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Dépôt légal – Bibliothèque et Archives nationales du Québec, 2025
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Abstract : We introduce method iR2N, a modified proximal quasi-Newton method for minimizing the
sum of a C1 function f and a lower semi-continuous prox-bounded h that permits inexact evaluations
of f , ∇f and of the relevant proximal operators. Both f and h may be nonconvex. In applications
where the proximal operator of h is not known analytically but can be evaluated via an iterative
procedure that can be stopped early, or where the accuracy on f and ∇f can be controlled, iR2N
can save significant computational effort and time. At each iteration, iR2N computes a step by
approximately minimizing the sum of a quadratic model of f , a model of h, and an adaptive quadratic
regularization term that drives global convergence. In our implementation, the step is computed using
a variant of the proximal-gradient method that also allows inexact evaluations of the smooth model,
its gradient, and proximal operators. We assume that it is possible to interrupt the iterative process
used to evaluate proximal operators when the norm of the current iterate is larger than a fraction
of that of the minimum-norm optimal step, a weaker condition than others in the literature. Under
standard assumptions on the accuracy of f and ∇f , we establish global convergence in the sense that a
first-order stationarity measure converges to zero and a worst-case evaluation complexity in O(ϵ−2) to
bring said measure below ϵ > 0. Thus, inexact evaluations and proximal operators do not deteriorate
asymptotic complexity compared to methods that use exact evaluations. We illustrate the performance
of our implementation on problems with ℓp-norm, ℓp total-variation and the indicator of the nonconvex
pseudo p-norm ball as regularizers. On each example, we show how to construct an effective stopping
condition for the iterative method used to evaluate the proximal operator that ensures satisfaction of
our inexactness assumption. Our results show that iR2N offers great flexibility when exact evaluations
are costly or unavailable, and highlight how controlled inexactness can reduce computational effort
effectively and significantly.

Keywords : Nonsmooth optimization; nonconvex optimization; modified quasi-Newton method;
proximal quasi-Newton method; regularized optimization; composite optimization; proximal gradient
method; inexact proximal operator; inexact evaluations
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1 Introduction

We consider the problem class

minimize
x∈Rn

f(x) + h(x), (1)

where f : Rn → R is continuously differentiable, h : Rn → R ∪ {+∞} is proper, lower semi-continuous

(lsc), and both may be nonconvex. In practice, h, called the regularizer, is designed to promote desirable

properties in solutions, such as sparsity. We develop method iR2N, a variant of the modified proximal
quasi-Newton algorithm R2N of Diouane et al. [25] that allows for inexact evaluations of f and ∇f ,

as well as of the relevant proximal operators. Among other applications, evaluations of f and ∇f
are inexact when they result from the discretization of a differential or integral operator [8], from the

sampling of a sum of a large number of terms, as in machine learning applications [34], or from using

multiple floating-point systems [31]. Like R2N, iR2N computes a step at each iteration by approximately

minimizing the sum of a quadratic model of f , a model of h, and an adaptive quadratic regularization

term. The subproblem is solved with method iR2, which is to method R2 of Aravkin et al. [3] as iR2N

is to R2N, i.e., proximal operators are evaluated inexactly. Method R2 may be viewed as a variant of

the standard proximal-gradient method with adaptive step length, and is a special case of R2N. We
consider settings where proximal operators do not have a closed-form expression, and one must thus rely

on inexact evaluations. Specifically, we focus on scenarios where proximal operators can be evaluated

by running a convergent algorithm that can be terminated early with appropriate guarantees detailed

below. Special cases that fit our assumptions include choices of convex and nonconvex h, including the

ℓp-norm total variation (TV), ℓp-norm regularizer and the indicator of the nonconvex ℓp-pseudo norm

ball with 0 < p < 1. Method iR2N reduces to R2N when f , ∇f and proximal operators are evaluated

exactly. We establish global convergence of iR2N under standard assumptions on the inexactness of f

and ∇f , and provided the inexact proximal operator yields a step whose norm is at least a fraction

of the norm of an optimal step. We also establish that worst-case evaluation complexity of iR2N is

of the same order as that of R2N. Thus, inexact evaluations do not degrade worst-case complexity.

Our remaining assumptions are standard. To emphasize our assumptions on inexact evaluations, we

simplify those assumptions of [25] that would complicate the analysis. In particular, we assume that

∇f is Lipschitz continuous, but its Lipschitz constant need not be known nor approximated. However,

it should be clear that iR2N remains convergent under the more general assumptions of [25] with its

worst-case complexity affected accordingly. It should also be clear that minor alterations of our approach

would establish that the proximal quasi-Newton trust-region algorithm of Aravkin et al. [4, 5] remains

convergent under inexact evaluations and its asymptotic worst-case complexity is unchanged. Such
minor alterations would also establish convergence and complexity of Levenberg-Marquardt variants in

the vein of [6] that are useful when f is a least-squares residual.

We report computational experience with the proximal operator of the ℓp norm, the total variation

in ℓp norm, and the indicator of the nonconvex ℓp-pseudo norm ball. Each of those proximal oper-

ators must be evaluated via an iterative procedure. For each, we devise a stopping condition that

ensures satisfaction of our assumption on inexact proximal operator evaluations. Our results show

that iR2N offers great flexibility in settings where exact evaluations are costly or unavailable, and

highlight how controlled inexactness can be exploited to reduce computational effort effectively and

significantly. We provide an efficient Julia implementation of iR2N as part of the open-source package

RegularizedOptimization.jl [7].

Related research

Most numerical methods for (1) require the evaluation of one or more proximal operators [32] at each

iteration. The proximal operator of h with step size ν > 0 at q ∈ Rn is

prox
νh

(q) ..= argmin
u∈Rn

1
2∥u− q∥2 + νh(u) ⊆ Rn. (2)
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For given h and q, (2) can be empty, a singleton or contain multiple elements, one of which must be

identified. Beck [11] and Chierchia et al. [19] summarize the closed-form of (2) for a large number of

choices of h relevant in applications. The standard proximal-gradient method [26] along with most

proximal methods in the literature assume that obtaining an element of (2) exactly is possible.

For certain choices of h, it is necessary to apply an iterative method to appoximate an element

of (2), e.g., the total variation (TV) with ℓp regularization h(x) = ∥Dx∥p, where p ≥ 1 and D is the

upper bidiagonal finite-difference operator with a diagonal of negative ones and a superdiagonal of ones.

Finding an element in (2) for the TV-ℓp can be achieved via the taut-string method [9] or the fast TV

denoising method [20]. As in other methods in the literature for various choices of convex h [10, 24, 27],

the latter monitor the duality gap between a convex problem and its dual. Those algorithms have
guaranteed convergence properties and can be terminated early, i.e., short of optimality. In the above,

the evaluation of (2) is inexact in the sense that a convergent process to identify a global minimizer is

applied and can be stopped short of optimality according to an optimality criterion.

A somewhat more complicated scenario is the algorithm described by Yang et al. [43] for the case
where h is the indicator of the “ball” in pseudo-norm ℓp with p ∈ (0, 1). The evaluation of the proximal

operator requires solving a nonconvex problem to global optimality in that case, and their algorithm is

not guaranteed to always succeed. We return to this problem in Section 4.

Other concepts of inexactness of the proximal operator appear in the literature. For convex h,

Rockafellar [36] requires that an approximate solution of (2) be a certain distance from the optimal set.

Still for convex h, Barré et al. [10] unveil multiple ways to define inexactness by finding a primal-dual

point in a certain relaxed subdifferential. Salzo and Villa [38] define three approximations: they compute

z such that either (i) ∥z − proxνh(q)∥ ≤ ϵ, (ii) ν−1(q − z) lies in a relaxation of the subdifferential

of h at z, or (iii) z ∈ proxνh(q + e) with ∥e∥ ≤ ϵ for some ϵ > 0. Chen et al. [18] extend proximal

inexactness by introducing the concept of (γ, δ, ε)-proximal-gradient stationary point (PGSP) for convex

h based on the Goldstein subdifferential. The PGSP generalizes the three concepts of [38] by jointly

relaxing spatial and functional exactness and directly quantifying the first-order residual, thus also

encompassing Rockafellar’s [36] and relaxed subgradient formulations within a unified framework. For

nonconvex h, Gu et al. [27] say that an element is an inexact solution of (2) if its objective value is

within ϵ of its optimal value.

To cope with inexact evaluations of the proximal operator, classical schemes must be revised to pre-

serve convergence guarantees. The seminal inexact proximal-point algorithm (iPPA) of Rockafellar [36]

allows summably controlled errors in the resolvant computation of a maximal monotone operator and

still ensures global convergence with linear/superlinear behavior under suitable parameter growth.

