
Les Cahiers du GERAD ISSN: 0711–2440

Dynamic constraint aggregation for the multiple-depot
bus scheduling problem

N. Rasouli, G. Desaulniers, M. Saddoune, F. Soumis

G–2025–82

December 2025
Revised: January 2026

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
travail a été soumis à des revues avec comité de révision. Lorsqu’un
document est accepté et publié, le pdf original est retiré si c’est
nécessaire et un lien vers l’article publié est ajouté.

Citation suggérée : N. Rasouli, G. Desaulniers, M. Saddoune,
F. Soumis (Décembre 2025). Dynamic constraint aggregation for
the multiple-depot bus scheduling problem, Rapport technique, Les
Cahiers du GERAD G– 2025–82, GERAD, HEC Montréal, Canada.
Version révisée: Janvier 2026

Avant de citer ce rapport technique, veuillez visiter notre site Web
(https://www.gerad.ca/fr/papers/G-2025-82) afin de mettre à
jour vos données de référence, s’il a été publié dans une revue sci-
entifique.

The series Les Cahiers du GERAD consists of working papers
carried out by our members. Most of these pre-prints have been
submitted to peer-reviewed journals. When accepted and published,
if necessary, the original pdf is removed and a link to the published
article is added.

Suggested citation: N. Rasouli, G. Desaulniers, M. Saddoune,
F. Soumis (December 2025). Dynamic constraint aggregation for
the multiple-depot bus scheduling problem, Technical report, Les
Cahiers du GERAD G–2025–82, GERAD, HEC Montréal, Canada.
Revised version: January 2026

Before citing this technical report, please visit our website (https:
//www.gerad.ca/en/papers/G-2025-82) to update your reference
data, if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grâce
au soutien de HEC Montréal, Polytechnique Montréal, Université
McGill, Université du Québec à Montréal, ainsi que du Fonds de
recherche du Québec – Nature et technologies.

Dépôt légal – Bibliothèque et Archives nationales du Québec, 2025
– Bibliothèque et Archives Canada, 2025

The publication of these research reports is made possible thanks
to the support of HEC Montréal, Polytechnique Montréal, McGill
University, Université du Québec à Montréal, as well as the Fonds de
recherche du Québec – Nature et technologies.

Legal deposit – Bibliothèque et Archives nationales du Québec, 2025
– Library and Archives Canada, 2025

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2025-82
https://www.gerad.ca/en/papers/G-2025-82
https://www.gerad.ca/en/papers/G-2025-82

Dynamic constraint aggregation for the multiple-depot
bus scheduling problem

Nadia Rasouli a, b

Guy Desaulniers a, b

Mohammed Saddoune a, b, c

François Soumis a, b

a Département de mathématiques et de génie
industriel, Polytechnique Montréal, Montréal,
(Qc), Canada, H3T 1J4

b Group for Research in Decision Analysis
(GERAD), Montréal (Qc), Canada, H3T 1J4

c Department of Computer Science, University of
Hassan II, FST of Mohammedia, Casablanca,
Morocco

nadia.rasouli@gerad.ca

guy.desaulniers@gerad.ca

December 2025
Revised: January 2026
Les Cahiers du GERAD
G–2025–82
Copyright © 2025 Rasouli, Desaulniers, Saddoune, Soumis

Les textes publiés dans la série des rapports de recherche Les Cahiers
du GERAD n’engagent que la responsabilité de leurs auteurs. Les
auteurs conservent leur droit d’auteur et leurs droits moraux sur leurs
publications et les utilisateurs s’engagent à reconnâıtre et respecter
les exigences légales associées à ces droits. Ainsi, les utilisateurs:

• Peuvent télécharger et imprimer une copie de toute publica-
tion du portail public aux fins d’étude ou de recherche privée;

• Ne peuvent pas distribuer le matériel ou l’utiliser pour une
activité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publica-
tion.

Si vous pensez que ce document enfreint le droit d’auteur, contactez-
nous en fournissant des détails. Nous supprimerons immédiatement
l’accès au travail et enquêterons sur votre demande.

The authors are exclusively responsible for the content of their re-
search papers published in the series Les Cahiers du GERAD. Copy-
right and moral rights for the publications are retained by the authors
and the users must commit themselves to recognize and abide the
legal requirements associated with these rights. Thus, users:

• May download and print one copy of any publication from the
public portal for the purpose of private study or research;

• May not further distribute the material or use it for any profit-
making activity or commercial gain;

• May freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.

Les Cahiers du GERAD G–2025–82 – Revised ii

Abstract : Bus scheduling problem is a core optimization problem for public transit agencies. Given
a set of timetabled trips to cover during a day and a homogeneous bus fleet assigned to multiple
depots, the multiple-depot vehicle scheduling problem (MDVSP) consists in finding least-cost feasible
schedules that cover each trip exactly once. To solve large-scale MDVSPs, we develop a column
generation (CG) heuristic that is applied to a block-based set-partitioning model, where a block starts
and ends at a depot without intermediate returns. To reduce degeneracy and improve performance, we
combine CG with an improved dynamic constraint aggregation procedure (IDCA). We further devise
a hybrid dual-disaggregation (HDD) step to accelerate convergence. Computational results on real-
world instances with up to 6,296 trips show significant speed ups resulting from i) using a block-based
model rather than a schedule-based model, ii) integrating CG with IDCA, and iii) applying HDD.
Together, the these techniques yield an average speed up factor of 12.4 compared to CG alone applied
to a schedule-based model, with only marginal degradation in the solution cost.

Keywords : Public transportation; bus scheduling; integer programming; column generation; dynamic
constraint aggregation

Acknowledgements: We would like to thank the personnel of GIRO Inc. for providing the datasets
and exchanging with us throughout the project. This work was funded by GIRO Inc. and the Natural
Sciences and Engineering Research Council of Canada under the grants RDCPJ 524922–18 and RGPIN-
2023–03791. This financial support was greatly appreciated.

Les Cahiers du GERAD G–2025–82 – Revised 1

1 Introduction

Among the various operations planning problems faced by transit agencies, the bus scheduling problem

stands out due to its direct impact on both service quality and operational efficiency. This problem

is a specific case of the vehicle scheduling problem (VSP), which is classified as the single-depot VSP

(SDVSP) when all buses are assigned to a single depot, and the multiple-depot VSP (MDVSP) when

they are shared by multiple depots. While the SDVSP can be solved in polynomial time, the MDVSP

is known to be NP-hard (Bertossi et al., 1987).

Given a fixed timetable of trips over a day and a homogeneous fleet of buses, the MDVSP aims at

constructing feasible bus schedules, ensuring that each trip is covered exactly once while minimizing the

total of fixed vehicle and variable travel costs. A bus schedule is a feasible sequence of trips starting and

ending at the same depot. Despite the growing interest in electric bus scheduling due to environmental

considerations (Gerbaux et al., 2025; Ricard et al., 2025), we focus on diesel buses which remain widely

used by public transit agencies and continue to be the subject of active research (Mousavi et al., 2025;

Sadrani et al., 2025). We believe that the main ideas of our work can be applied to a next generation

of algorithms for electric bus scheduling and, therefore, we also see our effort as a preliminary step

towards these future algorithms.

To reduce the complexity of the MDVSP, several studies have proposed using a time-space network

representation and solving the problem either exactly with a mixed-integer programming (MIP) solver

(Kliewer et al., 2006) or using heuristics such as fix-and-optimize (Gintner et al., 2005). However,

our industrial partner GIRO Inc., a leader in the development of optimization software for public

transportation, requires a more flexible network representation that allows penalizing or forbidding

some direct connections between trips because the connection time is too long or the connection links

trips of two bus lines that should not be connected. In this case, it is difficult to rely on a time-

space network. Instead, we adopt a connection-based network that explicitly models all feasible direct

connections between trips.

In this work, we address the MDVSP using a connection-based network structure, which introduces

significant computational challenges, particularly for large-scale instances involving thousands of trips

(more than 6,000 in our case). In this context, column generation (CG) heuristics offer a suitable

algorithmic framework for handling the problem’s complexity and scale. Within this framework, we

develop both modeling and solution strategies to devise an efficient CG approach. Indeed, instead

of using a set-partitioning model where each column (variable) is associated with a complete bus
schedule that potentially includes intermediate returns to the bus’ depot, we propose a model in which

columns represent bus blocks (sequences of trips without intermediate depot returns) and additional

flow conservation constraints links these blocks to form implicit bus schedules. While the schedule-

based model is comprehensive, it results in long columns that significantly increase degeneracy and

the computational time. In contrast, the block-based model involves shorter columns, inducing faster

CG convergence, reduced computational time in the pricing subproblems and overall, as confirmed by

our computational experiments.

To further enhance performance, we integrate CG within an improved dynamic constraint aggre-

gation (IDCA) algorithm that uses a novel hybrid dual disaggregation (HDD) strategy. As its name

says, IDCA aggregates the trip covering constraints into clusters of trips that have a high probability

of being serviced by the same bus and revises dynamically the proposed aggregation. To generate new

variables, IDCA requires disaggregated dual variables, which are typically obtained by solving a linear

program, called the complementary problem (CP), that considers a subset of the generated columns.

