Les Cahiers du GERAD

ISSN: 0711-2440

Improving regularity in the crew pairing: A hybrid bonus-
based and MIP optimizer approach

M. F. Benammour, F. Quesnel, B. Rochefort, F. Soumis

G-2025-81
December 2025

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
travail a été soumis a des revues avec comité de révision. Lorsqu'un
document est accepté et publié, le pdf original est retiré si c'est
nécessaire et un lien vers I'article publié est ajouté.

Citation suggérée : M. F. Benammour, F. Quesnel, B. Rochefort,
F. Soumis (Décembre 2025). Improving regularity in the crew
pairing: A hybrid bonus-based and MIP optimizer approach,
Rapport technique, Les Cahiers du GERAD G- 2025-81, GERAD,
HEC Montréal, Canada.

Avant de citer ce rapport technique, veuillez visiter notre site Web
(https://www.gerad.ca/fr/papers/G-2025-81) afin de mettre a
jour vos données de référence, s'il a été publié dans une revue sci-
entifique.

The series Les Cahiers du GERAD consists of working papers
carried out by our members. Most of these pre-prints have been
submitted to peer-reviewed journals. When accepted and published,
if necessary, the original pdf is removed and a link to the published
article is added.

Suggested citation: M. F. Benammour, F. Quesnel, B. Rochefort,
F. Soumis (December 2025). Improving regularity in the crew pairing:
A hybrid bonus-based and MIP optimizer approach, Technical report,
Les Cahiers du GERAD G-2025-81, GERAD, HEC Montréal, Canada.

Before citing this technical report, please visit our website (https:
//www.gerad.ca/en/papers/G-2025-81) to update your reference
data, if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grace
au soutien de HEC Montréal, Polytechnique Montréal, Université
McGill, Université du Québec a Montréal, ainsi que du Fonds de
recherche du Québec — Nature et technologies.

Dépét légal — Bibliotheque et Archives nationales du Québec, 2025
— Bibliotheque et Archives Canada, 2025

The publication of these research reports is made possible thanks
to the support of HEC Montréal, Polytechnique Montréal, McGill
University, Université du Québec a Montréal, as well as the Fonds de
recherche du Québec — Nature et technologies.

Legal deposit — Bibliotheque et Archives nationales du Québec, 2025
— Library and Archives Canada, 2025

GERAD HEC Montréal
3000, chemin de la Céte-Sainte-Catherine
Montréal (Québec) Canada H3T 2A7

Tél.: 514 340-6053
Téléc.: 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2025-81
https://www.gerad.ca/en/papers/G-2025-81
https://www.gerad.ca/en/papers/G-2025-81

Improving regularity in the crew pairing: A hybrid bonus-

based and MIP optimizer approach

Mohamed Faouzi Benammour ?' €

Frédéric Quesnel ¢
Benoit Rochefort 2' €

Francois Soumis '€

@ Bibliothéque, HEC Montréal, Montréal

Canada, H3T 2A7

b HEC Montréal, Montréal (Qc), Canada, H3T 2A7

¢ GERAD, Montréal (Qc), Canada, H3T 1J4

benammour.m.f@gmail.com
quesnel.frederic@ugam.ca
benoit.rochefort@gerad.ca

December 2025

Les Cahiers du GERAD

G-2025-81

Copyright (©) 2025 Benammour, Quesnel, Rochefort, Soumis

(Qc),

Les textes publiés dans la série des rapports de recherche Les Cahiers
du GERAD n'engagent que la responsabilité de leurs auteurs. Les
auteurs conservent leur droit d’auteur et leurs droits moraux sur leurs
publications et les utilisateurs s'engagent a reconnaitre et respecter
les exigences légales associées a ces droits. Ainsi, les utilisateurs:
e Peuvent télécharger et imprimer une copie de toute publica-
tion du portail public aux fins d'étude ou de recherche privée;
o Ne peuvent pas distribuer le matériel ou I'utiliser pour une
activité a but lucratif ou pour un gain commercial;
e Peuvent distribuer gratuitement I'URL identifiant la publica-
tion.
Si vous pensez que ce document enfreint le droit d'auteur, contactez-
nous en fournissant des détails. Nous supprimerons immédiatement
I'acceés au travail et enquéterons sur votre demande.

The authors are exclusively responsible for the content of their re-
search papers published in the series Les Cahiers du GERAD. Copy-
right and moral rights for the publications are retained by the authors
and the users must commit themselves to recognize and abide the
legal requirements associated with these rights. Thus, users:
e May download and print one copy of any publication from the
public portal for the purpose of private study or research;
e May not further distribute the material or use it for any profit-
making activity or commercial gain;
e May freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.

Les Cahiers du GERAD G-2025-81 ii

Abstract : The Crew Pairing Problem (CPP) involves constructing feasible pairings (sequences of
flights, connections, and rest periods) for airline crew while minimizing operational costs and ensuring
full flight coverage. However, beyond cost minimization, regularity has become a crucial objective for
many airlines, as it enhances operational stability and may reduce indirect logistical costs. Traditional
CPP optimization methods primarily focus on cost reduction but often fail to effectively incorporate
regularity, as they lack a structured mechanism to balance both objectives.

This study proposes several approaches to enhance regularity in the CPP. The first approach is
bonus-based, identifying pairings with high repetition potential in the initial solution. The CPP is then
re-solved using a branch-and-price algorithm to encourage the selection of these repeatable pairings.
The second approach reoptimizes the initial solution by solving an MIP that explicitly maximizes
regularity. Finally, we show that both approaches are complementary and can be applied sequentially
to further enhance regularity while maintaining cost efficiency, forming a hybrid method.

Computational experiments conducted on datasets from a major Asian airline demonstrate the
effectiveness of the proposed methods. The results show that they generate highly regular solutions
with minimal cost deviations, achieving up to an 88% improvement in regularity ratio and a 58%
reduction in pairing patterns. This significant improvement highlights the practical applicability of
the methods in optimizing airline crew pairing.

Les Cahiers du GERAD G-2025-81 1

1 Introduction

Airlines continuously strive to ensure that each flight is equipped with the appropriate aircraft and
crew, and that these resources are positioned at the right location and time to execute their flight
schedules. However, this process is inherently complex and costly, involving multiple interdependent
planning stages. Airline operations are typically planned in five steps. The first is flight scheduling,
where flight schedules are determined with the objective of maximizing profit. This is followed by
fleet assignment, which allocates aircraft types to scheduled flights, taking into account passenger
demand, aircraft availability by type, and fleet conservation requirements. Next is aircraft routing,
which constructs feasible itineraries for aircraft to cover each flight exactly once while adhering to
maintenance requirements. The fourth step is crew pairing, which seeks to create minimum-cost
crew pairings (sequences of flights, connections, and rest periods that comply with regulatory and
contractual constraints) that cover all flights for a roster period (typically a month). Finally, crew
assignment ensures that rosters are allocated to crew members in a manner that effectively covers all
pairings. These planning steps collectively form the backbone of efficient airline operations. Among
these steps, crew pairing optimization is particularly critical, as it directly impacts operational costs.
A major challenge for airlines lies in minimizing crew-related expenses, which represent one of the
largest operational cost components.

The objective of the Crew Pairing Problem (CPP) is to assign each flight exactly once to a pairing,
ensuring feasibility under operational and regulatory constraints while minimizing operational costs.
Pairing feasibility constraints include safety regulations, such as maximum duty and flight hours, and
minimum rest periods. Contractual agreements impose additional regulations and a complex cost
structure, adding significant complexity to the problem.

While minimizing costs remains a primary goal, achieving regularity in the CPP has gained increas-
ing attention due to its significant operational and financial benefits. Regularity refers to the consistent
repetition of identical pairings over multiple days, ensuring stability and predictability throughout a
planning period, such as a month. Regular crew pairings provide numerous advantages, particu-
larly in reducing indirect and administrative costs. By maintaining consistency, airlines can negotiate
long-term contracts for accommodations and transportation services, such as hotels and limousines,
leading to substantial savings compared to irregular, ad hoc arrangements. Additionally, predictable
pairings improve employee satisfaction by offering more stable work schedules and better work-life bal-
ance. From an operational perspective, regular pairings improve efficiency by streamlining transitions
between terminals and optimizing crew movement across consistent routes, especially during tight
connections. Moreover, they enhance resilience during disruptions such as flight delays. By leveraging
repeated pairings, airlines can apply proven solutions to recurring issues, avoiding the need to devise
new responses each time. This combination of financial, operational, and employee-related benefits
makes regularity an essential consideration in modern crew pairing strategies.

The CPP is usually solved using a branch-and-price algorithm (column generation embedded in
a branch-and-bound algorithm). Such algorithms face challenges in incorporating regularity due to
several factors. First, column generation methods typically treat flights as independent, whereas
regularity relies on the presence of identical flights across different dates. In this context, flights that
share the same operational characteristics (same origin, destination, and scheduled times) but occur on
different days are grouped under the same flight number. Secondly, regularity is a global objective that
involves the set of selected pairings. Including such an objective in the column generation subproblems
would therefore be challenging. Additionally, the dependence of regularity on the structure of the entire
set of pairings makes it challenging to evaluate the impact of a single pairing on overall regularity in the
pairing subproblem. One way to accelerate column generation while enhancing regularity is through
the three-phase method (Barnhart, Cohn, et al. 2003; Saddoune, Desaulniers, et al. Mar. 2013). This
approach sequentially solves a daily, weekly, and monthly version of the CPP, using each solution as
the initial input for the subsequent phase. While it generally achieves good regularity, it often struggles
with cost efficiency. Conversely, the rolling horizon approach Saddoune, Desaulniers, et al. July 2009,

Les Cahiers du GERAD G-2025-81 2

which divides the planning period into overlapping time windows and solves each sequentially, typically
minimizes costs but frequently results in irregular pairings. To overcome these limitations, this study
proposes methods that aim to balance regularity and cost efficiency, providing airlines with practical
and adaptable tools to optimize both objectives.

The contributions of this paper are as follows:

e We propose two solution methods that solve the CPP while explicitly taking regularity into
account. Each algorithm takes as input an initial CPP solution and attempts to improve its
regularity while keeping costs low.

e The first solution method identifies pairings with high repetition potential in the initial solution.
The CPP is then re-solved using a branch-and-price algorithm with these repeatable pairings
given as suggestions.

e The second solution method formulates the CPP as a bi-objective MIP whose variables are
copies of the pairings in the initial solution. The MIP aims to find a solution that achieves
a good balance between cost and regularity. This model is relatively small and can be solved
quickly.

e We show that both algorithms are complementary in terms of solution improvement. We thus
propose a hybrid approach that combines the two.

e We assess the regularity of a CPP solution using two metrics. The first, drawn from industry
practice, is intuitive but tends to overemphasize rarely repeated pairing patterns. To address
this limitation, we propose an alternative metric that corrects this bias and justifies its use
both theoretically and empirically. Both metrics can be integrated into the optimization models
developed.

