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Abstract : We introduce method iR2N, a modified proximal quasi-Newton method for minimizing the
sum of a C' function f and a lower semi-continuous prox-bounded h that permits inexact evaluations
of f, Vf and of the relevant proximal operators. Both f and h may be nonconvex. In applications
where the proximal operator of A is not known analytically but can be evaluated via an iterative
procedure that can be stopped early, or where the accuracy on f and Vf can be controlled, iR2N
can save significant computational effort and time. At each iteration, iR2N computes a step by
approximately minimizing the sum of a quadratic model of f, a model of h, and an adaptive quadratic
regularization term that drives global convergence. In our implementation, the step is computed using
a variant of the proximal-gradient method that also allows inexact evaluations of the smooth model,
its gradient, and proximal operators. We assume that it is possible to interrupt the iterative process
used to evaluate proximal operators when the norm of the current iterate is larger than a fraction
of that of the minimum-norm optimal step, a weaker condition than others in the literature. Under
standard assumptions on the accuracy of f and V f, we establish global convergence in the sense that a
first-order stationarity measure converges to zero and a worst-case evaluation complexity in 0(6_2) to
bring said measure below € > 0. Thus, inexact evaluations and proximal operators do not deteriorate
asymptotic complexity compared to methods that use exact evaluations. We illustrate the performance
of our implementation on problems with £,-norm, £, total-variation and the indicator of the nonconvex
pseudo p-norm ball as regularizers. On each example, we show how to construct an effective stopping
condition for the iterative method used to evaluate the proximal operator that ensures satisfaction of
our inexactness assumption. Our results show that iR2N offers great flexibility when exact evaluations
are costly or unavailable, and highlight how controlled inexactness can reduce computational effort
effectively and significantly.

Keywords : Nonsmooth optimization; nonconvex optimization; modified quasi-Newton method;
proximal quasi-Newton method; regularized optimization; composite optimization; proximal gradient
method; inexact proximal operator; inexact evaluations
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1 Introduction

We consider the problem class

minimize f(z) + h(z), (1)

z€R

where f: R"™ — R is continuously differentiable, h : R™ — R U {+oc} is proper, lower semi-continuous
(Isc), and both may be nonconvex. In practice, h, called the regularizer, is designed to promote desirable
properties in solutions, such as sparsity. We develop method iR2N, a variant of the modified proximal
quasi-Newton algorithm R2N of Diouane et al. [25] that allows for inexact evaluations of f and Vf,
as well as of the relevant proximal operators. Among other applications, evaluations of f and V f
are inexact when they result from the discretization of a differential or integral operator [8], from the
sampling of a sum of a large number of terms, as in machine learning applications [34], or from using
multiple floating-point systems [31]. Like R2N, iR2N computes a step at each iteration by approximately
minimizing the sum of a quadratic model of f, a model of h, and an adaptive quadratic regularization
term. The subproblem is solved with method iR2, which is to method R2 of Aravkin et al. [3] as iR2N
is to R2N, i.e., proximal operators are evaluated inexactly. Method R2 may be viewed as a variant of
the standard proximal-gradient method with adaptive step length, and is a special case of R2N. We
consider settings where proximal operators do not have a closed-form expression, and one must thus rely
on inexact evaluations. Specifically, we focus on scenarios where proximal operators can be evaluated
by running a convergent algorithm that can be terminated early with appropriate guarantees detailed
below. Special cases that fit our assumptions include choices of convex and nonconvex h, including the
{,-norm total variation (TV), £,-norm regularizer and the indicator of the nonconvex £,-pseudo norm
ball with 0 < p < 1. Method iR2N reduces to R2N when f, V f and proximal operators are evaluated
exactly. We establish global convergence of iR2N under standard assumptions on the inexactness of f
and Vf, and provided the inexact proximal operator yields a step whose norm is at least a fraction
of the norm of an optimal step. We also establish that worst-case evaluation complexity of iR2N is
of the same order as that of R2N. Thus, inexact evaluations do not degrade worst-case complexity.
Our remaining assumptions are standard. To emphasize our assumptions on inexact evaluations, we
simplify those assumptions of [25] that would complicate the analysis. In particular, we assume that
V f is Lipschitz continuous, but its Lipschitz constant need not be known nor approximated. However,
it should be clear that iR2N remains convergent under the more general assumptions of [25] with its
worst-case complexity affected accordingly. It should also be clear that minor alterations of our approach
would establish that the proximal quasi-Newton trust-region algorithm of Aravkin et al. [4, 5] remains
convergent under inexact evaluations and its asymptotic worst-case complexity is unchanged. Such
minor alterations would also establish convergence and complexity of Levenberg-Marquardt variants in
the vein of [6] that are useful when f is a least-squares residual.

We report computational experience with the proximal operator of the £, norm, the total variation
in £, norm, and the indicator of the nonconvex £,-pseudo norm ball. Each of those proximal oper-
ators must be evaluated via an iterative procedure. For each, we devise a stopping condition that
ensures satisfaction of our assumption on inexact proximal operator evaluations. Our results show
that iR2N offers great flexibility in settings where exact evaluations are costly or unavailable, and
highlight how controlled inexactness can be exploited to reduce computational effort effectively and
significantly. We provide an efficient Julia implementation of iR2N as part of the open-source package
RegularizedOptimization. j1 [7].

Related research

Most numerical methods for (1) require the evaluation of one or more proximal operators [32] at each
iteration. The proximal operator of h with step size v > 0 at ¢ € R" is

prox(g) = argmin 3 |[u — g||* + vh(u) C R™. (2)
vh u€R"
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For given h and ¢, (2) can be empty, a singleton or contain multiple elements, one of which must be
identified. Beck [11] and Chierchia et al. [19] summarize the closed-form of (2) for a large number of
choices of h relevant in applications. The standard proximal-gradient method [26] along with most
proximal methods in the literature assume that obtaining an element of (2) ezactly is possible.

For certain choices of h, it is necessary to apply an iterative method to appoximate an element
of (2), e.g., the total variation (TV) with £, regularization h(x) = ||Dz||,, where p > 1 and D is the
upper bidiagonal finite-difference operator with a diagonal of negative ones and a superdiagonal of ones.
Finding an element in (2) for the TV-£, can be achieved via the taut-string method [9] or the fast TV
denoising method [20]. As in other methods in the literature for various choices of convex h [10, 24, 27],
the latter monitor the duality gap between a convex problem and its dual. Those algorithms have
guaranteed convergence properties and can be terminated early, i.e., short of optimality. In the above,
the evaluation of (2) is inexact in the sense that a convergent process to identify a global minimizer is
applied and can be stopped short of optimality according to an optimality criterion.

A somewhat more complicated scenario is the algorithm described by Yang et al. [43] for the case
where h is the indicator of the “ball” in pseudo-norm £, with p € (0,1). The evaluation of the proximal
operator requires solving a nonconvex problem to global optimality in that case, and their algorithm is
not guaranteed to always succeed. We return to this problem in Section 4.

Other concepts of inexactness of the proximal operator appear in the literature. For convex h,
Rockafellar [36] requires that an approximate solution of (2) be a certain distance from the optimal set.
Still for convex h, Barré et al. [10] unveil multiple ways to define inexactness by finding a primal-dual
point in a certain relaxed subdifferential. Salzo and Villa [38] define three approximations: they compute
z such that either (i) ||z — prox,,(¢)|| < €, (i) v~ (¢ — z) lies in a relaxation of the subdifferential
of h at z, or (i) z € prox,,(q + €) with |e]| < € for some ¢ > 0. Chen et al. [18] extend proximal
inexactness by introducing the concept of (v, 0, £)-proximal-gradient stationary point (PGSP) for convex
h based on the Goldstein subdifferential. The PGSP generalizes the three concepts of [38] by jointly
relaxing spatial and functional exactness and directly quantifying the first-order residual, thus also
encompassing Rockafellar’s [36] and relaxed subgradient formulations within a unified framework. For
nonconvex h, Gu et al. [27] say that an element is an inexact solution of (2) if its objective value is
within € of its optimal value.