In early IDCA iterations, this column subset is often not sufficiently diversified, resulting in arbitrary

disaggregated dual values for many covering constraints. To address this limitation, we post-process

the dual values obtained by the CP using HDD. Finally, to obtain integer solutions, the CG-IDCA

framework is embedded within a diving heuristic that performs variable and inter-trip fixing.

Les Cahiers du GERAD G–2025–82 – Revised 2

The rest of this paper is organized as follows. Section 2 reviews the literature relevant to the

MDVSP and outlines our main contributions. Section 3 formally defines the problem and presents

the proposed block-based formulation. Section 4 describes the proposed solution algorithm, whereas

Section 5 reports the computational results obtained on real-life instances. Finally, Section 6 concludes

the paper and discusses future research directions.

2 Literature review

Introduced by Bodin et al. (1978), the MDVSP is a well-studied problem as surveyed in Ibarra-Rojas

et al. (2015) and Perumal et al. (2022). Several exact algorithms have been devised over the years.

The following two main methodologies have emerged: branch-and-price (B&P) embeds CG within a

branch-and-bound search tree and branch-and-cut (B&C) as found in commercial MIP solvers. B&P

has been first proposed by Ribeiro and Soumis (1994) and further applied in subsequent works on the

MDVSP (Hadjar et al., 2006) or the MDVSP with time windows (Desaulniers et al., 1998; Hadjar and

Soumis, 2009). All these works exploit a connection-based networks to generate schedule variables.

With this methodology, the largest artificial instances solved to optimality contains around 900 trips.

On the other hand, Kliewer et al. (2002, 2006) showed that, using time-space networks and an arc-flow

model, B&C can solve to optimality real MDVSP instances involving more than 7,000 trips.

With the goal of improving the performance of the CG algorithm embedded in B&P algorithms

for the MDVSP, Oukil et al. (2007) and Benchimol et al. (2012) have focused on solving the linear

relaxation of a schedule-based model. In Oukil et al. (2007), the SPs rely on connection-based networks

and the authors develop a dual variable stabilization (DVS) technique to control the oscillation of the

dual values from one CG iteration to the next. This technique requires a good initial dual solution,

which is computed by solving one or several SDVSPs. On artificial MDVSP instances with 3 depots and

500 trips, the stabilized CG algorithm yields an impressive speedup factor of more than 1000 for highly

degenerate instances (with an average of 25 trips per schedule). This research avenue was pursued by

Benchimol et al. (2012) who first designed a dynamic constraint aggregation (DCA) method to speed

up CG and proposed to combine DVS and DCA to further accelerate CG. Employing time-space

networks for the SPs, their tests on randomly generated instances with 3 depots and up to 1000 trips

(around 19 trips per schedule on average) showed a speedup factor of 3.9 induced by DCA over CG.

On larger instances with up to 3000 trips, integrating DCA and DVS yielded an average acceleration

of 1.5 over DVS alone.

To compute integer solutions in fast computational times, a wide variety of heuristics have also been

proposed. In particular, Gintner et al. (2005) developed a two-phase heuristic, called fix-and-optimize,

that relies on time-space networks. In the first phase, several problem relaxations are solved and their

solutions are examined to identify chains of trips that are present in all these solutions. In the second

phase, these chains are fixed and the restricted MDVSP is solved using a MIP solver. This heuristic

was able to solve instances with up to 11,062 trips in a few hours of computational time. Pepin et al.

(2009) compared five heuristics, namely: CG heuristic, CG-based large neighborhood search (LNS),

tabu search, truncated B&C, and Lagrangian heuristic. Their computational experiments on artificial

instances with up to 1,500 trips showed that the CG heuristic yields the best solutions when sufficient

time (at least 20 minutes) is available. Otherwise, the LNS heuristic outperforms the other ones. CG

heuristics were also proposed by Guedes and Borenstein (2015) and Guedes et al. (2016), while Laurent

and Hao (2009) designed an iterated local search heuristic that yields better results than the LNS and

tabu search metaheuristics of Pepin et al. (2009).

In the last decade, research has focused on electric bus scheduling, considering that electric buses

have a limited driving range and may require to recharge at dedicated locations (see Perumal et al.,

2022; Gkiotsalitis et al., 2023; Gerbaux et al., 2025). As reported in these papers, some exact algorithms

and several types of (meta)heuristics have been proposed for multiple problem variants. We highlight

that CG algorithms have been developed in several studies (van Kooten Niekerk et al., 2017; Zhang

Les Cahiers du GERAD G–2025–82 – Revised 3

et al., 2021; Yıldırım and Yıldız, 2021; Gerbaux et al., 2025), as keeping track of the battery state-of-

charge can be better handled in the CG pricing subproblem.

To the best of our knowledge, no bus scheduling studies have compared block-based and schedule-

based models solved by CG. On the other hand, such a comparison was conducted by Mingozzi et al.

(2013) for the multi-trip vehicle routing problem (MTVRP), where least-cost daily schedules composed

of several non-overlapping routes (trips starting and ending at the depot) must be computed to service

a set of customers. Their computational results obtained using exact column-and-cut generation

algorithms show that it is much easier to solve a route-based model than a schedule-based model due

to the length of the columns (a schedule contains much more customers than a route). Applying exact

B&P algorithms, Hernandez et al. (2016) draw a similar conclusion for another variant of the MTVRP.

To sum up, CG solution approaches for the MDVSP has considered schedule-based formulations.

Moreover, time-space networks reduce the size of arc-flow models, enabling the solution of very large-

scale MDVSP instances by MIP solvers, but they lack the flexibility required to incorporate practical

connection-specific soft or hard restrictions. In contrast, motivated by the practical needs of our partner

GIRO, we adopt a connection-based network for solving large-scale MDVSP instances involving up

to 6,296 trips, 3 depots, and 281 bus stations. To manage this complexity and efficiently solve large

real-world instances, we introduce a compact block-based model and develop a CG heuristic, enhanced

with IDCA and a novel HDD strategy. Despite the high potential of the DVS technique studied in

Oukil et al. (2007) and Benchimol et al. (2012), we have decided to not consider DVS in our work

because it requires a good initial dual solution. As shown in these works, such a solution is available

for the MDVSP but would not be easily available for an electric bus variant of the problem.

3 Problem statement and mathematical formulation

In this section, we state the MDVSP, present a block-based formulation for it, and introduce a time-

point aggregation to reduce model size.

3.1 Problem statement

Let T be a set of n bus trips to operate over a one-day time horizon. A trip is defined by a start

location ℓSt , a start time hS
t , an end location ℓEt , and an end time hE

t . A bus fleet is available to

operate these trips and shared by a set of depots D. We assume that a sufficiently large number of
buses is available at each depot and that the bus fleet is homogeneous. The proposed methodology

can be easily adapted if these assumptions do not hold.

The MDVSP consists in finding least-cost feasible bus schedules such that each trip in T is covered

by a single bus. A bus schedule is defined as a complete daily sequence of trips assigned to a bus,

starting from a depot and ending at the same depot. A schedule may include one or more intermediate

returns to the bus’ depot during the day. In this case, the schedule is divided into a sequence of

bus blocks, each representing a continuous sequence of trips operated without returning to the depot

between them.

A connection occurs between two trips if they are covered consecutively by the same bus. A

connection is said to be direct if it does not contain a return to the depot between the two trips.

Denoting by δij the travel time between two locations i and j, a direct connection between trips t1
and t2 is feasible if hS

t2 − hE
t1 ≥ δℓEt1 ,ℓ

S
t2
. To limit excessive unproductive driver time, connection time

hS
t2 − hE

t1 must not exceed a given maximum duration (45 minutes for our tests). In certain cases,

specific direct connections may be forbidden or penalized to reflect operational preferences or network

restrictions, or to discourage undesirable routing options. Indirect connections are not forbidden or

penalized.

Les Cahiers du GERAD G–2025–82 – Revised 4

The cost structure comprises fixed and variable components. Each bus used incurs a fixed cost C

that is sufficiently large to minimize the number of buses used. Variable costs (proportional to travel

distance for the buses and to travel and waiting times for the drivers) are accounted for deadheads, pull-

outs, pull-ins, and waiting times outside the bus’ depot (i.e., during direct connections). A deadhead

refers to the movement of a bus without passengers, directly from the end of a trip to the start of

another. Similarly, a pull-out and a pull-in refer to movements without passengers between the depot

and the start of a trip and between the end of a trip and the depot, respectively. Waiting at a depot

is not penalized, as buses are not assigned drivers when they are parked there. Variable costs also

include penalties for undesirable connections when applicable. Note that no variable costs are incurred

by the trips as their total cost is a constant.