The proposed methods are tested on a real-world dataset from a large Asian airline, achieving
an average improvement of 40% to 60% in regularity with minimal cost deviations from the initial
solution.

The remainder of this paper is organized as follows: Section 2 reviews the relevant literature,
highlighting the key contributions and gaps in existing approaches. Section 3 introduces the problem
definition, focusing on optimizing regularity in the CPP. We present the mathematical model and the
associated constraints. Section 4 discusses the solution approaches, including methodologies designed
to incorporate regularity. Section 5 presents computational results to evaluate the effectiveness of the
proposed methods. Finally, Section 6 concludes the research, summarizing the findings and suggesting
directions for future work.

2 Literature review

The Crew Pairing Problem (CPP) has been widely studied in operations research, with a focus on
optimizing crew pairings to minimize costs while ensuring full flight coverage. This section reviews key
contributions and limitations in CPP research, highlighting the evolution of solution approaches and
their impact on cost efficiency and operational regularity.

2.1 Crew Pairing Problem CPP

The Crew Pairing Problem (CPP) is generally formulated as a set partitioning problem (SPP) or a
set covering problem (SCP), depending on the specific constraints for each flight, along with other
secondary constraints. Each variable in the problem represents a feasible pairing. Considering a set of
flights F over a given period, usually a month, the objective is to determine a set of feasible pairings
for the crew that minimizes costs while ensuring that each flight f € F is covered exactly once. Using
the following notations:

Les Cahiers du GERAD G-2025-81 3

— P: Set of all feasible pairings.

— F: Set of flights to be covered.

— @Q: Set of indices for secondary constraints.

— ¢p: Cost of pairing p € P.

— ayp: Binary constant equal to 1 if flight f € F is covered in pairing p € P, and 0 otherwise.
— bgp: Contribution of pairing p € P to secondary constraint ¢ € Q.

eq: Right-hand side of the secondary constraint ¢ € Q.

— yp: Binary variable equal to 1 if pairing p is selected and 0 otherwise.

The CPP is formulated as follows (see Saddoune, Desaulniers, et al. Mar. 2013):

Minimize Z CpYp (1)
peEP

subject to Z afplp =1, vVfeF (2)
peP
Z bapyp < €q, Vg e Q (3)
peEP
yp € {0, 1}, VpeP (4)

Objective function (1) minimizes the total cost of the selected pairings. Constraint (2) ensures
that each flight f € F is covered exactly once by one of the selected pairings. Constraint (3) enforces
additional secondary requirements, such as hotel accommodations, crew availability at each base, and
duty day limitations (see Sandhu et al. 2007; Quesnel, Desaulniers, et al. 2017; Quesnel, Desaulniers,
et al. 2020). Finally, Constraint (4) ensures that y,, is binary.

2.2 CPP solution methods

Solving formulation (1)—(4) poses significant challenges due to the large number of feasible pairings.
For small instances, Hu et al. 1999 proposes enumerating all feasible pairings, but this method becomes
impractical for larger instances typical of the industry. To address this limitation, Klabjan et al. 2001
suggests focusing on a subset of promising pairings. However, this technique may occasionally omit
pairings that appear of low quality but are essential for high-quality solutions (more details on this
work are provided in 2.3). As the size and complexity of instances increase, more scalable techniques
are required. Column generation has become the dominant approach, offering a structured framework
for tackling large-scale CPPs efficiently (see Quesnel, Desaulniers, et al. 2017; Saddoune, Desaulniers,
et al. Mar. 2013; Tahir et al. 2021).

2.2.1 Column generation

Column generation is an iterative method introduced by Dantzig et al. 1960 and first applied by
Gilmore et al. 1961, illustrated by Lavoie et al. 1988, Desaulniers, Desrosiers, loachim, et al. 1998,
Desaulniers, Desrosiers, and Solomon 2005 and Saddoune, Desaulniers, et al. Mar. 2013. Its goal is to
solve the linear relaxation of optimization problems with a large number of variables.

Column generation alternates between solving a Restricted Master Problem (RMP) and one or
more subproblems (see Figure 1). The RMP is the linear relaxation of (1)—(4), restricted to a limited
number of variables (also called columns). The goal of the subproblems is to identify columns with
negative reduced costs, which are then added to the RMP. This iterative process continues until the
subproblems can no longer generate columns with negative reduced costs, indicating that the RMP
solution is optimal for the linear relaxation of the global problem. The key advantage of this method

Les Cahiers du GERAD G-2025-81 4

v
4)

Master
Problem

N

. Dual New Branching Integt.ar

variables Columns Decision Solution
\

‘ Subproblems \ optimal

solution

\ / of the LR

Figure 1: Column Generation Algorithm Saddoune 2010

lies in its ability to address all necessary pairings while focusing efficiently and explicitly on a significant
subset of these pairings.

Desaulniers, Desrosiers, Dumas, et al. 1997 proposes a column-generation-based solution method for
the CPP. Several other papers that use column generation to solve the CPP (see Desrosiers, Dumas,
Desrochers, et al. 1991, Barnhart, Johnson, Anbil, et al. 1994, Desaulniers, Desrosiers, Dumas, et
al. 1997, and Desaulniers, Desrosiers, Ioachim, et al. 1998) have been published. Barnhart, Johnson,
Nembhauser, et al. 1998 highlighted the method’s efficiency in large-scale instances. Column generation
is still the most commonly used algorithm to solve the CPP linear relaxation (see, for instance, Zeren
et al. 2016; Quesnel, Desaulniers, et al. 2020; Parmentier et al. 2020; Tahir et al. 2021).

For the CPP, the subproblems are usually formulated as shortest path problems with resource
constraints, as detailed by Irnich et al. 2005. These subproblems are solved using dynamic programming
and are represented by complex acyclic networks. Each subproblem is defined for a crew base and a
specific day within the planning horizon, with the objective of generating feasible pairings for crew
members based at a particular location. The network configuration depends on the cost structure of
each pairing and the applied validity rules. Two distinct modeling methods emerge: the first relies on
flight-based networks, as applied by Sandhu et al. 2007 and Saddoune, Desaulniers, et al. July 2009,
where nodes represent flight beginnings and ends, connected by arcs linking sequentially feasible flights;
the second involves duty-based networks, as proposed by Lavoie et al. 1988, where nodes represent
duties (sequence of flight forming a day of work) and arcs connect operationally feasible duties. In
duty-based networks, the set of all duties is generally very large. As such, a large subset of promising
duties is generated in preliminary steps, and only those duties are considered in the subproblems.

When column generation yields fractional solutions, different strategies can be employed to obtain
integer solutions. Muter et al. 2013 limit column generation to the root node, relying on integer
programming for column selection, though this may lead to higher costs or infeasibility. A more
robust method is the branch-and-price (B&P) algorithm, which integrates column generation into
a branch-and-bound tree. This method generates new columns at each branching node, improving
the quality of the integer solution. The algorithm was originally introduced in Desrosiers, Dumas,
Solomon, et al. Oct. 1995, and the term “branch-and-price” was later coined by Barnhart, Johnson,
Nemhauser, et al. 1998. B&P was successfully implemented by Desaulniers, Desrosiers, Dumas, et
al. 1997, who solved instances with up to 1,200 flights in under four hours. Further enhancements and
branching strategies were later developed by Desaulniers, Desrosiers, loachim, et al. 1998. Typically,
fully exploring the branch-and-bound tree would be too computationally demanding, so heuristic
branching, such as column fixing, is used (Saddoune, Desaulniers, et al. July 2009).

Several alternative approaches have also been explored to improve the efficiency and scalability
of CPP solution methods. Some studies combine column generation with other techniques, such as

Les Cahiers du GERAD G-2025-81 5

Benders decomposition (Zeighami et al. 2019) or dynamic aggregation methods (Elhallaoui et al. 2005;
Desaulniers, Lessard, et al. 2020). Notably, Desaulniers, Lessard, et al. 2020 applied dynamic constraint
aggregation to solve monthly problems involving over 46,000 flights. Yaakoubi et al. 2020 proposes
improvements to the latter by incorporating machine learning, applied to monthly CPP instances in-
volving up to 50,000 flights. Other hybrid methods combine integer programming with metaheuristics,
such as particle swarm optimization PSO (Mohamed et al. 2020) or supervised machine learning with
mixed-integer optimization (Hizir 2024). Metaheuristics have also been used independently—for in-
stance, variable neighborhood search VNS (Xu et al. 2021) and genetic algorithms GA (Kornilakis
et al. 2002).

Finally, acceleration methods have been developed for both regular and irregular flight schedules.
Barnhart, Cohn, et al. 2003 introduced a three-phase approach for regular flight schedules, which
solves the CPP sequentially over three levels: daily, weekly, and monthly. It begins by solving a
representative daily problem based on typical flights that operate at least three times per week. The
resulting cyclic pairings are then expanded into a weekly schedule, followed by a re-optimization phase
that accounts for operational constraints and irregularities. A final monthly phase further refines the
plan to ensure feasibility over the entire planning horizon. This approach is effective for multi-day
pairings and regular schedules, but is less suitable when the flight schedules are irregular.

For irregular schedules, Saddoune, Desaulniers, et al. July 2009 proposed a rolling horizon method,
which divides the planning horizon into overlapping time windows of length L, with overlap O, and
solves each subproblem sequentially using column generation. Initial conditions are propagated from
one window to the next to ensure continuity. By reducing the size of the problem and focusing on
smaller sub-instances, this method achieves better results in terms of computation time, particularly
for large-scale monthly problems.

For comprehensive literature reviews, see Barnhart, Cohn, et al. 2003; Desaulniers, Desrosiers, and
Solomon 2005; Kasirzadeh 2015; Quesnel 2019.

2.3 Regularity

Although few studies have directly addressed the concept of regularity in crew pairing, several works
have explored related notions under different definitions and modeling approaches.

First, some studies define regularity as the repetition of the same sequence of activities. In the
context of the CPP, this would translate to how frequently the same pairings are repeated across the
planning horizon. This is the interpretation considered in this paper. Tajima et al. 1997 describes
an airline crew scheduling problem involving many irregular flights. The authors propose a heuristic
that systematically merges irregular flights into pairings consisting exclusively of regular flights. Al-
though the primary objective was to minimize the number of man-days in the solution, the approach
also manages to produce regular crew schedules. However, the authors do not report the impact on
operational costs. Regularity is measured as the percentage of pairings that are repeated every day of
the planning horizon. This measure was not considered in this study because it has several flaws. For
instance, it ignores pairings that repeat almost every day of the horizon. However, such pairings can
greatly contribute to regularity. By contrast, this paper introduces a regularity ratio measure which
accounts for the level of repetition of each pairing.