To cope with inexact evaluations of the proximal operator, classical schemes must be revised to pre-
serve convergence guarantees. The seminal inexact proximal-point algorithm (iPPA) of Rockafellar [36]
allows summably controlled errors in the resolvant computation of a maximal monotone operator and
still ensures global convergence with linear/superlinear behavior under suitable parameter growth.
Building on the accelerated estimate-sequence framework, Salzo and Villa [38] establish that the
accelerated iPPA retains O(1/k) decay under inexactness of type (i) above, and optimal O(1/k?) decay
under inexactness of type (ii). Schmidt et al. [39] establish an O(1/k) rate for proximal-gradient
and an O(1/k?) rate for an accelerated variant under inexactness similar to (iii) above. Extensions
include inertial, variable-metric forward-backward schemes with relative inner accuracy and uniform
symmetric positive definite metrics [16]; nonconvex inexact (accelerate) proximal gradient with guaran-
tees matching the exact counterparts under calibrated error schedules [27]; adaptive, implementable
stopping rules that preserve 0(672) iteration complexity and enable support identification [24]; and
accelerated proximal gradient under relative error criteria that maintain an O(1/ k2) rate [13]. For
nonconvex problems, the sequence generated by an inexact proximal-gradient (or splitting) method
can still be shown to converge to a first-order critical point under an assumption of type (iii) above
on the approximation errors [41]. Finally, for weakly convex functions, recent results establish global
convergence for inexact proximal algorithms under inexactness of type (i) above, allowing controlled
inexactness in the proximal steps while maintaining convergence [28].
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Notation

The Euclidean norm is || - ||. When required, other norms are denoted with different symbols. We use f,
h, m, ¢, v, £ and 1 for functions. Other lowercase Latin letters denote vectors in R". Exceptions are p
and ¢, which are standard to denote a pair of dual £, and £, norms, and r, which denotes a radius.
Uppercase A and B are matrices, L is a Lipschitz constant, and O is used for the Landau notation.
Lowercase Greek letters denote scalars. Calligraphic letters denote sets.

2 Background

2.1 Variational analysis concepts

We say that h : R" — R U {400} is proper if h(z) < +oo for at least one x € R" and lower semi-
continuous (Isc) at Z if liminf, ,; h(z) = h(Z). It is Isc if it is lsc at all Z € R™. We say that h
is prox-bounded at z if there is A > 0 such that w — h(w) + %)flﬂw — z||? is bounded below [37,
Definition 1.23]. The threshold of prox-boundedness of h at x is the supremum of all such A at z, and
is denoted A,. We say that h is uniformly proz-bounded if there is A € R, U {+oo0} such that A, > A
for all z € R".

For ¢ : R" — R U {+o00} and Z € dom(¢), the Fréchet subdifferential of ¢ at Z is

i g £) =00 =0 (@ =) 0} |

T3 [l — |

0o(z) = {v eR"

The limiting subdifferential d¢(Z) of ¢ at 7 is the set of elements v € R" such that there exists a
sequence {7} — T with {¢(z})} — #(Z), and there exists v, € dp(z},) for all k such that {v;} — v. It
always holds that d¢(z) C 0¢(Z).

If ¢ is proper, we say that Z is stationary for ¢, or for the problem of minimizing ¢, if 0 € 5(;5(:?)

If ¢ is proper and has a local minimum at Z, then T is stationary for ¢. In the special case where

¢ = f + h with f continuously differentiable and h proper, then d¢(z) = V f(x) + Oh(x) [37, Theorem

10.1]. We say that f: R"™ — R has Lipschitz-continuous gradient with Lipschitz constant L > 0 if for
all x and s € R",

[f(@+s) = f(x) =V @) s| < $L]s|”. (3)

2.2 Models

In this work, we focus on three sources of inexactness: the objective, its gradient and the proximal
operator evaluations. We denote ]?and v f the inexact counterparts of f and V f. At each iteration,
R2N computes a step s, defined below that serves to define a stationarity measure and that results
from a proximal operator evaluation. Accordingly, in iR2N, we denote its inexact counterpart s.,. We
follow [3, 6, 25] and structure the iterations of an algorithm around two sets of models, but, since the
only information we have access to is inexact, those are based on f and Vf.

For v > 0 and z € R", the first-order models

Gep(si2) = f(z) + Vf(2)"s (4)
Y(s;x) ~ h(z+s) (5)
Mep (832,07 1) = op(8:2) + 2071 ||s]1? + ¥ (s52) (6)

serve to generalize the concept of Cauchy point, hence the subscript “cp”, where we use the symbol “~”
to mean that the left-hand side is an approximation of the right-hand side. We will be more specific in
Assumption 4 below. The dual role of models (4)—(6) is to define a threshold for sufficient decrease at
each iteration, and to define a measure of approximate stationarity.
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For o >0, z € R" and B(z) = B(z)" € R"*", the second-order models

~

o(s;z) = f(z) + Vf(x)"s + 55" B(x)s (7)
m(s;z,0) = (s;x) + Sols|” + ¢(s;2), 8)

are used to compute a step. Because ¢, (;x) is linear and ¢(-; x) is quadratic for fixed z, both have
globally Lipschitz-continuous gradient.

We follow [3, 6, 25] and require that all models that we consider satisfy the following assumption.

Assumption 1. For all z € R", +(-;z) is proper, lIsc and uniformly prox-bounded. In addition,
¥(0;2) = h(z) and 9¢(0;z) C Oh(x).

2.3 The proximal-gradient method

The direct generalization of the gradient method to nonsmooth regularized optimization is the proximal-
gradient method [26]. For (1), the proximal-gradient iteration can be written

Tp41 = T T Skcp (9)

Sk.ep € argmin Juy ' |s + vV f () l° + ¥ (s 2
= argmin V f(z,)"'s + v '|s| + (55 24.) (10)

= argminm,(s; zy, z/k_l),
S
where v}, > 0 is an appropriate step length, though it is typically used with ¢ (s; ;) := h(x, + s). We
call s o, a Cauchy step. It turns out that s; ., exists provided v, is sufficiently small.
Proposition 1 (37, Theorem 1.25). Let ., (-;x) be as in (4), and ¢(-;x) be proper, lsc, proz-bounded
with threshold A, > 0 and such that ¥(0;x) = h(x). For any 0 < v < A, the set argmin, m,
is nonempty and compact.

cp(s;xa Vﬁl)

We denote s, an element of argmin, m(s; z, 1/_1) when one exists. When s, is well defined, the
quantity

Eep(Seps @07 1) = (ep + ) (0:2) = (Pep + 1) (Seps @)
= (J+1)(@) = (pep + ¥) (scpi @)

is central to the algorithm and the analysis, as it is in [3, 6, 25], where it plays the dual role of
defining Cauchy decrease and serving as stationarity measure. Indeed, under standard assumptions, x is
stationary for (1) if £, (scp; @, v~ ') =0 [25, Lemma 3.5]. We diverge slightly from those references and,

(11)

for reasons that become clear later, note that v~ |5cpll can equally be used as stationarity measure.
Proposition 2. Let z € R" and ¢(-;x) be proper, lsc, proz-bounded with threshold A\, > 0 and such that
Op(0;2) C Oh(x). Let0 < v < A, and s, € argming me,(s; z, v h. If s, =0, then 0 € Vf(z)+0h(z).
If, in addition, ¥V f(z) = Vf(x), then x is stationary for (1).

