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Abstract : Augmented Lagrangian (AL) methods are a well known class of algorithms for solving
constrained optimization problems. They have been extended to the solution of saddle-point systems of
linear equations. We study an AL (SPAL) algorithm for unsymmetric saddle-point systems and derive
convergence and semi-convergence properties, even when the system is singular. At each step, our SPAL
requires the exact solution of a linear system of the same size but with an SPD (2,2) block. To improve
efficiency, we introduce an inexact SPAL algorithm. We establish its convergence properties under
reasonable assumptions. Specifically, we use a gradient method, known as the Barzilai-Borwein (BB)
method, to solve the linear system at each iteration. We call the result the augmented Lagrangian BB
(SPALBB) algorithm and study its convergence. Numerical experiments on test problems from Navier-
Stokes equations and coupled Stokes-Darcy flow show that SPALBB is more robust and efficient than
BICGSTAB and GMRES. SPALBB often requires the least CPU time, especially on large systems

Keywords : Augmented Lagrangian algorithm, saddle-point system, Barzilai-Borwein, convergence
analysis

Résumé : Les méthodes de lagrangien augmenté (AL) forment une classe bien connue d’algorithmes
pour les problèmes d’optimisation sous contraintes. Elles ont été étendues à la résolution de systèmes
d’équations linéaires de point de selle. Nous étudions l’algorithme SPAL pour les systèmes de point
de selle non symétriques et ses propriétés de convergence et de semi-convergence, y compris lorsque le
système est singulier. À chaque étape, SPAL nécessite la solution exacte d’un système linéaire de même
taille mais avec un bloc (2,2) symétrique et défini positif. En vue d’améliorer sa performance, nous
présentons une variante inexacte de SPAL. Sa convergence est établie sous des hypothèses raisonnables.
Spécifiquement, nous utilisons une méthode de gradient, la méthode de Barzilai et Borwein (BB), pour
résoudre le système linéaire à chaque itération. Cela résulte en la méthode de lagrangien augmenté
BB nommée SPALBB. Des tests numériques sur des problèmes de Navier-Stokes et des flux couplés de
Stokes-Darcy montrent que SPALBB est plus robuste que BICGSTAB et GMRES. SPALBB nécessite
souvent moins de temps CPU, particulièrement sur les grands systèmes.
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NSERC Discovery Grant. We thank our colleague and friend, Prof Dr Oleg Burdakov, for his devotion
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initiated this work. Oleg developed the SPALBB algorithm, proposed the counter-example to show
that the BB1 method may be divergent, and gave many constructive suggestions on our Matlab
implementation of SPALBB.
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1 Introduction

We consider the unsymmetric saddle-point system(
G B

−BT 0

)(
x
y

)
=

(
f
g

)
, (1)

where B ∈ Rn×m (n ≥ m), and G ∈ Rn×n is positive definite on the nullspace of BT but may be

unsymmetric and/or singular. Thus, xTGx > 0 for all nonzero x ∈ Null(BT ). The change of sign

in the second block-row of (1) makes the matrix semipositive real and positive semistable if G is

positive semidefinite [6]. Linear systems like (1) arise from certain discretizations of Navier-Stokes

equations [23], mixed and mixed-hybrid finite element approximation of the liquid crystal director

model [38] and coupled Stokes-Darcy flow [13], and within interior methods for constrained optimiza-

tion [25, 48]. System (1) is nonsingular if and only if B has full column rank [8]. When B corresponds

to a discretized gradient operator, as for example in Navier-Stokes equations [23, 28], then B has low

column rank and (1) is singular.

Iterative methods for solving saddle-point systems have been studied for decades, such as stationary

iterations [4, 8, 52], nonlinear inexact Uzawa methods [16, 30, 33], nullspace methods [37, 44, 45], Krylov

subspace methods [20, 29, 35, 36], and preconditioning techniques [7, 8, 21, 41]. Some stationary

iterative methods and their semi-convergence have been studied for singular cases [15, 49, 50].

Let Q ∈ Rm×m be symmetric and positive definite (SPD). If we premultiply the second block-row

of (1) by −BQ−1 and add the result to the first block equation, we find that (1) is equivalent to(
G+BQ−1BT B

−BT 0

)(
x
y

)
=

(
f −BQ−1g

g

)
. (2)

Golub and Greif [27] and Golub et al. [28] showed that methods based on (2) may have advantages.

Indeed, even if G is singular or ill-conditioned, the (1, 1) block in (2) can be made nonsingular, positive

definite or well-conditioned with suitable selections of Q. When G is symmetric, the symmetric form

T (Q) :=

(
G+BQ−1BT B

BT 0

)
of (2) is typically preferred. Golub and Greif [27] mainly consider the specific case Q = γI, where

γ > 0 is constant and I is the identity matrix. They provide analytical observations on the spectrum

of T (γI) and show that there is a range of values of γ that will improve the condition number of T (γI),

as well as the condition number of its (1, 1) block and the associated Schur complement. In particular,

γ = ∥B∥2/∥G∥ may often force the norm of the added term 1
γBBT to be of the same magnitude as

the norm of G. Golub et al. [28] experimentally observe that this special choice is typically effective.