Klabjan et al. 2001 proposes a weekly model that simultaneously considers cost and regularity in
a weekly schedule. Their method generates a vast array of random pairings (in the millions), which
are then incorporated into a linear programming problem. The problem is solved in several phases,
each focusing on g-regular pairings (i.e., pairings that can be repeated on g days per week), starting
from the highest regularity (7-regular) down to 4-regular. After these stages, irregular pairings were
generated, and the complete flight schedule was partitioned accordingly. All flights not assigned to
a g-regular group, where 4 < g < 7, were classified as irregular flights and had to be covered by
irregular pairings. In their model, penalty costs were assigned to irregular pairings, decreasing as

Les Cahiers du GERAD G-2025-81 6

regularity increased. In their study, computing time reached 40 hours for small-scale problems (492
flights per week). Regularity was measured by the number of flight segments assigned to the 1-regular
group—the fewer such segments, the higher the regularity. Since the method relies on a subset of
enumerated pairings, it may overlook certain pairings that appear suboptimal but are essential for
constructing a high-quality solution. For the same reason, applying this method to larger datasets
could become prohibitively time-consuming as the number of enumerated pairings increases.

Wu et al. 2016 develops a column generation approach for CPP to minimize the total person-days.
They propose an algorithm for finding good pairings and consider regularity based on the fact that
most flight legs are regularly scheduled. Regularity is exploited to quickly generate many columns
just by repeating itineraries. Such repeated itineraries are preferable so that crew members will have
a low risk of making mistakes in duty time. The authors define two pairings as twins if for every
corresponding pair of flight legs, the departure and arrival airports are the same, and the departure
and arrival times are the same but not on the same day. The idea is that when the column generation
finds a valid pairing, all its twin pairings are added. They confirm that this idea improves the speed
of the column generation process.

Other works interpret regularity as temporal consistency in the crew’s work patterns, regardless of
task content. Dillon et al. 1999 presents an approach for pilot reserve crew scheduling that generates
reserve duty patterns (reserve pairings), which are then allocated using preferential bidding. The
study emphasizes quality-of-life considerations, particularly the regularity of monthly schedules (crew
like to work the same days of the week on duty across all weeks in the month). They generate call-out
day pairings of varying lengths, which also exhibit regularity. Note that Dillon et al. 1999 considers a
different aspect of regularity than this paper. Whereas they focus on schedule regularity (days on, days
off patterns), we focus on pairing regularity (the repetition of the same pairing patterns). Although
this was not studied in this paper, it seems intuitive that more regular pairings would allow for more
regular schedules.

Gopalakrishnan et al. 2005 discusses regularity in the context of crew fatigue, noting that while
many rules exist to address sleep loss in aircrew, there are no specific regulations aimed at minimizing
irregular sleep patterns. The authors suggest that it may be possible to optimize over legal pairings that
exhibit more regularity in sleep schedules without significantly increasing crew costs. They also report
preliminary computational experiments, which indicate promising results in reducing crew fatigue
through improved regularity at the crew pairing optimization stage. The basic idea behind their
approach is to use the intersection of rest periods in a pairing as a measure of regularity of sleep for
the air crew.

Steinzen et al. 2009, in the context of public transport, propose a solution method to improve
regularity in ex-urban bus networks, particularly addressing irregularities that are undesirable from the
drivers’ perspective. Their method also partially integrates the vehicle and crew scheduling problems.
A computational study showed that the proposed method improves solutions in both cost and regularity
compared to traditional approaches. However, a current limitation of this approach is that it does not
consider a full integration of vehicle and crew scheduling. To evaluate the improvement in regularity,
the measures used include the percentage of preserved duties, which indicates how many duties from
the original schedule are exactly retained in the new schedule. The percentage of preserved regular
pairs reflects how many regular pairings are maintained. Another measure is the average regular chain
length, which represents the mean number of regular tasks per duty. The percentage of average chain
length compares this value in the new solution to that in the original schedule.

In their computational study, the authors report that the proposed method improves both cost
and regularity compared to traditional approaches. However, they also acknowledge that the current
version of their method does not yet support fully integrated vehicle and crew scheduling, which
remains a limitation.

Les Cahiers du GERAD G-2025-81 7

Amberg et al. 2011 proposes a set of methods to enhance the similarity of resource schedules
in public transport, addressing the limitations of traditional approaches that often produce highly
irregular schedules by considering only one planning day at a time. The authors introduce two main
strategies to improve similarity: the first solves each day’s scheduling problem independently while
enforcing proximity to a common reference schedule; the second solves the scheduling problems for
multiple days simultaneously by leveraging regular patterns to ensure similarity. They also propose a
MIP formulation in which patterns are used as variables, solved using a column generation approach.
Computational results show that the proposed methods can significantly improve schedule similarity,
with only a minor increase in cost compared to fully cost-optimal solutions.

3 Problem definition

This section outlines the problem addressed in this study. It begins by defining regularity within
the Crew Pairing Problem (CPP) and emphasizing its operational significance. The measures used to
quantify and evaluate regularity in crew pairing solutions are also discussed. Finally, the mathematical
model developed to integrate regularity into the CPP is presented.

3.1 Terminology

Understanding the terminology related to crew pairing and operations management is essential for
grasping the complexities of the CPP. Crew members are responsible for operating flights and ensuring
passenger safety and comfort. Depending on their roles, crew members may include pilots (e.g., captain,
first officer) and cabin staff (e.g., flight attendants). Each crew member is assigned to a specific crew
base, serving as their home airport.

A flight is defined by its flight number, origin and destination airports, and scheduled times. It is
typically operated by the same aircraft and crew.

A flight number corresponds to a set of flights that share the same operational characteristics (same
origin, destination, and scheduled times) but occur on different days.

A pairing is defined as a sequence of flights, connections (time on ground) separated by mandatory
rest periods. All pairings must start and end at the same crew base and are subject to numerous
validity rules. Additionally, crew members may travel as passengers for repositioning purposes, which
is referred to as deadheading. Between consecutive flights/deadheads, a sit connection serves as a
waiting period during which crew members prepare for their next segment. A duty represents a typical
workday for a crew member, comprising flights separated by connections, potentially followed by a
layover or rest period. The goal of the crew pairing problem is to select a set of valid pairings that
covers each flight exactly once, at minimum cost.

Finally, a pairing pattern is a pairing with flights replaced by corresponding flight numbers. Thus,
several pairings can belong to the same pairing pattern, and two such pairings are identical except for
their start date.

3.2 Regularity in the Crew Pairing Problem

Pairing regularity is characterized by the consistent repetition of identical pairings across multiple
days. Let F be the set of flights to cover, and N the associated set of flight numbers. Let P be a set
of pairings forming a valid CPP solution, and let 7 denote the set of pairing patterns used in that
solution. This paper uses two different metrics to evaluate the regularity of a solution.

The first measure, called Total Number of Pairing Patterns (Mpattern), corresponds to the number
of unique pairing patterns used in a solution. We thus have:

Mpattcrn = |7—| (5)

Les Cahiers du GERAD G-2025-81 8

A smaller Mpattern value indicates greater regularity, as fewer distinct patterns suggest a more consis-
tent schedule. This measure is widely used by airlines as it is simple to understand.

While simple and intuitive, Mpqtterr, inherently tends to favor longer pairings when used as an
optimization objective, as fewer patterns are required when pairings span more flights. Another draw-
back of this measure is that it emphasizes patterns that are less frequently repeated. For example,
consider two solutions, each composed of 34 pairings. In the first solution, the pairings are distributed
across five pairing patterns with frequencies (30-1-1-1-1), while in the second, they are distributed
as (16-16—-2) across three pairing patterns. Although the first solution appears more regular (i.e, most
pairings follow the same pattern), the Total Number of Patterns measure would assign it a higher score
(five patterns versus three), incorrectly suggesting lower regularity. This highlights the limitation of
this measure, which treats all patterns equally, regardless of their usage frequency.

To address these shortcomings, we introduce a new metric to measure the regularity of a CPP
solution, named the ratio-based measure (M,qt0). This measure evaluates how consistently a flight is
repeated through the same pattern over the planning horizon, on average. For flight f € F, let Ty
denote the set of all pairings in the solution that use the same pattern as f, in Solution P, and let G I
denote the set of all flights with the same flight number as f (or the set of all flight associated with
flight number f € A/, depending on context). The reqularity ratio of flight f is then defined as:

7l
Gy

Ry thus takes the value 1 if all flights with the same flight number as f belong to pairings following
the same pairing pattern. Note that R; is defined for flights rather than flight numbers. Two different
flights with the same flight number can have different R; values if they belong to pairings following
different pairing patterns.

Ry = (6)

Building on this concept, we define M, ,ti, as the average regularity ratio across all flights:

ratlo = |]_-| Z Rf (7)

fer

This measure can be equivalently reformulated as a summation over the pairing patterns in a
solution. Let F; C F and N; be the set of flights and flight numbers associated with pattern t € T,
respectively. The regularity ratio of pattern ¢, denoted Ry, is defined as the sum of the regularity ratios

of its flights:
Ry= > Ry (8)
feF:

Then, the overall regularity measure can be rewritten as:

ratlo = |]_-| Z Rt (9)

teT

Mati0 1s bounded between 0 and 1, and a higher value indicates that flights are more consis-
tently assigned to the same pairing patterns, which reflects greater regularity. It can be viewed as a
percentage, making it easier to interpret and compare across different cases.

We now reformulate M,,t;o in a way that is more suitable for integration into a mathematical
model. Let z; denote the number of times pairing pattern ¢t € T is used in solution P. For each flight
f € Fi, we therefore have |T7| = zf. Ry can then be reformulated as :

— i
Ry = Z Ry = Z 1G] Z |g | Z |gn (10)

feF: feEF: feF:

Les Cahiers du GERAD G-2025-81 9

Where the last equality is obtained by noticing that the flight of F; can be grouped by flight
number, each flight number being represented z; times. For the sake of simplicity, this derivation
assumes that each flight number can be at most once per pairing, but the results are easy to generalize
if that were not the case. Let I'(t) = Zne/\/,, ‘g—lﬂ Let T denote all possible pairing pattern, and

suppose z; = 0 if and only if + ¢ T. The regularity ratio can then be expressed as

> 2Tt (11)

teT

1
Mratio = T
|7

Finally, the factor ﬁ is constant for a given instance and can be ignored for optimization purposes.

Note that both metrics play a critical role in evaluating the regularity of optimized solutions.
Mpattern offers a simple and intuitive measure of regularity, favoring solutions with fewer and longer
pairings. In contrast, M;,tio captures a more nuanced understanding of how patterns align with flights,
ensuring that regularity reflects both operational and structural aspects of the solution. As shown in
Section 5.2, M;,tio can also be used as a regularity objective inside optimization algorithms. Together,
these metrics offer comprehensive insights into crew pairing regularity, enabling airlines to choose the
evaluation method that best aligns with their strategic goals and operational needs.

To further motivate the usefulness of M;,ti0, Figure 2 compares two solutions for the same monthly
instances. Even though both solutions use the same number of patterns (191), solution S2 is clearly
more regular, as evidenced by the higher number of patterns that are repeated almost 30 times.
Correspondingly, the regularity ratio of S2 (92.14) is much higher than that of solution S1 (79.13).
This reinforces the idea that Mpattern can fail to capture important elements of regularity.