Building on the accelerated estimate-sequence framework, Salzo and Villa [38] establish that the

accelerated iPPA retains O(1/k) decay under inexactness of type (i) above, and optimal O(1/k2) decay

under inexactness of type (ii). Schmidt et al. [39] establish an O(1/k) rate for proximal-gradient

and an O(1/k2) rate for an accelerated variant under inexactness similar to (iii) above. Extensions

include inertial, variable-metric forward–backward schemes with relative inner accuracy and uniform

symmetric positive definite metrics [16]; nonconvex inexact (accelerate) proximal gradient with guaran-

tees matching the exact counterparts under calibrated error schedules [27]; adaptive, implementable

stopping rules that preserve O(ϵ−2) iteration complexity and enable support identification [24]; and

accelerated proximal gradient under relative error criteria that maintain an O(1/k2) rate [13]. For

nonconvex problems, the sequence generated by an inexact proximal-gradient (or splitting) method

can still be shown to converge to a first-order critical point under an assumption of type (iii) above

on the approximation errors [41]. Finally, for weakly convex functions, recent results establish global

convergence for inexact proximal algorithms under inexactness of type (i) above, allowing controlled

inexactness in the proximal steps while maintaining convergence [28].
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Notation

The Euclidean norm is ∥ · ∥. When required, other norms are denoted with different symbols. We use f ,

h, m, ϕ, φ, ξ and ψ for functions. Other lowercase Latin letters denote vectors in Rn. Exceptions are p

and q, which are standard to denote a pair of dual ℓp and ℓq norms, and r, which denotes a radius.

Uppercase A and B are matrices, L is a Lipschitz constant, and O is used for the Landau notation.

Lowercase Greek letters denote scalars. Calligraphic letters denote sets.

2 Background

2.1 Variational analysis concepts

We say that h : Rn → R ∪ {+∞} is proper if h(x) < +∞ for at least one x ∈ Rn and lower semi-

continuous (lsc) at x̄ if lim infx→x̄ h(x) = h(x̄). It is lsc if it is lsc at all x̄ ∈ R
n. We say that h

is prox-bounded at x if there is λ > 0 such that w 7→ h(w) + 1
2λ

−1∥w − x∥2 is bounded below [37,

Definition 1.23]. The threshold of prox-boundedness of h at x is the supremum of all such λ at x, and

is denoted λx. We say that h is uniformly prox-bounded if there is λ ∈ R+ ∪ {+∞} such that λx ≥ λ

for all x ∈ Rn.

For ϕ : Rn → R ∪ {±∞} and x̄ ∈ dom(ϕ), the Fréchet subdifferential of ϕ at x̄ is

∂̂ϕ(x̄) ..=

{
v ∈ Rn

∣∣∣∣∣ lim inf
x→x̄

ϕ(x) − ϕ(x̄) − vT (x− x̄)

∥x− x̄∥
≥ 0

}
.

The limiting subdifferential ∂ϕ(x̄) of ϕ at x̄ is the set of elements v ∈ Rn such that there exists a

sequence {xk} → x̄ with {ϕ(xk)} → ϕ(x̄), and there exists vk ∈ ∂̂ϕ(xk) for all k such that {vk} → v. It

always holds that ∂̂ϕ(x̄) ⊆ ∂ϕ(x̄).

If ϕ is proper, we say that x̄ is stationary for ϕ, or for the problem of minimizing ϕ, if 0 ∈ ∂̂ϕ(x̄).

If ϕ is proper and has a local minimum at x̄, then x̄ is stationary for ϕ. In the special case where

ϕ = f + h with f continuously differentiable and h proper, then ∂ϕ(x) = ∇f(x) + ∂h(x) [37, Theorem

10.1]. We say that f : Rn → R has Lipschitz-continuous gradient with Lipschitz constant L ≥ 0 if for
all x and s ∈ Rn,

|f(x+ s) − f(x) −∇f(x)T s| ≤ 1
2L∥s∥

2. (3)

2.2 Models

In this work, we focus on three sources of inexactness: the objective, its gradient and the proximal

operator evaluations. We denote f̂ and ∇̂f the inexact counterparts of f and ∇f . At each iteration,

R2N computes a step scp defined below that serves to define a stationarity measure and that results

from a proximal operator evaluation. Accordingly, in iR2N, we denote its inexact counterpart ŝcp. We

follow [3, 6, 25] and structure the iterations of an algorithm around two sets of models, but, since the

only information we have access to is inexact, those are based on f̂ and ∇̂f .

For ν > 0 and x ∈ Rn, the first-order models

φcp(s;x) ..= f̂(x) + ∇̂f(x)T s (4)

ψ(s;x) ≈ h(x+ s) (5)

mcp(s;x, ν−1) ..= φcp(s;x) + 1
2ν

−1∥s∥2 + ψ(s;x) (6)

serve to generalize the concept of Cauchy point, hence the subscript “cp”, where we use the symbol “≈”

to mean that the left-hand side is an approximation of the right-hand side. We will be more specific in

Assumption 4 below. The dual role of models (4)–(6) is to define a threshold for sufficient decrease at

each iteration, and to define a measure of approximate stationarity.
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For σ > 0, x ∈ Rn and B(x) = B(x)T ∈ Rn×n, the second-order models

φ(s;x) ..= f̂(x) + ∇̂f(x)T s+ 1
2s
TB(x)s (7)

m(s;x, σ) ..= φ(s;x) + 1
2σ∥s∥

2 + ψ(s;x), (8)

are used to compute a step. Because φcp(·;x) is linear and φ(·;x) is quadratic for fixed x, both have

globally Lipschitz-continuous gradient.

We follow [3, 6, 25] and require that all models that we consider satisfy the following assumption.

Assumption 1. For all x ∈ R
n, ψ(·;x) is proper, lsc and uniformly prox-bounded. In addition,

ψ(0;x) = h(x) and ∂ψ(0;x) ⊆ ∂h(x).

2.3 The proximal-gradient method

The direct generalization of the gradient method to nonsmooth regularized optimization is the proximal-

gradient method [26]. For (1), the proximal-gradient iteration can be written

xk+1 = xk + sk,cp (9)

sk,cp ∈ argmin
s

1
2ν

−1
k ∥s+ νk∇̂f(xk)∥2 + ψ(s;xk)

= argmin
s

∇̂f(xk)T s+ 1
2ν

−1
k ∥s∥2 + ψ(s;xk) (10)

= argmin
s

mcp(s;xk, ν
−1
k ),

where νk > 0 is an appropriate step length, though it is typically used with ψ(s;xk) ..= h(xk + s). We

call sk,cp a Cauchy step. It turns out that sk,cp exists provided νk is sufficiently small.

Proposition 1 (37, Theorem 1.25). Let φcp(·;x) be as in (4), and ψ(·;x) be proper, lsc, prox-bounded

with threshold λx > 0 and such that ψ(0;x) = h(x). For any 0 < ν < λx, the set argminsmcp(s;x, ν−1)

is nonempty and compact.

We denote scp an element of argminsmcp(s;x, ν−1) when one exists. When scp is well defined, the

quantity
ξcp(scp, x, ν

−1) ..= (φcp + ψ)(0;x) − (φcp + ψ)(scp;x)

= (f̂ + h)(x) − (φcp + ψ)(scp;x)
(11)

is central to the algorithm and the analysis, as it is in [3, 6, 25], where it plays the dual role of

defining Cauchy decrease and serving as stationarity measure. Indeed, under standard assumptions, x is

stationary for (1) if ξcp(scp;x, ν−1) = 0 [25, Lemma 3.5]. We diverge slightly from those references and,

for reasons that become clear later, note that ν−1∥scp∥ can equally be used as stationarity measure.

Proposition 2. Let x ∈ Rn and ψ(·;x) be proper, lsc, prox-bounded with threshold λx > 0 and such that

∂ψ(0;x) ⊆ ∂h(x). Let 0 < ν < λx and scp ∈ argminsmcp(s;x, ν−1). If scp = 0, then 0 ∈ ∇̂f(x)+∂h(x).

If, in addition, ∇̂f(x) = ∇f(x), then x is stationary for (1).

Proof. If scp = 0, then ξcp(scp;x, ν−1) = 0 by (11). The rest of the proof is identical to that of [25,

Lemma 3.5].

In the special case h = 0, i.e., smooth optimization, scp = −ν∇f(x). Thus, we normalize and use

ν−1∥scp∥ as stationarity measure.