Proof. If s., = 0, then &, (s¢p; @ v~ ') = 0 by (11). The rest of the proof is identical to that of [25,
Lemma 3.5]. O

In the special case h = 0, i.e., smooth optimization, s., = —vV f(z). Thus, we normalize and use

HstH as stationarity measure.

The identification of an s.,, when one exists, coincides with the identification of an element in the

cpy
image of a proximal operator (2), i.e., 8¢, € ProX, ...y (—vVf()). It is the computation of an element

in such a set that represents the main computational challenge in problems for which the set is not
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known analytically, so that one must resort to an iterative numerical method. In that case, the s,
computed is inexact, and we refer to this situation as an inexact evaluation of the proximal operator.

The following result is hidden inside the proof of [15, Lemma 2].
Proposition 3. Let f have Lipschitz-continuous gradient with Lipschitz constant L > 0 and let h be
proper, lsc and proz-bounded at x € R" with threshold A\, > 0. Let 0 < v < min(1/L, \;), and let
s € R™ be such that

F(@) +Vf@)" s+ 5v [sl” + hle + ) < (f + h)(@). (12)

Then,
(f+h)(@) = (f+h)(x+s) > 57" = L)|s| (13)

Proof. We inject f(z)+Vf(x)" s> flz+s)— iL|s |?, which follows from (3), into (12) and obtain (13).
O

Proposition 3 applied to ¢, (+;2), ¥(-;2) and s, € Prox,, (. (— I/Vf( ), yields

Eep(Sepi v 1) = %V*IIISCPII{ (14)
because the Lipschitz constant of V., (+;x) is zero.

By contrast, we denote an approximate Cauchy step resulting from an inezact minimization of (6)
as 5.,. We will be more specific about the meaning of inexactness in that context in Assumption 6.
Accordingly, we define

EopBepi @, ") = (Pep +1)(0:2) = (Pep + 1) (Beps ). (15)

Proposition 3 states that (13) also holds for any s that produces simple decrease in (6); s need not be
an exact minimizer. Thus, if we apply a descent procedure to minimize (6) starting from s = 0, any
iterate, denoted generically as 5, generated by that procedure will satisfy (13), i.e

(Pep +)(0;2) = (Pep + ) (Bep; ) > 507 [[Bep 1™ (16)

Thus, an exact minimizer in (10) would produce a Cauchy step sy, .,, that satisfies (14). For brevity,
we write & ., = fcp(skﬁcp;xk,v,;l) and & ., instead of fcp(§k’cp;xk,1/k*1). The above shows that
Ekoep = %u,:1||skjcp||2 and & o, > %uk_l||§k7cp|\2 provided 5y, ., results in simple decrease in (6) from
s=0.

Proposition 2 indicates that one role of the first-order models (4)—(6), and hence of 5 ., and {Ak,cp
is to determine approximate stationarity. The role of the second-order models (7)—(8) is to allow us to
compute a step that improves upon the (inexact) Cauchy step. Minimizing the second-order model is a
well-defined problem for all sufficiently large oy,.

Proposition 4 (25, Proposition 3.3). Let ¢(-;x) be defined as in (7), and let ¥(-;x) be proper, lsc and
proz-bounded with threshold A, > 0 and such that (0; 2) = h(z). For any o > Ay — Anin(B(x)), the
set argming m(s; x, o) is nonempty and compact, where A\, represents the smallest eigenvalue.

3 Algorithm and convergence analysis

Our algorithm is a modification of method R2N of Diouane et al. [25]. At a general iteration k,
an approximate Cauchy step 5, is computed together with the corresponding value of & ., by
minimizing (6) inexactly. If x;, is not approximately stationary, a step s;, is computed by approximately
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minimizing (8). Because only f, and not f, is available, we compute the ratio of achieved versus
predicted decrease R R
b= f(ay) + hzy) — (f(zg + sg) + by + si))
P 0(0) + (05 21) — (p(sws o) + ¥ (sis o))
to accept or reject s,. Acceptance of s, occurs when p, > 7; > 0, which indicates that sufficient
decrease occurs in f—&— h. The parameters of the algorithm, specifically o,,;,, together with assumptions
on the accuracy of ]?7 are chosen so that acceptance of s, also implies that sufficient decrease occurs in
f+ h. We then update o, accordingly, as in R2N. All that is required of s;, is that it satisfy a sufficient
decrease condition—see Assumption 5 below. That can be achieved, for instance, by computing 5, .,
from a single (inexact) proximal-gradient iteration on (8) with a well-chosen step length v, starting
from s = 0, and computing s, by continuing the (inexact) proximal-gradient iterations from 5, ..
Should |[s|| be much larger than ||5} .||, we reset s; to 5 ., as in R2N. The procedure is formally
stated as Algorithm 1. We refer the reader to [25] for more background.

(17)

Algorithm 1 iR2N
1: Given sy > 0, ky > 0, choose constants 0 < v3 <1 <7y <7, 0 <7y <7p < 1.
2: Choose 0 < 07 <1 < 6.
3: Choose oppip > 4/@f619§/(ﬁ1(1 —01)) and og > opin-
4: for k=0,1,... do
5: Choose By, := B(z),) € R™*" such that B, = BkT.
6:
7
8

Set vy = 01 /(|| Bgll + ok)-

repeat
: Compute 5}, ., an approximate solution of ming m (s; zy, 1/,;1) and Ek,cp.
9: Compute a step s, such that m(sy;xy, o) < M(Sk cp; Tk, Tk)-
10: if ||skll > 02|85k, cpll then
11: Reset s, = 5, cp-
12: end if

13: until f and ﬁf satisfy Assumption 7.
14: Compute the ratio py, as in (17).
15: if p;, > 7, then

16: Set xp41 = xp, + Sk

17: else

18: Set zp41 = .

19: end if

20: Update the regularization parameter according to
(V30 ks ok) if P, > 7o, very successful iteration

Ok+1 € 4 [0k, 110%] it < pr < 7o, successful iteration

V10K, Y20l P <M unsuccessful iteration

21: Reset 0411 = max(0g41; Omin)-

22: end for

3.1 Assumptions

Intentionally, our assumptions are not the most general under which convergence of Algorithm 1 can
be shown to occur. We have done so in order to highlight the influence of our assumptions on the
inexactness of the objective, gradient and proximal operators evaluations on the analysis. We refer the
interested reader to [25] for the current most general assumptions. Nonetheless, we expect that our
convergence guarantees remain valid under the weaker assumptions, at the cost of a more intricate
analysis.

Our first assumption concerns Lipschitz-continuity of the gradient. Technically, this assump-
tion is only necessary for the complexity analysis; convergence can be guaranteed under continuous
differentiability only.

Assumption 2. V f is Lipschitz-continuous with constant L > O—see (3).

We assume that {B}} is bounded; a common assumption in the literature. Under appropriate
growth conditions, convergence is preserved even if {B;} is allowed to grow unbounded [25].
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Assumption 3. There exists kg > 0 such that | B|| < kg for all k.

Assumption 3 is trivially satisfied when Bj, = 0, as in [3, Algorithm 6.1]. It is also satisfied
in [12] where the objective is strongly convex and the model Hessian is defined by a positive definite
limited-memory quasi-Newton update. Under standard assumptions, the LBFGS and LSR1 updates
satisfy Assumption 3 [5, 17].

Our next assumption bounds the discrepancy between h and its model .
Assumption 4. There exists r;, > 0 such that [¢(z, s) — h(z + 5)| < ky||s||* for all z and s € R™.

The bound ||s||* in Assumption 4 can be relaxed to o(||s||) [25]. Assumption 4 is satisfied when
Y(s;x) = h(x + s), and when h(z) = g(c(x)) where ¢ is twice continuously differentiable with bounded
second derivatives and g is globally Lipschitz continuous if we select ¢ (s; ) = g(c(x) + Ve(z)" s).