0] | === S1:Mupo = 79.13%
I —— 52; Mpatio = 92.14%
- l=
25 4
g]
g 2]
B
a
2
[=] -
e 154
=] 4
=
@
[= -
3 10
5]
1]
0 20 40 60 80 100 120 140 160 180

Trip pattern number

Figure 2: Pattern repetition for two solutions

3.3 Mathematical model

A naive method of achieving regularity would be to directly add a regularity component to the CPP
objective function. Here, we present such a model and explain why solving it would be impractical.
The proposed model explicitly incorporates pairing patterns, aiming to enhance the regularity metric
by encouraging the repetition of these patterns. The following notation is used :

— P(t): The subset of pairings belonging to pattern ¢ € T.
— ¢p: Cost associated with pairing p € P.

— ¥yp: Binary variable taking value 1 if the pairing p € P is selected, and 0 otherwise.

Les Cahiers du GERAD G-2025-81 10

— 2z Integer variable representing the number of repetitions of pattern t € T.

— F(z): is a general bonus function dependent on z;.

The proposed model is an integer program designed to solve the CCP with a focus on regularity.
It is expressed as follows:

Minimize > eyt Y Fla) (12)

peEP teT

subject to Z afpYp =1, VfeF (13)
peEP
Z bep¥p < €4, Vg e Q (14)
pEP

> up=, VteT (15)

pEP(t)
yp € {0,1}, VpeP (16)
zt €N, VteT (17)

Objective function (12) minimizes the total cost, which includes the cost of selected pairings and
a regularity objective, with F'(z;) designed to encourage regularity by rewarding patterns with high
regularity. For instance, to consider the Mpqszern, metric, we would have F(z;) = 0 if z, = 0, and M
otherwise. To implement the M,..4;, measure, we would set F(z;) = 22I'(t). Of course, other functions
could be considered, even if not directly linked to a regularity measure.

To illustrate how different forms of F(z;) can affect the solution, consider the case where we prefer
selecting a single pattern repeated 20 times over two patterns repeated 10 times each. This preference
reflects a desire for deeper repetition of fewer patterns, which promotes greater regularity. To enforce
such behavior, a concave function can be used, such as F(z) = —azl with 8 > 1 and a > 0.
This functional form assigns increasing marginal bonuses as pattern usage increases, encouraging the
selection of fewer, more frequently used patterns rather than many infrequently repeated ones. Note
that a linear bonus function (i.e., F'(2;) = —az;) would not incentivize regularity, as it would make
the regularity component of the objective function proportional to the number of pairings.

Constraint (13), known as the flight coverage constraint, ensures that each flight f € F is covered
exactly once by the selected pairings. Constraint (14) enforces additional secondary requirements.
Constraint (15) establishes the linkage between patterns and pairings by ensuring that the total number
of pairings belonging to a pattern ¢ € T equals the variable z;, which represents the number of times
pattern ¢ is repeated. Constraint (16) enforces the binary nature of the decision variable y,. Finally,
Constraint (17) requires z;, the number of repetitions of pattern ¢, to be a non-negative integer,
reflecting the discrete nature of pattern repetitions.

Solving (12)—(17) would be challenging for several reasons. The first challenge lies in the complexity
of the potential non-linearity of the objective function (12). This nonlinearity leads to weak linear
relaxations, making it difficult to derive tight bounds during optimization. Consequently, the branch-
and-bound (B&B) process becomes more complex, requiring deeper exploration of the search tree
and significantly increasing computational time. Depending on the functional form of F(.), existing
mathematical programming algorithms may not be directly applicable or may perform poorly, further
complicating the resolution of the model.

The second challenge arises from linking constraints (15). There is one such constraint per pairing
pattern, which can be millions in large-scale problems. If column generation were used to solve formu-
lation (12)—(17), constraints (15) would need to be dynamically added to the problem. However, this
would bring the additional difficulty of determining whether a given pattern is being generated in the
pricing subproblems, to properly compute column reduced costs. This would also greatly complicate
the dominance procedure that is key to efficient column generation (Irnich et al. 2005).

Les Cahiers du GERAD G-2025-81 11

In summary, these challenges highlight the need for advanced solution techniques to address the
complexities of both formulations. Strategies to avoid the nonlinearity of the objective function and
efficiently manage linking constraints are key to ensuring practical and computationally efficient reso-
lutions of the CPP with regularity.

4 Solution methods

The general approach proposed in this paper is to consider an initial CPP solution (referred to as the
input solution) and improve its regularity while maintaining a low solution cost. This initial solution
is obtained by solving the CPP using traditional techniques (e.g., branch-and-price). In practice, such
a solution is generally available since the CPP is solved several times during a month to adjust the
solution.

We propose two methods of improving the regularity of a given solution. The first approach iden-
tifies pairings with high repetition potential in the initial solution. The CPP is then re-solved using a
branch-and-price algorithm, incorporating bonuses to encourage the selection of these highly repeat-
able pairings. This method is presented in Section 4.1. The second approach re-optimizes the initial
solution by solving a Mixed-Integer Programming (MIP) model that explicitly targets regularity as an
objective. This method is detailed in Section 4.2. Finally, both methods can be applied sequentially
to further improve regularity while maintaining cost efficiency, forming a hybrid approach described
in Section 4.3.

4.1 Bonus-based improvement

Model (12)—(17) poses challenges, particularly due to the nonlinearity introduced by the bonus function
F(z;). To address this, we leverage the input solution to identify highly repeatable patterns and re-
optimize the CPP by initializing it with pairings corresponding to these patterns, augmented with
appropriate bonuses.

Let P be the set of pairings in the input solution, and let z; denote the number of times pattern
t € T is used in the input solution. These values provide useful indicators for identifying patterns of
interest in the optimization process. By leveraging the z; values and a bonus function F', the method
assigns a bonuses F(z/,t) to pairings. The objective function is then reformulated by adding these
bonuses to the cost of each pairing.

The updated optimization model is formulated as follows:

Minimize > (e + F(z 1) vy (18)
peEP

subject to Z afpyp = 1, vfeF (19)
peEP
Z bap¥p < €q; Vg €Q (20)
peP
yp € {0, 1}, VpeP (21)

This reformulation encourages the repetition of patterns selected in the input solution and promotes
their selection in the new solution. In practice, this is achieved by only assigning bonuses to pairings
identified as regular. A pairing is regular if its corresponding pattern is used at least z times in the
input solution. The CPP is then re-optimized by solving the reformulated model using a branch-and-
price algorithm. This approach sidesteps the non-linearity of Model (12)—(17) by considering static
bonuses based on the input solution. We propose two bonus functions to enhance regularity, presented
in the following subsections.

Les Cahiers du GERAD G-2025-81 12

4.1.1 Exponential bonus function

This function prioritizes patterns based on their frequency of use, encouraging higher repetition of the
same pattern. We define:

— a: A positive scaling parameter (a > 0) that adjusts the magnitude of the bonus.

— B: An exponent parameter (8 > 1) that controls the steepness of the function.
The bonus function is formulated as:

F(z.t) = —a- ()" (22)

This bonus function is both negative and concave, ensuring that patterns used more frequently are
given higher priority. The concavity of the function plays a critical role in its behavior, as it increases
the marginal benefit of additional repetitions for frequently used patterns. For instance, a pattern
repeated 20 times will receive a significantly higher bonus than two identical patterns repeated 10
times each, emphasizing the operational advantage of concentrating repetitions within fewer patterns.

4.1.2 Ratio-based bonus function

This bonus function prioritizes patterns by assigning a value based on their regularity ratio in the
input solution. Let R} represents the regularity ratio (R;, Equation (8)) for pattern ¢ from the input
solution (see 3.2 for details). The proposed ratio-based bonus function is given by:

F(zf,t)=—a- R} = —ozzt*QF(t) (23)

Here, « is a positive scaling parameter (« > 0) that adjusts the bonus magnitude.

This approach rewards patterns by summing the regularity ratios of all their associated flights,
naturally aligning with the concept of Ratio-Based measure (M, atio, Equation (9)) as it emphasizes
uniformity across flights within a pattern. It strongly incentivizes patterns with consistently high
repetition rates across their flights.

4.1.3 Advantages and drawbacks

The Bonus-Based Improvement approach effectively enhances regularity in the CPP by using negative
bonus functions to promote pattern repetition while maintaining cost efficiency. This method improves
regularity without the complexity of solving nonlinear models. However, its effectiveness depends on
the chosen parameters, such as the concavity factor and scaling coefficients. Poor parameter selection
can result in either insufficient regularity improvements or non-productive solutions.

Another drawback is the computational time required. Re-optimizing the solution takes almost as
much time as a new optimization. In actuality, re-optimization is slightly faster because the suggested
pairings act as a warm start. To mitigate this, we propose several enhancements aimed at streamlining
the process. In our implementation, some overhead steps, such as duty generation, can be performed
only once, resulting in substantial time savings during re-optimization.

Finally, another limitation is that the method does not restructure solutions: It may encourage the
repetition of similar conflicting patterns separately instead of consolidating them into a single, more
frequent pattern. For instance, consider a scenario with four flights: A, B, C, and D, where flights A
and C have nearly the same departure/arrival time, and similarly with flights B and C. Suppose the
possible pairings are (AB, AD, CB, CD), each appearing 15 times. The bonus-based method would
encourage all four pairings equally to increase their repetition. As a result, the optimization process
has no incentive to prefer consolidating pairings into fewer, more dominant patterns. This limitation
arises because the solution becomes a local minimum, with no mechanism to escape it. However,

Les Cahiers du GERAD G-2025-81 13

regularity could be enhanced by only reinforcing AB and CD, allowing them to each repeat 30 times
instead. Addressing this issue would require additional post-processing techniques beyond the scope
of this approach. Figure 3 illustrates this situation.

Owny O, (D—=—)
AD
)) ()—>—(o)
Figure 3: lllustration of alternative grouping strategies for pattern repetition

4.2 Integer Programming model

In this section, we present two Integer Programming (IP) models aimed at improving the regularity of
crew pairing solutions while maintaining low costs. Both models rely on an input solution to provide
a set of feasible pairings as well as a reference solution cost. Let T = {t € T|z; > 0} be the set of all
pairing pattern in the input solution. Each model considers a fixed set of pairings, denoted P, which
consists of all feasible pairings that correspond to a pattern in T (pairings of the initial solution plus
all feasible copies matching their patterns). This has the effect of limiting the number of variables
while allowing for increased regularity.

Each model is formulated as a bi-objective optimization problem, simultaneously maximizing reg-
ularity and minimizing total cost. They also contain a soft constraint to keep pairing costs at an
acceptable level. In particular, a parameter r is introduced to control the maximum allowable devia-
tion from the cost of the input solution.

The first and second models consider Mpattern and Mratio as the regularity metric. In the sec-
ond model, the nature of M;atio (Equation (11)) makes the objective function quadratic. It is then
linearized.