3.2 Block-based formulation

In this section, the MDVSP is formulated as a block-based set partitioning model with additional flow

conservation constraints to count the number of buses in operation at any time of the day. The flow

conservation constraints at each depot d ∈ D are defined according to a list of time points that includes

two times for each trip t ∈ T : hS
t −δd,ℓSt , the latest start time from depot d to arrive on time to operate

trip t, and hE
t + δℓEt ,d, the earliest end time at the depot after operating trip t. Let I = {1, 2, . . . , 2n}

be the index set of the 2n time points. We denote these points by Md
i , i ∈ I, and we assume without

loss of generality that they are sorted in chronological order (i.e., Md
i ≤ Md

j if i < j), positioning end

times before start times in case of ties. Let i+ and i− denote the indices of the time points immediately

following and preceding index i, respectively, with 2n+ = 1 and 1− = 2n to indicate the wrap-around

between the last and first time points. For each i ∈ I, we define a non-negative integer variable ud
i,i+

to count the number of buses idling at depot d between the consecutive time points Md
i and Md

i+ . In

particular, variable ud
2n,1 specifies the total number of buses used from depot d. Figure 1 illustrates

time points and corresponding variables at a depot d, where the white (resp., grey) nodes represent

arrivals (resp., departures).

Md
1 Md

2 Md
3 Md

4 Md
5 Md

2n

ud
1,2 ud

2,3 ud
3,4 ud

4,5 ud
5,6

. . .
ud
2n−1,2n

ud
2n,1

Figure 1: Example of time points and related ud
i,i+

variables at a depot d

The following additional notation is also needed. Let Bd be the set of feasible blocks for buses from

depot d ∈ D. For each block b ∈ Bd, we define a binary variable xd
b that takes value 1 if b is selected

in the solution and 0 otherwise, and we denote by cb its total variable cost. Furthermore, for each trip

t ∈ T , the binary parameter αb,t indicates whether block b covers or not trip t, and for each time point

index i ∈ I, binary parameter βout
b,i (resp., βin

b,i) is set to 1 if b starts from (resp., ends at) depot d at

time point Md
i . Using this notation, the MDVSP can be formulated as follows:

min
∑
d∈D

∑
b∈Bd

cbx
d
b + C

∑
d∈D

ud
2n,1 (1a)

s.t.
∑
d∈D

∑
b∈Bd

αb,tx
d
b = 1, ∀t ∈ T, (1b)

ud
i−,i +

∑
b∈Bd

βin
b,ix

d
b − ud

i,i+ −
∑
b∈Bd

βout
b,i x

d
b = 0, ∀d ∈ D, i ∈ Id, (1c)

xd
b ∈ {0, 1}, ∈ {0, 1}, ∀d ∈ D, b ∈ Bd, (1d)

ud
i,i+ ≥ 0, integer, ∀d ∈ D, i ∈ Id. (1e)

Les Cahiers du GERAD G–2025–82 – Revised 5

The objective function (1a) minimizes the total cost, including block variable costs and bus fixed costs.

Constraints (1b) ensure that each trip is covered by a bus exactly once. Setting Id = I for all d ∈ D,

constraints (1c) enforce flow conservation at each time point for each depot. Sets Id are redefined

below. Finally, constraints (1d) and (1e) restrict the domain of the variables.

3.3 Time-point aggregation

For network flow problems especially those defined on time-space networks, node aggregation is com-

monly used to reduce network size without compromising feasibility and optimality. In our context,

we propose to apply time-point aggregation to reduce the number of flow conservation constraints (1c)

(and ud
i,i+ variables) in the block-based model. More precisely, for each depot d ∈ D, the sequence of

time points {Md
1 ,M

d
2 , . . . ,M

d
2n} is partitioned into a set Sd = {s1, s2, . . . , smd

} of md maximum length

subsequences, with md ≤ 2n, such that each subsequence in Sd contains time points associated with ar-

rivals at depot d, followed by time points associated with departures from d. Given that the operations

at a depot starts the day with departures and ends it with arrivals, the first subsequence in Sd contains

only departure time points, while its last only arrival time points. Re-defining Id = {1, 2, . . . ,md} as

the set of subsequence indices for depot d, the time points in a subsequence si, i ∈ Id, are merged into

a single aggregated time point τdi , and the variables ud
i,i+ are re-defined for the indices i ∈ Id.

Figure 2 illustrates this aggregation process for a depot d with 8 initial time points (top part) that

are replaced by 3 aggregated time points (bottom part). Thus, for this depot, the numbers of flow

conservation constraints and ud
i,i+ variables drop from 8 to 3 each.

Md
1 Md

2 Md
3 Md

4 Md
5 Md

6 Md
7 Md

8

τd
1 τd

2 τd
3

Figure 2: Time-point aggregation (initial on top, aggregated at bottom)

4 Solution algorithm

This section presents the solution algorithm that we propose for solving large-scale practical MDVSP

instances. This algorithm combines CG and IDCA, embedded in a diving heuristic. We describe CG

in Section 4.1, IDCA in Section 4.2, and the diving heuristic in Section 4.3.

4.1 Column generation

Because block-based model (1a)–(1e) involves a large number of variables (one per feasible bus block),

its linear relaxation, also called the master problem, can be solved using CG like in Ribeiro and Soumis

Les Cahiers du GERAD G–2025–82 – Revised 6

(1994) (see also Desrosiers et al., 2024). CG is an iterative method that solves at each iteration a

restricted master problem (RMP) and one pricing subproblem (SP) per depot in our case. The RMP

is the master problem restricted to a subset of its variables xd
b , those that have been generated so far.

Solving it yields a pair of primal and dual solutions. The dual solution is then used to generate new

columns (variables) with a negative reduced cost by solving the SPs. The generated columns are then

added to the current RMP before starting a new iteration. The algorithm continues until no negative

reduced cost columns are found, proving that the current RMP primal solution is also optimal for the

master problem. In our CG heuristic, the CG algorithm is halted prematurely when the decrease in

the RMP optimal value becomes negligible over a predefined number of iterations.

There is one SP per depot d ∈ D. Each SP aims at finding negative reduced cost blocks and is

formulated as a shortest path problem defined on an acyclic connection-based network Gd = (Nd, Ad)

as illustrated in Figure 3. Node set Nd contains a source node ōd, a sink node od, and one node for

each trip t ∈ T . Arc set Ad contains three types of arcs: pull-out arcs (ōd, t), t ∈ T ; pull-in arcs

(t, od), t ∈ T ; and connection arcs (t1, t2), t1, t2 ∈ T , when trip t1 can be directly followed by trip t2
in a bus block, i.e., if the connection between t1 and t2 is feasible. In network Gd, a path from ōd

to od represents a feasible block b ∈ Bd. To ensure that its cost is equal to the reduced cost of its

corresponding variable xd
b , we define the adjusted cost of an arc a ∈ Ad as follows:

c̄a =


ca + ϕd

iouta
if a is a pull-out arc

ca − πttaila
if a is a connection arc

ca − πttaila
− ϕd

iina
if a is a pull-in arc,

(2)

where ca is the variable cost incurred along arc a, iouta (resp. iina) is the time point index associated

with the pull-out (resp., pull-in) arc a, ttaila is the trip associated with the tail node of arc a, and(
πt

)
t∈T

and
(
ϕd
i

)
d∈D,i∈Id

are the dual vectors associated with constraints (1b) and (1c), respectively.

ōd

t1

t2

t3

t4

t5

tn

od

Legend: source/sink node trip node

pull-in/pull-out arc connexion arc

Figure 3: Connection-based network

The SP can be solved using a standard label-setting algorithm for a shortest path problem on an

acyclic network. However, this algorithm allows to generate one column per depot at each iteration

because a single path (label) is retained at the sink node. It is well known that generating many

columns (say, more than 100) at each iteration accelerate the CG process. To do so, instead of keeping

only the reduced cost of a path in a label, we also keep track of the number of trips the path covers.

The label definition then becomes: a partial path p from ōd to a node j ∈ Nd is represented by a

label Lp = (Z̄p, Vp), where Z̄p denotes the reduced cost of path p (equal to the sum of the adjusted

costs of its arcs) and Vp is the number of trips covered along p. This second label dimension is called

a resource (which is unbounded in our case) and transforms the SP into a shortest path problem with

Les Cahiers du GERAD G–2025–82 – Revised 7

resource constraints. It is solved by a labeling algorithm on an acyclic network (see, e.g., Irnich and

Desaulniers, 2005). Omitting label dominance at the sink node od (i.e., keeping all labels reaching od)

allows to generate multiple paths at each iteration.

4.2 Dynamic constraint aggregation

Set partitioning constraints (1b) often induce high degeneracy, especially when the blocks can contain a

sufficiently large number of trips, say, more than 10. This issue is more pronounced in large real-world

cases involving numerous constraints. To address this challenge and enhance the efficiency of CG, we

resort to IDCA (Bouarab et al., 2017), which is an improved varaint of the DCA method designed

by Elhallaoui et al. (2005). IDCA mitigates degeneracy by introducing an aggregated RMP (ARMP),

which is derived from a partition Q of the set of trips T into disjoint clusters. In the ARMP, each

cluster is represented by a single set partitioning constraint. IDCA begins with initial clusters and

dynamically adjust partition Q throughout the solution process. In our case, the initial clusters are

generated using the following greedy algorithm. Trips are first sorted by their start times for each

bus line, and then round trips (i.e., in both directions along a line) are sequentially connected to form

clusters, ensuring that trips within a cluster are operationally compatible and belong to the same bus

line.

A block b and its associated variable xd
b are said to be compatible with a cluster q ∈ Q if the trips

covered by b include either all or none of the trips in q. They are considered compatible with partition Q

if they satisfy this condition for every cluster q ∈ Q. Otherwise, they are deemed incompatible.