The next assumption drives the convergence analysis and states that the step s, computed at
iteration k should result in a decrease at least comparable to that induced by the approximate Cauchy
step in the first-order model.

Assumption 5. There is 6, € (0,1) such that ¢(0;2) + ¥(0;2) — (p(sp;z) + P (sg; ) > (1 — 01)5}@
for all k.

As we now show, Assumption 5 holds for s, computed as stated in Algorithm 1.
Lemma 1. For 6, € (0,1) and s as in Algorithm 1, Assumption 5 holds.

Proof. The proof of [25, Proposition 3] applies with s = 55, and 5}, ., in place of s;,. Indeed, it remains
valid for any s € R" and s., € R" as long as m(s;x,0) < m(s.,;,0), which is guaranteed by step 7

of Algorithm 1. O

We ensure that Step 7 in Algorithm 1 holds because the inexact Cauchy step 5, ., coincides with
the first (inexact) step of the proximal gradient method applied to m(s; zy, o) from s = 0 with an
appropriate step length v;. Therefore, computing s;, by continuing the proximal iterations from sy, .,
leads to further decrease in m(s;xy, oy,).

The next assumption requires the norm of the computed step 5y ,, to be at least a fraction of that
of an exact step s cp-
Assumption 6. There exists x, € (0,1] such that, for all &,

[8k,cpll = #s minlsp cpll | s.cp € prox (=13, Vf(zy))}-

vip(5zy)

In the experiments of Section 4, ¥ (-; x;,) satisfies the assumptions of Proposition 1 and, therefore,
the minimum in Assumption 6 is well defined.

Assumption 6 holds when sy, ., is computed exactly, i.e., 55 o, = 5k cp- Indeed, let [|s; il be the
smallest norm across all possible choices of s .. Several cases can occur. Firstly, if |[sj jinll > 0,
then [|sj, o, || > 0 necessarily, and Assumption 6 holds with 4 := min(1, |[s cpll/l|Skminll)- If, on the
other hand, |[s min|| = 0, the same holds if we compute s, ., # 0 but, should we compute sy, .,, = 0,
Proposition 2 would imply that z, is stationary and the iterations would stop. This case will be clarified
in Lemma 5.

Details on how we satisfy Assumption 6 when 5y, ., # sy ., in certain situations relevant in practice
can be found in Section 4. We further comment on Assumption 6 in Section 6.

In the same fashion as [31], we bound evaluation errors in terms of the step. Similar assumptions
are made in [22] in a trust-region context.
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Assumption 7. There exist ky > 0 and ky > 0 such that, for all k € N,

|f(xx) — Flz)| < rgllsill?, (18)
|f(x + si) — Flag + s1) S’ﬂf||5k||2v (19)
IV f () = V()] < wollsell. (20)

Finally, we assume that the objective is bounded below, which is only required in the complexity
analysis.
Assumption 8. There exists (f + k)0 € R such that (f +h)(x) > (f + h)joy for all z € R™.

3.2 Convergence analysis

Our first result relates the decrease predicted by the model to the step size.
Lemma 2. Let Assumption 5 hold. Then,

(05 z1,) + V(05 2) — (p(sk; 2p) + (s ) > (1 — 01)03 vy, skl
Proof. Assumption 5, (16) and line 10 of Algorithm 1 yield

©(0;21) + (05 25) — (@(81;28) + V(s8575)) > (1 — al)gk7cp
3@ =01)v 5k cpll®
3= 00)05 v skl O

v

%

Our next result mirrors [6, Theorem 4.1] and shows that whenever o, exceeds a threshold oy,
iteration k is very successful and o, decreases.
Lemma 3. Let Assumptions 2 to 5 and 7 be satisfied and define

9,05(L 2 4 2
Osuce "= Max 0oL+ o + 26, +Aﬁf * HV), A >o.
(1—=0)(1 =)

If, at iteration k of Algorithm 1, s;, # 0 and o), > Ogyec, then p, > 0y, and iteration k is very successful.

Proof. As in the proof of [6, Theorem 4.1], o, increases as long as it is below )\_1 Thus, we assume
that o, > > A\"!. The definitions of p, P and o, Assumption 5, the triangle 1nequahty and Lemma 2 yield

1Br — 1]
g +s0) = J(a) =V f
( z) +

[Fay + ) = Flax) =V

»Tk)TSk - *Sk Bksk + (g + 55) — Y(sg; )]

f(

(0;2) — (p(sp; ) + Y(sp; 1))

Flay) sl + |25k Bk5k| + [h(wy + 5) — ¢(5k§$k)|.
%(1—91)92 Vi ||3kH

The triangle inequality along with Assumptions 2 and 7 bound the first term in the numerator as

~

|y, + s1) — Flag) — V() s
<\ f (g + 55) — flag) — VF(ap) s,] + 2Hf||3kH2 + fog|skl”
< (AL + 25 + ko) lsel>.
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Assumption 3 bounds the second term in the numerator by L[|Byll|[si]|> < Lrp|se*. Assumption 4

bounds the last term in the numerator by sy ||sg||®. After simplifying by ||s;[|* and using v, < 6, /0y,

by definition in Algorithm 1, those observations give

0105(L + ki + 2k, + 4k + 2y
(1—06,)oy,

Therefore, o), > 04y implies that py, > 7. O

ok — 1] <

In lemma 3, we showed that o}, > 0gyec = P = 7o, which means that there is a decrease in ]?+ h.
Next, we show that there exists 1; > 0 such that p, > 17, = p; > m;, and similarly for 7,. Therefore,
a decrease also occurs in f + h every time a step is accepted.

Lemma 4. Let Assumptions 5 and 7 hold. At iteration k, denote

. fay) + hzg) — (f(@p + si) + bz + 51))
P (05 2y) + (05 ) — (0(ss k) + Y (sk321))

the measure of agreement between the actual and predicted decrease in f + h. Let o;, be as in
Algorithm 1 and

~ At 16,03

45 16,03

~ FU1U2

= _—_-— O =
n h (1 _al)amin -

- — 12 5
& T (]' - el)amin ~

Then, py =1 = px, =M and Py, = 1y = py, = N

Proof. By definition of p, and py,

(f = F)(xy) + (f = Py + s5)
(e +1)(0;2) — (o + ) (sps )

Pr = pr +
Because Algorithm 1 enforces o), > o5, > 0, we obtain v, < 6, /0, < 0, /0ni,. Thus, Lemma 2
and Assumption 7 give

2 2
QHZfHSk” < 4/4,]09102 .
1 —0)05v; sl — (1= 01)0min

|Pr — prl <

NOW7 if ﬁk > ﬁla

4t ;6,63
~ FP102
>h - —d 2 —p.
Pk =T 1= 0,)0mm m
The lower bound on o, ensures 7; > 0. The same holds for 7, because 7, > 7. O

Lemmas 3 and 4 together imply that p, > 7, guarantees a decrease in f + h.

The next result is classic and considers the case where only a finite number of successful iterations
occur.
Lemma 5. Let Assumptions 2 to 5 and 7 be satisfied. Suppose Algorithm 1 generates finitely many
successful iterations. Then x;, = x, for all k sufficiently large and x, is first-order stationary.

Proof. By assumption, there is k; € IN such that z;, = x, for all k > ky. If x, is not stationary, as of
iteration kg, Algorithm 1 repeatedly computes nonzero steps s, all of which are rejected, i.e., pr, < n;.
Thus, for all k£ > kg, 0,1 > 0}. Hence, for sufficiently large k, o), > 04y, which triggers a successful
iteration, and is absurd. O
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Lemma 3 implies that there exists o, = min(og, ¥20sec) such that o, < o, for all k € IN.
Consequently, Assumption 3 yields that for all k£ € IN,

< Vi < Vmaxy  Vmin = 01/(”3 + Umax)v Vmax ‘= ol/amin' (21)

Vmin

Let € > 0. We seek a bound on k. := min{k € N | v, '[|3; p|l < €} = [S(€)| + [U(€)| + 1, where
S(e):={keN|p, >0 and k < k.}, U(e) ={keN|p, <7 and k < k. }.

