less than 40 minutes with BM/CG-IDCA-HDD compared to
around 140 minutes with BM/CG, resulting in a highly significant speedup factor of 3.5.

5.3 Results for instances with additional forbidden/penalized connections

To further analyze the impact of using BM/CG-IDCA-HDD over BM/CG, we have conducted another
series of tests on instances where direct connections involving a deadhead are either forbidden or
penalized. Four scenarios are considered: scenario Forbidden/15% (resp., Forbidden/30%) where 15%
(resp., 30%) of these connections are forbidden, and scenario Penalized/15% (resp., Penalized/30%)
where 15% (resp., 30%) of them are penalized.

The detailed results of these experiments are reported in Section 2 of the Supplementary Mate-
rials, while average results allowing to compare BM/CG with BM/CG-IDCA-HDD are provided in
Table 6. First, we can observe from the detailed results and those reported in the previous section
that forbidding/penalizing additional direct connections increases the cost of the computed solutions
moderately for most instances and more substantially for a few instances where the number of buses

Les Cahiers du GERAD

G-2025-82

— Revised

15

used increases. This was expected as some of these connections were selected in the solutions of the
instances without additional connection restrictions or penalties.

Table 4: Detailed MDVSP Results

Time (min) Total Gap
Instance Itr. Nodes (A)RMP SPs Total Cost (%) Buses
BM/CG
Depot50_58 339 18 114.3 4.1 118.6 4,254,398 0.001 421
Depot50_60 634 70 108.8 3.3 112.0 3,092,075 0.002 306
Depot55.57 153 5 21.2 0.9 23.9 2,395,374 0.002 237
Depot55._58 224 9 56.5 2.2 58.8 3,433,865 0.002 340
Depot55_59 218 7 57.9 3.0 61.1 2,465,551 0.003 244
Depot57_59 180 9 31.9 2.1 34.0 2,245,628 0.002 222
Depot55_57_58 192 8 133.0 4.0 1371 4,526,267 0.001 448
Depot55.57_59 199 7 118.2 5.1 124.0 3,548,325 0.002 351
Depot57.58_.59 181 8 135.4 5.4 141.3 4,387,580 0.002 434
BM/CG-IDCA
Depot50_58 728 27 101.6 13.0 1154 4,254,772 0.010 421
Depot50-60 716 25 78.2 7.4 86.1 3,092,305 0.010 306
Depot55.57 384 14 17.7 2.8 20.8 2,395,493 0.007 237
Depot55_58 409 18 33.3 6.2 40.9 3,434,619 0.024 340
Depot55_59 423 17 24.1 8.3 34.6 2,466,053 0.023 244
Depot57_59 413 15 18.6 5.7 24.3 2,245,743 0.007 222
Depot55_57_-58 503 26 65.4 11.0 78.5 4,527,126 0.020 448
Depot55.57_59 520 22 69.3 13.3 83.8 3,548,496 0.007 351
Depot57_58_59 566 29 93.5 16.0 110.7 4,387,775 0.006 434
BM/CG-IDCA-HDD
Depot50_58 459 18 26.2 6.3 34.0 4,255,326 0.023 421
Depot50-60 492 17 26.4 4.4 32.1 3,092,453 0.014 306
Depot55.57 337 13 9.1 1.8 11.7 2,395,442 0.005 237
Depot55_58 350 18 11.1 3.3 15.6 3,434,187 0.011 340
Depot55_59 371 17 8.8 3.2 13.0 2,465,725 0.010 244
Depot57_59 343 10 10.7 2.4 13.9 2,245,705 0.006 222
Depot55_57_58 466 25 32.8 7.3 41.7 4,527,117 0.019 448
Depot55.57_59 401 16 27.5 8.1 37.0 3,548,626 0.010 351
Depot57.58.59 513 37 29.2 9.3 39.2 4,388,390 0.020 434

Table 5: Pairwise Comparisons of Solution Approaches for the MDVSP

Variation (%)

Speedup Factor

Itr Nodes Cost (A)RMP SP Total
BM/CG-IDCA vs BM/CG 124.5 130.8 0.011 1.6 04 1.4
BM/CG-IDCA-HDD vs BM/CG-IDCA -182 -12.1 0.001 2.7 1.9 2.4
BM/CG-IDCA-HDD vs BM/CG 86.4 1158 0.011 43 0.7 3.4

From the comparative results in Table 6, we can see that BM/CG-IDCA-HDD still yields a signifi-
cant average speedup factor over BM/CG for all scenarios, ranging between 2.4 and 2.9. This speedup
is again due to a large reduction of the (A)RMP time that greatly compensates the increase of the SP
time. For all scenarios, it is less than the speedup factors (3.3 for the SDVSP and 3.4 for the MDVSP)
reported in Section 5.2. We believe that removing/penalizing additional connections diminishes de-
generacy because slightly shorter columns are generated and, therefore, the tools put in place to fight
degeneracy are less useful. Nevertheless, the achieved speedups clearly show that these tools remain
highly relevant to achieve the best results.