Apart from the form of (2), they also show that when G is symmetric positive semidefinite of nullity 1,

an effective approach to maintaining sparsity is to choose the augmented term as τbbT , where b is

a known vector not orthogonal to the nullspace of G, and τ > 0 is a constant that approximately

minimizes the condition number of G+ τbbT .

The approach of replacing (1) by (2) can be regarded as an augmented Lagrangian (SPAL) method,

also called the method of multipliers [8, 27, 28]. For an extensive overview of the augmented Lagrangian

approach and its applications, we refer to [10, 11]. Awanou and Lai [3] apply the Uzawa method [1]

to (2) with Q = γI and propose the following SPAL (with k = 0, 1, 2, . . . and y0 assumed given):{
(G+ 1

γBBT )xk = f − 1
γBg −Byk,

yk+1 = yk + 1
γ (B

Txk + g).

By introducing another parameter ρ, Awanou and Lai [2] further generalize SPAL as{
(G+ 1

γBQ−1BT )xk = f − 1
γBQ−1g −Byk,

yk+1 = yk + 1
ρQ

−1(BTxk + g),
(3)
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and give a first convergence analysis for the case of unsymmetric G. They say that the proofs in [26]

using spectral arguments cannot be extended to the nonsymmetric case. Under the assumptions that

xTGx ≥ 0 for all x and xTGx = 0 with BTx = 0 implies x = 0, they verify convergence by proving

that ∥yk+1−y∗∥Q ≤ ∥yk−y∗∥Q and then xk converges to x∗, where (x∗, y∗) is the exact solution of (1).

Awanou and Lai [2] also say that their numerical experiments for an inexact Uzawa algorithm applied

to (2) do not illustrate convergence. However, we have not been able to find their implementation of

the inexact version and the numerical results.

We focus here on the inexact SPAL. Based on a simple splitting of the matrix in (1), we propose a

stationary iterative method that is theoretically equivalent to (3) when γ = ρ. Hence, we also call it

SPAL. We derive its convergence and semi-convergence for B of any rank based on spectral arguments

(unlike [2]) and obtain an explicit range of convergence for the parameter in SPAL, which Awanou

and Lai [2] don’t do. Also, we allow G here to be indefinite. Our SPAL requires an exact solution

of a linear system at each step. To improve efficiency, we propose an inexact SPAL in which the

linear system is solved inexactly. We show that it converges to the solution of (1) under reasonable

conditions. Gradient methods are a class of simple optimization approaches using the negative gradient

of the objective function as a search direction. The Barzilai-Borwein (BB) [5] method is a gradient

method for unconstrained optimization and has proved to be efficient for solving large and sparse

unconstrained convex quadratic programming, which is equivalent to solving an SPD linear system.

When G is unsymmetric positive definite (UPD), the linear system (7) in SPAL is UPD as well.

We use the BB method to solve this UPD linear system inexactly. We call the resulting method

the augmented Lagrangian BB (SPALBB) algorithm and establish its convergence under suitable

assumptions. Numerical experiments on linear systems from Navier-Stokes equations and coupled

Stokes-Darcy flow show that SPALBB often solves problems more efficiently than GMRES [43] and

BICGSTAB [47].

The paper is organized as follows. In Section 2, we introduce the augmented Lagrangian algorithm.

Its convergence and semi-convergence are established in Section 2.1 and Section 2.2. The inexact SPAL

and its convergence analysis are provided in Section 3. The augmented Lagrangian BB algorithm is

presented in Section 3.3. Numerical experiments are reported in Section 4. Conclusions appear in

Section 5.

Notation

For any H ∈ Rn×n, we write its inverse, transpose, spectral set, nullspace and range space as H−1,

HT , sp(H), Null(H), and Range(H). For any x ∈ Cn, we write its conjugate transpose as x∗. For

symmetric H, λmin(H) and λmax(H) denote the minimum and maximum eigenvalues. ∥ · ∥ denotes

the 2-norm of a vector or matrix. For an n × n SPD matrix G, ∥x∥G =
√

⟨Gx, x⟩ = ∥G
1
2x∥ for all

x ∈ Rn, and ∥H∥G = sup
x̸=0

∥Hx∥G

∥x∥G
= ∥G

1
2HG− 1

2 ∥ for all H ∈ Rn×n. For simplicity, the column vector

(xT yT )T is written (x, y), a+ := max{0, a}, and 1/0 := +∞.