The identification of an scp, when one exists, coincides with the identification of an element in the

image of a proximal operator (2), i.e., scp ∈ proxνψ(·;x)(−ν∇̂f(x)). It is the computation of an element

in such a set that represents the main computational challenge in problems for which the set is not
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known analytically, so that one must resort to an iterative numerical method. In that case, the scp
computed is inexact, and we refer to this situation as an inexact evaluation of the proximal operator.

The following result is hidden inside the proof of [15, Lemma 2].

Proposition 3. Let f have Lipschitz-continuous gradient with Lipschitz constant L ≥ 0 and let h be

proper, lsc and prox-bounded at x ∈ Rn with threshold λx > 0. Let 0 < ν < min(1/L, λx), and let

s ∈ Rn be such that

f(x) + ∇f(x)T s+ 1
2ν

−1∥s∥2 + h(x+ s) ≤ (f + h)(x). (12)

Then,

(f + h)(x) − (f + h)(x+ s) ≥ 1
2 (ν−1 − L)∥s∥2. (13)

Proof. We inject f(x)+∇f(x)T s ≥ f(x+s)− 1
2L∥s∥

2, which follows from (3), into (12) and obtain (13).

Proposition 3 applied to φcp(·;x), ψ(·;x) and scp ∈ proxνψ(·;x)(−ν∇̂f(x)), yields

ξcp(scp;x, ν−1) ≥ 1
2ν

−1∥scp∥
2, (14)

because the Lipschitz constant of ∇φcp(·;x) is zero.

By contrast, we denote an approximate Cauchy step resulting from an inexact minimization of (6)

as ŝcp. We will be more specific about the meaning of inexactness in that context in Assumption 6.
Accordingly, we define

ξ̂cp(ŝcp;x, ν−1) ..= (φcp + ψ)(0;x) − (φcp + ψ)(ŝcp;x). (15)

Proposition 3 states that (13) also holds for any s that produces simple decrease in (6); s need not be

an exact minimizer. Thus, if we apply a descent procedure to minimize (6) starting from s = 0, any

iterate, denoted generically as ŝcp, generated by that procedure will satisfy (13), i.e.,

(φcp + ψ)(0;x) − (φcp + ψ)(ŝcp;x) ≥ 1
2ν

−1∥ŝcp∥
2. (16)

Thus, an exact minimizer in (10) would produce a Cauchy step sk,cp that satisfies (14). For brevity,

we write ξk,cp
..= ξcp(sk,cp;xk, ν

−1
k ) and ξ̂k,cp instead of ξ̂cp(ŝk,cp;xk, ν

−1
k ). The above shows that

ξk,cp ≥ 1
2ν

−1
k ∥sk,cp∥

2 and ξ̂k,cp ≥ 1
2ν

−1
k ∥ŝk,cp∥

2 provided ŝk,cp results in simple decrease in (6) from

s = 0.

Proposition 2 indicates that one role of the first-order models (4)–(6), and hence of ŝk,cp and ξ̂k,cp
is to determine approximate stationarity. The role of the second-order models (7)–(8) is to allow us to

compute a step that improves upon the (inexact) Cauchy step. Minimizing the second-order model is a
well-defined problem for all sufficiently large σk.

Proposition 4 (25, Proposition 3.3). Let φ(·;x) be defined as in (7), and let ψ(·;x) be proper, lsc and

prox-bounded with threshold λx > 0 and such that ψ(0;x) = h(x). For any σ > λ−1
x − λmin(B(x)), the

set argminsm(s;x, σ) is nonempty and compact, where λmin represents the smallest eigenvalue.

3 Algorithm and convergence analysis

Our algorithm is a modification of method R2N of Diouane et al. [25]. At a general iteration k,

an approximate Cauchy step ŝk,cp is computed together with the corresponding value of ξ̂k,cp by

minimizing (6) inexactly. If xk is not approximately stationary, a step sk is computed by approximately
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minimizing (8). Because only f̂ , and not f , is available, we compute the ratio of achieved versus

predicted decrease

ρ̂k
..=

f̂(xk) + h(xk) − (f̂(xk + sk) + h(xk + sk))

φ(0;xk) + ψ(0;xk) − (φ(sk;xk) + ψ(sk;xk))
(17)

to accept or reject sk. Acceptance of sk occurs when ρ̂k ≥ η̂1 > 0, which indicates that sufficient

decrease occurs in f̂ + h. The parameters of the algorithm, specifically σmin, together with assumptions

on the accuracy of f̂ , are chosen so that acceptance of sk also implies that sufficient decrease occurs in

f + h. We then update σk accordingly, as in R2N. All that is required of sk is that it satisfy a sufficient

decrease condition—see Assumption 5 below. That can be achieved, for instance, by computing ŝk,cp
from a single (inexact) proximal-gradient iteration on (8) with a well-chosen step length νk starting

from s = 0, and computing sk by continuing the (inexact) proximal-gradient iterations from ŝk,cp.

Should ∥sk∥ be much larger than ∥ŝk,cp∥, we reset sk to ŝk,cp as in R2N. The procedure is formally

stated as Algorithm 1. We refer the reader to [25] for more background.

Algorithm 1 iR2N

1: Given κf > 0, κ∇ > 0, choose constants 0 < γ3 ≤ 1 < γ1 ≤ γ2, 0 < η̂1 ≤ η̂2 < 1.
2: Choose 0 < θ1 < 1 < θ2.

3: Choose σmin > 4κfθ1θ
2
2/(η̂1(1− θ1)) and σ0 ≥ σmin.

4: for k = 0, 1, . . . do

5: Choose Bk
..= B(xk) ∈ R

n×n
such that Bk = B

T
k .

6: Set νk
..= θ1/(∥Bk∥+ σk).

7: repeat

8: Compute ŝk,cp an approximate solution of mins mcp(s;xk, ν
−1
k ) and ξ̂k,cp.

9: Compute a step sk such that m(sk;xk, σk) ≤ m(ŝk,cp;xk, σk).
10: if ∥sk∥ > θ2∥ŝk,cp∥ then
11: Reset sk = ŝk,cp.
12: end if
13: until f̂ and ∇̂f satisfy Assumption 7.
14: Compute the ratio ρ̂k as in (17).
15: if ρ̂k ≥ η̂1 then
16: Set xk+1 = xk + sk.
17: else
18: Set xk+1 = xk.
19: end if
20: Update the regularization parameter according to

σk+1 ∈


[γ3σk, σk] if ρ̂k ≥ η̂2, very successful iteration

[σk, γ1σk] if η̂1 ≤ ρ̂k < η̂2, successful iteration

[γ1σk, γ2σk] if ρ̂k < η̂1 unsuccessful iteration

21: Reset σk+1 = max(σk+1, σmin).
22: end for

3.1 Assumptions

Intentionally, our assumptions are not the most general under which convergence of Algorithm 1 can

be shown to occur. We have done so in order to highlight the influence of our assumptions on the

inexactness of the objective, gradient and proximal operators evaluations on the analysis. We refer the

interested reader to [25] for the current most general assumptions. Nonetheless, we expect that our

convergence guarantees remain valid under the weaker assumptions, at the cost of a more intricate

analysis.

Our first assumption concerns Lipschitz-continuity of the gradient. Technically, this assump-

tion is only necessary for the complexity analysis; convergence can be guaranteed under continuous

differentiability only.

Assumption 2. ∇f is Lipschitz-continuous with constant L ≥ 0—see (3).

We assume that {Bk} is bounded; a common assumption in the literature. Under appropriate

growth conditions, convergence is preserved even if {Bk} is allowed to grow unbounded [25].
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Assumption 3. There exists κB > 0 such that ∥Bk∥ ≤ κB for all k.

Assumption 3 is trivially satisfied when Bk = 0, as in [3, Algorithm 6.1]. It is also satisfied

in [12] where the objective is strongly convex and the model Hessian is defined by a positive definite

limited-memory quasi-Newton update. Under standard assumptions, the LBFGS and LSR1 updates

satisfy Assumption 3 [5, 17].

Our next assumption bounds the discrepancy between h and its model ψ.

Assumption 4. There exists κh > 0 such that |ψ(x, s) − h(x+ s)| ≤ κh∥s∥
2 for all x and s ∈ Rn.

The bound ∥s∥2 in Assumption 4 can be relaxed to o(∥s∥) [25]. Assumption 4 is satisfied when

ψ(s;x) = h(x+ s), and when h(x) = g(c(x)) where c is twice continuously differentiable with bounded

second derivatives and g is globally Lipschitz continuous if we select ψ(s;x) = g(c(x) + ∇c(x)T s).

The next assumption drives the convergence analysis and states that the step sk computed at

iteration k should result in a decrease at least comparable to that induced by the approximate Cauchy

step in the first-order model.