Les Cahiers du GERAD G-2025-82 — Revised 16

Table 6: Comparative Results for the Instances with Additional Forbidden/Penalized Connections: BM/CG-IDCA-HDD
vs BM/CG

Variation (%) Speedup Factor
Scenario Itr Nodes Cost (A)RMP SP Total
SDVSP
Forbidden/15% 129.2 234.4 0.007 3.3 0.6 2.5
Forbidden/30% 149.2 236.8 0.006 4.0 0.7 2.8
Penalized /15% 143.1 212.9 0.005 3.9 07 2.6
Penalized /30% 133.8 179.0 0.005 3.5 0.6 2.4
MDVSP
Forbidden/15% 86.6 89.8 0.011 3.4 0.6 2.8
Forbidden/30% 84.1 59.1 0.009 34 0.6 2.9
Penalized /15% 111.9 184.2 0.011 29 0.5 2.4
Penalized /30% 85.2 63.2 0.009 3.0 0.6 2.6

6 Conclusion

In this paper, we proposed to solve large-scale practical MDVSP instances using a CG-based diving
heuristic that combines CG with IDCA and a novel HDD strategy, to mitigate degeneracy. This algo-
rithm is applied to a block-based model that is also less prone to degeneracy than a traditional schedule-
based model. Furthermore, in response to the needs of our industrial partner, we use connection-based
networks in the pricing SPs to easily handle restrictions or penalties on undesirable direct connections
between two trips.

To assess the impact of using all these components, we conducted computational experiments on
real instances of the Montreal transit agency, involving up to 3 depots and more than 6,000 trips. The
obtained results on the SDVSP instances indicate that the best algorithm, BM/CG-IDCA-HDD, yields
an impressive average speedup factor of 12.4 over the basic SM/CG algorithm. Our results also show
that, for both the SDVSP and the MDVSP instances, average acceleration factors ranging between
2.4 and 3.4 can be achieved by applying IDCA with HDD on top of CG when adopting a block-based
model for both solution approaches. These time gains come with an increase of the solution cost that is
deemed negligible (less than 0.011% on average). For example, the BM/CG-IDCA-HDD algorithm can
solve the largest tested MDVSP instance with 3 depots and 6,296 in less than 40 minutes, producing
a solution with a 0.02% optimality gap.

These results show that the proposed methodology can be highly effective at solving practical large-
scale MDVSP instances. Future work will extend this solution method to electric bus scheduling by
integrating charging decisions and battery constraints. In particular, adopting a block-based model in
this case is challenging because the flow conservation constraints must take into account the state-of-
charge of the buses.

References

Pascal Benchimol, Guy Desaulniers, and Jacques Desrosiers. Stabilized dynamic constraint aggregation for
solving set partitioning problems. European Journal of Operational Research, 223(2):360-371, 2012. doi:
https://doi.org/10.1016/j.ejor.2012.07.004. URL https://www.sciencedirect.com/science/article/pii/
S0377221712005255.

A. A. Bertossi, P. Carraresi, and G. Gallo. On some matching problems arising in vehicle scheduling
models. Networks, 17(3):271-281, 1987. doi: https://doi.org/10.1002/net.3230170303. URL https:
//onlinelibrary.wiley.com/doi/abs/10.1002/net.3230170303.

Lawrence Bodin, D Rosenfield, and Andy Kydes. UCOST: a micro approach to a transportation planning
problem. Journal of Urban Analysis, 5(1):47-69, 1978.

Hocine Bouarab, Issmail El Hallaoui, Abdelmoutalib Metrane, and Frangois Soumis. Dynamic constraint and
variable aggregation in column generation. European Journal of Operational Research, 262(3):835-850, 2017.

https://www.sciencedirect.com/science/article/pii/S0377221712005255
https://www.sciencedirect.com/science/article/pii/S0377221712005255
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230170303
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230170303

Les Cahiers du GERAD G-2025-82 — Revised 17

doi: https://doi.org/10.1016/j.ejor.2017.04.049. URL https://www.sciencedirect.com/science/article/
pii/sS037722171730396X.

Guy Desaulniers, June Lavigne, and Francois Soumis. Multi-depot vehicle scheduling problems with time
windows and waiting costs. European Journal of Operational Research, 111(3):479-494, 1998.

Jacques Desrosiers, Marco Liibbecke, Guy Desaulniers, and Jean Bertrand Gauthier. Branch-and-price. Les
Cahiers du GERAD G-2024-36, Groupe d’études et de recherche en analyse des décisions, June 2024. URL
https://www.gerad.ca/en/papers/G-2024-36.