The following notations are used in both models:

— X: a parameter weighted 0 < A\ < 1 that balances the trade-off between the two objectives,
minimizing the total cost and maximizing the regularity,

— r: the authorized percentage increase in cost.

4.2.1 Minimizing the total number of patterns (MIPp)

The first model focuses on minimizing the total number of patterns used in the solution. To achieve
this, the model uses z; as a binary decision variable to indicate whether pattern ¢ € T is selected. The
complete bi-objective model is formulated as follows:

Minimize A Z pYp + (1= N) Z 2zt + M~ (24)
p€eP teT

subject to Z cpYp < (1+7) Z cpYy + Y (25)
pEP pEP
Zafpypzl, VfeF (26)
pEP
Z bopYp < €qs Vg e Q (27)
p€75

Yp < 21, Vt € T,Vp € P(t) (28)

Les Cahiers du GERAD G-2025-81 14

Yy, € {0,1}, VpEP (29)
z € {0,1}, vte T (30)

Cost constraint (25) ensures that the total cost of the improved solution does not exceed the cost
of the initial solution by more than a specified margin r. It is implemented as a soft constraint,
since it has been observed that in practice, exceeding the limit slightly can have a great impact on
regularity. However, the unit penalty M is chosen so that it doesn’t happen often in practice. The
flight coverage constraint (26) guarantees that every flight in the set F is covered exactly once by a
selected pairing. In practice, this constraint is also implemented as a soft constraint, which is not
reflected in (24)—(30) for the sake of simplicity. Constraint (27) enforces the secondary requirements.
The pattern-flight linkage constraint (28) establishes the dependency between pairings and patterns,
enforcing that a pairing y, can only be selected if the corresponding pattern z; it belongs to is also
included. Constraints (29) and (30) ensure the y, and z, variables are binary respectively. It is worth
noting that since the variable set is fixed, the model can be solved using standard integer programming
tools without relying on column generation. For this reason, linking constraints (28) do not pose the
same issues as constraints (15).

4.2.2 Maximizing the cumulative regularity ratio (MIPr)

The second model incorporates the regularity ratio M;atio (Equation (11)) in the objective function.
It is formulated as :

Maximize - A Z pYp + (1= A) Z 22 T(t) — M~y (31)
pEP teT

subject to Z pYp < (1+7) Z Yy + Y (32)
peEP pEP
> apyp =1, VfeF (33)
peEP
> by < e, Vge Q (34)
peEP

> vy =2, vieT (35)

PEP()
yp € {0, 1}, VpeP (36)
z €N, vte T (37)

Cost constraint (32) ensures that the total cost of the selected pairings does not exceed the cost of the
initial solution by more than a specified margin r. The flight coverage constraint (33) guarantees that
every flight f € F is covered exactly once by one of the selected pairings. Constraints 32 and (33)
are again implemented as soft constraints (only the former is depicted in the above formulation for
the sake of simplicity). Constraint (34) enforces the secondary requirements. The pattern-pairing
linkage constraint (35) establishes the dependency between pairings and patterns, enforcing that the
total number of pairings y, associated with a pattern ¢ € 7 must match the number of repetitions z;
of that pattern. Constraints (36) and (37) ensure that the y and z variables are binary and integer,
respectively.

Objective function (31) is nonlinear due to the quadratic term z2. To address this complexity, we
introduce an alternative linearized model. Let w;; be a decision variable that equals 1 if pattern ¢ is
used at least ¢ times (7 < z;), and 0 otherwise. Let § denote the total number of days in the planning
period, which also corresponds to the maximum possible number of repetitions for a pattern. Using

Les Cahiers du GERAD G-2025-81 15

the well-known result:

k
K=Y (2i—1) (38)
i=1
We reformulate the regularity objective as:
Zt 5
DT =) > 2i-1)-Tt)=>> (2i—1)-w; T(t) (39)
teT teT =1 teT =1

Recall that P(t) is the subset of pairings associated with pattern ¢ € 7. Model (31)-(37) can be
reformulated as :

o
Maximize — — A cpyp+ (1= X)) Y (20— 1) T(t) - we; — My (40)
peP teT i=1

subject to Z cpYp < (1+7) Z cpYpy + Y (41)
peP peP
D apyy =1, VieF, (42)
;0675
> by < e, Vge Q, (43)
pe75

6 ~

Zwm = Z Yp, Ve T, (44)
i=1 peP()
W -1 2 Wi g, VteT,i=2,...,D, (45)
yp € {0,1}, Vpe P, (46)
wy,; €{0,1}, Ve T,i=1,...,D. (47)

Constraint (41) ensures that the total cost of the selected pairings does not exceed the cost of
the initial solution by more than a specified margin r. Flight coverage constraints (42) ensure that
each flight f € F is covered exactly once by the selected pairings y, (again, implemented as soft
constraints). Constraints (43) enforce the secondary requirements. Pattern linkage constraints (44)
enforces the relationship between the pattern repetitions w; ; and the total pairings y,, associated with
pattern t € T. Ordering constraint (45) maintains sequential consistency for the repetitions wy ;. If
repetition i of a pattern is selected (w;; = 1), then repetition ¢ — 1 must also be selected (wy;—1 = 1).
Finally, constraints (46) and (47) ensure that y and w decision variables are binary.

4.2.3 Advantages and drawbacks

The integer programming method is designed to enhance the regularity of existing solutions while
adhering to strict cost constraints. Unlike other methods, it directly refines a feasible solution by
adjusting the given set of pairings without exceeding the initial cost by more than a fixed amount.
Due to its limited size, it is able to quickly improve the regularity of an initial solution by selecting
desirable pairings and their copies.

By simultaneously reoptimizing the whole schedule, the integer programming approach avoids the
main drawback of the bonus-based approach. In cases where two different patterns are “competing”
for flights, the approach is able to select one and discard the other, in a way that enhances the overall
regularity of the solution.

However, this method relies on the quality of the initial patterns, as it does not generate new ones.
The model also introduces numerous linking constraints, which can increase computational complexity,

Les Cahiers du GERAD G-2025-81 16

especially in large-scale instances. This can be mitigated by providing the optimizer with the initial
solution and by using a heuristic stopping criterion.

4.3 Hybrid Bonus-Based and integer programming approach

The Bonus-Based Improvement method encourages the repetition of patterns through a single op-
timization step. However, the solution obtained from this method can still be further improved in
terms of regularity. To address this, we propose an iterative version of this method, referred to as the
Iterative Bonus-Based Improvement Approach. In this extension, several iterations of the bonus-based
method are performed. Bonuses F(z]) are recomputed based on the solution obtained in the previous
iteration, and the updated model (18)—(21) is solved again. By repeating this process iteratively, regu-
larity can be improved while keeping costs close to that of the input solution. In practice, convergence
is typically achieved within 3-4 iterations, leading to a local optimum. Pseudo-algorithm 1 provides a
structured overview of this iterative extension:

Algorithm 1 lterative Bonus-Based Improvement Approach

1: Input: z* := CPP solution.
2: while true do

3: Calculate bonus F'(z],t) for each pattern t in the previous solution.

4 z* = Solve the problem (18)—(21) with the pre-calculated bonuses.

5: if the solution shows no further improvement or meets the desired criteria then
6 break

7 end if

8: end while

9: Output: Return current solution.

Both the Bonus-Based Improvement Approach and the Integer Programming Optimizer have
unique strengths and limitations. The Bonus-Based Improvement can generate new patterns dur-
ing re-optimization and improving regularity through bonus functions, but tends to converge to the
first local optimum and requires significant execution time. Conversely, the Integer Programming Opti-
mazer is faster, and avoids stagnation at the first local optimum, but cannot generate new patterns. To
overcome these challenges, we propose a Hybrid Method, which sequentially integrates both approaches
(MIP-Bonus).

Starting from an initial solution, the method first applies the Integer Programming Optimizer to
refine and re-optimize the solution while maintaining cost efficiency. Then, the Bonus-Based Improve-
ment approach is used to encourage the generation of new patterns and construct an improved solution.
By combining both methods in a structured sequence, the hybrid approach leverages the strengths of
each technique, effectively balancing regularity enhancement and computational efficiency. The main
steps of this approach are outlined in Algorithm 2.

Algorithm 2 Iterative Combined Bonus-Based and Integer Programming Approach

1: Input: Initial feasible solution from the pairing optimizer.

2: Step 1: Refine the input solution using the MIP model.

3: while stopping criterion not met do

4: Step 2: Apply the bonus-based approach with predefined bonus functions.
5: Step 3: Re-optimize the updated solution using the MIP model.

6: end while

7: Output: Final solution with improved regularity and controlled cost.

This combined approach leverages the complementary strengths of the two methods. By alternating
between the two methodologies, the combined approach avoids stagnation in the first local optima and
ensures that new patterns are generated where necessary. This paper proposes two variants of the
bonus approach and two variants of the MIP approach. These variants can be combined in several
ways within the iterative combined framework. We present a few possibilities in Section 5.4.2

Les Cahiers du GERAD G-2025-81 17

5 Computational results

This section presents the results of different computational experiments conducted to evaluate the
proposed solution approaches. The CPP is solved using a commercial airline planning software (de-
veloped by our industrial partner), which implements a branch-and-price algorithm. The software
operates heuristically to find good-quality solutions in a relatively short time. This software was
used to obtain initial solutions and to implement the bonus-based improvement method. The integer
programming models were solved using the CPLEX solver.

All experiments were performed on a Linux computer running AlmaLinux 9.6 (Sage Margay),
equipped with an Intel(R) Core(TM) i9-14900K processor featuring 24 cores and 32 threads. The
system had 62 GiB of RAM, and computations were configured to optimize performance: the solver
utilized up to 4 threads to parallelize its computations, the Integer programming solver used up to 20
threads to accelerate solution times, and all other computations were performed using a single core
and a single thread.

In the following subsections, we first describe the test instances (Section 5.1) used in the experi-
ments, including the Input and the airline solution AS solutions. We then present the results for each
optimization approach: Section 5.2: the Bonus-Based Improvement approach, Section 5.3: the Integer
Programming Optimizer, and Section 5.4: the proposed Hybrid Methods

5.1 Test instances

For the computational experiments, we used data derived from one-month flight schedules operated by
a major Asian airline. Two datasets were considered. The first, corresponding to April 2019, includes
12,256 flights operated by four aircraft types on short and medium-haul routes. The second, for April
2025, comprises 11,642 flights covering a similar operational scope. These real-world datasets provide
a comprehensive basis for evaluating the performance of the proposed methods in optimizing both
regularity and cost under realistic conditions. Note that one dataset is pre~COVID-19 while the other
is post—-COVID-19, resulting in markedly different operational contexts.

The total cost of a CPP solution can be separated into two components: the hard costs and the soft
costs. While hard costs represent direct operational expenses such as hotel costs and per diems, soft
costs account for penalties related to operational considerations, including aircraft changes and short
connections. Additionally, certain global constraints impose extra costs to ensure feasible rosters, such
as productivity constraints.