The ARMP involves only variables that are compatible with the current partition Q. Let B′
d(Q)

be the subset of generated blocks associated with depot d that are compatible with Q and αb,q be a

binary parameter equal to 1 if block b covers all trips in cluster q, and 0 otherwise. The ARMP is

formulated as:

min
∑
d∈D

∑
b∈B′

d(Q)

cbx
d
b + C

∑
d∈D

ud
2n,1 (3a)

s.t.
∑
d∈D

∑
b∈B′

d(Q)

αb,qx
d
b = 1, ∀q ∈ Q, (3b)

ud
i−,i +

∑
b∈B′

d(Q)

βin
b,ix

d
b − ud

i,i+ −
∑

b∈B′
d(Q)

βout
b,i x

d
b = 0, ∀d ∈ D, i ∈ Id, (3c)

xd
b ≥ 0, ∀d ∈ D, b ∈ B′

d(Q), (3d)

ud
i,i+ ≥ 0, ∀d ∈ D, i ∈ Id. (3e)

Constraints (3b) ensure that each trip cluster q ∈ Q is covered by one compatible block. All the other

constraints and the objective function remain the same as in model (1a)–(1e), except that here, the

model is linear and restricted to the set of compatible generated blocks in B′
d(Q), d ∈ D. The ARMP

is solved using the simplex algorithm, which provides a primal solution and a so-called aggregated dual

solution as there is one dual variable π̂q, q ∈ Q, for each cluster covering constraint (3b).

When IDCA is combined with CG, the ARMP primal solution computed at a CG iteration is also

optimal for the master problem if there exists a disaggregated dual solution
((

πt

)
t∈T

,
(
ϕd
i

)
d∈D,i∈Id

)
such that the reduced cost of every variable in the master problem (generated or not) is non-negative.

To do so, CG-IDCA computes a disaggregated dual solution as discussed below and solves the SPs,

searching for negative reduced cost columns. If such columns are found, the compatible ones are always

added to the ARMP. The incompatible ones are only added if no negative reduced cost compatible

columns have been generated or Z̄C/Z̄I ≤ ζ, where Z̄C (resp, Z̄I) denotes the least reduced cost

of a compatible (resp., incompatible) column and ζ ∈]0, 1] is a predetermined threshold. In this

case, partition Q is updated to ensure the compatibility of all columns in the ARMP. The CG-IDCA

Les Cahiers du GERAD G–2025–82 – Revised 8

process continues until no more columns with negative reduced cost are generated or, as mentioned in

Section 4.1, when the decrease of the ARMP optimal value is not sufficient over a predefined number

of iterations (e.g, less than 0.05% over the last five iterations). Note that all incompatible columns

that are not added to the ARMP are stored in a pool of incompatible columns and can be added to

the ARMP in a subsequent iteration when a partition update makes them compatible. These columns

are also used to compute a disaggregated dual solution as explained next.

4.2.1 Dual variable disaggregation

Several algorithms have been devised to compute disaggregated dual values. In the initial DCA algo-

rithm, Elhallaoui et al. (2005) uses a sequence of shortest path problems that aim at finding a dual

solution for which a subset of the known incompatible columns, with specific properties, have a non-

negative reduced cost. Later, Bouarab et al. (2017) introduces a linear program, called the CP, that

seeks a disaggregated dual solution such that all variables with a positive value in the current ARMP

solution have a zero reduced cost with respect to this disaggregated solution and that maximizes the

reduced cost of the least reduced cost incompatible variable among the known ones. The equivalent

primal version of the CP looks for a convex combination of the known incompatible columns that can

replace a linear combination of the positive-valued compatible columns, with the objective of minimiz-

ing the reduced cost of the former convex combination with respect to the variable disaggregated dual

solution. Compared to solving a sequence of shortest path problems, using the CP helps reducing the

number of iterations because it can take into account a larger subset of incompatible columns. In the

following, we formulate the primal CP that we use.

For each depot d ∈ D, let B+
d (Q) be the set of the block indices of the variables xd

b with a positive

value in the ARMP solution and let Jd(Q) represent the subset of the block indices of the known

incompatible variables with respect to partition Q. For a block b ∈ B+
d (Q)∪ Jd(Q), we define the cost

coefficient

ĉb = cb + ϕ̂d
ioutb

− ϕ̂d
iinb
, (4)

where ioutb and iinb are the pull-out and pull-in time point indices associated with block b, respectively,

and
(
ϕ̂d
i

)
d∈D,i∈Id

are the dual values of constraints (3c) in the ARMP dual solution. Further, for

depot d ∈ D, we introduce the non-negative variables χj , j ∈ Jd(Q), and the unrestricted variables

λb, b ∈ B+
d (Q), which are the weights used in the respective convex and linear column combinations.

Using this additional notation, the CP writes as follows:

min
∑
d∈D

∑
j∈Jd(Q)

ĉjχ
d
j −

∑
d∈D

∑
b∈B+

d (Q)

ĉbλb (5a)

s.t.
∑
d∈D

∑
j∈Jd(Q)

αj,tχ
d
j =

∑
d∈D

∑
b∈B+

d (Q)

αb,tλb, ∀t ∈ T, (5b)

∑
d∈D

∑
j∈Jd(Q)

χd
j = 1, (5c)

χd
j ≥ 0, ∀d ∈ D, j ∈ Jd(Q). (5d)

Constraints (5b)–(5c) ensure that the selected convex combination of incompatible columns can replace

the linear combination of the positive-valued columns. As mentioned above, the objective function

seeks to minimize the reduced cost of this convex combination with respect to the computed disaggre-

gated dual solution. The CP is solved using the dual simplex algorithm (shown to be more efficient than

the primal simplex algorithm in preliminary tests) to yield dual values
(
π̃t

)
t∈T

for the constraints (5b).

The disaggregated dual solution is given by
((

πt

)
t∈T

,
(
ϕd
i

)
d∈D,i∈Id

)
=
((

π̃t

)
t∈T

,
(
ϕ̂d
i

)
d∈D,i∈Id

)
.

Note that the CP does not take into account an equivalent form of the flow conservation con-

straints (1c). Although this would have given more leeway to determine the disaggregated dual solution

Les Cahiers du GERAD G–2025–82 – Revised 9

by not fixing the ϕd
i values to those obtained from the ARMP, we have preferred this CP formulation

because handling these additional constraints increased significantly the time required to solve the CP

in preliminary computational experiments.

The dual variable disaggregation process using the CP depends on the set of available incompatible

columns. When this set is too poor (i.e., it does not contain columns that break the clusters in every

possible way), some of the disaggregated dual values become somewhat arbitrary, yielding further

disaggregation of partition Q and increased degeneracy. As generating a diversified set of incompatible

columns is not necessarily an easy task, using the CP helps but has some limitations. Suggested by

Elhallaoui et al. (2005) and recently used by Sudoso and Aloise (2025), a simple alternative to compute

disaggregated dual values consists in distributing evenly the aggregated dual value of a cluster on the

trips it contains. We propose to hybridize these two approaches to disaggregate the aggregated dual

values
(
π̂q

)
q∈Q

as follows.

Let q = {t1, t2, . . . , twq} ∈ Q be a cluster containing wq trips and assume that they are sorted in

chronological order of their start time. An incompatible block j ∈
⋃

d∈D Jd(Q) breaks cluster q after

a trip tℓ ∈ q, ℓ < wq, if j covers tℓ but not tℓ+1. These breakpoints allow to partition cluster q into κq

unbroken sub-clusters r1(q), r2(q), . . . , rκq (q) of consecutive trips.

The HDD procedure starts by solving the CP to obtain disaggregated dual values
(
π̃t

)
t∈T

for

the constraints (5b). Then, for each trip t in each sub-cluster r(q) of each cluster q ∈ Q, the final

disaggregated dual value for the corresponding constraint (5b) is equal to the average of the duals π̃t′

associated with the trips t′ in r(q), i.e.,

πt =

∑
t′∈r(q) π̃t′

|r(q)|
. (6)

In this way, the trips in each sub-cluster are equally attractive in the SPs and there are less chance to

generate highly incompatible columns that cover strict subsets of trips in several sub-clusters.

4.2.2 Multi-phase dynamic constraint aggregation

To avoid disaggregating partition Q too rapidly when incompatible columns are added to the ARMP,

Elhallaoui et al. (2010) has proposed to proceed in phases, each phase restricting the set of columns

that can be generated by the SPs less and less, except in the last phase where no restriction is

typically applied. More precisely, let θb(Q) be the degree of incompatibility of a block b with respect
to partition Q, which is computed as the number of times that block b breaks a cluster as defined in

Section 4.2.1. In a phase k, only the blocks b with θb(Q) ≤ k can be generated. This restriction is

imposed in the SPs by adding an additional resource that counts the number of cluster breakpoints

induced by the block and that is upper bounded by k. The resulting algorithm is called the multi-phase

DCA. In our implementation, we consider four phases, namely, phases 0, 1, 2, and ∞. Phase 0 means

that only compatible columns can be generated, whereas there is no restriction in phase ∞. Each

phase ends when the CG stopping criterion stated in Section 4.1 is met.