Issmail Elhallaoui, Daniel Villeneuve, Frangois Soumis, and Guy Desaulniers. Dynamic aggregation of set-
partitioning constraints in column generation. Operations Research, 53(4):632-645, 2005. doi: 10.1287/
opre.1050.0222. URL https://doi.org/10.1287/opre.1050.0222.

Issmail Elhallaoui, Metrane Abdelmoutalib, Francois Soumis, and Guy Desaulniers. Multi-phase dynamic
constraint aggregation for set partitioning type problems. Mathematical Programming, 123:345-370, 06
2010. doi: 10.1007/s10107-008-0254-5.

Juliette Gerbaux, Guy Desaulniers, and Quentin Cappart. A machine-learning-based column genera-
tion heuristic for electric bus scheduling. Computers & Operations Research, 173:106848, 2025. doi:
https://doi.org/10.1016/j.cor.2024.106848. URL https://www.sciencedirect.com/science/article/pii/
S50305054824003204.

Vitali Gintner, Natalia Kliewer, and Leena Suhl. Solving large multiple-depot multiple-vehicle-type bus schedul-
ing problems in practice. OR Spectrum, 27:507-523, 2005.

K. Gkiotsalitis, C. Iliopoulou, and K. Kepaptsoglou. An exact approach for the multi-depot electric bus
scheduling problem with time windows. European Journal of Operational Research, 306(1):189-206, 2023.
doi: https://doi.org/10.1016/j.ejor.2022.07.017. URL https://www.sciencedirect.com/science/article/
pii/S0377221722005707.

Pablo C. Guedes and Denis Borenstein. Column generation based heuristic framework for the multiple-
depot vehicle type scheduling problem. Computers & Industrial Engineering, 90:361-370, 2015. doi:
https://doi.org/10.1016/j.cie.2015.10.004. URL https://www.sciencedirect.com/science/article/pii/
50360835215003976.

Pablo Cristini Guedes, William Prigol Lopes, Leonardo Rosa Rohde, and Denis Borenstein. Simple and efficient
heuristic approach for the multiple-depot vehicle scheduling problem. Optimization Letters, 10:1449-1461,
2016.

Ahmed Hadjar and Francois Soumis. Dynamic window reduction for the multiple depot vehicle schedul-
ing problem with time windows. Computers & Operations Research, 36(7):2160-2172, 2009. doi:
https://doi.org/10.1016/j.cor.2008.08.010. URL https://www.sciencedirect.com/science/article/pii/
S50305054808001391.

Ahmed Hadjar, Odile Marcotte, and Frangois Soumis. A branch-and-cut algorithm for the multiple depot
vehicle scheduling problem. Operations Research, 54(1):130-149, 2006.

Florent Hernandez, Dominique Feillet, Rodolphe Giroudeau, and Olivier Naud. Branch-and-price algorithms for
the solution of the multi-trip vehicle routing problem with time windows. European Journal of Operational
Research, 249(2):551-559, 2016.

0O.J. Ibarra-Rojas, F. Delgado, R. Giesen, and J.C. Munoz. Planning, operation, and control of bus trans-
port systems: A literature review. Transportation Research Part B: Methodological, 77:38-75, 2015. doi:
https://doi.org/10.1016/j.trb.2015.03.002. URL https://www.sciencedirect.com/science/article/pii/
S0191261515000454.

Stefan Irnich and Guy Desaulniers. Shortest path problems with resource constraints. In Guy Desaulniers,
Jacques Desrosiers, and Marius M. Solomon, editors, Column Generation, pages 33—-65. Springer US, Boston,
MA, 2005.

Natalia Kliewer, Taieb Mellouli, and Leena Suhl. A new solution model for multi-depot multi-vehicle-type
vehicle scheduling in (sub) urban public transport. In Proceedings of the 13th Mini-EURO Conference.
Politechnic of Bari, 2002.

Natalia Kliewer, Taieb Mellouli, and Leena Suhl. A time—space network based exact optimization model for
multi-depot bus scheduling. European Journal of Operational Research, 175(3):1616-1627, 2006.