To assess the effectiveness of each approach, we compare the improved solutions against two bench-
marks: the initial feasible solution Input provided by our industrial partner’s industrial software, and
the Airline Solution AS, a manually created solution developed over multiple iterations by the airline.
We consider the Input solution as the main benchmark since it is the only one obtained through an
algorithmic process. The AS solution is used to estimate how close our approaches come to an “ideal”
solution. However, it is important to note that AS includes certain pairings that are manually imposed
and not always feasible under the rules enforced in the optimization models.

For each dataset, we consider a set of 50 initial solutions generated by the commercial pairing
optimizer as our Input. To obtain these solutions, randomness was introduced in the solver, which was
run several times. This was sufficient to generate solutions that significantly differ across runs.

To illustrate the variability of the input solutions, we plot them across key metrics, as shown in
Figure 4 for the 2019 dataset. The number of pairing patterns ranges from 383 to 472 (mean: 423.4),
and the regularity ratio varies from 44.18% to 50.70% (mean: 47.57%) with a standard deviation
of 1.69, corresponding to a coefficient of variation of 3.56%. The number of pairings also shows a
relative standard deviation of 3.9%. This variability highlights the optimizer’s stochastic behavior
and supports using these solutions as a consistent benchmark for regularity enhancement techniques.

Les Cahiers du GERAD G-2025-81 18

Regarding costs, the average hard cost is 18,773, the soft cost averages 9,216, and the total cost averages
27,988. While the hard cost remains nearly constant, the soft and total costs show moderate variability
over a range of 484.

Further analysis of the relationship between the number of pairing patterns and the regularity ratio
in the 2019 dataset reveals a clear inverse trend, illustrated in Figure 5: solutions with fewer pairing
patterns tend to exhibit higher regularity.

Of particular interest, we note that a single solution dominates the rest in terms of both regularity
measures. This further indicates that maximizing the regularity ratio is compatible with minimizing
the number of pairing patterns. However, the correlation between the two metrics is not perfect,
illustrating that they are not equivalent.

patterns Regularity (%) Hard-Cost Soft-Cost T-Cost
18800 9500 28300
490 54
18790 °
.
470 ° 52 18780 9400 28200
——
18770
450 50 9300 28100
.
18760
430 48 °
18750 9200 28000
410 46 18740 °
9100 27900
18730
390 44
18720
9000 27800
370 42
18710
350 40 18700 8900 27700

Figure 4: Distribution of 50 solutions generated by the initial pairing optimizer across key indicators (2019 Dataset)

° °
50 s o°
< °
= 49
o C °
] 2] 0
S a8 . o ¢ o
> (] @
£ 47 .' 3
s ®oe o °
o ° °
g 46 e ®
45 ° o °
44 (]
43
370 390 410 430 450 470 490

Number of Pairing Patterns

Figure 5: Dispersion of regularity ratio vs. number of pairing patterns across 50 initial solutions (2019 Dataset)

We evaluate each approach using four key metrics. The first two are the Regularity Ratio and the
number of Pairing Patterns (as defined in Section 3.2), which quantify the regularity of the solution.
For these metrics, we report the minimum, average, and mazimum values across 50 runs, each starting
from a different input solution. The other two metrics are Cost (broken down into hard, soft, and total
components) and Ezecution Time, measured in seconds. For both, only the average values are reported
to assess economic and computational performance. These indicators provide a comprehensive basis
for evaluating the trade-offs of each method.

In each results table, the row labeled Input summarizes the 50 baseline solutions and their key
characteristics. The AS row presents a highly regular expert-designed solution. The 2019 dataset
includes 162 pairing patterns, a regularity ratio of 88.80%, and cost values: 18,773 (hard), 9,216 (soft),

Les Cahiers du GERAD G-2025-81 19

and 27,988 (total). For the 2025 dataset, the AS solution contains 200 pairings, a regularity ratio of
81.16%, and costs of 24,384 (hard), 136,419 (soft), and 145,635 (total). Each remaining row in the
tables represents a step of the algorithm, showing the outcome after applying a specific iteration.

5.2 Bonus-Based improvement

This subsection presents the results of the Bonus-Based approach, using two bonus functions: the
Ezponential Bonus Function (Ezpo) and the Ratio-Based Bonus Function (Ratio). The parameters o
and 8 (for Expo) and « (for Ratio) are tuned to maintain productivity and avoid overly aggressive
regularity adjustments. This tuning has to be performed independently for each dataset because of the
scale difference of the cost functions involved. For instance, while the soft costs are around 9 000 for
the 2019 dataset, they are at around 145 000 for the 2025 dataset. This is a result of the COVID-19
pandemic, which changed the operational context between the two datasets. It is thus necessary to
scale the bonus functions for each dataset. Bonus function parameters used in our tests are presented
in Table 1.

Table 1: Parameters used for each method and each dataset

Method 2019 dataset 2025 dataset

Expo a=2;=2 a=4;=2
Ratio a =20 a =40

These gains are achieved with no hard cost impact, while the soft cost and total cost even show
slight reductions. Execution times are relatively low compared to the time required to generate the
initial Input solution. This is mainly due to the elimination of overhead tasks (such as duty generation)
that can be skipped in subsequent iterations, making the optimization process approximately three
times faster. This efficiency makes the method both practical and well-suited for operational use.

Tables 2 and 3 summarize the results for the Bonus-Based Improvement methods on the 2019 and
2025 datasets, respectively. For each regularity metric (number of pairing patterns and regularity
ratio), we report the minimum, maximum, and average value across 50 runs (each with a different
input solution). We also report the average costs (hard, soft, and total) and the average CPU time of
each method. The same values for the input solutions and the airline solution (AS) are reported for
convenience. For AS, computing times are not reported since the solutions were created by hand.

Table 2: Results for Bonus based (Ratio and Expo) Bonus Approaches (2019 Dataset)

Pairing Pattern Regularity (%) Cost Time
min avg max min avg max hard soft total (s)
Input 383 4234 472 44.18 47.57 50.70 18771.7 9114.1 27885.2 1181.4

Expo 211 2269 246 75.60 79.06 83.59 18773.0 8875.5 27647.9 297.7
Ratio 204 2206 234 76.73 81.32 85.04 18773.0 8905.9 27678.2 272.4

AS - - 162 - - 88.80 18773.0 9216.0 27988.0

Table 3: Results for Bonus based (Ratio and Expo) Bonus Approaches (2025 Dataset)

Pairing Pattern Regularity (%) Cost Time

min avg max min avg max hard soft total (s)
Input 353 396.1 415 54.02 55.73 61.90 24339.0 119177.4 143515.5 1010.4

Expo 236 253,5 272 76,31 79,89 83,18 24337,8 119726,9 144064,0 395.3
Ratio 220 232.84 248 80.76 85.05 87.73 24335.8 120162.4 144497.7 258.2

AS - - 200 - - 81.16 24384.0 121251.0 145635.0 -

Les Cahiers du GERAD G-2025-81 20

For both datasets, the two bonus strategies (Ezpo and Ratio) yield substantial improvements over
the initial Input solutions in terms of regularity and number of pairings, with similar or even slightly
reduced total costs.

For the 2019 dataset, the Ezpo approach improves the average regularity from 47.57% to 79.06%
(a relative gain of 66.2%), while reducing the number of pairing patterns from 423.4 to 226.9 (a 46.4%
reduction). The Ratio method achieves even higher regularity (81.32%, or a 70.9% improvement) with
220.6 pairings (-47.9%). Both variants achieve these gains without increasing the hard cost, and the
total cost is even slightly reduced.

Similarly, for the 2025 dataset, both bonus strategies remain effective. The Ezpo method improves
regularity from 55.73% to 79.89% (a 43.3% improvement), while reducing the average number of pairing
patterns from 396.1 to 253.5 (-36%). The Ratio variant increases regularity further to 85.05% (a 52.6%
gain), with 232.8 pairings on average (-41.2%). These improvements come with minimal changes in
total cost.

Finally, execution times are significantly lower than those required to generate the original input
solutions. This efficiency is mainly due to the reuse of previously generated duties, which eliminates
overhead tasks and makes the bonus-based optimization much faster—often up to three times faster
than a fresh run.

Although both methods significantly increase the regularity of the input solution, they still fall short
of the AS solution in terms of pairing pattern. However, in terms of regularity ratio, both methods
are very close, and sometimes exceed AS. In particular, the Ratio method achieves an average of
87.73% regularity compared to 81.16% in AS. This is because the Mpattern highly penalizes solutions
that have several rarely used patterns. Such solutions are more likely to be produced by optimization
software to cover problematic flights. In opposition, a human planner is more likely to reuse patterns
for convenience’s sake, even if it means a more costly solution.

5.3 Integer programming Optimizer

This subsection presents the results for the two variants of the Integer Programming Optimizer with
different optimization objectives: minimizing the number of pairing patterns (MIPp) and maximizing
regularity (MIPr). In both casestionResults for In, the model is not solved to optimality; instead, a
CPU time limit of 5000 seconds is imposed per run, as further improvements beyond this limit were
observed to be negligible in practice. Note that CPU time refers to the cumulative time used by all
threads across all cores, whereas the actual runtime (i.e., wall-clock time) can be much shorter due to
parallel processing.

A maximum total cost increase of r = 1% over the input solution is allowed when necessary, ensuring
that improvements in regularity or pairing efficiency do not compromise operational feasibility. Results
for 50 runs of each model are summarized in Tables 4 and 5 for the 2019 and 2025 datasets, respectively.

Both approaches yield substantial improvements over the Input solutions in terms of regularity,
while preserving cost feasibility and demonstrating short runtimes. As expected, MIPp produces
solutions with a lower number of patterns, whereas MIPr produces solutions with a higher regularity
ratio.

For the MIPp model, which minimizes the number of pairing patterns, the 2019 dataset shows a 55%
reduction in the average number of pairings (from 423.4 to 192.9), along with a 67% improvement in
regularity (from 47.57% to 79.47%). The total cost remains nearly unchanged (99.79% of the input),
and the average runtime is relatively low (115.3 seconds). On the 2025 dataset, MIPp reduces the
average number of pairings from 396.1 to 201.5 (-49.2%) and increases regularity to 82.61% (+48.3%),
with minimal cost increase and an average runtime of 133.4 seconds.

Les Cahiers du GERAD G-2025-81 21

The MIPr model, which directly maximizes the regularity ratio, achieves even stronger results on
both datasets. In the 2019 case, the regularity ratio rises to 85.07% (4+79%) with, on average, 204.9
pairing patterns (-51.6%), and a runtime of 292.2 seconds. In the 2025 case, the regularity increases
from 55.73% to 87.31% (456.7%), with a reduced number of pairings (213.8, -46.0%). The longer
runtime (303.1 seconds) is due to the higher complexity of the regularity-based formulation.