2 Augmented Lagrangian algorithm

We present SPAL for solving the unsymmetric saddle-point system (1). Let Q be SPD matrix and

ω > 0. Since

A :=

(
G B

−BT 0

)
=

(
G B

−BT ωQ

)
−
(
0 0
0 ωQ

)
, (4)

the saddle-point system (1) is equivalent to(
G B

−BT ωQ

)(
x
y

)
=

(
f

ωQy + g

)
.
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Algorithm 1 The augmented Lagrangian algorithm SPAL for solving (1)

1: Given y0 ∈ Rm, ω > 0, and SPD Q ∈ Rm×m, set k = 0.
2: while a stopping condition is not satisfied do
3: Compute (xk+1, yk+1) according to the iteration(

G B
−BT ωQ

)(
xk+1

yk+1

)
=

(
f

ωQyk + g

)
. (7)

4: Increment k by 1.
5: end while

This suggests Algorithm 1 for solving system (1).

Lemma 2.2 shows that it is always possible to choose Q and ω such that (7) is nonsingular, even if

A is singular.

If G is symmetric, (1) is equivalent to the constrained optimization problem

min
x

1
2x

TGx− fTx s.t. g +BTx = 0. (5)

The k-th step of the augmented Lagrangian algorithm for (5) solves the subproblem

min
x

1
2x

TGx− fTx+
1

2ω

∥∥g +BTx+ ωQyk
∥∥2
Q−1 , (6)

where yk is an estimate of the Lagrange multiplier. Its optimal solution xk+1 satisfies

(G+
1

ω
BQ−1BT )xk+1 +Byk = f − 1

ω
BQ−1g. (8)

The multiplier is updated as

yk+1 =
1

ω
Q−1(g +BTxk+1 + ωQyk) = yk +

1

ω
Q−1(BTxk+1 + g). (9)

Note that (7) also gives (8)–(9). Hence, we also call it the augmented Lagrangian algorithm here.

Clearly, Algorithm 1 is theoretically equivalent to (3) if γ = ρ = ω. When G is symmetric, the

convergence of SPAL or its variants has been studied in [26]. Awanou and Lai [2] first gave convergence

results for (3) when G is unsymmetric positive semi-definite but positive definite on Null(BT ), based on

analyzing the error ∥yk−y∗∥Q, where (x∗, y∗) is the exact solution of (1). Here we give the convergence

analysis of SPAL in a different way, based on the spectral properties of T in (15) below. We derive

the explicit range of convergence for ω, which Awanou and Lai [2] don’t do. Also, we do not require

G to be positive semi-definite.

We call A = M−N a splitting if M is nonsingular. Defining T = M−1N , we consider the following

iteration scheme for solving Az = ℓ:

zk+1 = Tzk +M−1ℓ. (10)

First, we show that (4) is a splitting of A in (1). For convenience, we introduce

SQ = G+
1

ω
BQ−1BT , H = 1

2 (G+GT ), (11)

M =

(
G B

−BT ωQ

)
, N =

(
0 0
0 ωQ

)
. (12)

Note that SQ is the Schur complement of ωQ in M .
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Lemma 2.1. Let G ∈ Rn×n be unsymmetric but positive definite on Null(BT ), and

η = inf
x/∈Null(BT )

xTHx

xTBQ−1BTx
. (13)

For any SPD Q ∈ Rm×m, if 0 < ω < 1/(−η)+, then SQ is positive definite.

Proof. Since G is positive definite on Null(BT ), so is H. Then for any nonzero x ∈ Null(BT ), it holds

that xT (H + 1
ωBQ−1BT )x = xTHx > 0. For any x /∈ Null(BT ), as η > −1/ω, we have

xT (H +
1

ω
BQ−1BT )x = xTHx+

1

ω
xTBQ−1BTx ≥ (η +

1

ω
)xTBQ−1BTx > 0.

Hence SQ is positive definite because, for any nonzero x ∈ Rn, xT (SQ + ST
Q)x = 2xT

(H + 1
ωBQ−1BT )x > 0.

By Lemma 2.1 and some algebraic manipulation, we have the following results.

Lemma 2.2. Under the same conditions as in Lemma 2.1, M is nonsingular and

M−1 =

 S−1
Q − 1

ω
S−1
Q BQ−1

1

ω
Q−1BTS−1

Q

1

ω
Q−1 − 1

ω2
Q−1BTS−1

Q BQ−1

 . (14)

Lemma 2.3. Under the same conditions as in Lemma 2.1, the iteration matrix of Algorithm 1 is

T = M−1N =

(
0 −S−1

Q B

0 I − 1

ω
Q−1BTS−1

Q B

)
(15)

and the eigenvalues of T are 0 with algebraic multiplicity n, 1 with algebraic multiplicity m− s, and

the remaining s eigenvalues are ωµ/(1+ωµ), where s is the rank of B and µ is a generalized eigenvalue

of G and BQ−1BT corresponding to the generalized eigenvector x /∈ Null(BT ).

Proof. It follows from (12) and (14) that

T =

(
G B

−BT ωQ

)−1(
0 0
0 ωQ

)
=

(
0 −S−1

Q B

0 I − 1

ω
Q−1BTS−1

Q B

)
.