Assumption 5. There is θ1 ∈ (0, 1) such that φ(0;x) + ψ(0;x) − (φ(sk;x) + ψ(sk;x)) ≥ (1 − θ1)ξ̂k,cp
for all k.

As we now show, Assumption 5 holds for sk computed as stated in Algorithm 1.

Lemma 1. For θ1 ∈ (0, 1) and sk as in Algorithm 1, Assumption 5 holds.

Proof. The proof of [25, Proposition 3] applies with s = sk and ŝk,cp in place of scp. Indeed, it remains

valid for any s ∈ Rn and scp ∈ Rn as long as m(s;x, σ) ≤ m(scp;x, σ), which is guaranteed by step 7

of Algorithm 1.

We ensure that Step 7 in Algorithm 1 holds because the inexact Cauchy step ŝk,cp coincides with

the first (inexact) step of the proximal gradient method applied to m(s;xk, σk) from s = 0 with an

appropriate step length νk. Therefore, computing sk by continuing the proximal iterations from ŝk,cp
leads to further decrease in m(s;xk, σk).

The next assumption requires the norm of the computed step ŝk,cp to be at least a fraction of that

of an exact step sk,cp.

Assumption 6. There exists κs ∈ (0, 1] such that, for all k,

∥ŝk,cp∥ ≥ κs min{∥sk,cp∥ | sk,cp ∈ prox
νψ(·;xk)

(−νk∇̂f(xk))}.

In the experiments of Section 4, ψ(·;xk) satisfies the assumptions of Proposition 1 and, therefore,

the minimum in Assumption 6 is well defined.

Assumption 6 holds when sk,cp is computed exactly, i.e., ŝk,cp = sk,cp. Indeed, let ∥sk,min∥ be the

smallest norm across all possible choices of sk,cp. Several cases can occur. Firstly, if ∥sk,min∥ > 0,

then ∥sk,cp∥ > 0 necessarily, and Assumption 6 holds with κs
..= min(1, ∥sk,cp∥/∥sk,min∥). If, on the

other hand, ∥sk,min∥ = 0, the same holds if we compute sk,cp ̸= 0 but, should we compute sk,cp = 0,

Proposition 2 would imply that xk is stationary and the iterations would stop. This case will be clarified

in Lemma 5.

Details on how we satisfy Assumption 6 when ŝk,cp ̸= sk,cp in certain situations relevant in practice

can be found in Section 4. We further comment on Assumption 6 in Section 6.

In the same fashion as [31], we bound evaluation errors in terms of the step. Similar assumptions

are made in [22] in a trust-region context.
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Assumption 7. There exist κf > 0 and κ∇ > 0 such that, for all k ∈ N,

|f(xk) − f̂(xk)| ≤ κf∥sk∥
2, (18)

|f(xk + sk) − f̂(xk + sk)| ≤ κf∥sk∥
2, (19)

∥∇f(xk) − ∇̂f(xk)∥ ≤ κ∇∥sk∥. (20)

Finally, we assume that the objective is bounded below, which is only required in the complexity

analysis.

Assumption 8. There exists (f + h)low ∈ R such that (f + h)(x) ≥ (f + h)low for all x ∈ Rn.

3.2 Convergence analysis

Our first result relates the decrease predicted by the model to the step size.

Lemma 2. Let Assumption 5 hold. Then,

φ(0;xk) + ψ(0;xk) − (φ(sk;xk) + ψ(sk;xk)) ≥ 1
2 (1 − θ1)θ−2

2 ν−1
k ∥sk∥

2.

Proof. Assumption 5, (16) and line 10 of Algorithm 1 yield

φ(0;xk) + ψ(0;xk) − (φ(sk;xk) + ψ(sk;xk)) ≥ (1 − θ1)ξ̂k,cp

≥ 1
2 (1 − θ1)ν−1

k ∥ŝk,cp∥
2

≥ 1
2 (1 − θ1)θ−2

2 ν−1
k ∥sk∥

2.

Our next result mirrors [6, Theorem 4.1] and shows that whenever σk exceeds a threshold σsucc,

iteration k is very successful and σk+1 decreases.

Lemma 3. Let Assumptions 2 to 5 and 7 be satisfied and define

σsucc
..= max

(
θ1θ

2
2(L+ κB + 2κh + 4κf + 2κ∇)

(1 − θ1)(1 − η̂2)
, λ−1

)
> 0.

If, at iteration k of Algorithm 1, sk ̸= 0 and σk ≥ σsucc, then ρ̂k ≥ η̂2, and iteration k is very successful.

Proof. As in the proof of [6, Theorem 4.1], σk increases as long as it is below λ−1
xk

. Thus, we assume

that σk ≥ λ−1. The definitions of ρ̂k and φ, Assumption 5, the triangle inequality and Lemma 2 yield

|ρ̂k − 1|

=
|f̂(xk + sk) − f̂(xk) − ∇̂f(xk)T sk − 1

2s
T
kBksk + h(xk + sk) − ψ(sk;xk)|

φ(0;x) + ψ(0;x) − (φ(sk;xk) + ψ(sk;xk))

≤
|f̂(xk + sk) − f̂(xk) − ∇̂f(xk)T sk| + | 12s

T
kBksk| + |h(xk + sk) − ψ(sk;xk)|

1
2 (1 − θ1)θ−2

2 ν−1
k ∥sk∥

2 .

The triangle inequality along with Assumptions 2 and 7 bound the first term in the numerator as

|f̂(xk + sk) − f̂(xk) − ∇̂f(xk)T sk|

≤ |f(xk + sk) − f(xk) −∇f(xk)T sk| + 2κf∥sk∥
2 + κ∇∥sk∥

2

≤ ( 1
2L+ 2κf + κ∇)∥sk∥

2.
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Assumption 3 bounds the second term in the numerator by 1
2∥Bk∥∥sk∥

2 ≤ 1
2κB∥sk∥

2. Assumption 4

bounds the last term in the numerator by κh∥sk∥
2. After simplifying by ∥sk∥

2 and using νk ≤ θ1/σk
by definition in Algorithm 1, those observations give

|ρ̂k − 1| ≤
θ1θ

2
2(L+ κB + 2κh + 4κf + 2κ∇)

(1 − θ1)σk
.

Therefore, σk ≥ σsucc implies that ρ̂k ≥ η̂2.

In lemma 3, we showed that σk ≥ σsucc =⇒ ρ̂k ≥ η̂2, which means that there is a decrease in f̂ + h.

Next, we show that there exists η1 > 0 such that ρ̂k ≥ η̂1 =⇒ ρk ≥ η1, and similarly for η̂2. Therefore,

a decrease also occurs in f + h every time a step is accepted.

Lemma 4. Let Assumptions 5 and 7 hold. At iteration k, denote

ρk
..=

f(xk) + h(xk) − (f(xk + sk) + h(xk + sk))

φ(0;xk) + ψ(0;xk) − (φ(sk;xk) + ψ(sk;xk))

the measure of agreement between the actual and predicted decrease in f + h. Let σmin be as in

Algorithm 1 and

η1
..= η̂1 −

4κfθ1θ
2
2

(1 − θ1)σmin

> 0, η2
..= η̂2 −

4κfθ1θ
2
2

(1 − θ1)σmin

> 0.

Then, ρ̂k ≥ η̂1 =⇒ ρk ≥ η1 and ρ̂k ≥ η̂2 =⇒ ρk ≥ η2.

Proof. By definition of ρ̂k and ρk,

ρ̂k = ρk +
(f̂ − f)(xk) + (f − f̂)(xk + sk)

(φ+ ψ)(0;xk) − (φ+ ψ)(sk;xk)
.

Because Algorithm 1 enforces σk ≥ σmin > 0, we obtain νk ≤ θ1/σk ≤ θ1/σmin. Thus, Lemma 2

and Assumption 7 give

|ρ̂k − ρk| ≤
2κf∥sk∥

2

1
2 (1 − θ1)θ−2

2 ν−1
k ∥sk∥

2 ≤
4κfθ1θ

2
2

(1 − θ1)σmin

.

Now, if ρ̂k ≥ η̂1,

ρk ≥ η̂1 −
4κfθ1θ

2
2

(1 − θ1)σmin

= η1.

The lower bound on σmin ensures η1 > 0. The same holds for η2 because η̂2 ≥ η̂1.

Lemmas 3 and 4 together imply that ρ̂k ≥ η̂1 guarantees a decrease in f + h.

The next result is classic and considers the case where only a finite number of successful iterations

occur.

Lemma 5. Let Assumptions 2 to 5 and 7 be satisfied. Suppose Algorithm 1 generates finitely many

successful iterations. Then xk = x⋆ for all k sufficiently large and x⋆ is first-order stationary.