Across both datasets, the hard costs remain virtually identical to the input solution, and the total
cost remains tightly controlled. These results confirm that MIPp is highly effective at reducing the
number of pairings quickly, while MIPr excels in significantly enhancing regularity, even under tight
cost constraints.

Table 4: Results for MIPp and MIPr Approaches (2019 Dataset)

Pairing Pattern Regularity (%) Cost Time

min avg max min avg max hard soft total (s)
Input 383 423.4 472 44.18 47.57 50.70 18771.7 9114.1 27885.2 1181.4

MIPp 181 1929 209 73.12 79.47 84.70 18773.0 9053.4 27825.9 115.3
MIPr 189 2049 234 79.39 85.07 87.31 18773.0 9105.4 27878.0 292.2

AS - - 162 - - 88.80 18773.0 9216.0 27988.0 -

Table 5: Results for MIPp and MIPr Approaches (2025 Dataset)

Pairing Pattern Regularity (%) Cost Time

min avg max min avg max hard soft total (s)
Input 353 396,1 415 54,02 55,73 61,90 24339,0 1191774 1435155 1010.4

MIPp 192 201,5 213 75,35 82,61 86,55 24550,6 120212,1 144762,6 133,4
MIPr 201 213,8 230 83,82 87,31 89,41 24355,7 120562,9 144918,0 303,1

AS - - 200 - - 81.16 24384.0 121251.0 145635.0 -

5.4 lterative approaches

In this subsection, we present results for iterative optimization approaches. Two strategies are evalu-
ated: (1) the Iterative Bonus-Based Improvement, which applies the bonus-based method iteratively;
and (2) The Hybrid Bonus-Based and Integer Programming Approach, which combines the bonus-based
and integer programming methods.

5.4.1 Iterative Bonus-Based improvement

The iterative bonus-based method was tested with both the exponential bonus function (Equation 22)
and the bonus function based on the regularity ratio (Equation 23). In each setting, we perform three
iterations of the bonus-based method, each output serving as the input for the next iteration.

Tables 6 and 7 present results over three iterations of the Iterative Bonus-Based Improvement
method using both exponential and ratio-based bonus functions. For both datasets, we observe clear
gains in regularity and pairing pattern reduction, with diminishing returns across iterations. Indeed,
while a significant improvement in both regularity metrics is observed after the second iteration, the
third iteration only manages to marginally improve regularity.

Importantly, these gains are achieved with minimal or no increase in cost. In the 2019 case, soft
and total costs are slightly reduced compared to the Imput solution. In 2025, the total cost increases
remain within acceptable operational margins: +0.57% for Ezpo and +0.86% for Ratio.

It is worth noting that while the regularity ratio approaches that of the expert-designed AS solution
(88.80% for 2019 and 81.16% for 2025), the number of pairing patterns remains higher (around 195

Les Cahiers du GERAD G-2025-81 22

and 220 vs. 162 and 200 in AS, for 2019 and 2025, respectively). This confirms that regularity cannot
be assessed solely by counting patterns, as high regularity can result from frequently repeated key
patterns even when the total number is higher.

Table 6: Results for iterative Bonus based (Ratio and Expo) Bonus Approaches (2019 Dataset)

Pairing Pattern Regularity (%) Cost Time
min avg max min avg max hard soft total (s)
Input 383 4234 472 44.18 47.57 50.70 18771.7 9114.1 27885.2 1181.4

Itrl: Expo 211 2269 246 75.60 79.06 83.59 18773.0 8875.5 27647.9 297.5
Itr2: Expo 190 199.5 212 81.87 85.36 87.07 18773.0 8944.6 27716.8 336.7
Itr3: Expo 190 195.5 203 82.49 86.19 88.09 18773.0 8944.5 27716.7 274.3

Itrl: Ratio 204 2206 234 76.73 81.32 85.04 18773.0 89059 27678.2 272.4
Itr2: Ratio 186 198.8 211 83.54 86.09 87.53 18773.0 8984.9 27757.3 271.2
Itr3: Ratio 186 195.7 205 83.82 86.56 87.74 18773.0 8984.1 27756.4 245.3

AS - - 162 - - 88.80 18773.0 9216.0 27988.0

Table 7: Results for iterative Bonus based (Ratio and Expo) Bonus Approaches (2025 Dataset)

Pairing Pattern Regularity (%) Cost Time
min avg max min avg max hard soft total (s)
Input 353 396.1 415 54.02 55.73 61.90 24339.0 1191774 143515.5 1010.4

Itrl: Expo 236 2535 272 76,31 79,89 83,18 24337,8 119726,9 144064,0 395.4
Itr2: Expo 214 2242 236 80,056 84,71 86,33 243356 119967,4 144302,6 407.6
Itr3: Expo 211 2183 230 8343 85,81 87,14 243351 1199925 1443274 252.2

Itrl: Ratio 220 232.8 248 80.76 85.056 87.73 24335.8 120162.4 144497.7 358.2
Itr2: Ratio 208 215.6 228 87.43 88.79 90.08 24332.6 120386.3 144718.3 230.5
Itr3: Ratio 207 213.0 221 87.74 89.29 90.21 24332.6 120417.2 144749.3 218.8

AS - 200 - - 81.16 24384.0 121251.0 145635.0 -

5.4.2 Hybrid Bonus-Based and Integer programming approach

This subsection presents the results of hybrid optimization strategies that combine the Bonus-Based
Improvement approach with the Integer Programming Optimizer. Given that there are several possible
settings for each approach, several combinations can be envisioned. We present two such combinations.
In the first (MIPp-Ratio-MIPp), the input solution is first solved using MIPp. The produced solution
is then reoptimized using the Ratio, method, which is in turn reoptimized by MIPp . The second
method (MIPr-Ratio-MIPr) is similar, except that each MIPp is replaced by a MIPr.

To ensure that total costs remain within the authorized increase threshold of (1 +)% over the
input solution, we allocate specific cost margins to each MIP optimization phase. In our experiments,
the first MIP is allowed to reach up to 0.5% over the input solution cost, while the second MIP is
permitted a total increase of up to 1% over the input solution cost. This allocation strategy guarantees
that the full hybrid approach respects the global cost constraint. More generally, for a hybrid process
involving m MIP steps, the i-th MIP iteration can be allowed an increase of ir/m over the input
solution. This setup allows for controlled cost escalation while still enabling iterative improvements in
regularity and pattern structure. Note that the bonus method does not control the cost increase, so it
is possible that an MIP has no feasible solution within the cost limit. This is why we implement the
cost constraint as a soft constraint.

Tables 8 and 9 summarize the results for both the 2019 and 2025 datasets, each over three iterations.
The better columns indicate the number of solutions (out of 50) that outperform the expert-designed
AS solution in terms of each regularity metric.

Les Cahiers du GERAD G-2025-81 23

For the 2019 dataset, the MIPp-Ratio-MIPp strategy reduces the average number of pairing pat-
terns to 172.6 (a 59.2% reduction) and increases regularity to 86.65% (an 82.2% improvement), all
within 0.37% of the baseline total cost. The method also produces solutions with as few as 157 pair-
ings, even outperforming the AS solution in several instances. The MIPr-Ratio-MIPr variant achieves
the highest regularity observed, reaching 89.19% on average (an 87.5% improvement) with an average
of 179.9 pairing patterns (a 57.5% reduction). It exceeds the AS regularity ratio in 34 out of 50 test
cases. In both approaches, the hard cost remains unchanged, and total cost increases remain under
0.21%.

For the 2025 dataset, similar trends are observed. The MIPp-Ratio-MIPp approach reduces the
number of pairing patterns to an average of 186.1 (a 53% reduction). It also increases the average
regularity ratio to 89.60%, well above the AS value of 81.16%. It outperforms the AS solution in
all 50 cases in terms of number of patterns and in 49 out of 50 cases in terms of regularity ratio.
The MIPr-Ratio-MIPr variant pushes regularity even further, reaching an average ratio of 91.06% (a
63.4% improvement over the baseline), with 194.8 pairing patterns on average. It outperforms the AS
solution in all 50 cases in terms of number of patterns and in 46 out of 50 cases in terms of regularity
ratio. Its average total cost remains comparable to that of the MIPp-Ratio-MIPp approach.

Remarkably, for both approaches, these improvements are achieved within the authorized cost limit
relative to the input solution, while the total cost remains approximately 0.5% lower than that of the
AS solution. This demonstrates that the proposed methods can produce higher-quality solutions at a
lower cost. In other words, for the same cost level as AS, the method could potentially further enhance
both regularity metrics.

Table 8: Hybrid Approaches Results (2019 Dataset)

Pairing Pattern Regularity (%) Cost Time
min avg max better min avg max better hard soft total (s)
Input 383 4234 472 44.18 47.57 50.70 - 18771.7 9114.1 27885.2 1181.4
Itrl: MIPp 181 1929 209 0 73.12 79.43 84.70 0 18773.0 9053.4 27825.9 144.6
Itr2: Ratio 165 182.1 201 0 82.91 87.26 89.82 3 18773.0 9073.3 27845.8 266.8
Itr3: MIPp 157 1726 184 3 80.97 86.65 89.73 5 18773.0 9214.6 27987.1 8.8
Itrl: MIPr 186 202,8 229 0 81,29 85,39 87,23 0 18773,0 9027,4 27799,9 143.7
Itr2: Ratio 172 183,2 196 0 87,17 88,77 90,18 23 18773,0 9033,4 27805,9 257.1
Itr3: MIPr 171 179,9 190 0 87,93 89,19 90,40 41 18772,2 91274 27899,2 8.7
AS - - 162 - - - 88.80 18773.0 9216.0 27988.0
Table 9: Hybrid Approaches Results (2025 Dataset)
Pairing Pattern Regularity (%) Cost Time
min avg max better min avg max better hard soft total (s)
Input 353 396.1 415 - 54.02 55.73 61.90 - 24339.0 119177.4 143515.5 10104
Itrl: MIPp 195 205.0 216 8 74.08 81.87 85.84 37 24508.0 119730.0 144237.9 134.7
Itr2: Ratio 185 195.6 209 38 82.10 89.78 92.46 50 24429.5 120158.6 144587.9 285.4
Itr3: MIPp 176 186.1 198 50 80.45 89.57 9247 49 24559.0 120213.9 144772.5 7.8
Itrl: MIPr 208 223.5 243 0 81.72 84.95 87.34 50 24358.0 119939.0 144296.3 149.4
Itr2: Ratio 189 199.7 209 25 85.20 90.81 92.06 50 24337.2 120421.2 144758.0 318.5
Itr3: MIPr 187 194.8 207 46 86.16 91.06 92.46 50 24352.1 120491.6 144843.3 8.9
AS - - 200 - - - 81.16 - 24384.0 121251.0 145635.0 -

Les Cahiers du GERAD G-2025-81 24

6 Conclusion

This study addressed the Crew Pairing Problem (CPP) by incorporating regularity as a key opti-
mization objective alongside cost. Regularity (defined as the consistent repetition of pairing patterns)
enhances operational robustness, simplifies crew planning, and makes it an essential criterion for mod-
ern airline scheduling.