Clearly, T has an eigenvalue 0 with algebraic multiplicity n, and the remaining m eigenvalues are

1− λ/ω, where λ is an eigenvalue of Q−1BTS−1
Q B.

Since SQ is positive definite and Q is SPD, Q−1BTS−1
Q B is nonsingular when B has full column

rank. Thus, λ = 0 if and only if B is column rank-deficient. In this case, 1 is an eigenvalue of T with

algebraic multiplicity m− s.

If λ ̸= 0, note that Q−1BTS−1
Q B and S−1

Q BQ−1BT possess the same nonzero eigenvalues, and λ is

also an eigenvalue of S−1
Q BQ−1BT . Then there exists x /∈ Null(BT ) such that S−1

Q BQ−1BTx = λx.

Combining with (11) leads to

Gx =
ω − λ

ωλ
BQ−1BTx. (16)

Hence there exists a generalized eigenvalue µ of G and BQ−1BT corresponding to the generalized

eigenvector x /∈ Null(BT ) such that µ = ω−λ
ωλ , i.e., λ = ω

1+ωµ . Therefore, we know that the remaining

eigenvalues of T are 1− 1
1+ωµ = ωµ

1+ωµ .
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We should emphasize that Lemmas 2.1 to 2.3 hold even if B has low column rank. From Lemma 2.2,

we know that A = M − N is a splitting of A. Then the convergence analysis of Algorithm 1 can be

based on the spectral properties of T = M−1N . In the following, we discuss the convergence of

Algorithm 1 when B does or does not have full column rank, respectively.

2.1 Convergence analysis when B has full column rank

In this case, A is nonsingular and the saddle-point system (1) has a unique solution.

Theorem 1. Suppose B ∈ Rn×m has full column rank and G ∈ Rn×n is unsymmetric but positive

definite on Null(BT ). For any SPD Q ∈ Rm×m, let η be defined by (13). If 0 < ω < 1/(−2η)+,

then the sequence {xk, yk} produced by Algorithm 1 converges to the unique solution of saddle-point

system (1).

Proof. Algorithm 1 is convergent if and only if the spectral radius of T is less than 1 [42, Theorem 4.1].

Note that 0 < ω < 1/(−2η)+ ≤ 1/(−η)+ and the conditions of Lemma 2.1 hold. As B has full column

rank, it follows from Lemma 2.3 that 1 is not an eigenvalue of T and then

ρ(T ) = max
µ

ω|µ|
|1 + ωµ|

= max
µ

√
(ωµ1)

2 + (ωµ2)
2

(1 + ωµ1)2 + (ωµ2)2
, (17)

where µ = µ1 + iµ2 is the generalized eigenvalue of G and BQ−1BT corresponding to the generalized

eigenvector x /∈ Null(BT ). Since x /∈ Null(BT ) and Q is SPD, we have x∗BQ−1BTx > 0. Combining

with (16) gives µ = x∗Gx
x∗BQ−1BT x

. Then

µ1 =
x∗(G+GT )x

2x∗BQ−1BTx
=

x∗Hx

x∗BQ−1BTx
≥ η. (18)

Note that η > −1/(2ω) and ω > 0, so that 1 + ωµ1 ≥ 1 + ωη > 1/2. This together with (17) leads to

ρ(T ) < 1. Therefore, Algorithm 1 is convergent.

Remark 2.1. From (17) we see that ρ(T ) decreases with ω. This means that the convergence rate

of Algorithm 1 will improve as ω decreases. In particular, if ω = 0 (which means no splitting),

ρ(T ) = 0. Algorithm 1 then reduces to the exact method for problem (1). This is consistent with (7),

i.e., Algorithm 1 performs only one iteration. In addition, since ρ(T ) → 0 as |µ| → 0, Q should be

chosen such that the generalized eigenvalues of G and BQ−1BT are very close to 0. Therefore, we can

choose Q with very small norm.

Remark 2.2. If G is semidefinite, we see that η ≥ 0. Then Algorithm 1 is convergent for any ω > 0.

2.2 Convergence analysis when B is rank-deficient

In this case, A is singular. We assume that system (1) is solvable and show that Algorithm 1 is

semi-convergent. To this end, we introduce some preliminaries on the semi-convergence of iteration

scheme (10) for a general linear system Az = ℓ.

Definition 2.1. (Berman and Plemmons [9, Lemma 6.13]) Iteration (10) is semi-convergent if, for any

initial guess z0, the iteration sequence {zk} produced by (10) converges to a solution z of Az = ℓ such

that z = (I − T )DM−1ℓ+ [I − (I − T )D(I − T )]z0, where (I − T )D denotes the Drazin inverse [14] of

I − T .

Lemma 2.4 (9, Theorem 6.19). Iteration (10) is semi-convergent if and only if index(I − T ) = 1 and

v(T ) < 1, where index(I−T ) is the smallest nonnegative integer k such that the ranks of (I−T )k and

(I − T )k+1 are equal, and v(T ) = max{|λ| : λ ∈ sp(T ), λ ̸= 1} is called the pseudo-spectral radius

of T .