Proof. By assumption, there is k0 ∈ N such that xk = x⋆ for all k ≥ k0. If x⋆ is not stationary, as of

iteration k0, Algorithm 1 repeatedly computes nonzero steps sk, all of which are rejected, i.e., ρk < η1.

Thus, for all k ≥ k0, σk+1 > σk. Hence, for sufficiently large k, σk > σsucc, which triggers a successful

iteration, and is absurd.
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Lemma 3 implies that there exists σmax = min(σ0, γ2σsucc) such that σk ≤ σmax for all k ∈ N.

Consequently, Assumption 3 yields that for all k ∈ N,

νmin ≤ νk ≤ νmax, νmin
..= θ1/(κB + σmax), νmax

..= θ1/σmin. (21)

Let ϵ > 0. We seek a bound on kϵ
..= min{k ∈ N | ν−1

k ∥ŝk,cp∥ < ϵ} = |S(ϵ)| + |U(ϵ)| + 1, where

S(ϵ) ..= {k ∈ N | ρ̂k ≥ η̂1 and k < kϵ}, U(ϵ) ..= {k ∈ N | ρ̂k < η̂1 and k < kϵ}.

Lemma 6. Let Assumptions 2 to 5, 7 and 8 be satisfied. Assume that Algorithm 1 generates infinitely

many successful iterations. Then,

|S(ϵ)| ≤ (f + h)(x0) − (f + h)low
1
2η1(1 − θ1)νmin

ϵ−2 ..= ωsϵ
−2,

where νmin is defined in (21).

Proof. Let k ∈ S(ϵ). By definition, ρ̂k ≥ η̂1, which, by Lemma 4, implies that ρk ≥ η1. Assump-

tion 5, (21), (16) and the fact that k < kϵ then imply

(f + h)(xk) − (f + h)(xk + sk) ≥ η1((φ+ ψ)(0;xk) − (φ+ ψ)(sk;xk))

≥ η1(1 − θ1)ξ̂k,cp

≥ 1
2η1(1 − θ1)ν−1

k ∥ŝk,cp∥
2

≥ 1
2η1(1 − θ1)νkϵ

2

≥ 1
2η1(1 − θ1)νminϵ

2.

The rest of the proof is classic and identical to, e.g., [6, Lemma 4.3].

It is remarkable that the bound in Lemma 6 is identical to that of the standard R2N, which is more

apparent when comparing with [6, Lemma 4.3] than with [25, Theorem 6.4]. The extra factor 1
2 in the

denominator of our bound on |S(ϵ)| is due to the fact that we use ν−1
k ∥ŝk,cp∥ as stationarity measure

instead of ν
−1/2
k ξ̂

1/2
k,cp, as in [6].

Finally, we recover a worst-case complexity bound of the same order as in the analysis with exact

proximal operator evaluations. The proof is identical to that of, e.g., [6, Theorem 4.5], and is omitted.

Theorem 1. Let Assumptions 2 to 5, 7 and 8 be satisfied. Then,

|S(ϵ)| + |U(ϵ)| =
(
1 + | logγ1(γ3)|

)
ωsϵ

−2 + logγ1(σmax/σ0) = O(ϵ−2),

where ωs is defined in Lemma 6.

Theorem 1 shows that iR2N brings the measure ν−1
k ∥ŝk,cp∥ below ϵ in O(ϵ−2) iterations. That

measure is not a stationarity measure because it includes the inexactness on ŝk,cp. By Assumption 6,

there exists an exact Cauchy step skϵ,cp such that

ν−1
k ∥skϵ,cp∥ ≤ κ−1

s ν−1
k ∥ŝkϵ,cp∥ < κ−1

s ϵ. (22)

Thus, if ν−1
k ∥ŝkϵ,cp∥ is small, ν−1

k ∥skϵ,cp∥ is comparably small. The next result shows that when the

latter occurs, we have identified a near stationary point, and marks the impact of κs on the analysis.

Theorem 2. Let Assumptions 6 and 7 be satisfied. Let ϵ > 0 and assume ν−1
k ∥ŝk,cp∥ < ϵ. There

exists sk,cp ∈ proxνψ(·;xk)
(−νk∇̂f(xk)) that satisfies Assumption 6 such that ∥sk,cp∥ < κ−1

s νmaxϵ, and

uk ∈ ∇f(xk) + ∂ψ(sk,cp;xk) such that

∥uk∥ <
(
κ∇θ2νmax + κ−1

s

)
ϵ. (23)
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Proof. By definition, sk,cp is an exact minimizer of (6), thus

0 ∈ ∇̂f(xk) + ν−1
k sk,cp + ∂ψ(sk,cp;xk)

= ∇f(xk) + gk + ν−1
k sk,cp + ∂ψ(sk,cp;xk), (24)

where gk
..= ∇̂f(xk) −∇f(xk) and ∥gk∥ ≤ κ∇∥sk∥ ≤ κ∇θ2∥ŝk,cp∥ from Assumption 7 and line 10 of

Algorithm 1. By (21) and ν−1
k ∥ŝk,cp∥ < ϵ, ∥ŝk,cp∥ ≤ νkϵ < νmaxϵ. Thus, ∥gk∥ < κ∇θ2νmaxϵ.

On the other hand, Assumption 6 gives

∥ν−1
k sk,cp∥ ≤ κ−1

s ν−1
k ∥ŝk,cp∥ < κ−1

s ϵ.

Now, (24) implies that

uk
..= −(gk + ν−1

k sk,cp) ∈ ∇f(xk) + ∂ψ(sk,cp;xk).

Because ∥uk∥ ≤ ∥gk∥+ ∥ν−1
k sk,cp∥, (23) holds. Finally, the same reasoning as above shows that ∥sk,cp∥

is bounded as announced.

The following results directly from Theorem 1 and mirrors [29, Lemma 3].

Lemma 7. Under the assumptions of Theorem 1 and Assumption 6, there exists an infinite index set

N ⊆ N and {sk,cp} where sk,cp ∈ proxνψ(·;xk)
(−νk∇̂f(xk)) for all k such that

1. {ŝk,cp}N → 0 and {sk,cp}N → 0,

2. {sk}N → 0

3. there exists uk ∈ ∇f(xk) + ∂ψ(sk,cp;xk) such that {uk}N → 0.

Proof. Claim 1 follows directly from Theorem 1, (21) and (22). Claim 2 follows from Line 10 of

Algorithm 1. Claim 3 results from Theorem 2.

We close this section with a result stating that every limit point of the sequence {xk}N generated by

Algorithm 1 is stationary, where N is defined in Lemma 7, under an assumption on the subdifferential

of the models ψ(·;xk).

Recall that for a sequence of sets {Ak} with Ak ⊆ Rn for all k ∈ N, the set lim supAk is the set of

limits of all possible convergent sequences {ak}N with N ⊂ N infinite and ak ∈ Ak for all k ∈ N .

Theorem 3. Under the assumptions of Theorem 1, Assumptions 1 and 6, let N ⊆ N be as in Lemma 7.

Assume that {xk}N → x̄ and that

lim sup
k∈N

∂ψ(sk,cp;xk) ⊆ ∂ψ(0; x̄). (25)

Then x̄ is stationary for (1).

Proof. By our assumptions, Lemma 7, continuity of ∇f and Assumption 1,

0 ∈ ∇f(x̄) + lim sup
k∈N

∂ψ(sk,cp;xk) ⊆ ∇f(x̄) + ∂ψ(0; x̄) ⊆ ∇f(x̄) + ∂h(x̄).

Thus, x̄ is stationary for (1).

As Leconte and Orban [29] explain, (25) holds in several relevant cases, e.g.,

1. each ψ(·;xk) and ψ(·; x̄) are proper, lsc and convex with ψ(·;xk) → ψ(·; x̄) in the epigraphical

sense, and 0 ∈ dom ψ(·; x̄);

2. ψ(s;x) ..= h(x+ s) and h(xk + sk,cp) → h(x̄) as would occur, in particular but not exclusively,

when h is continuous.
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4 Evaluation of inexact proximal operators

In this section, we discuss the practical implementation of Algorithm 1 with focus on computing an

approximate solution of (10) that satisfies Assumption 6. Our approach is simple: assume that an

upper bound Mk > 0 on ∥sk,cp∥ can be determined based on properties of ψ(·;xk). Assume also that

a descent procedure is applied to (10) starting from s = 0 that generates iterates ŝj , j ≥ 0. Then,

stopping the procedure as soon as ∥ŝj∥ ≥ κsMk ensures that Assumption 6 holds.