To achieve this, we proposed and tested three families of methods: (1) bonus-based iterative re-
finements, (2) integer programming (MIP) optimizers, and (3) hybrid approaches that combine the
strengths of both. Each strategy was evaluated on 50 baseline solutions provided by a commercial
pairing optimizer, which displayed notable variability in regularity and pattern counts. Bonus-based
approaches, particularly when using ratio-based functions, achieved up to 47% reduction in pairing
patterns and a relative improvement of over 71% in regularity ratio. MIP optimizers, though limited
to refining existing solutions, reached good improvements in a single iteration, which demonstrates
their efficiency. The MIPp objective reduced the number of patterns by 55%, while the MIPr model
increased regularity by over 79%.

The most notable results were achieved by the hybrid approaches. The best-performing configura-
tion, MIPr combined with ratio-based bonuses, reduced pairing patterns by 57%, and improved the
regularity ratio up to 88%. Importantly, these improvements were achieved with total cost increases
of less than the authorized augmentation 1%, and without any rise in hard costs. Overall, our findings
highlight the value of tailoring optimization methods to specific goals. If the priority is to reduce the
number of pairing patterns, MIPp-based strategies are most effective. If regularity ratio is paramount,
MIPr paired with bonus functions is recommended.

These results provide a strong foundation for implementing robust and regular crew pairings in real-
world airline operations. Future extensions could include more precise regularity metrics, integration
with the crew rostering problem, and personalized crew preferences towards regularity.

References

Amberg, Boris, Amberg, Bastian, and Kliewer, Natalia (2011). “Approaches for increasing the similarity of
resource schedules in public transport”. In: Procedia-Social and Behavioral Sciences 20, pp. 836-845.

Barnhart, C., Cohn, A. M., et al. (2003). “Airline Crew Scheduling”. In: Handbook of Transportation Science,
International Series in Operations Research & Management Science. Vol. 56. Springer, US, pp. 517-560.

Barnhart, C., Johnson, E. L., Anbil, R., et al. (1994). “A column-generation technique for the long-haul crew-
assignment problem”. In: Optimization in Industry 2. John Wiley & Sons, Inc., pp. 7-24.

Barnhart, C., Johnson, E. L., Nemhauser, G. L., et al. (1998). “Branch-and-Price: Column Generation for
Solving Huge Integer Programs”. In: Operations Research 46.3, pp. 316-329.

Dantzig, G. B. and Wolfe, P. (1960). “Decomposition Principle for Linear Programs”. In: Operations Research
8.1, pp. 101-111.

Desaulniers, G., Desrosiers, J., Dumas, Y., et al. (1997). “Crew Pairing at Air France”. In: European Journal
of Operational Research 97.2, pp. 245-259.

Desaulniers, G., Desrosiers, J., Ioachim, L., et al. (1998). “A Unified Framework for Deterministic Time Con-
strained Vehicle Routing and Crew Scheduling Problems”. In: Fleet Management and Logistics, pp. 57—
93.

Desaulniers, G., Desrosiers, J., and Solomon, M. (2005a). Column Generation. New York, NY: Springer.

— (2005b). Large-Scale Models in the Airline Industry. Springer, US.

Desaulniers, G., Lessard, F., et al. (2020a). “Dynamic Constraint Aggregation for Solving Very Large-Scale
Airline Crew Pairing Problems”. In: SN Operations Research Forum 1.3, p. 19.

Desaulniers, Guy, Lessard, Frangois, et al. (2020b). “Dynamic constraint aggregation for solving very large-scale
airline crew pairing problems”. In: SN Operations Research Forum. Vol. 1. Springer, pp. 1-23.

Desrosiers, J., Dumas, Y., Desrochers, M., et al. (1991). A breakthrough in airline crew scheduling. Technical
Report. Springer.

Desrosiers, J., Dumas, Y., Solomon, M. M., et al. (Oct. 1995). “Time constrained routing and scheduling”. In:
Handbooks in Operations Research and Management Science, Vol. 8 : Network Routing. Ed. by M. Ball
et al. Amsterdam: Elsevier. Chap. 2, pp. 35-139.

Les Cahiers du GERAD G-2025-81 25

Dillon, J. E. and Kontogiorgis, Spyros (1999). “US Airways optimizes the scheduling of reserve flight crews”.
In: Interfaces 29.5, pp. 123-131.

Elhallaoui, I. et al. (2005). “Dynamic Aggregation of Set-Partitioning Constraints in Column Generation”. In:
Operations Research 53.4, pp. 632—-645.

Gilmore, P. C. and Gomory, R. E. (1961). “A linear programming approach to the cutting-stock problem”. In:
Operations Research 9.6, pp. 849-859.

Gopalakrishnan, Balaji and Johnson, Ellis L (2005). “Airline crew scheduling: State-of-the-art”. In: Annals of
Operations Research 140, pp. 305-337.

Hizir, Ahmet Esat (2024). “Large-Scale Airline Recovery using Mixed-Integer Optimization and Supervised
Learning”. PhD thesis. Massachusetts Institute of Technology.

Hu, J. and Johnson, E. L. (1999). “Computational Results with a Primal-dual Subproblem Simplex Method”.
In: Operations Research Letters 25.4, pp. 149-157.

Irnich, S. and Desaulniers, G. (2005). “Shortest path problems with resource constraints”. In: Column Gen-
eration. Ed. by G. Desaulniers, J. Desrosiers, and M. M. Solomon. Boston, MA: Springer US. Chap. 2,
pp. 33-65.

Kasirzadeh, A. (2015). Optimisation intégrée des rotations et des blocs mensuels personnalisés des équipages
en transport aérien. Ecole Polytechnique, Montreal (Canada).

Klabjan, D. et al. (2001a). “Airline crew scheduling with regularity”. In: Transportation science 35.4, pp. 359—
374.

Klabjan, D. et al. (2001b). “Solving Large Airline Crew Scheduling Problems: Random Pairing Generation and
Strong Branching”. In: Computational Optimization and Applications 20.1, pp. 73-91.

Kornilakis, Harry and Stamatopoulos, Panagiotis (2002). “Crew pairing optimization with genetic algorithms”.
In: Hellenic conference on artificial intelligence. Springer, pp. 109—120.

Lavoie, S., Minoux, M., and Odier, E. (1988). “A New Approach for Crew Pairing Problems by Column
Generation with an Application to Air Transportation”. In: European Journal of Operational Research
35.1, pp. 45-58.

Mohamed, NF et al. (2020). “Comparison of two hybrid algorithms on incorporated aircraft routing and crew
pairing problems”. In: Indonesian Journal of Electrical Engineering and Computer Science 18.3, pp. 1665—
1672.

Muter, L. et al. (2013). “Solving a Robust Airline Crew Pairing Problem with Column Generation”. In: Com-
puters €& Operations Research 40.3, pp. 815-830.

Parmentier, Axel and Meunier, Frédéric (2020). “Aircraft routing and crew pairing: Updated algorithms at Air
France”. In: Omega 93, p. 102073.

Quesnel, F. (2019). “Trois Variantes Du Probleme De Rotations Pour Une Approche Semi-intégrée De La
Planification D’horaires De Personnel Aérien”. PhD thesis. Ecole Polytechnique, Montreal (Canada).
Quesnel, F., Desaulniers, G., and Soumis, F. (2017). “A new heuristic branching scheme for the crew pairing

problem with base constraints”. In: Computers € Operations Research 80, pp. 159-172.

— (2020). “Improving air crew rostering by considering crew preferences in the crew pairing problem”. In:
Transportation Science 54.1, pp. 97-114.

Saddoune, M (2010). “Optimisation simultanée des rotations et des blocs mensuels des équipages aériens”.
PhD thesis. Ecole Polytechnique de Montréal.

Saddoune, M., Desaulniers, G., and Soumis, F. (July 2009). “A Rolling Horizon Solution Approach for the
Airline Crew Pairing Problem”. In: Proceedings of the 2009 International Conference on Computers &
Industrial Engineering. Troyes, France, pp. 344-347.

— (Mar. 2013). “Aircrew Pairings with Possible Repetitions of the Same Flight Number”. In: Computers and
Operations Research 40.3, pp. 805-814.

Sandhu, R. and Klabjan, D. (2007). “Integrated Airline Fleeting and Crew-Pairing Decisions”. In: Operations
Research 55.3, pp. 439-456.

Steinzen, Ingmar, Suhl, Leena, and Kliewer, Natalia (2009). “Branching strategies to improve regularity of
crew schedules in ex-urban public transit”. In: OR spectrum 31.4, pp. 727-743.

Tahir, Adil et al. (2021). “An improved integral column generation algorithm using machine learning for aircrew
pairing”. In: Transportation Science 55.6, pp. 1411-1429.

Tajima, Akira and Misono, Shinji (1997). “Airline crew-scheduling problem with many irregular flights”. In:
International Symposium on Algorithms and Computation. Springer, pp. 2-11.

Wu, Wei et al. (2016). “A column generation approach to the airline crew pairing problem to minimize
the total person-days”. In: Journal of Advanced Mechanical Design, Systems, and Manufacturing 10.3,
JAMDSMO0040-JAMDSMO0040.

Les Cahiers du GERAD G-2025-81 26

Xu, Yifan, Wandelt, Sebastian, and Sun, Xiaogian (2021). “Airline integrated robust scheduling with a variable
neighborhood search based heuristic”. In: Transportation Research Part B: Methodological 149, pp. 181—
203.

Yaakoubi, Yassine, Soumis, Frangois, and Lacoste-Julien, Simon (2020). “Machine learning in airline crew pair-
ing to construct initial clusters for dynamic constraint aggregation”. In: EURO Journal on Transportation
and Logistics 9.4, p. 100020.

Zeighami, Vahid and Soumis, Frangois (2019). “Combining Benders’ decomposition and column generation
for integrated crew pairing and personalized crew assignment problems”. In: Transportation Science 53.5,
pp. 1479-1499.

Zeren, Bahadir and Ozkol, Ibrahim (2016). “A novel column generation strategy for large scale airline crew
pairing problems”. In: Ezpert Systems with Applications 55, pp. 133—-144.

	Introduction
	Literature review
	Crew Pairing Problem CPP
	CPP solution methods
	Column generation

	Regularity

	Problem definition
	Terminology
	Regularity in the Crew Pairing Problem
	Mathematical model

	Solution methods
	Bonus-based improvement
	Exponential bonus function
	Ratio-based bonus function
	Advantages and drawbacks

	Integer Programming model
	Minimizing the total number of patterns (MIPp)
	Maximizing the cumulative regularity ratio (MIPr)
	Advantages and drawbacks

	Hybrid Bonus-Based and integer programming approach

	Computational results
	Test instances
	Bonus-Based improvement
	Integer programming Optimizer
	Iterative approaches
	Iterative Bonus-Based improvement
	Hybrid Bonus-Based and Integer programming approach

	Conclusion
	Bibliographie