4.3 Diving heuristic

To obtain integer solutions, we use a diving heuristic that explores a single branch of a branch-and-

bound search tree (see Sadykov et al., 2019). After solving each linear relaxation (master problem),

one or several decisions are permanently fixed before solving the updated linear relaxation, possibly

generating new columns. The diving algorithm typically stops when the CG-IDCA algorithm ends

with a linear relaxation solution that is integer.

When the solution of a linear relaxation is fractional, two types of decisions can be fixed. When

at least one xd
b variable takes a fractional value greater or equal to a predetermined threshold (set to

0.6 for our tests), we fix to 1 all variables that satisfy this condition. Otherwise, when there exists

Les Cahiers du GERAD G–2025–82 – Revised 10

at least one connection arc for which the sum of its flows over all depots is greater than or equal to

another predefined threshold (set to 0.7), we fix to 1 the total flow of each connection arc satisfying

this condition. For arc (t1, t2) linking trips t1 and t2, this decision is imposed by removing all arcs

(t1, v) with v ̸= t2 and all arcs (v, t2) with v ̸= t1 from all networks Gd, d ∈ D. Finally, when the

above two cases fail (this rarely occurred in our tests), the xd
b variable with the largest fractional value

is rounded up to 1.

5 Computational results

In this section, we present computational results to assess the proposed CG heuristic and evaluate the

performance of some of its components. We first describe the instances used for our tests. We then

present results for instances with forbidden direct connections induced only by a maximum unproduc-

tive time rule. Finally, we report results on instances that account for additional forbidden/penalized

connections.

All our experiments were carried out on a Linux machine equipped with an Intel Core i7-10700

processor (2.90 GHz) and 64 GB of RAM. The implementation was developed in C++ using version

4.5 of the commercial column generation library GENCOL. The RMPs are solved with CPLEX 20.1.0.

5.1 Test instances

We first conducted computational experiments on 8 instances with 1 depot, 6 instances with 2 depots

and 3 instances with 3 depots, that are derived from a real trip timetable of the Société des Transports

de Montréal (STM). For these instances, all direct connections must respect a maximum duration

constraint. No other direct connections are forbidden or penalized. The SDVSP instances were created

by selecting each of the 8 STM depots and all the trips of bus lines in the neighborhood of this depot,

ensuring that every line is assigned to a single depot. The 2-depot and 3-depot MDVSP instances were

obtained by merging two and three SDVSPs. Notice that the SDVSP instances can be solved much

more efficiently using a polynomial-time algorithm than with our CG heuristic. They are, however,

used here to assess some of the algorithmic components of the proposed algorithm.

The characteristics of these test instances are summarized in Table 1. For each instance, we report

the number of depots, the number of bus stations (line ends), the number of trips, and the number of

clusters used to initialize IDCA. Furthermore, the last three columns provide the number of rows in

the master problem (MP) for the CG algorithm (without IDCA), in the first iteration of CG-IDCA,

and on average in all the root node CG iterations of CG-IDCA (with HDD), respectively. The largest

3-depot instances has close to 6,300 trips, linking 281 stations. It induces large SP networks involving

more than 6,000 nodes and 550,000 arcs. We observe that IDCA reduces significantly the number of

rows in the master problem, starting with an average reduction of 51.6% and maintaining an average

reduction of 30.2% over all CG iterations at the root node. This helps solving the RMPs faster and

mitigating degeneracy.

To further test the proposed methodology, we have conducted a second series of experiments on

modified instances. These instances are the same as the ones above, except that we penalize or forbid

additional direct connections according to the two following scenarios:

Forbidden Arcs: A portion of the connection arcs involving a deadhead is removed. Specifically,

we randomly remove 15% or 30% of these arcs to generate new instances for both SDVSP and

MDVSP.

Penalized Arcs: A portion of the connection arcs involving a deadhead (15% or 30%) is randomly

selected to be penalized. The penalty cost ρa for such a connection arc a = (t1, t2) consists

of a fixed component γF and a variable component, with a maximal value γV , that depends

on the risk of being late to the subsequent trip. This risk is inversely related to the available

Les Cahiers du GERAD G–2025–82 – Revised 11

waiting time between the trips involved in the connection. Specifically, if the travel time δℓEt1 ,ℓ
S
t2

occupies most of the connection time hS
t2 − hE

t1 , the likelihood of tardiness increases, and the arc

is assigned a larger penalty to discourage its selection. For a connection arc a = (t1, t2), this

penalty is computed as:

ρa = γF + γV ×

(
δℓEt1 ,ℓ

S
t2

hS
t2 − hE

t1

)
.

To be able to compare the impact of forbidding or penalizing such arcs on the performance of

the proposed algorithms, we have generated instances for both scenarios that forbid or penalize the

same arcs.

Hereafter, we call the first set of instances (listed in Table 1), the original instances and the second

one, the instances with additional forbidden/penalized connections. Note that the latter instances

have the same numbers of depots, stations, and trips as the former instances, but the other statistics

reported in Table 1 may slightly differ.

Table 1: Instance Characteristics

MP Rows

Initial First Average
Instance Depots Stations Trips Clusters CG IDCA IDCA

Depot50 1 119 3,162 926 4,117 1,881 2,846
Depot54 1 141 2,792 922 3,717 1,847 2,744
Depot55 1 98 2,081 380 2,912 1,211 1,946
Depot56 1 116 3,430 900 4,460 1,930 2,843
Depot57 1 107 1,374 454 1,984 1,064 1,512
Depot58 1 124 2,647 767 3,514 1,634 2,477
Depot59 1 90 2,275 406 3,169 1,300 2,121
Depot60 1 78 1,525 318 2,163 956 1,536

Depot50 58 2 223 5,809 1,693 8,095 3,979 5,485
Depot50 60 2 168 4,687 1,242 6,868 3,423 4,870
Depot55 57 2 173 3,455 833 5,564 2,942 4,123
Depot55 58 2 200 4,728 1,144 6,976 3,392 4,710
Depot55 59 2 170 4,356 786 6,647 3,077 4,399
Depot57 59 2 173 3,649 854 5,777 2,982 4,215

Depot55 57 58 3 270 6,102 1,594 9,687 5,179 6,811
Depot55 57 59 3 234 5,730 1,233 9,361 4,864 6,540
Depot57 58 59 3 281 6,296 1,618 9,830 5,152 6,706

5.2 Results for the original instances

In this section, we present computational results obtained on the original instances that will allow to

assess the impact of using a block-based model instead of a schedule-based model, of combining CG

with IDCA, and of applying HDD to disaggregate the dual variables. To do so, we have solved these

instances using the following four solution approaches:

BM/CG: Block-based model (1a)–(1e) solved by the CG heuristic consisting of the CG algorithm

and the diving heuristic described in Sections 4.1 and 4.3, respectively.

SM/CG: A schedule-based model solved by a CG heuristic similar to that used for the block-based

model. The schedule-based model and the modifications to the CG heuristic are described in

Section 1 of the Supplementary Materials.

BM/CG-IDCA: Same as BM/CG except that CG is combined with IDCA (see Section 4.2). The

aggregated dual variables are disaggregated using only the CP.

BM/CG-IDCA-HDD: Same as BM/CG-IDCA except that HDD is used to disaggregate the dual

variables (see Section 4.2).

Les Cahiers du GERAD G–2025–82 – Revised 12

As mentioned in Section 4, the CG process ends when there are no more negative reduced cost

columns or when the (A)RMP optimal value has not decreased by a minimum percentage νD of

the current (A)RMP optimal value over a predefined number of iterations ηI . Based on preliminary

experiments, we have chosen the following values for νD and ηI : νD = 0.005% and ηI = 5 for BM/CG;

νD = 0.02% and ηI = 20 for SM/CG which is more prone to degeneracy; and νD = 0.05% and ηI = 5

for BM/CG-IDCA and BM/CG-IDCA-HDD. Note that, for BM/CG-IDCA and BM/CG-IDCA-HDD,

this early stopping criterion applies to each phase.

To assess the quality of the computed solutions by the four proposed algorithms, we have solved to

optimality the linear relaxation of each test instance to yield a lower bound z. This lower bound was

computed separately using a CG algorithm that stops when negative reduced cost columns cannot be

generated. Given an upper bound z̄ provided by a feasible integer solution, the optimality gap of this

solution is calculated as Gap = (z̄ − z)/z.

We begin by presenting the results obtained for the SDVSP instances in Table 2. This table is split

into four blocks of rows, one for each algorithm. For each algorithm and each instance, the second

and third columns indicate the total numbers of CG iterations (Itr.) and nodes explored in the diving

heuristic, respectively. The next three columns provide the time in minutes devoted to solving the

(A)RMP, solving the SPs, and solving the whole problem (Total). Note that the total time can exceed

than the sum of the (A)RMP and SP times because it includes time for other processes (input parsing,

loading and unloading the network of each SP in each CG iteration, applying the fixing decisions,

etc.). The last three columns report the total cost of the computed solution, its optimality gap in

percentage, and the number of buses used.