We consider three regularizers whose proximal operators (2) are not known analytically and must

be computed inexactly:

h(x) = ℓp(x) = ∥x∥p (1 ≤ p <∞), (26)

h(x) = TVp(x) = (
∑
i

|xi − xi−1|
p)1/p (1 ≤ p <∞), (27)

h(x) = χp,r(x) =

{
0 if ∥x∥pp ≤ r

∞ otherwise
(0 < p < 1), (28)

where TVp is the one-dimensional total-variation operator, and χp,r is the indicator of the ℓp-pseudo

norm “ball” of radius r1/p for r > 0.

The next lemmas derive bounds on the norm of solutions to the proximal problems associated with
those regularizers.

Lemma 8. Let h be given by (26) and ψ(s;xk) ..= h(xk + s) with s ∈ Rn. The unique solution sk,cp
of (10) is such that

∥sk,cp∥ ≤

{
νk(∥∇̂f(xk)∥ + n1/p−1/2) (1 ≤ p < 2)

νk(∥∇̂f(xk)∥ + 1) (p ≥ 2).
(29)

Proof. Since ψ(·;xk) is convex, (10) is strongly convex and, therefore, has a unique solution sk,cp. The

necessary optimality conditions read

∇̂f(xk) + ν−1
k sk,cp + uk = 0, uk ∈ ∂ψ(sk,cp;xk).

Here, ∂ψ(sk,cp;xk) = {u ∈ Rn | ∥u∥q ≤ 1 and uT (sk,cp + xk) = ∥sk,cp + x∥p}, where q is such that

1/p+ 1/q = 1. By equivalence of norms,

∥uk∥ ≤ n1/2−1/q ∥uk∥q ≤ n1/2−1/q = n1/p−1/2.

When 1 ≤ p ≤ 2, the latter bound is attained for uk
..= (n−1/q, n−1/q, . . . , n−1/q) with ∥uk∥q = 1.

When p > 2, the bound simplifies to ∥uk∥ ≤ 1, which is attained for uk
..= (1, 0, . . . , 0). Thus,

∥sk,cp∥ = νk∥∇̂f(xk) + uk∥ ≤ νk(∥∇̂f(xk)∥ + ∥uk∥), which yields (29).

The next result helps bound solutions of (10) when h is given by (27), but is more general, which is

why it is stated separately.

Lemma 9. Let A ∈ Rm×n, h(x) ..= ∥Ax∥• where ∥ · ∥• is a norm on Rm, and ψ(s;xk) ..= h(xk + s).

The unique solution sk,cp of (10) satisfies

∥sk,cp∥ ≤ νk

(
∥∇̂f(xk)∥ + ∥A∥ ∥uk∥

)
, (30)

where uk ∈ ∂∥A(xk + sk,cp)∥•.

Proof. Here again, sk,cp is unique by strong convexity of (10). For η(y) ..= ∥y∥•,

∂η(y) = {u ∈ Rm | ∥u∥⋆ ≤ 1 and uT y = ∥y∥•},
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where ∥ · ∥⋆ is the dual norm of ∥ · ∥•. By [35, Theorem 23, 9], ∂ψ(s;xk) = AT∂η(A(xk + s)). Thus,

the first-order optimality conditions of (10) imply

0 ∈ ∇̂f(xk) + ν−1
k sk,cp +ATuk,

where uk ∈ ∂η(A(xk + sk,cp)). We extract sk,cp = −νk(∇̂f(xk) +ATuk), and ∥sk,cp∥ ≤ νk(∥∇̂f(xk)∥ +

∥AT ∥ ∥uk∥), which is (30) since ∥A∥ = ∥AT ∥.

Lemma 9 does not state a bound on ∥uk∥ as one would depend on ∥ · ∥• and the bound ∥uk∥⋆ ≤ 1.

The next corollary applies Lemma 9 to (27).

Corollary 1. Let h be as in (27) and ψ(s;xk) ..= h(xk + s). The unique solution sk,cp of (10) satisfies

∥sk,cp∥ ≤

νk
(
∥∇̂f(xk)∥ + 2 sin

(
π(n−1)

2n

)
n1/p−1/2

)
(1 ≤ p < 2)

νk

(
∥∇̂f(xk)∥ + 2 sin

(
π(n−1)

2n

))
(p ≥ 2).

(31)

Proof. Apply Lemma 9 with ∥ · ∥• = ∥ · ∥p and

A ..=

−1 1
. . .

. . .

−1 1

 ∈ R(n−1)×n.

Note that ATA is the centered finite-difference operator for second derivatives, which is symmetric,

tridiagonal and Toeplitz. Its eigenvalues are thus known in closed form, hence the value of ∥A∥ [40,

p. 54]. Finally, ∥uk∥ can be bounded as in the proof of Lemma 8.

The final lemma derives a bound on the solution of the proximal problem associated to the indicator

function in (28).

Lemma 10. Let h be as in (28) and ψ(s;xk) ..= h(xk + s). Any solution sk,cp of (10) satisfies

∥sk,cp∥ ≤ r1/p + ∥xk∥. (32)

Proof. Because 0 < p < 1, t 7→ tp is concave for t ≥ 0, and thus subadditive, i.e., (a+ b)p ≤ ap + bp for
any a, b ≥ 0. Let u ∈ Rn. By recurrence on n, ∥u∥pp =

∑n
i=1 |ui|

p ≥ (
∑n
i=1 |ui|)

p, which states that

∥u∥p ≥ ∥u∥1. This implies that the unit “ball” in ℓp-pseudo-norm is a subset of the unit ℓ1-norm ball.

In turn, the latter is a subset of the unit ℓ2-norm ball. A scaling argument shows that the same holds

with balls of radius r > 0. Therefore, because ∥xk + sk,cp∥p ≤ r1/p, we have ∥xk + sk,cp∥ ≤ r1/p. The

triangle inequality yields ∥sk,cp∥ ≤ ∥xk + sk,cp∥ + ∥xk∥ ≤ r1/p + ∥xk∥.

In (29), (31) and (32), the bound on ∥sk,cp∥ depends only on known quantities at iteration k. Thus,

we can enforce Assumption 6 by stopping the inexact proximal procedure as soon as ∥ŝ(j)k,cp∥ exceeds a

fixed fraction of said bound.

5 Numerical experiments

In this section, we present numerical experiments indicating that exploiting inexact objective val-

ues, gradients and proximal operators can reduce computational cost substantially. We implement

Algorithm 1 in the Julia language [14] as a modification of the R2N solver [25] in [7].

The implementation of the proximal operator of (26) and (27), which are both convex, is available

from the Julia interface [2] to the proxTV library [9]. Both implement iterative methods. The method

https://github.com/albarji/proxTV
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for (26) computes projected quasi-Newton search directions, and performs a backtracking line search to

determine the step size. That for (27) alternates between gradient projection into the ℓp-norm ball and

Frank-Wolfe steps. After each update, the primal solution is reconstructed from the dual variable, and

a new gradient is computed.

Our implementation of the proximal operator of (28) is based on the Iteratively Reweighted ℓp-Ball

Projection (IRBP) scheme of [43]. At each iteration, IRBP approximates the ℓp-“ball” norm via

a weighted linearization of the nonconvex set around the current iterate. This results in a convex

subproblem describing a projection into a weighted ℓ1-norm ball, which can be solved efficiently [21]. A

smoothing vector is maintained and adaptively updated to avoid numerical instability and improve

convergence. The nonconvex nature of χp,r implies that there may be non-global minima or saddle

points [43]. Therefore, the step output by χp,r may not even induce ξ̂k,cp ≥ 0. To the best of our

knowledge, there is currently no procedure that is guaranteed to determine a global minimum. In order

to mitigate the issue, we implement a multi-start strategy to increase the odds that ŝk,cp be a global

solution. Our strategy is not always successful, but nevertheless often results in acceptable steps. Part
of future work is to find a procedure that identifies a global minimizer. Our implementation is available

from [1].

In each case, inexactness in the proximal operator evaluations is controlled by 0 < κs ≤ 1 in

Assumption 6. For κs ≈ 0, the expectation on the quality of ŝk,cp is at its lowest, i.e., Assumption 6 is
easiest to satisfy, but (33) is harder to reach. Thus the solver may spend less time inside each (cheap)

proximal operator evaluation at the cost of potentially performing more (costly) outer iterations. On

the other hand, when κs ≈ 1, the ŝk,cp should be close to an exact solution. In this case, the solver

may spend more time than necessary inside each proximal operator evaluation, which may adversely

affect the total solution time. In our experiments, we vary the value of κs to assess the impact of the

inexactness on the performance of iR2N.