Lemma 6. Let Assumptions 2 to 5, 7 and 8 be satisfied. Assume that Algorithm 1 generates infinitely
many successful iterations. Then,

(f +h)(xo) = (f + P)iow 22
%771(1 - al)ymin

[S(e)] <

where vy, is defined in (21).

Proof. Let k € S(¢). By definition, p, > 7, which, by Lemma 4, implies that p, > n;. Assump-
tion 5, (21), (16) and the fact that & < k. then imply

(f + 1) (xy) = (f + h)(@g + s) = m (@ + ) (0;525) — (@ + ) (sx;5 28))
> 771<1 - el)gk,cp

> S (1 = 00wy, [Sk,epl”
> i (1- 0, vy
> (1= 0))vmime.
The rest of the proof is classic and identical to, e.g., [6, Lemma 4.3]. O

It is remarkable that the bound in Lemma 6 is identical to that of the standard R2N, which is more
apparent when comparing with [6, Lemma 4.3] than with [25, Theorem 6.4]. The extra factor % in the
denominator of our bound on |S(e)| is due to the fact that we use vy, 1||§,mp|| as stationarity measure

—1/271/2

instead of v, /7§’ as in [6].

Finally, we recover a worst-case complexity bound of the same order as in the analysis with exact
proximal operator evaluations. The proof is identical to that of, e.g., [6, Theorem 4.5], and is omitted.
Theorem 1. Let Assumptions 2 to 5, 7 and 8 be satisfied. Then,

[S(e)] + [U(e)] = (1+ |1og,, (73)]) wae > +108,, (Tamax/T0) = O(e?),
where w, s defined in Lemma 6.

Theorem 1 shows that iR2N brings the measure u,;1||§k7cp|| below € in O(e¢™?) iterations. That
measure is not a stationarity measure because it includes the inexactness on 5, .,. By Assumption 6,
there exists an exact Cauchy step s;,_, such that

1 —1. =1y~ -1
Vi ||Sk€,CpH < Rg Vg ||Sk€,CpH < Ks € (22)

Thus, if I/k_ngke,CpH is small, Vk_l||sk“cp|| is comparably small. The next result shows that when the
latter occurs, we have identified a near stationary point, and marks the impact of x, on the analysis.
Theorem 2. Let Assumptions 6 and 7 be satisfied. Let € > 0 and assume Vk_lH/S\kﬁcp” < €. There
exists sy, op € proxw(_;wk)(—uk§f(xk)) that satisfies Assumption 6 such that ||sy ., < Ky Vpax€, and
uy, € Vf(xy) + 0Y(Sg,cp; ) such that

gl < (pbavimas + 55" ) €. (23)
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Proof. By definition, sy, ., is an exact minimizer of (6), thus

0e Vf(fﬂk) + Vk_lsk,cp + aw(sk,cp; xk)
= vf(xk) + 9k + Vlzlsk,cp + aw(sk,cp; Ik)ﬂ (24)
where g;, == Vf(z) — Vf(z;,) and ||g,|| < sy llssl < kg[8 cpll from Assumption 7 and line 10 of
Algorithm 1. By (21) and Z/k_1||§k’cp|| <€, [[8,cpll < Ve < Viax€. Thus, [|g |l < Aebatmaxe.

On the other hand, Assumption 6 gives

I " sepll < 5 v Bk epll < 5 e

Now, (24) implies that
Uy, = _(gk + Vk;_lsk,cp) S Vf(xk) + 8w(sk7cp; xk)'

Because |Jug] < |lgrll + ||1/,;15k’cp||7 (23) holds. Finally, the same reasoning as above shows that ||s ., ||
is bounded as announced. O

The following results directly from Theorem 1 and mirrors [29, Lemma 3].
Lemma 7. Under the assumptions of Theorem 1 aAnd Assumption 6, there exists an infinite index set
N CIN and {sy, p} where sy ¢, € ProX,y .0 ) (= V() for all k such that

1. {gk,cp}N — 0 and {Sk,cp}N — O,

2. {Sk:}N —0
3. there exists uy, € V f(xy) + 0U(sg op; 1) such that {uy}y — 0.

Proof. Claim 1 follows directly from Theorem 1, (21) and (22). Claim 2 follows from Line 10 of
Algorithm 1. Claim 3 results from Theorem 2. U

We close this section with a result stating that every limit point of the sequence {x}} 5 generated by
Algorithm 1 is stationary, where N is defined in Lemma 7, under an assumption on the subdifferential
of the models ¥(+; xy,).

Recall that for a sequence of sets {A;} with A, C R" for all k € IN, the set lim sup Ay, is the set of
limits of all possible convergent sequences {a;}y with N C IN infinite and a; € A, for all k € N.
Theorem 3. Under the assumptions of Theorem 1, Assumptions 1 and 6, let N C IN be as in Lemma 7.
Assume that {x,} y — T and that

lim sup 0 (s, ¢p; Tx) € 0(0; Z). (25)
kEN

Then T is stationary for (1).

Proof. By our assumptions, Lemma 7, continuity of V f and Assumption 1,

0 € Vf(z) + limsup 0¢(sy, op; 71) C Vf(Z) + 0Y(0;7) C Vf(Z) + Oh(T).
keEN
Thus, Z is stationary for (1). O

As Leconte and Orban [29] explain, (25) holds in several relevant cases, e.g.,
1. each ¥(-;x;) and ¥(-; T) are proper, Isc and convex with ¢ (-;x;) — ¢(-;Z) in the epigraphical
sense, and 0 € dom ¥(+; Z);

2. Y(s;x) == h(xz + s) and h(zy + sy cp) — h(T) as would occur, in particular but not exclusively,
when h is continuous.
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4 Evaluation of inexact proximal operators

In this section, we discuss the practical implementation of Algorithm 1 with focus on computing an
approximate solution of (10) that satisfies Assumption 6. Our approach is simple: assume that an
upper bound My, > 0 on ||s, .,|| can be determined based on properties of 9 (-; ). Assume also that
a descent procedure is applied to (10) starting from s = 0 that generates iterates 5;, j > 0. Then,
stopping the procedure as soon as ||5;|| > x4 Mj, ensures that Assumption 6 holds.

We consider three regularizers whose proximal operators (2) are not known analytically and must
be computed inexactly:

h(z) = (@) = |l (1<p <o), (26)
W) =TV, (@) = (3 o = wia )7 (1<p<oo), (27)

0 iffelp<r

. (0<p<l), (28)
oo otherwise

h(z) = xpr(x) = {
where TV, is the one-dimensional total-variation operator, and Y, , is the indicator of the /,-pseudo
norm “ball” of radius r/? for r > 0.

The next lemmas derive bounds on the norm of solutions to the proximal problems associated with
those regularizers.

Lemma 8. Let h be given by (26) and ¥(s;xy) == h(xy + s) with s € R". The unique solution sy, .,
of (10) is such that

(29)

o <{%w§ﬂmm+myp”% (1<p<2)
P IV F @)+ 1) (p=2).