The results clearly indicate that SM/CG is much slower than the others, yielding the maximum total

time for each SDVSP instance. At the opposite, BM/CG-IDCA-HDD requires the least computational

time for every tested instance, except one (Depot58) where it is slightly outperformed by BM/CG-

IDCA. Contrary to SM/CG where 55% of the total time is dedicated to the RMP, all solution methods

relying on the block-based model spend a much large proportion of the total time on the (A)RMP. This

can be explained by the use of SP networks that do not allow intermediate depot returns, reducing

the average length of the generated paths. We also make the following high-level observations: for

all methods, the number of nodes explored in the diving heuristic is quite small (at most 41) when

considering the size of the test instances; the optimality gaps are very small for SM/CG and BM/CG,

and small for the two methods applying IDCA; and all methods achieve the same number of buses for

each instance.

To ease the comparison of the four solution approaches, we provide additional average comparative

results in Table 3 for various pairs of approaches. To compare approach A1 versus approach A2, we

report the average variations in percentage per instance obtained by A1 with respect to A2 for the

number of CG iterations (Itr), the number of nodes explored, and the cost of the computed solution.

We also indicate the average speedup factor obtained by A1 over A2 for the (A)RMP time, the SP

time and the total time.

The BM/CG versus SM/CG results clearly show that adopting the block-based model yields a large

average speedup factor of 3.8 without changing solution quality. This gain is due to easier-to-solve

SPs and a faster convergence of the CG process (close to 70% less iterations) incurred by columns

with less trips that help to reduce degeneracy and induce a sparser constraint coefficient matrix in

the RMP. Because this confirms what has been previously observed in the literature for other types of

applications (see Section 2), we will not present other results for the SM/CG approach.

Next, comparing BM/CG-IDCA with BM/CG, we observe that IDCA brings an additional accel-

eration (average factor of 2.2) but with a slight cost deterioration. This speedup comes from a large

average reduction of the (A)RMP time that takes the largest portion of the total time. Note that the

average number of iterations increases substantially with IDCA as reported in previous studies (due

Les Cahiers du GERAD G–2025–82 – Revised 13

to a smaller number of compatible/incompatible columns added to the ARMP at each iteration), but

this increase is largely compensated by a much smaller average time per iteration.

Table 2: Detailed SDVSP Results

Time (min) Total Gap

Instance Itr. Nodes (A)RMP SPs Total Cost (%) Buses

SM/CG

Depot50 662 20 48.8 39.5 93.0 2,124,074 0.000 210
Depot54 463 17 28.3 23.2 54.7 2,104,315 0.000 208
Depot55 411 11 10.0 10.4 21.7 1,323,834 0.001 131
Depot56 568 23 55.9 47.5 107.7 2,094,086 0.001 207
Depot57 337 10 2.8 2.7 6.0 1,124,130 0.001 111
Depot58 389 15 17.7 15.6 35.6 2,213,098 0.000 219
Depot59 1005 18 22.2 25.6 49.1 1,173,996 0.001 116
Depot60 456 18 5.0 4.5 10.6 1,021,711 0.000 101

BM/CG

Depot50 240 16 25.7 1.2 27.0 2,124,117 0.002 210
Depot54 142 10 11.8 0.5 12.4 2,104,315 0.000 208
Depot55 112 4 7.1 0.3 7.5 1,323,834 0.001 131
Depot56 186 11 24.7 1.4 26.1 2,094,073 0.000 207
Depot57 72 2 1.5 0.1 1.6 1,124,124 0.000 111
Depot58 157 12 9.7 0.5 10.1 2,213,092 0.000 219
Depot59 123 4 9.1 0.7 9.9 1,174,022 0.003 116
Depot60 187 12 3.5 0.2 3.7 1,021,710 0.000 101

BM/CG-IDCA

Depot50 595 41 18.0 3.1 21.4 2,124,168 0.005 210
Depot54 413 33 8.3 1.3 9.7 2,104,339 0.002 208
Depot55 214 14 1.0 0.5 1.7 1,324,348 0.040 131
Depot56 535 38 28.5 3.5 32.2 2,094,216 0.007 207
Depot57 242 14 0.9 0.2 1.2 1,124,153 0.003 111
Depot58 205 10 1.1 0.7 2.3 2,214,837 0.079 219
Depot59 388 25 2.9 1.1 4.2 1,174,086 0.008 116
Depot60 471 37 2.2 0.3 2.5 1,021,746 0.004 101

BM/CG-IDCA-HDD

Depot50 472 17 8.7 2.0 11.4 2,124,285 0.010 210
Depot54 326 15 4.7 0.8 5.6 2,104,388 0.004 208
Depot55 252 21 0.7 0.2 1.1 1,323,887 0.005 131
Depot56 347 30 7.4 1.4 9.5 2,094,311 0.012 207
Depot57 199 13 0.5 0.1 0.7 1,124,205 0.007 111
Depot58 277 23 1.4 0.4 2.6 2,213,338 0.011 219
Depot59 311 20 1.2 0.5 2.2 1,174,061 0.006 116
Depot60 471 40 1.4 0.2 1.9 1,021,784 0.007 101

Table 3: Pairwise Comparisons of Solution Approaches for the SDVSP

Variation (%) Speedup Factor

Itr Nodes Cost (A)RMP SP Total

BM/CG vs SM/CG -69.8 -48.5 0.000 1.9 38.2 3.8
BM/CG-IDCA vs BM/CG 156.4 274.8 0.017 3.2 0.5 2.2
BM/CG-IDCA-HDD vs BM/CG-IDCA -7.7 3.4 -0.011 2.0 1.9 1.8
BM/CG-IDCA-HDD vs BM/CG 124.4 241.1 0.007 4.9 0.9 3.3
BM/CG-IDCA-HDD vs SM/CG -33.9 38.9 0.007 9.2 33.6 12.4

The BM/CG-IDCA-HDD versus BM/CG-IDCA comparison indicates that using HDD slightly

reduces the average number of iterations and produces another additional average speedup factor of

1.8. This is due to a better dual variable disaggregation process that helps generating columns that

are more suitable (often compatible or incompatible with a small degree of incompatibility) to keep

Les Cahiers du GERAD G–2025–82 – Revised 14

the ARMP well aggregated. Indeed, for these instances, the average number of rows in the ARMP per

CG iteration compared to the number of rows in the RMP without aggregation is reduced by 30.2%

with HDD and by only 16.1% without HDD. Furthermore, more evenly spread dual values seem to

facilitate the solution of the SPs (SP time speedup factor of 1.9).

The last two rows of Table 3 allow to assess the combined average speedup of all proposed tech-

niques. Using BM/CG-IDCA-HDD yields an average speedup factor of 3.3 over BM/CG and of 12.4

over SM/CG. The latter is due to large reductions in the number of CG iterations, in the time devoted

to solving the (A)RMP, and, to a larger extent, in the time required by the SPs. Our results indi-

cate that every technique brings a significant contribution to this speedup. They enable to solve the

largest SDVSP instance (Depot56 with 3,430 trips and 116 stations) in less than 10 minutes, whereas

it requires 107 minutes using the basic SM/CG approach.

Let us mention a final observation about the number of nodes reported in these two tables, which

is also valid for the forthcoming MDVSP results. We can see that the average varies from one method

to another. It is difficult to identify the reason of this variation but it does not have a direct impact

on the total computational time. Indeed, for the SDVP instances, the two solution approaches with

the smallest average numbers of nodes (SM/CG and BM/CG) have the largest average total times.

Now, let us present the results obtained for the original MDVSP instances in Tables 4 and 5, which

are formatted like the previous two tables. From the detailed results in Table 4, we observe again that

BM/CG-IDCA-HDD is faster than the other methods as it yields the least total time for all tested

instances. Like for the SDVSP instances, most of the time is devoted to solving the (A)RMP for all

solution algorithms. Anew, all algorithms produce solutions with the same number of buses and with

optimality gaps that are very small for BM/CG and small for BM/CG-IDCA and BM/CG-IDCA-

HDD. For BM/CG-IDCA-HDD, this small cost increase remains acceptable given the large speedup

obtained.

The comparative results in Table 5 are similar to those presented in Table 3 for the original SDVSP

instances. However, for the comparison BM/CG-IDCA versus BM/CG, we observe that the average

speedup factor is less than for the SDVSP instances (1.4 instead of 2.2) because IDCA did not succeed

to reduce substantially the ARMP time. On the other hand, the average computational time gain

achieved by using HDD being more important for the MDVSP instances (speedup factor of 2.4 instead

of 1.8), the overall speedup factor yielded by BM/CG-IDCA-HDD over BM/CG is 3.4 and, thus, very

similar to the one observed for the SDVSP instances. Here again, this acceleration results from much

less average time dedicated to solving the (A)RMP despite a larger number of CG iterations.

By combining IDCA with CG and using the proposed HDD strategy to reduce degeneracy and

generate more suitable columns, the largest original MDVSP instance (Depot57 58 59 with 3 depots,

6,296 trips and 281 stations) is solved in less than 40 minutes with BM/CG-IDCA-HDD compared to

around 140 minutes with BM/CG, resulting in a highly significant speedup factor of 3.5.