Lemma 2.5 (49, Theorem 2.5). index(I − T ) = 1 holds if and only if, for all 0 ̸= w ∈ Range(A),

w /∈ Null(AM−1), i.e., Range(A) ∩Null(AM−1) = {0}.
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In the following, we analyze the semi-convergence property for Algorithm 1. By Lemma 2.4, first,

we need to show index(I − T ) = 1.

Theorem 2. Suppose B ∈ Rn×m is rank-deficient and G ∈ Rn×n is unsymmetric but positive definite

on Null(BT ). For any SPD Q ∈ Rm×m, let η be defined by (13). If 0 < ω < 1/(−η)+, then

index(I − T ) = 1.

Proof. Suppose 0 ̸= w ∈ Range(A). Then there is v = (v1, v2) ∈ Rn+m such that

w = Av =

(
G B

−BT 0

)(
v1
v2

)
=

(
Gv1 +Bv2
−BT v1

)
̸= 0. (19)

By (14), we have

AM−1w =

(
I 0

−BTS−1
Q

1

ω
BTS−1

Q BQ−1

)(
Gv1 +Bv2
−BT v1

)

=

(
Gv1 +Bv2

−BTS−1
Q (Gv1 +Bv2)−

1

ω
BTS−1

Q BQ−1BT v1

)
. (20)

If Gv1 +Bv2 ̸= 0, clearly, AM−1w ̸= 0, which shows that w /∈ Null(AM−1).

If Gv1 +Bv2 = 0, it follows from (19) that BT v1 ̸= 0 and (20) yields

AM−1w =

(
0

− 1

ω
BTS−1

Q BQ−1BT v1

)
. (21)

Note that Q is SPD and BT v1 ̸= 0, so that BQ−1BT v1 ̸= 0. Then we would have

BTS−1
Q BQ−1BT v1 ̸= 0.

Indeed, if BTS−1
Q BQ−1BT v1 = 0, clearly vT1 BQ−1BTS−1

Q BQ−1BT v1 = 0. Since SQ is positive

definite, S−1
Q is also positive definite, which leads toBQ−1BT v1 = 0. This is a contradiction. Therefore,

we still get w /∈ Null(AM−1) by (21). Summing up, for any 0 ̸= w ∈ Range(A), w /∈ Null(AM−1).

The result follows from Lemma 2.5.

Next, we show that v(T ) < 1.

Theorem 3. Suppose B ∈ Rn×m is rank-deficient and G ∈ Rn×n is unsymmetric but positive definite

on Null(BT ). For any SPD Q ∈ Rm×m, let η be defined by (13). If 0 < ω < 1/(−2η)+, then v(T ) < 1.

Proof. Since 0 < ω < 1/(−2η)+ ≤ 1/(−η)+, the conditions of Lemma 2.1 hold. Note the definition of

the pseudo-spectral radius in Lemma 2.4. From Lemma 2.3,

v(T ) = max
µ

ω|µ|
|1 + ωµ|

= max
µ

√
(ωµ1)

2 + (ωµ2)
2

(1 + ωµ1)2 + (ωµ2)2
,

where µ = µ1+iµ2 is the generalized eigenvalue of G and BQ−1BT that corresponds to the generalized

eigenvector x /∈ Null(BT ). By (18), ω > 0 and η > −1/(2ω), we have 1 + 2ωµ1 ≥ 1 + 2ωη > 0, giving

v(T ) < 1.

Combining Lemma 2.4 with Theorems 2 and 3 and 1/(−2η)+ < 1/(−η)+, we get the following

convergence result.

Theorem 4. Suppose B ∈ Rn×m is rank-deficient, and G ∈ Rn×n is unsymmetric but positive definite

on Null(BT ). For any SPD Q ∈ Rm×m, let η be defined by (13). If 0 < ω < 1/(−2η)+, then the

sequence {xk, yk} produced by Algorithm 1 is semi-convergent to a solution of the singular saddle-point

system (1).
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3 Inexact augmented Lagrangian algorithm

In this section, we develop and analyze inexact SPAL to solve (1). Let ℓ = (f, g), zk = (xk, yk), and

rk = Azk − ℓ. It follows from (10) and A = M −N that Algorithm 1 is equivalent to

zk+1 = M−1Nzk +M−1ℓ = M−1(M −A)zk +M−1ℓ = zk −M−1rk, (22)

where M and N are defined in (12). To describe the inexact version of Algorithm 1, as done in [30],

we introduce a nonlinear mapping Ψ : Rn+m −→ Rn+m such that for any given r ∈ Rn+m, Ψ(r)

approximates the solution ∆z of M∆z = r in that

∥r −MΨ(r)∥∗ ≤ δ∥r∥∗ (23)

for some δ ∈ [0, 1) and some norm ∥ · ∥∗. We obtain the inexact augmented Lagrangian algorithm of

Algorithm 2, where the main idea is to approximate M−1rk in (22).