Step 9 in Algorithm 1 is performed by a special case of Algorithm 1 with B = 0 in which the

proximal step computation is the only subproblem. In effect, that is a variant of the R2 algorithm [3,

Algorithm 6.1] extended to the inexact proximal framework. We refer to this variant as iR2. Although

iR2 is also allowed to perform inexact evaluations of its smooth objective and gradient, we evaluate the

quadratic model φ(s;xk) exactly in our experiments.

Each procedure to solve (26)–(28) comes with its original stopping condition. We say that we run

iR2N in exact mode when we use this original stopping condition, independently of Assumption 6,

and we consider that the resulting proximal operator is then evaluated exactly. By contrast, we run

iR2N in inexact mode when the iterations of the proximal operator evaluation are terminated as soon

as either (i) ∥ŝk,cp∥ ≥ κsMk, where Mk is the upper bound on ∥sk,cp∥ given in (29), (31), or (32), or

(ii) the original stopping condition of the proximal operator evaluation is met. In proximal operator

evaluations, iR2 uses the same value of κs as iR2N.

Inequalities (22) suggest using ν−1
k ∥ŝk,cp∥ ≤ κsϵ as stopping criterion in Algorithm 1, since it

guarantees that ν−1
k ∥sk,cp∥ ≤ ϵ. However, we will see that small values of κs yield the best performance

but make that stopping condition overly stringent. In addition, the bound Mk given in Lemmas 8

to 10 need not be tight, and could indeed be quite loose. For those reasons, all our experiments use the

simple stopping condition

ν−1
k ∥ŝk,cp∥ ≤ ϵ. (33)

In the next sections, we report the performance of iR2N on problems that use the inexact proximal

operators described above. In Sections 5.1 to 5.3, both the objective and gradient are assumed to be

evaluated exactly, i.e., only subject to the limits of floating-point operations. In Section 5.4, we consider

inexact evaluations of the objective and gradient. All our tests are performed in double precision on a

2020 MacBook Air with an M1 chip (8-core CPU, 8 GB unified memory).
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Because f in our test problems is based on randomly-generated data, we average the statistics over

10 runs. It is useful to keep in mind that each iR2N and iR2 iteration evaluates a single proximal

operator—see Line (8) of Algorithm 1. Tables in the next sections use the following headers: “κs”

is the value of the inexactness parameter in Assumption 6, “iR2N” is the average number of outer

iterations, “iR2” is the average number of inner iterations per outer iteration, “prox” is the average

number of iterations per proximal operator evaluation, and “time (s)” is the average CPU solution

time in seconds.

5.1 Basis pursuit denoising problem (BPDN)

The BPDN problem is stated as

min
x∈Rn

1
2∥Ax− b∥22 + µ∥x∥p, (34)

where µ = 10−1, A ∈ R200×512 is random with orthonormal rows, b = Ax̄+ ε, x̄ has 10 nonzeros, and

ε is a noise vector from a normal (0, 1) distribution. We use p = 1.1 to attempt to recover a sparse

solution. In (33), we set ϵ = 10−6.

Table 1 shows that the average number of iR2N/iR2 iterations decreases globally as κs increases.

The proximal operator iterations increase as κs increases, as expected. For small values of κs, inexact

mode yields a substantial reduction in the number of proximal iterations and solution time compared

with exact mode at the expense of a modest increase in outer iterations. For large values of κs the

behavior of iR2N is close to that of exact mode.

Table 1: Statistics on (34) for several values of κs.

κs iR2N iR2 prox time (s)

1.00e−07 1.61e+01 1.21e+02 1.02e+02 5.03e+00
1.00e−05 1.57e+01 1.63e+02 1.90e+02 9.80e+00
1.00e−03 1.49e+01 1.33e+01 4.02e+02 1.55e+01
1.00e−02 1.49e+01 1.78e+01 6.02e+02 1.77e+01
1.00e−01 1.45e+01 1.39e+01 5.81e+02 1.32e+01
5.00e−01 1.45e+01 1.37e+01 5.90e+02 1.28e+01
9.00e−01 1.45e+01 1.39e+01 5.80e+02 1.25e+01
9.90e−01 1.46e+01 1.37e+01 5.90e+02 1.38e+01

exact mode 1.45e+01 1.35e+01 5.68e+02 1.20e+01

Figure 1 shows that the solutions produced in exact and inexact mode are essentially identical, and

that both recover the sparse support of x̄.
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Figure 1: Components of the solution of (34) found by iR2N and of x̄.
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5.2 Matrix completion problem

The problem is stated as

min
x∈Rn

1
2 ∥P (x−A)∥2F + µTVp(x), (35)

where µ = 10−1, p = 1.1 and A ∈ R10×12 is a fixed matrix representing an image and the operator P

only retains a subset of pixels. In (33), ϵ = 10−3.

Table 2 gathers our results on (35). The benefits of choosing κs small are similar to those in Table 1.

Figure 2 shows that the reconstruction error with the solutions of exact and inexact mode are close, as

is the discrepancy between the two solutions.

Table 2: Statistics on (35) for several values of κs.

κs iR2N iR2 prox time (s)

1.00e−07 3.69e+01 3.41e+02 5.88e+02 9.46e+01
1.00e−05 3.72e+01 3.03e+02 8.71e+02 1.42e+02
1.00e−03 3.69e+01 2.09e+02 3.76e+03 3.54e+02
1.00e−02 3.77e+01 2.12e+02 4.06e+03 3.73e+02
1.00e−01 3.41e+01 1.90e+02 4.37e+03 3.25e+02
5.00e−01 3.56e+01 2.19e+02 4.31e+03 3.54e+02
9.00e−01 3.77e+01 1.81e+02 4.49e+03 3.57e+02
9.90e−01 3.55e+01 2.01e+02 4.27e+03 3.54e+02

exact mode 3.18e+01 1.67e+02 4.49e+03 3.36e+02

|Xinexact − A| (κs = 10−7)
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Figure 2: Left: Heatmap of the difference between the solution X found by iR2N in inexact and exact mode, and A. Right:
Difference between the two solutions. The values masked by P are set to zero and shown in black.

5.3 Fitzhugh-Nagumo inverse problem

The FitzHugh–Nagumo system is a simplified representation of a neuron’s action potential modeled by

the system of differential equations

V ′(t) = x−1
2 (V (t) − 1

3V (t)3 −W (t) + x1), W ′(t) = x2(x3V (t) − x4W (t) + x5). (36)

We use initial conditions V (0) = 2 and W (0) = 0, and generate data v̄(x), w̄(x) by solving (36) with

x̄ = (0, 0.2, 1, 0, 0), which corresponds to the Van der Pol oscillator, to which we add random noise. We

then aim to recover x̄ by minimizing the misfit while encouraging a sparse solution:

min
x∈R5

1
2 ∥F (x)∥22 + χp,r(x), (37)

where p = 0.5, r = 2, F : R
5 → R

2n+2, F (x) ..= (v(x) − v̄(x), w(x) − w̄(x)), and

v(x) = (v1(x), . . . , vn+1(x)) and w(x) = (w1(x), . . . , wn+1(x)) are sampled values of V and W at

n+ 1 discretization points. We set ϵ = 10−5 in (33). Table 3 reports our results.
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Table 3: Statistics on (37) for p = 1
2
and r = 2 with several values of κs.

κs iR2N iR2 prox time (s)

1.00e−07 5.14e+02 4.90e+02 3.51e−01 5.28e+00
1.00e−05 5.72e+02 4.64e+02 4.62e−01 5.21e+00
1.00e−03 6.31e+02 5.47e+02 5.96e−01 5.56e+00
1.00e−02 5.71e+02 4.81e+02 6.22e−01 5.17e+00
1.00e−01 4.95e+02 4.89e+02 4.11e−01 5.85e+00
5.00e−01 4.90e+02 4.59e+02 1.94e+00 6.42e+00
9.00e−01 5.12e+02 4.98e+02 2.06e+00 6.53e+00
9.90e−01 5.24e+02 5.09e+02 1.91e+00 6.84e+00

exact mode 4.92e+02 5.03e+02 3.92e+01 6.88e+00

The small number of iterations per proximal call arises from the fact that χp,r is an indicator; the
projection of a point that already belongs to the set requires zero iterations. The value of κs has

little effect on the number of iR2N/iR2 iterations. As in Sections 5.1 and 5.2, inexact mode yields a

reduction in computational cost, though more modest because the smooth objective and its gradient
are costlier in (37) than in (34) or (35). Thus, the reduction in proximal evaluations must outweigh

the increase in outer iterations. Table 4 gives the approximate solution identified by the exact and

inexact variants, and the final value of the smooth objective. Although both exact and inexact mode

recover a solution that has one more nonzero than x̄, the final smooth objective values are close to that

at x̄. Figure 3 plots the simulation of (36) with parameters found by iR2N with κs = 1.0e−07 when

solving (37). The solutions with exact and inexact mode are indistinguishable.