5.3 Results for instances with additional forbidden/penalized connections

To further analyze the impact of using BM/CG-IDCA-HDD over BM/CG, we have conducted another

series of tests on instances where direct connections involving a deadhead are either forbidden or

penalized. Four scenarios are considered: scenario Forbidden/15% (resp., Forbidden/30%) where 15%

(resp., 30%) of these connections are forbidden, and scenario Penalized/15% (resp., Penalized/30%)

where 15% (resp., 30%) of them are penalized.

The detailed results of these experiments are reported in Section 2 of the Supplementary Mate-

rials, while average results allowing to compare BM/CG with BM/CG-IDCA-HDD are provided in

Table 6. First, we can observe from the detailed results and those reported in the previous section

that forbidding/penalizing additional direct connections increases the cost of the computed solutions

moderately for most instances and more substantially for a few instances where the number of buses

Les Cahiers du GERAD G–2025–82 – Revised 15

used increases. This was expected as some of these connections were selected in the solutions of the

instances without additional connection restrictions or penalties.

Table 4: Detailed MDVSP Results

Time (min) Total Gap

Instance Itr. Nodes (A)RMP SPs Total Cost (%) Buses

BM/CG

Depot50 58 339 18 114.3 4.1 118.6 4,254,398 0.001 421
Depot50 60 634 70 108.8 3.3 112.0 3,092,075 0.002 306
Depot55 57 153 5 21.2 0.9 23.9 2,395,374 0.002 237
Depot55 58 224 9 56.5 2.2 58.8 3,433,865 0.002 340
Depot55 59 218 7 57.9 3.0 61.1 2,465,551 0.003 244
Depot57 59 180 9 31.9 2.1 34.0 2,245,628 0.002 222

Depot55 57 58 192 8 133.0 4.0 137.1 4,526,267 0.001 448
Depot55 57 59 199 7 118.2 5.1 124.0 3,548,325 0.002 351
Depot57 58 59 181 8 135.4 5.4 141.3 4,387,580 0.002 434

BM/CG-IDCA

Depot50 58 728 27 101.6 13.0 115.4 4,254,772 0.010 421
Depot50 60 716 25 78.2 7.4 86.1 3,092,305 0.010 306
Depot55 57 384 14 17.7 2.8 20.8 2,395,493 0.007 237
Depot55 58 409 18 33.3 6.2 40.9 3,434,619 0.024 340
Depot55 59 423 17 24.1 8.3 34.6 2,466,053 0.023 244
Depot57 59 413 15 18.6 5.7 24.3 2,245,743 0.007 222

Depot55 57 58 503 26 65.4 11.0 78.5 4,527,126 0.020 448
Depot55 57 59 520 22 69.3 13.3 83.8 3,548,496 0.007 351
Depot57 58 59 566 29 93.5 16.0 110.7 4,387,775 0.006 434

BM/CG-IDCA-HDD

Depot50 58 459 18 26.2 6.3 34.0 4,255,326 0.023 421
Depot50 60 492 17 26.4 4.4 32.1 3,092,453 0.014 306
Depot55 57 337 13 9.1 1.8 11.7 2,395,442 0.005 237
Depot55 58 350 18 11.1 3.3 15.6 3,434,187 0.011 340
Depot55 59 371 17 8.8 3.2 13.0 2,465,725 0.010 244
Depot57 59 343 10 10.7 2.4 13.9 2,245,705 0.006 222

Depot55 57 58 466 25 32.8 7.3 41.7 4,527,117 0.019 448
Depot55 57 59 401 16 27.5 8.1 37.0 3,548,626 0.010 351
Depot57 58 59 513 37 29.2 9.3 39.2 4,388,390 0.020 434

Table 5: Pairwise Comparisons of Solution Approaches for the MDVSP

Variation (%) Speedup Factor

Itr Nodes Cost (A)RMP SP Total

BM/CG-IDCA vs BM/CG 124.5 130.8 0.011 1.6 0.4 1.4
BM/CG-IDCA-HDD vs BM/CG-IDCA -18.2 -12.1 0.001 2.7 1.9 2.4
BM/CG-IDCA-HDD vs BM/CG 86.4 115.8 0.011 4.3 0.7 3.4

From the comparative results in Table 6, we can see that BM/CG-IDCA-HDD still yields a signifi-

cant average speedup factor over BM/CG for all scenarios, ranging between 2.4 and 2.9. This speedup

is again due to a large reduction of the (A)RMP time that greatly compensates the increase of the SP

time. For all scenarios, it is less than the speedup factors (3.3 for the SDVSP and 3.4 for the MDVSP)

reported in Section 5.2. We believe that removing/penalizing additional connections diminishes de-

generacy because slightly shorter columns are generated and, therefore, the tools put in place to fight

degeneracy are less useful. Nevertheless, the achieved speedups clearly show that these tools remain

highly relevant to achieve the best results.

Les Cahiers du GERAD G–2025–82 – Revised 16

Table 6: Comparative Results for the Instances with Additional Forbidden/Penalized Connections: BM/CG-IDCA-HDD
vs BM/CG

Variation (%) Speedup Factor

Scenario Itr Nodes Cost (A)RMP SP Total

SDVSP

Forbidden/15% 129.2 234.4 0.007 3.3 0.6 2.5
Forbidden/30% 149.2 236.8 0.006 4.0 0.7 2.8
Penalized/15% 143.1 212.9 0.005 3.9 0.7 2.6
Penalized/30% 133.8 179.0 0.005 3.5 0.6 2.4

MDVSP

Forbidden/15% 86.6 89.8 0.011 3.4 0.6 2.8
Forbidden/30% 84.1 59.1 0.009 3.4 0.6 2.9
Penalized/15% 111.9 184.2 0.011 2.9 0.5 2.4
Penalized/30% 85.2 63.2 0.009 3.0 0.6 2.6

6 Conclusion

In this paper, we proposed to solve large-scale practical MDVSP instances using a CG-based diving

heuristic that combines CG with IDCA and a novel HDD strategy, to mitigate degeneracy. This algo-

rithm is applied to a block-based model that is also less prone to degeneracy than a traditional schedule-

based model. Furthermore, in response to the needs of our industrial partner, we use connection-based

networks in the pricing SPs to easily handle restrictions or penalties on undesirable direct connections

between two trips.

To assess the impact of using all these components, we conducted computational experiments on

real instances of the Montreal transit agency, involving up to 3 depots and more than 6,000 trips. The

obtained results on the SDVSP instances indicate that the best algorithm, BM/CG-IDCA-HDD, yields

an impressive average speedup factor of 12.4 over the basic SM/CG algorithm. Our results also show

that, for both the SDVSP and the MDVSP instances, average acceleration factors ranging between

2.4 and 3.4 can be achieved by applying IDCA with HDD on top of CG when adopting a block-based

model for both solution approaches. These time gains come with an increase of the solution cost that is

deemed negligible (less than 0.011% on average). For example, the BM/CG-IDCA-HDD algorithm can

solve the largest tested MDVSP instance with 3 depots and 6,296 in less than 40 minutes, producing

a solution with a 0.02% optimality gap.

These results show that the proposed methodology can be highly effective at solving practical large-

scale MDVSP instances. Future work will extend this solution method to electric bus scheduling by

integrating charging decisions and battery constraints. In particular, adopting a block-based model in

this case is challenging because the flow conservation constraints must take into account the state-of-

charge of the buses.

References
Pascal Benchimol, Guy Desaulniers, and Jacques Desrosiers. Stabilized dynamic constraint aggregation for

solving set partitioning problems. European Journal of Operational Research, 223(2):360–371, 2012. doi:
https://doi.org/10.1016/j.ejor.2012.07.004. URL https://www.sciencedirect.com/science/article/pii/

S0377221712005255.

A. A. Bertossi, P. Carraresi, and G. Gallo. On some matching problems arising in vehicle scheduling
models. Networks, 17(3):271–281, 1987. doi: https://doi.org/10.1002/net.3230170303. URL https:

//onlinelibrary.wiley.com/doi/abs/10.1002/net.3230170303.

Lawrence Bodin, D Rosenfield, and Andy Kydes. UCOST: a micro approach to a transportation planning
problem. Journal of Urban Analysis, 5(1):47–69, 1978.

Hocine Bouarab, Issmail El Hallaoui, Abdelmoutalib Metrane, and François Soumis. Dynamic constraint and
variable aggregation in column generation. European Journal of Operational Research, 262(3):835–850, 2017.

https://www.sciencedirect.com/science/article/pii/S0377221712005255
https://www.sciencedirect.com/science/article/pii/S0377221712005255
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230170303
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230170303

Les Cahiers du GERAD G–2025–82 – Revised 17

doi: https://doi.org/10.1016/j.ejor.2017.04.049. URL https://www.sciencedirect.com/science/article/

pii/S037722171730396X.

Guy Desaulniers, June Lavigne, and Francois Soumis. Multi-depot vehicle scheduling problems with time
windows and waiting costs. European Journal of Operational Research, 111(3):479–494, 1998.

Jacques Desrosiers, Marco Lübbecke, Guy Desaulniers, and Jean Bertrand Gauthier. Branch-and-price. Les
Cahiers du GERAD G-2024-36, Groupe d’études et de recherche en analyse des décisions, June 2024. URL
https://www.gerad.ca/en/papers/G-2024-36.