Algorithm 2 Inexact augmented Lagrangian algorithm

1: Given z0 = (x0, y0) ∈ Rn+m, ω > 0, 0 ≤ δ < 1 and SPD Q, set k = 0.
2: while a stopping condition is not satisfied do
3: Compute rk = Azk − ℓ.
4: Compute Ψ(rk) ≈ M−1rk satisfying (23).
5: Compute zk+1 = zk −Ψ(rk).
6: Increment k by 1.
7: end while

In our convergence analysis we use ∥ · ∥P in (23), where Pβ =

(
I 0
0 βQ−1

)
is SPD and β > 0 is an

arbitrary constant. By Algorithm 2,

rk+1 =Azk+1 − ℓ = A(zk −Ψ(rk))− ℓ = rk −AΨ(rk)

=(I −AM−1)rk +AM−1(rk −MΨ(rk))

=NM−1rk + (I −NM−1)(rk −MΨ(rk)). (24)

Likewise, we discuss the convergence of Algorithm 2 when B does or does not have full column rank,

respectively.

3.1 Convergence analysis when B has full column rank

Note that Pβ is SPD, and (24) gives

P
1
2
β rk+1 = P

1
2
β NM−1P

− 1
2

β P
1
2
β rk + P

1
2
β (I −NM−1)P

− 1
2

β P
1
2
β (rk −MΨ(rk)).

This along with (23) yields

∥rk+1∥Pβ
≤∥P

1
2
β NM−1P

− 1
2

β ∥∥rk∥Pβ
+ ∥P

1
2
β (I −NM−1)P

− 1
2

β ∥∥rk −MΨ(rk)∥Pβ

≤
(
∥P

1
2
β NM−1P

− 1
2

β ∥+ δ∥I − P
1
2
β NM−1P

− 1
2

β ∥
)
∥rk∥Pβ

=
(
∥NM−1∥Pβ

+ δ∥I −NM−1∥Pβ

)
∥rk∥Pβ

. (25)

The following result provides sufficient conditions for ∥NM−1∥Pβ
< 1.

Lemma 3.1. Suppose B ∈ Rn×m has full column rank and G ∈ Rn×n is unsymmetric but positive

definite on Null(BT ). For any β > 0 and SPD Q ∈ Rm×m, let η be defined by (13) and λ1 be the

minimum eigenvalue of 2ωH +BQ−1BT . Then, λ1 > 0 and if 0 < ω < min
{
1/(−2η)+,

√
λ1/β

}
, we

have ∥NM−1∥Pβ
< 1.



Les Cahiers du GERAD G–2024–30 8

Proof. It follows from 0 < ω < 1/(−2η)+ ≤ 1/(−η)+ that SQ is positive definite. Combining with (12)

and (14) leads to

P
1
2
β NM−1P

− 1
2

β = P
1
2
β

(
0 0

BTS−1
Q I − 1

ω
BTS−1

Q BQ−1

)
P

− 1
2

β

=

(
0 0

√
βQ− 1

2BTS−1
Q I −W

)
=: T̃ ,

where W = 1
ωQ

− 1
2BTS−1

Q BQ− 1
2 . This shows that

∥NM−1∥Pβ
= ∥P

1
2
β NM−1P

− 1
2

β ∥ =
(
ρ(T̃ T̃T )

) 1
2
. (26)

By direct calculation and (11), we have

ρ
(
T̃ T̃T

)
= ρ

(
(I −W )(I −WT ) + βQ− 1

2BTS−1
Q S−T

Q BQ− 1
2

)
= ρ

(
I − 1

ωQ
− 1

2BTS−1
Q

(
SQ + ST

Q − 1
ωBQ−1BT − ωβI

)
S−T
Q BQ− 1

2

)
= ρ

(
I − 1

ω2Q
− 1

2BTS−1
Q

(
2ωH +BQ−1BT − ω2βI

)
S−T
Q BQ− 1

2

)
. (27)

Note that B has full column rank and ω > 0, and if 2ωH + BQ−1BT − ω2βI is SPD, so is
1
ω2Q

− 1
2BTS−1

Q

(
2ωH + BQ−1BT − ω2βI

)
S−T
Q BQ− 1

2 . Then all eigenvalues of T̃ T̃T are less than

1, i.e., ρ(T̃ T̃T ) < 1. Therefore, in order to prove ∥NM−1∥Pβ
< 1, we just need to find ω to guarantee

that 2ωH + BQ−1BT − ω2βI is positive definite. Since H is positive definite on Null(BT ), (13) and

2ωη > −1 imply 2ωH + BQ−1BT is positive definite. Thus, λ1 > 0. Combining with ω <
√
λ1/β

completes the proof.

Remark 3.1. The conditions in Lemma 3.1 are reasonable. Indeed, for any given ω0 ∈ (0, 1/(−2η)+),

2H + 1
ω0

BQ−1BT is SPD. Then when 0 < ω ≤ ω0, we have

λ1 ≥ λmin

(
2ωH + ω

ω0
BQ−1BT

)
= ωλmin

(
2H + 1

ω0
BQ−1BT

)
.