Proof. Since 1(-;xy) is convex, (10) is strongly convex and, therefore, has a unique solution sy, .,. The
necessary optimality conditions read

V() + Vk-_lsk,cp +uy =0, Uy, € 0V (Sg,cp; T)-

Here, 0Y(sg cp; ) = {u € R" | |lull, < 1 and uT(Sk&p +23) = ||Sk.cp + 2|}, where g is such that
1/p+1/q = 1. By equivalence of norms,

g ] < 07279 flug]l, < 027V = ntPm2,

When 1 < p < 2, the latter bound is attained for ), == (n~ "%, n~Y% . n~Y9) with Juglly = 1.
When p > 2, the bound simplifies to |lugll < 1, which is attained for u, := (1,0,...,0). Thus,
Isk.epll = vl V f (@) + wgell < vie([IVf ()| + [l |]), which yields (29). O

The next result helps bound solutions of (10) when & is given by (27), but is more general, which is
why it is stated separately.

Lemma 9. Let A € R™*", h(x) := ||Az|, where || - ||o is a norm on R™, and v (s;x;,) == h(z; + s).
The unique solution sy, ., of (10) satisfies

Iswenll < v (197l + 1A Tugll) (30)
where uy, € O||A(xy, + sg.cp)lle-
Proof. Here again, sy, ., is unique by strong convexity of (10). For n(y) = ||ylle,

ony) ={u € R™ | ull, < 1and u"y = y|.},
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where || - ||, is the dual norm of || - ||,. By [35, Theorem 23,9], du(s; z;) = A" On(A(z), + s)). Thus,
the first-order optimality conditions of (10) imply

0€ 6f(ﬁ%) + Vlzlsk,cp + ATUk,

where uy, € ON(A(zy + Spcp)). We extract sy, o, = —v,(Vf(zy) + ATuy), and l[Sk.cpll < ve(IV £ (@)l +
AT g ]]), which is (30) since [|A[| = [|AT]]. O

Lemma 9 does not state a bound on ||uy|| as one would depend on || - ||, and the bound |ull, < 1.
The next corollary applies Lemma 9 to (27).
Corollary 1. Let h be as in (27) and 1) (s;xy,) = h(zy + s). The unique solution sy, ., of (10) satisfies

vi (19 (@)l + 2sin (G2 ) P 72) (1 <p < 2)

Ik .cpll < N e (31)
T e (19 @l + 2sin (2572 ) (0>2).
Proof. Apply Lemma 9 with || - ||q = - ||, and
-1 1
A f— ... ." c R(nfl)Xn.
-1 1

Note that AT A is the centered finite-difference operator for second derivatives, which is symmetric,
tridiagonal and Toeplitz. Its eigenvalues are thus known in closed form, hence the value of ||A]| [40,
p. 54]. Finally, ||u|| can be bounded as in the proof of Lemma 8. O

The final lemma derives a bound on the solution of the proximal problem associated to the indicator
function in (28).
Lemma 10. Let h be as in (28) and ¢(s;xy) := h(xy + s). Any solution sy, ., of (10) satisfies

1
I8k .epll < 777 + [laell. (32)

Proof. Because 0 < p < 1, t — t¥ is concave for ¢ > 0, and thus subadditive, i.e., (a + b))’ < a? +* for
any a, b > 0. Let v € R". By recurrence on n, ||ullb =37 [u;|” > (37, [u;])?, which states that
lull, > [lul|;. This implies that the unit “ball” in £,-pseudo-norm is a subset of the unit ¢;-norm ball.
In turn, the latter is a subset of the unit /5-norm ball. A scaling argument shows that the same holds
with balls of radius r > 0. Therefore, because ||z + sj cpll, < /P we have ||z, + Sk.epll < /P The

triangle inequality yields [[sy cp |l < |25 + sg.cpll + |2k < PP |- O

In (29), (31) and (32), the bound on ||s .|| depends only on known quantities at iteration k. Thus,
we can enforce Assumption 6 by stopping the inexact proximal procedure as soon as H§§f lp
fixed fraction of said bound.

|| exceeds a

5 Numerical experiments

In this section, we present numerical experiments indicating that exploiting inexact objective val-
ues, gradients and proximal operators can reduce computational cost substantially. We implement
Algorithm 1 in the Julia language [14] as a modification of the R2N solver [25] in [7].

The implementation of the proximal operator of (26) and (27), which are both convex, is available
from the Julia interface [2] to the proxTV library [9]. Both implement iterative methods. The method


https://github.com/albarji/proxTV
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for (26) computes projected quasi-Newton search directions, and performs a backtracking line search to
determine the step size. That for (27) alternates between gradient projection into the £,-norm ball and
Frank-Wolfe steps. After each update, the primal solution is reconstructed from the dual variable, and
a new gradient is computed.

Our implementation of the proximal operator of (28) is based on the Iteratively Reweighted £,-Ball
Projection (IRBP) scheme of [43]. At each iteration, IRBP approximates the £,-“ball” norm via
a weighted linearization of the nonconvex set around the current iterate. This results in a convex
subproblem describing a projection into a weighted ¢;-norm ball, which can be solved efficiently [21]. A
smoothing vector is maintained and adaptively updated to avoid numerical instability and improve
convergence. The nonconvex nature of x,, . implies that there may be non-global minima or saddle
points [43]. Therefore, the step output by x, , may not even induce Ekvcp > 0. To the best of our
knowledge, there is currently no procedure that is guaranteed to determine a global minimum. In order
to mitigate the issue, we implement a multi-start strategy to increase the odds that 5, ., be a global
solution. Our strategy is not always successful, but nevertheless often results in acceptable steps. Part
of future work is to find a procedure that identifies a global minimizer. Our implementation is available
from [1].

In each case, inexactness in the proximal operator evaluations is controlled by 0 < x, < 1 in
Assumption 6. For r4 = 0, the expectation on the quality of 5y ., is at its lowest, i.e., Assumption 6 is
easiest to satisfy, but (33) is harder to reach. Thus the solver may spend less time inside each (cheap)
proximal operator evaluation at the cost of potentially performing more (costly) outer iterations. On
the other hand, when x, ~ 1, the 5, ., should be close to an exact solution. In this case, the solver
may spend more time than necessary inside each proximal operator evaluation, which may adversely
affect the total solution time. In our experiments, we vary the value of k, to assess the impact of the
inexactness on the performance of iR2N.

Step 9 in Algorithm 1 is performed by a special case of Algorithm 1 with B = 0 in which the
proximal step computation is the only subproblem. In effect, that is a variant of the R2 algorithm [3,
Algorithm 6.1] extended to the inexact proximal framework. We refer to this variant as iR2. Although
iR2 is also allowed to perform inexact evaluations of its smooth objective and gradient, we evaluate the
quadratic model ¢(s; ;) exactly in our experiments.

Each procedure to solve (26)—(28) comes with its original stopping condition. We say that we run
iR2N in ezact mode when we use this original stopping condition, independently of Assumption 6,
and we consider that the resulting proximal operator is then evaluated exactly. By contrast, we run
iR2N in ineract mode when the iterations of the proximal operator evaluation are terminated as soon
as either (i) ||8g cpll > x5 My, where My, is the upper bound on ||s .|| given in (29), (31), or (32), or
(ii) the original stopping condition of the proximal operator evaluation is met. In proximal operator
evaluations, iR2 uses the same value of x, as iR2N.

Inequalities (22) suggest using V;l“§k7cp|| < K4€ as stopping criterion in Algorithm 1, since it
guarantees that vy ' l|5k.cpll < €. However, we will see that small values of & yield the best performance
but make that stopping condition overly stringent. In addition, the bound M), given in Lemmas 8
to 10 need not be tight, and could indeed be quite loose. For those reasons, all our experiments use the
simple stopping condition

v il < e (33)

In the next sections, we report the performance of iR2N on problems that use the inexact proximal
operators described above. In Sections 5.1 to 5.3, both the objective and gradient are assumed to be
evaluated exactly, i.e., only subject to the limits of floating-point operations. In Section 5.4, we consider
inexact evaluations of the objective and gradient. All our tests are performed in double precision on a
2020 MacBook Air with an M1 chip (8-core CPU, 8 GB unified memory).