Table 4: Approximate solutions of (37) found by the exact and inexact variants with κs = 1.0e−07. The last column shows
the smooth objective value at the solution.

x 1
2
∥F (x)∥2

True 0.00e+00 2.00e−01 1.00e+00 0.00e+00 0.00e+00 8.82e−01
Inexact 0.00e+00 2.00e−01 9.98e−01 −1.00e−02 0.00e+00 8.96e−01
Exact 0.00e+00 2.00e−01 9.98e−01 −1.00e−02 0.00e+00 8.96e−01
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Figure 3: Simulation of (36) with solutions of (37) found by iR2N.

5.4 Inexact objective and gradient evaluations

We now consider inexact evaluations of the smooth objective and its gradient. In (37), each evaluation

of F involves solving an ODE system numerically, which inherently depends on a stopping tolerance

that introduces an approximation error. We use the Verner [42] 9/8 optimal Runge-Kutta method as
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implemented in [33]. In our implementation of F , the accuracy of the ODE solve can be adjusted via a

parameter prec > 0 that sets the absolute and relative stopping tolerances. The gradient is computed

via automatic differentiation, and hence, its accuracy also depends on prec. Decreasing this tolerance

improves the accuracy of the objective and gradient but increases the computational cost. The results

of Section 5.3 used prec = 10−14 as the reference “exact” objective and gradient evaluations.

Because Assumption 7 may not be easily verifiable in practice, we propose a heuristic inspired

from trust-region methods for derivative-free optimization [23, chapter 10], that consists in adapting

the accuracy based on the progress of the algorithm. More precisely, we increase the accuracy on

unsuccessful iterations, i.e., ρk < η1 in Algorithm 1. At iteration k, we set prec to

prec(k) ..= max(10−3 exp(log(10−14/10−3)nF /N), 10−14), (38)

where N is a preset maximum number of unsuccessful iterations after which prec = 10−14 is always

used, and nF counts the number of unsuccessful iterations. Small values of N lead to a rapid increase

in accuracy, whereas larger ones maintain low-accuracy evaluations over more iterations. Though (38)

may not guarantee Assumption 7 at every iteration, the objective and gradient accuracy improves as

the algorithm progresses, as required by the assumption.

We focus on (37) with the setting of Section 5.3 and we use (38) for inexact objective and gradient.

We vary the value of N with fixed κs = 10−7 in Table 5.

Table 5: Iterations and time on (37) with inexact objective and gradient evaluations.

N fail rate iter iR2N iter iR2 prox time (s)

exact F 0% 5.14e+02 4.90e+02 3.51e−01 5.28e+00
20 0% 5.66e+02 5.10e+02 4.55e−01 5.16e+00
50 20% 6.36e+02 5.07e+02 3.77e−01 4.31e+00

100 30% 6.31e+02 5.08e+02 3.46e−01 3.27e+00
200 80% 6.67e+02 5.47e+02 3.69e−01 2.46e+00

The first line of Table 5 reports the number of iterations and the solution time obtained with “exact”

objective and gradient. Lines 2–5 use (38) for several values of N . As N increases, iR2N spends a larger

fraction of its iterations in a low -precision regime, making it increasingly likely that Assumption 7 is

violated. When iR2N operates with insufficient accuracy for too long, the algorithm may eventually
stall, cease to make progress, and reach the maximum number of allowed iterations. The second column

of Table 5 reports the proportion of such failed runs over ten trials. Importantly, the iteration and

timing statistics shown in Table 5 correspond only to the successful runs. The failure rate increases

with N , and for N = 200 few runs succeed. Moderate values of N yield significant benefits in terms of

solution time.

In Table 6, we report the performance of Algorithm 1 using inexact objective, gradient and proximal

operator evaluations following rule (38) on (37) with N = 100. The number of iR2N, iR2 and proximal

iterations is globally unaffected by inexact evaluations, but the latter yield significant savings in terms

of solution time.

6 Discussion

Method iR2N subsumes R2N [25] by allowing inexact evaluations of the objective, its gradient, and the

proximal operator. Under usual global convergence conditions, we showed that inexact evaluations

and proximal operators do not deteriorate asymptotic complexity compared to methods that use exact

evaluations. Our assumptions on the inexactness of f and ∇f are standard.

Assumption 6 on the inexact evaluation of proximal operators differs in nature from Definitions (ii)

and (iii) of [38]. Their Definition (i), also used in [36], can be written ∥ŝk,cp − sk,cp∥ ≤ ϵk for at least
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Table 6: Statistics on (37) with increasing accuracy given by (38) with N = 100 and several values of κs. Each entry
reports the multiplicative gain or loss compared to the reference values in Table 3. A value smaller than 1 indicates a gain.

κs iR2N iR2 prox time (s)

1.00e−07 1.23e+00 1.04e+00 9.90e−01 6.20e−01
1.00e−05 1.08e+00 1.02e+00 1.38e+00 4.90e−01
1.00e−03 8.40e−01 7.70e−01 5.50e−01 2.70e−01
1.00e−02 1.00e+00 1.00e+00 1.10e+00 3.60e−01
1.00e−01 1.11e+00 9.60e−01 5.20e−01 3.00e−01
5.00e−01 9.90e−01 9.20e−01 1.19e+00 2.50e−01
9.00e−01 1.03e+00 8.80e−01 1.17e+00 3.00e−01
9.90e−01 9.40e−01 8.30e−01 1.36e+00 2.50e−01

average factor 1.03e+00 9.30e−01 1.03e+00 3.60e−01

one sk,cp, where {ϵk} is positive and summable. It is equivalent to ∥sk,cp∥− ϵk ≤ ∥ŝk,cp∥ ≤ ∥sk,cp∥+ ϵk,

which is strictly stronger than Assumption 6 in that we only require one of the inequalities. Moreover,

we use the specific value ϵk = (1 − κs)∥sk,cp∥, which need not be summable. Indeed, by the same
reasoning as in the proof of Lemma 6, for any successful iteration k, there exists a Cauchy step sk,cp
such that

(f + h)(xk) − (f + h)(xk + sk) ≥ 1
2η1(1 − θ1)ν−1

k ∥ŝk,cp∥
2

≥ 1
2η1(1 − θ1)ν−1

max∥ŝk,cp∥
2

≥ 1
2η1(1 − θ1)ν−1

maxκ
2
s∥sk,cp∥

2.

Therefore, if we sum those inequalities over the set S of all successful iterations and use Assumption 8,

we obtain

(f + h)(x0) − (f + h)low ≥ 1
2η1(1 − θ1)ν−1

maxκ
2
s

∑
k∈S

∥sk,cp∥
2.

A similar inequality holds for ŝk,cp. Thus, both {ŝk,cp} and {sk,cp} are square summable. However,

showing that they are summable appears to require the stronger Kurdyka- Lojasiewicz assumption [15,

Theorem 1], which is not used in our analysis.

iR2N naturally generalizes the special cases R2 [3] with B(x) = 0, R2DH [25] with B(x) diagonal,
and LM [6] when f is a squared residual norm and B(x) = J(x)J(x)T , where J(x) is the residual

Jacobian. It stands to reason that the same mechanisms can be used to extend the trust-region variants

(TR [3], TRDH [30], and LMTR [6]) to inexact evaluations and proximal operators with minimal

modifications.

Numerical experiments confirm that iR2N provides substantial flexibility in contexts where exact

evaluations are expensive or unavailable, and demonstrate that controlled inexactness can be leveraged

to reduce computational cost without compromising convergence behavior.

In the context of trust-region methods for (1), Aravkin et al. [3, 6] give procedures based on the

solution of a nonlinear equation to obtain an element of (6) with the additional constraint ∥s∥∞ ≤ ∆,

where ∆ > 0, or, equivalently, with the additional term χ(s | ∆B∞) in the objective, where B∞ is the

ℓ∞-norm unit ball and χ is the indicator of a set. They do so for two choices of ψ. Our results apply

directly to both regularizers, and indeed to any regularizer combined with a trust-region constraint.

Here, B2 ⊂ B∞, and hence, ∥sk,cp∥2 ≤ ∆. Thus, we may use the stopping condition ∥ŝk,cp∥ ≥ κs∆.

Future work will focus on allowing inexact evaluations of the quadratic model (7), particularly

regarding Bk, which itself may be computed inexactly—for instance, when represented in reduced

numerical precision or when linear systems involving Bk are solved approximately.
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