Then the conditions in Lemma 3.1 can be replaced by

0 < ω < min
{
ω0,

1
βλmin

(
2H + 1

ω0
BQ−1BT

)}
.

In particular, when H is positive semidefinite, η ≥ 0 and 2H + BQ−1BT is SPD. Then we can pick

ω0 = 1 above and the last condition can be further simplified as

0 < ω < min
{
1, 1

βλmin(2H +BQ−1BT )
}
.

Theorem 5. Suppose B ∈ Rn×m has full column rank and G ∈ Rn×n is unsymmetric but positive

definite on Null(BT ). For any β > 0 and SPD Q ∈ Rm×m, let η and δ be defined by (13) and (23),

and λ1 be the minimum eigenvalue of 2ωH +BQ−1BT . If ω and δ satisfy

0 < ω < min

{
1

(−2η)+
,

√
λ1

β

}
and 0 ≤ δ ≤ 1

2

(
1− ∥NM−1∥Pβ

)
,

then {xk, yk} produced by Algorithm 2 converges to the unique solution of (1).
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Proof. It follows from Lemma 3.1 that ∥NM−1∥Pβ
< 1, so that ∥I−NM−1∥Pβ

≤ 1+∥NM−1∥Pβ
< 2.

The result follows from (25) and

∥NM−1∥Pβ
+ δ∥I −NM−1∥Pβ

≤ ∥NM−1∥Pβ
+

1− ∥NM−1∥Pβ

2
∥I −NM−1∥Pβ

< ∥NM−1∥Pβ
+ 1− ∥NM−1∥Pβ

= 1.

Remark 3.2. Note that (25) gives ∥rk∥Pβ
≤
(
∥NM−1∥Pβ

+ δ∥I − NM−1∥Pβ

)k∥r0∥Pβ
. Hence, based

on the conditions of Theorem 5, rk converges to zero linearly. Let z∗ be the solution of (1). Then we

have

∥zk − z∗∥Pβ
= ∥A−1rk∥Pβ

= ∥P
1
2

β A−1P
− 1

2

β P
1
2

β rk∥ ≤ ∥P
1
2

β A−1P
− 1

2

β ∥∥P
1
2

β rk∥

= ∥A−1∥Pβ
∥rk∥Pβ

≤ ∥A−1∥Pβ

(
∥NM−1∥Pβ

+ δ∥I −NM−1∥Pβ

)k∥r0∥Pβ

= ∥A−1∥Pβ

(
∥NM−1∥Pβ

+ δ∥I −NM−1∥Pβ

)k∥A(z0 − z∗)∥Pβ

≤ ∥A−1∥Pβ
∥A∥Pβ

(
∥NM−1∥Pβ

+ δ∥I −NM−1∥Pβ

)k∥z0 − z∗∥Pβ
.

This implies that zk converges linearly to z∗ under the conditions of Theorem 5.

Remark 3.3. If β = δ in Theorem 5, since ω > 0 and δ ≥ 0, we know that ω <
√

λ1/δ holds if and

only if δ < λ1/ω
2. Then the restricted conditions of ω and δ in Theorem 5 can be replaced by

0 < ω <
1

(−2η)+
and 0 ≤ δ < min

{
λ1

ω2
,
1− ∥NM−1∥Pδ

2

}
.

It follows from (26) and (27) that

∥NM−1∥2Pδ
= ρ(T̃ T̃T ) = ρ

(
I − 1

ω2Q
− 1

2BTS−1
Q (2ωH +BQ−1BT − δω2I)S−T

Q BQ− 1
2

)
= ρ

(
I − 1

ω2Q
− 1

2BTS−1
Q (2ωH +BQ−1BT )S−T

Q BQ− 1
2 + δQ− 1

2BTS−1
Q S−T

Q BQ− 1
2

)
. (28)

Note that T̃ T̃T is symmetric positive semidefinite and Q− 1
2BTS−1

Q S−T
Q BQ− 1

2 is SPD, ∥NM−1∥Pδ

increases with δ, and

lim
δ→λ1/ω2

∥NM−1∥Pδ
= 1, lim

δ→0+
∥NM−1∥Pδ

=

√
1− λ̃1/ω2 < 1,

where λ̃1 > 0 is the minimum eigenvalue of Q− 1
2BTS−1

Q (2ωH + BQ−1BT )S−T
Q BQ− 1

2 . Then there

exists δ > 0 such that ∥NM−1∥Pδ
< 1. Therefore, for any given 0 < ω < 1/(−2η)+, Algorithm 2 is

convergent for sufficiently small δ. Moreover, the larger ω is, the smaller δ should be. Therefore, a

practical selection of δ could be a sequence {δk} such that δk → 0 as k → ∞.