Les Cahiers du GERAD G-2025-73 15

Because f in our test problems is based on randomly-generated data, we average the statistics over
10 runs. It is useful to keep in mind that each iR2N and iR2 iteration evaluates a single proximal
operator—see Line (8) of Algorithm 1. Tables in the next sections use the following headers: “k,”
is the value of the inexactness parameter in Assumption 6, “iR2N” is the average number of outer
iterations, “iR2” is the average number of inner iterations per outer iteration, “prox” is the average
number of iterations per proximal operator evaluation, and “time (s)” is the average CPU solution

time in seconds.

5.1 Basis pursuit denoising problem (BPDN)

The BPDN problem is stated as
rrellilg%HAx—bH%ﬂLullxllp, (34)

where 1= 107", 4 € R*°**"? is random with orthonormal rows, b = AZ + £, Z has 10 nonzeros, and
€ is a noise vector from a normal (0, 1) distribution. We use p = 1.1 to attempt to recover a sparse
solution. In (33), we set e = 107°.

Table 1 shows that the average number of iR2N/iR2 iterations decreases globally as k, increases.
The proximal operator iterations increase as k increases, as expected. For small values of kg, inexact
mode yields a substantial reduction in the number of proximal iterations and solution time compared
with exact mode at the expense of a modest increase in outer iterations. For large values of x, the
behavior of iR2N is close to that of exact mode.

Table 1: Statistics on (34) for several values of .

K iR2N iR2 prox time (s)

1.00e—07 1.61e4+01 1.21e402 1.02e+02 5.03e+400
1.00e—05 1.57e+01 1.63e4+02 1.90e4+02 9.80e+00
1.00e—03 1.49e4+01 1.33e+01 4.02e+02 1.55e+01
1.00e—02 1.49e+01 1.78e401 6.02e+02 1.77e+01
1.00e—01 1.45e401 1.39e+01 5.81e+02 1.32e+401
5.00e—01  1.45e+01 1.37e+01 5.90e4+02 1.28e+01
9.00e—01  1.45e4+01 1.39e+01 5.80e+02 1.25e+01
9.90e—01 1.46e+01 1.37e+01 5.90e4+02 1.38e+01
exact mode  1.45e+01 1.35e4+01  5.68e+02  1.20e+01

Figure 1 shows that the solutions produced in exact and inexact mode are essentially identical, and
that both recover the sparse support of Z.

Inexact mode (r, = 1077) Exact mode
1 H 7 T T T 1 1 T T T
1 [} ] ] 1 1
H ' 1 | . T
H ' | \ . T
H ' | \ . '
H ' ] \ . '
05| - : : 0.5| - v
= | B oo Bl
0.5 ; . —0.5] : .
— iR2N | — iR2N :
- - - true solution i - - - true solution '
—1 I I | Hi | -1 I I W | |
100 200 300 400 500 100 200 300 400 500
index index

Figure 1: Components of the solution of (34) found by iR2N and of z.
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5.2 Matrix completion problem

The problem is stated as
. 2
min 3 [|[P(@ = Al +uTV,(2), (35)

where p = 10_1, p=11and A € R'*'? is a fixed matrix representing an image and the operator P
only retains a subset of pixels. In (33), e = 1077,

Table 2 gathers our results on (35). The benefits of choosing k4 small are similar to those in Table 1.
Figure 2 shows that the reconstruction error with the solutions of exact and inexact mode are close, as
is the discrepancy between the two solutions.

Table 2: Statistics on (35) for several values of .

K iR2N iR2 prox time (s)

1.00e—07 3.69e4+01 3.41e4+02 5.88e+02 9.46e+01
1.00e—05 3.72e4+01 3.03e+02 8.7le+02 1.42e+402
1.00e—03  3.69e+01 2.09e402 3.76e4+03  3.54e+02
1.00e—02 3.77e4+01 2.12e4+02 4.06e+03  3.73e+02
1.00e—01 3.41e+01 1.90e4+02 4.37e+03  3.25e+02
5.00e—01  3.56e+01 2.19e+02 4.31e4+03  3.54e+02
9.00e—01 3.77e+01 1.81e+02 4.49e+03 3.57e+02
9.90e—01  3.55e+01 2.0le+02 4.27e4+03  3.54e+402
exact mode 3.18e+01 1.67e+02 4.49e+03  3.36e+02

‘Xincxact - A‘ (/‘v's = 1077)

‘Xincxact - cxactl 1073

0.1

8-1072
6-1072
4-1072

2.1072

0

Figure 2: Left: Heatmap of the difference between the solution X found by iR2N in inexact and exact mode, and A. Right:
Difference between the two solutions. The values masked by P are set to zero and shown in black.

5.3 Fitzhugh-Nagumo inverse problem

The FitzHugh—Nagumo system is a simplified representation of a neuron’s action potential modeled by
the system of differential equations

VI(t) =23 (V1) = V(0 = W(0) +a1), W (H) = wa(asV (1) — 2 W(E) + ). (36)

We use initial conditions V' (0) = 2 and W (0) = 0, and generate data (x), w(x) by solving (36) with
z =1(0,0.2,1,0,0), which corresponds to the Van der Pol oscillator, to which we add random noise. We
then aim to recover by minimizing the misfit while encouraging a sparse solution:

min 3 || F(@)[5 + X0 (@), (37)
zeR
where p = 0.5, r = 2, F : R® — R F(z) = (v(&) — 9(z),w(®) — w(z)), and
v(z) = (vi(x),...,v,11(x)) and w(z) = (wy(z),...,w, 1(x)) are sampled values of V' and W at

n + 1 discretization points. We set e = 107" in (33). Table 3 reports our results.
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Table 3: Statistics on (37) for p = % and r = 2 with several values of «,.

K iR2N iR2 prox time (s)

1.00e—07 5.14e+02 4.90e4+02 3.51e—01 5.28e+00
1.00e—05 5.72e402 4.64e+02 4.62e—01 5.21e+400
1.00e—03 6.31le+02 5.47e4+02 5.96e—01 5.56e+00
1.00e—02 5.71e4+02 4.81e+02 6.22e—01 5.17e+400
1.00e—01  4.95e+02 4.89e¢+02 4.11e—01  5.85e+00
5.00e—01  4.90e+02 4.59e+02 1.94e4+00 6.42e+400
9.00e—01  5.12e+02 4.98e+02 2.06e4+00 6.53e+00
9.90e—01  5.24e4+02 5.09e+02 1.91e4+00 6.84e+400
exact mode 4.92e+02 5.03e+02 3.92e+01  6.88e+00

The small number of iterations per proximal call arises from the fact that x,, , is an indicator; the
projection of a point that already belongs to the set requires zero iterations. The value of x, has
little effect on the number of iR2N/iR2 iterations. As in Sections 5.1 and 5.2, inexact mode yields a
reduction in computational cost, though more modest because the smooth objective and its gradient
are costlier in (37) than in (34) or (35). Thus, the reduction in proximal evaluations must outweigh
the increase in outer iterations. Table 4 gives the approximate solution identified by the exact and
inexact variants, and the final value of the smooth objective. Although both exact and inexact mode
recover a solution that has one more nonzero than z, the final smooth objective values are close to that
at T. Figure 3 plots the simulation of (36) with parameters found by iR2N with x, = 1.0e—07 when
solving (37). The solutions with exact and inexact mode are indistinguishable.

Table 4: Approximate solutions of (37) found by the exact and inexact variants with x, = 1.0e—07. The last column shows
the smooth objective value at the solution.