Issmail Elhallaoui, Daniel Villeneuve, François Soumis, and Guy Desaulniers. Dynamic aggregation of set-
partitioning constraints in column generation. Operations Research, 53(4):632–645, 2005. doi: 10.1287/
opre.1050.0222. URL https://doi.org/10.1287/opre.1050.0222.

Issmail Elhallaoui, Metrane Abdelmoutalib, François Soumis, and Guy Desaulniers. Multi-phase dynamic
constraint aggregation for set partitioning type problems. Mathematical Programming, 123:345–370, 06
2010. doi: 10.1007/s10107-008-0254-5.

Juliette Gerbaux, Guy Desaulniers, and Quentin Cappart. A machine-learning-based column genera-
tion heuristic for electric bus scheduling. Computers & Operations Research, 173:106848, 2025. doi:
https://doi.org/10.1016/j.cor.2024.106848. URL https://www.sciencedirect.com/science/article/pii/

S0305054824003204.

Vitali Gintner, Natalia Kliewer, and Leena Suhl. Solving large multiple-depot multiple-vehicle-type bus schedul-
ing problems in practice. OR Spectrum, 27:507–523, 2005.

K. Gkiotsalitis, C. Iliopoulou, and K. Kepaptsoglou. An exact approach for the multi-depot electric bus
scheduling problem with time windows. European Journal of Operational Research, 306(1):189–206, 2023.
doi: https://doi.org/10.1016/j.ejor.2022.07.017. URL https://www.sciencedirect.com/science/article/

pii/S0377221722005707.

Pablo C. Guedes and Denis Borenstein. Column generation based heuristic framework for the multiple-
depot vehicle type scheduling problem. Computers & Industrial Engineering, 90:361–370, 2015. doi:
https://doi.org/10.1016/j.cie.2015.10.004. URL https://www.sciencedirect.com/science/article/pii/

S0360835215003976.

Pablo Cristini Guedes, William Prigol Lopes, Leonardo Rosa Rohde, and Denis Borenstein. Simple and efficient
heuristic approach for the multiple-depot vehicle scheduling problem. Optimization Letters, 10:1449–1461,
2016.

Ahmed Hadjar and François Soumis. Dynamic window reduction for the multiple depot vehicle schedul-
ing problem with time windows. Computers & Operations Research, 36(7):2160–2172, 2009. doi:
https://doi.org/10.1016/j.cor.2008.08.010. URL https://www.sciencedirect.com/science/article/pii/

S0305054808001391.

Ahmed Hadjar, Odile Marcotte, and François Soumis. A branch-and-cut algorithm for the multiple depot
vehicle scheduling problem. Operations Research, 54(1):130–149, 2006.

Florent Hernandez, Dominique Feillet, Rodolphe Giroudeau, and Olivier Naud. Branch-and-price algorithms for
the solution of the multi-trip vehicle routing problem with time windows. European Journal of Operational
Research, 249(2):551–559, 2016.

O.J. Ibarra-Rojas, F. Delgado, R. Giesen, and J.C. Muñoz. Planning, operation, and control of bus trans-
port systems: A literature review. Transportation Research Part B: Methodological, 77:38–75, 2015. doi:
https://doi.org/10.1016/j.trb.2015.03.002. URL https://www.sciencedirect.com/science/article/pii/

S0191261515000454.

Stefan Irnich and Guy Desaulniers. Shortest path problems with resource constraints. In Guy Desaulniers,
Jacques Desrosiers, and Marius M. Solomon, editors, Column Generation, pages 33–65. Springer US, Boston,
MA, 2005.

Natalia Kliewer, Täıeb Mellouli, and Leena Suhl. A new solution model for multi-depot multi-vehicle-type
vehicle scheduling in (sub) urban public transport. In Proceedings of the 13th Mini-EURO Conference.
Politechnic of Bari, 2002.

Natalia Kliewer, Täıeb Mellouli, and Leena Suhl. A time–space network based exact optimization model for
multi-depot bus scheduling. European Journal of Operational Research, 175(3):1616–1627, 2006.

Benôıt Laurent and Jin-Kao Hao. Iterated local search for the multiple depot vehicle scheduling problem.
Computers & Industrial Engineering, 57(1):277–286, 2009. doi: https://doi.org/10.1016/j.cie.2008.11.028.
URL https://www.sciencedirect.com/science/article/pii/S0360835208003148.

https://www.sciencedirect.com/science/article/pii/S037722171730396X
https://www.sciencedirect.com/science/article/pii/S037722171730396X
https://www.gerad.ca/en/papers/G-2024-36
https://doi.org/10.1287/opre.1050.0222
https://www.sciencedirect.com/science/article/pii/S0305054824003204
https://www.sciencedirect.com/science/article/pii/S0305054824003204
https://www.sciencedirect.com/science/article/pii/S0377221722005707
https://www.sciencedirect.com/science/article/pii/S0377221722005707
https://www.sciencedirect.com/science/article/pii/S0360835215003976
https://www.sciencedirect.com/science/article/pii/S0360835215003976
https://www.sciencedirect.com/science/article/pii/S0305054808001391
https://www.sciencedirect.com/science/article/pii/S0305054808001391
https://www.sciencedirect.com/science/article/pii/S0191261515000454
https://www.sciencedirect.com/science/article/pii/S0191261515000454
https://www.sciencedirect.com/science/article/pii/S0360835208003148

Les Cahiers du GERAD G–2025–82 – Revised 18

Aristide Mingozzi, Roberto Roberti, and Paolo Toth. An exact algorithm for the multitrip vehicle routing
problem. INFORMS Journal on Computing, 25(2):193–207, 2013.

Seyedeh Simin Mousavi, Alireza Pooya, Pardis Roozkhosh, and Morteza Pakdaman. A new bi-objective
simultaneous model for timetabling and scheduling public bus transportation. Opsearch, 62(1):198–229,
2025.

Amar Oukil, Hatem Ben Amor, Jacques Desrosiers, and Hicham El Gueddari. Stabilized column generation
for highly degenerate multiple-depot vehicle scheduling problems. Computers & Operations Research, 34
(3):817–834, 2007. doi: https://doi.org/10.1016/j.cor.2005.05.011. URL https://www.sciencedirect.com/

science/article/pii/S0305054805001590.

Ann-Sophie Pepin, Guy Desaulniers, Alain Hertz, and Dennis Huisman. A comparison of five heuristics for
the multiple depot vehicle scheduling problem. Journal of Scheduling, 12:17–30, 2009.

Shyam SG Perumal, Richard M Lusby, and Jesper Larsen. Electric bus planning & scheduling: A review of
related problems and methodologies. European Journal of Operational Research, 301(2):395–413, 2022.

Celso C Ribeiro and François Soumis. A column generation approach to the multiple-depot vehicle scheduling
problem. Operations research, 42(1):41–52, 1994.

Léa Ricard, Guy Desaulniers, Andrea Lodi, and Louis-Martin Rousseau. Chance-constrained battery manage-
ment strategies for the electric bus scheduling problem. arXiv preprint arXiv:2503.19853, 2025.

Mohammad Sadrani, Alejandro Tirachini, and Constantinos Antoniou. Bus scheduling with heterogeneous
fleets: Formulation and hybrid metaheuristic algorithms. Expert Systems with Applications, 263:125720,
2025. doi: https://doi.org/10.1016/j.eswa.2024.125720. URL https://www.sciencedirect.com/science/

article/pii/S0957417424025879.

Ruslan Sadykov, François Vanderbeck, Artur Pessoa, Issam Tahiri, and Eduardo Uchoa. Primal heuristics for
branch and price: The assets of diving methods. INFORMS Journal on Computing, 31(2):251–267, 2019.

Antonio M. Sudoso and Daniel Aloise. A column generation algorithm with dynamic constraint aggregation
for minimum sum-of-squares clustering. INFORMS Journal on Computing, 0(0):null, 2025. doi: 10.1287/
ijoc.2024.0938. URL https://doi.org/10.1287/joc.2024.0938.

Marcel E van Kooten Niekerk, JM van den Akker, and JA Hoogeveen. Scheduling electric vehicles. Public
Transport, 9:155–176, 2017.

Şule Yıldırım and Barış Yıldız. Electric bus fleet composition and scheduling. Transportation Research Part
C: Emerging Technologies, 129:103197, 2021.

Le Zhang, Shuaian Wang, and Xiaobo Qu. Optimal electric bus fleet scheduling considering battery degradation
and non-linear charging profile. Transportation Research Part E, 154:102445, 2021.

https://www.sciencedirect.com/science/article/pii/S0305054805001590
https://www.sciencedirect.com/science/article/pii/S0305054805001590
https://www.sciencedirect.com/science/article/pii/S0957417424025879
https://www.sciencedirect.com/science/article/pii/S0957417424025879
https://doi.org/10.1287/joc.2024.0938

	Introduction
	Literature review
	Problem statement and mathematical formulation
	Problem statement
	Block-based formulation
	Time-point aggregation

	Solution algorithm
	Column generation
	Dynamic constraint aggregation
	Dual variable disaggregation
	Multi-phase dynamic constraint aggregation

	Diving heuristic

	Computational results
	Test instances
	Results for the original instances
	Results for instances with additional forbidden/penalized connections

	Conclusion