Benoit Laurent and Jin-Kao Hao. Iterated local search for the multiple depot vehicle scheduling problem.
Computers & Industrial Engineering, 57(1):277-286, 2009. doi: https://doi.org/10.1016/j.cie.2008.11.028.
URL https://www.sciencedirect.com/science/article/pii/S0360835208003148.

https://www.sciencedirect.com/science/article/pii/S037722171730396X
https://www.sciencedirect.com/science/article/pii/S037722171730396X
https://www.gerad.ca/en/papers/G-2024-36
https://doi.org/10.1287/opre.1050.0222
https://www.sciencedirect.com/science/article/pii/S0305054824003204
https://www.sciencedirect.com/science/article/pii/S0305054824003204
https://www.sciencedirect.com/science/article/pii/S0377221722005707
https://www.sciencedirect.com/science/article/pii/S0377221722005707
https://www.sciencedirect.com/science/article/pii/S0360835215003976
https://www.sciencedirect.com/science/article/pii/S0360835215003976
https://www.sciencedirect.com/science/article/pii/S0305054808001391
https://www.sciencedirect.com/science/article/pii/S0305054808001391
https://www.sciencedirect.com/science/article/pii/S0191261515000454
https://www.sciencedirect.com/science/article/pii/S0191261515000454
https://www.sciencedirect.com/science/article/pii/S0360835208003148

Les Cahiers du GERAD G-2025-82 — Revised 18

Aristide Mingozzi, Roberto Roberti, and Paolo Toth. An exact algorithm for the multitrip vehicle routing
problem. INFORMS Journal on Computing, 25(2):193-207, 2013.

Seyedeh Simin Mousavi, Alireza Pooya, Pardis Roozkhosh, and Morteza Pakdaman. A new bi-objective
simultaneous model for timetabling and scheduling public bus transportation. Opsearch, 62(1):198-229,
2025.

Amar Oukil, Hatem Ben Amor, Jacques Desrosiers, and Hicham El Gueddari. Stabilized column generation
for highly degenerate multiple-depot vehicle scheduling problems. Computers & Operations Research, 34
(3):817-834, 2007. doi: https://doi.org/10.1016/j.cor.2005.05.011. URL https://www.sciencedirect.com/
science/article/pii/S0305054805001590.

Ann-Sophie Pepin, Guy Desaulniers, Alain Hertz, and Dennis Huisman. A comparison of five heuristics for
the multiple depot vehicle scheduling problem. Journal of Scheduling, 12:17-30, 2009.

Shyam SG Perumal, Richard M Lusby, and Jesper Larsen. Electric bus planning & scheduling: A review of
related problems and methodologies. European Journal of Operational Research, 301(2):395-413, 2022.

Celso C Ribeiro and Frangois Soumis. A column generation approach to the multiple-depot vehicle scheduling
problem. Operations research, 42(1):41-52, 1994.

Léa Ricard, Guy Desaulniers, Andrea Lodi, and Louis-Martin Rousseau. Chance-constrained battery manage-
ment strategies for the electric bus scheduling problem. arXiv preprint arXiv:2503.19853, 2025.

Mohammad Sadrani, Alejandro Tirachini, and Constantinos Antoniou. Bus scheduling with heterogeneous
fleets: Formulation and hybrid metaheuristic algorithms. Expert Systems with Applications, 263:125720,
2025. doi: https://doi.org/10.1016/j.eswa.2024.125720. URL https://www.sciencedirect.com/science/
article/pii/S0957417424025879.

Ruslan Sadykov, Francois Vanderbeck, Artur Pessoa, Issam Tahiri, and Eduardo Uchoa. Primal heuristics for
branch and price: The assets of diving methods. INFORMS Journal on Computing, 31(2):251-267, 2019.
Antonio M. Sudoso and Daniel Aloise. A column generation algorithm with dynamic constraint aggregation
for minimum sum-of-squares clustering. INFORMS Journal on Computing, 0(0):null, 2025. doi: 10.1287/

ijoc.2024.0938. URL https://doi.org/10.1287/joc.2024.0938.

Marcel E van Kooten Niekerk, JM van den Akker, and JA Hoogeveen. Scheduling electric vehicles. Public
Transport, 9:155-176, 2017.

Sule Yildirim and Barig Yildiz. Electric bus fleet composition and scheduling. Transportation Research Part
C: Emerging Technologies, 129:103197, 2021.

Le Zhang, Shuaian Wang, and Xiaobo Qu. Optimal electric bus fleet scheduling considering battery degradation
and non-linear charging profile. Transportation Research Part E, 154:102445, 2021.

https://www.sciencedirect.com/science/article/pii/S0305054805001590
https://www.sciencedirect.com/science/article/pii/S0305054805001590
https://www.sciencedirect.com/science/article/pii/S0957417424025879
https://www.sciencedirect.com/science/article/pii/S0957417424025879
https://doi.org/10.1287/joc.2024.0938

	Introduction
	Literature review
	Problem statement and mathematical formulation
	Problem statement
	Block-based formulation
	Time-point aggregation

	Solution algorithm
	Column generation
	Dynamic constraint aggregation
	Dual variable disaggregation
	Multi-phase dynamic constraint aggregation

	Diving heuristic

	Computational results
	Test instances
	Results for the original instances
	Results for instances with additional forbidden/penalized connections

	Conclusion