2
x 3IF @)

True 0.00e+00 2.00e—01  1.00e+00 0.00e+00  0.00e+4-00 8.82e—01
Inexact  0.00e4+00 2.00e—01 9.98e—01 —1.00e—02  0.00e+4-00 8.96e—01
Exact 0.00e+00 2.00e—01 9.98e—01 —1.00e—02  0.00e4-00 8.96e—01

Exact mode

—_—V
w
o V data
W data

voltage
voltage
S

Figure 3: Simulation of (36) with solutions of (37) found by iR2N.

5.4 Inexact objective and gradient evaluations

We now consider inexact evaluations of the smooth objective and its gradient. In (37), each evaluation
of F involves solving an ODE system numerically, which inherently depends on a stopping tolerance
that introduces an approximation error. We use the Verner [42] 9/8 optimal Runge-Kutta method as
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implemented in [33]. In our implementation of F, the accuracy of the ODE solve can be adjusted via a
parameter prec > 0 that sets the absolute and relative stopping tolerances. The gradient is computed
via automatic differentiation, and hence, its accuracy also depends on prec. Decreasing this tolerance
improves the accuracy of the objective and gradient but increases the computational cost. The results
of Section 5.3 used prec = 10~ as the reference “exact” objective and gradient evaluations.

Because Assumption 7 may not be easily verifiable in practice, we propose a heuristic inspired
from trust-region methods for derivative-free optimization [23, chapter 10], that consists in adapting
the accuracy based on the progress of the algorithm. More precisely, we increase the accuracy on
unsuccessful iterations, i.e., p, < 7 in Algorithm 1. At iteration k, we set prec to

prec(k) = max(10_3 exp(log(lO_M/lO_?’) np/N), 10_14), (38)

where N is a preset maximum number of unsuccessful iterations after which prec = 107" s always
used, and np counts the number of unsuccessful iterations. Small values of N lead to a rapid increase
in accuracy, whereas larger ones maintain low-accuracy evaluations over more iterations. Though (38)
may not guarantee Assumption 7 at every iteration, the objective and gradient accuracy improves as
the algorithm progresses, as required by the assumption.

We focus on (37) with the setting of Section 5.3 and we use (38) for inexact objective and gradient.
We vary the value of N with fixed x, = 10~7 in Table 5.

Table 5: Iterations and time on (37) with inexact objective and gradient evaluations.

N  fail rate iter iR2N iter iR2 prox time (s)
exact F' 0%  5.14e4+02  4.90e+02 3.51e—01  5.28e+00
20 0%  5.66e4+02 5.10e+02 4.55e—01  5.16e+00

50 20%  6.36e+02 5.07e+02 3.77e—01  4.31e4+00

100 30%  6.31e+02 5.08¢+02  3.46e—01  3.27e+00

200 80%  6.67e+02 5.47e+02 3.69e—01  2.46e+00

The first line of Table 5 reports the number of iterations and the solution time obtained with “exact”
objective and gradient. Lines 2-5 use (38) for several values of N. As N increases, iR2N spends a larger
fraction of its iterations in a low-precision regime, making it increasingly likely that Assumption 7 is
violated. When iR2N operates with insufficient accuracy for too long, the algorithm may eventually
stall, cease to make progress, and reach the maximum number of allowed iterations. The second column
of Table 5 reports the proportion of such failed runs over ten trials. Importantly, the iteration and
timing statistics shown in Table 5 correspond only to the successful runs. The failure rate increases
with N, and for NV = 200 few runs succeed. Moderate values of IV yield significant benefits in terms of
solution time.

In Table 6, we report the performance of Algorithm 1 using inexact objective, gradient and proximal
operator evaluations following rule (38) on (37) with N = 100. The number of iR2N, iR2 and proximal
iterations is globally unaffected by inexact evaluations, but the latter yield significant savings in terms
of solution time.

6 Discussion

Method iR2N subsumes R2N [25] by allowing inexact evaluations of the objective, its gradient, and the
proximal operator. Under usual global convergence conditions, we showed that inexact evaluations
and proximal operators do not deteriorate asymptotic complexity compared to methods that use exact
evaluations. Our assumptions on the inexactness of f and V f are standard.

Assumption 6 on the inexact evaluation of proximal operators differs in nature from Definitions (ii)
and (iii) of [38]. Their Definition (i), also used in [36], can be written |5y ., — s cpll < € for at least
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Table 6: Statistics on (37) with increasing accuracy given by (38) with N = 100 and several values of x,. Each entry
reports the multiplicative gain or loss compared to the reference values in Table 3. A value smaller than 1 indicates a gain.

K iR2N iR2 prox time (s)

1.00e—07  1.23e+00 1.04e+00 9.90e—01  6.20e—01
1.00e—05 1.08e+00 1.02e4+00 1.38e400 4.90e—01
1.00e—03 8.40e—01 7.70e—01  5.50e—01  2.70e—01
1.00e—02  1.00e+00  1.00e+00 1.10e4+00  3.60e—01
1.00e—01 1.11e+00 9.60e—01  5.20e—01  3.00e—01
5.00e—01  9.90e—01  9.20e—01  1.19e+00  2.50e—01
9.00e—01 1.03e4+00 8.80e—01 1.17e+00  3.00e—01
9.90e—01  9.40e—01 8.30e—01 1.36e+00 2.50e—01

average factor 1.03e4+00 9.30e—01 1.03e+00 3.60e—01

one sy, .,,, where {¢;} is positive and summable. It is equivalent to ||sy .|l = €x < |5k cpll < |8k epll + €k
which is strictly stronger than Assumption 6 in that we only require one of the inequalities. Moreover,
we use the specific value ¢, = (1 — k,)||sj cpll, Which need not be summable. Indeed, by the same
reasoning as in the proof of Lemma 6, for any successful iteration k, there exists a Cauchy step sy, o,
such that

(f 4+ 1) () = (f + D) (@ + 51) > 3m(1— 01)vy ISk epl®
%,’71(1 - el)l/r;;xugk,cp”Q

-1 2 2
%771(1 - el)ymaxﬁsuskﬁp” .

AVARY)

Therefore, if we sum those inequalities over the set S of all successful iterations and use Assumption 8,
we obtain
(f + 1) (@) = (f + Diow = 3m(L = 0)vmaxtis D lIsp.cpll®.
keS
A similar inequality holds for 5y .,. Thus, both {5 ..} and {s; .} are square summable. However,
showing that they are summable appears to require the stronger Kurdyka-Lojasiewicz assumption [15,
Theorem 1], which is not used in our analysis.

iR2N naturally generalizes the special cases R2 [3] with B(z) = 0, R2DH [25] with B(x) diagonal,
and LM [6] when f is a squared residual norm and B(z) = J(z)J(z)", where J(z) is the residual
Jacobian. It stands to reason that the same mechanisms can be used to extend the trust-region variants
(TR [3], TRDH [30], and LMTR [6]) to inexact evaluations and proximal operators with minimal
modifications.

Numerical experiments confirm that iR2N provides substantial flexibility in contexts where exact
evaluations are expensive or unavailable, and demonstrate that controlled inexactness can be leveraged
to reduce computational cost without compromising convergence behavior.

In the context of trust-region methods for (1), Aravkin et al. [3, 6] give procedures based on the
solution of a nonlinear equation to obtain an element of (6) with the additional constraint ||s||,, < A,
where A > 0, or, equivalently, with the additional term x(s | AB,,) in the objective, where B is the
{.,-norm unit ball and y is the indicator of a set. They do so for two choices of . Our results apply
directly to both regularizers, and indeed to any regularizer combined with a trust-region constraint.
Here, By C B, and hence, ||s; ,|l2 < A. Thus, we may use the stopping condition |[5y, ., || > ksA.

Future work will focus on allowing inexact evaluations of the quadratic model (7), particularly
regarding B, which itself may be computed inexactly—for instance, when represented in reduced
numerical precision or when linear systems involving B;, are solved approximately.
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