Remark 3.4. When G is positive semidefinite, (13) yields η ≥ 0. It leads to (−2η)+ = 0. In this

case, the sufficient conditions in Theorem 5 can be replaced by 0 < ω < min
√
λ1/β and 0 ≤ δ ≤

1
2

(
1− ∥NM−1∥Pβ

)
. Furthermore, from Remark 3.3 we know that the restrictions also can be replaced

by ω > 0 and 0 ≤ δ < min
{

λ1

ω2 ,
1−∥NM−1∥Pδ

2

}
. This implies that when G is positive semidefinite, for

any ω > 0, Algorithm 2 is convergent for sufficiently small δ.

3.2 Convergence analysis when B is rank-deficient

Assume that the rank of B is s and 0 < s < m. Let B = U
(
Σ 0

)
V T be the singular value

decomposition (SVD), where n× n U and m×m V are orthogonal matrices, Σ =

(
Σs

0

)
∈ Rn×s has

full column rank, and Σs = diag{σ1, σ2, . . . , σs} with all σj > 0 contains the singular values of B. Let

Q1 ∈ Rs×s and Q2 ∈ R(m−s)×(m−s) be SPD, and
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Q = V

(
Q1 0
0 Q2

)
V T, D̃ =

(
U 0
0 V

)
, P̃β =

(
I 0
0 βQ−1

1

)
, (29)

Ã =

(
UTGU Σ
−Σ 0

)
, M̃ =

(
UTGU Σ
−Σ ωQ1

)
, Ñ =

(
0 0
0 ωQ1

)
. (30)

Let r̃k = D̃Trk =
(
r̃ak , r̃

b
k

)
, Ψ̃(rk) = D̃TΨ(rk) =

(
Ψ̃a(rk), Ψ̃

b(rk)
)
with r̃ak , Ψ̃

a(rk) ∈ Rn+s. It follows

from (4), (12), (29) and (30) that

D̃TAD̃ =

(
UT 0
0 V T

)(
G B

−BT 0

)(
U 0
0 V

)
=

(
UTGU UTBV

−V TBTU 0

)

=

UTGU Σ 0
−ΣT 0 0
0 0 0

 =:

(
Ã 0
0 0

)
, (31)

D̃TMD̃ =

(
UT 0
0 V T

)(
G B

−BT ωQ

)(
U 0
0 V

)
=

(
UTGU UTBV

−V TBTU ωV TQV

)

=

UTGU Σ 0
−ΣT ωQ1 0
0 0 ωQ2

 =:

(
M̃ 0
0 ωQ2

)
, (32)

D̃TND̃ =

(
UT 0
0 V T

)(
0 0
0 ωQ

)(
U 0
0 V

)
=

(
0 0
0 ωV TQV

)

=

0 0 0
0 ωQ1 0
0 0 ωQ2

 =:

(
Ñ 0
0 ωQ2

)
. (33)

Based on the above notations, we have the following results.

Lemma 3.2. Suppose B ∈ Rn×m is rank-deficient with rank s. If (1) is solvable, then r̃bk = 0 for all

k ≥ 1.

Proof. Let z∗ be a solution of (1), and let z̃∗ = D̃Tz∗ =
(
z̃a∗ , z̃

b
∗
)
, z̃k = D̃Tzk =

(
z̃ak , z̃

b
k

)
, and

ℓ̃ = D̃Tℓ =
(
ℓ̃a, ℓ̃b

)
, where z̃a∗ , z̃

a
k , ℓ̃

a ∈ Rn+s. It follows from Az∗ = ℓ and (31) that

D̃TAD̃z̃∗ =

(
Ã 0
0 0

)(
z̃a∗
z̃b∗

)
=

(
Ãz̃a∗
0

)
=

(
ℓ̃a

ℓ̃b

)
,

which shows that ℓ̃b = 0. Then we have

r̃k = D̃Trk = D̃T(Azk − ℓ) = D̃TAD̃D̃Tzk − D̃Tℓ =

(
Ãz̃ak − ℓ̃a

−ℓ̃b

)
=

(
r̃ak
0

)
.

Lemma 3.3. Suppose B ∈ Rn×m is rank-deficient with rank s. For any ω, β > 0 and SPD Q1 ∈
R(n+s)×(n+s) and Q2 ∈ R(m−s)×(m−s), let Q and δ be defined by (29) and (23). Then ∥r̃ak −
M̃Ψ̃a(rk)∥P̃β

≤ δ∥r̃ak∥P̃β
.

Proof. For any x ∈ Rn+m and x̃ = D̃Tx =
(
x̃a, x̃b

)
with x̃a ∈ Rn+s, since D̃ is an orthogonal matrix,

from (29) and the definition of Pβ in section 3, we have

∥x∥2Pβ
= xTPβx = xT D̃D̃TPβD̃D̃Tx =

(
(x̃a)T (x̃b)T

)(P̃β 0
0 βQ−1

2

)(
x̃a

x̃b

)
= ∥x̃a∥2

P̃β
+ ∥x̃b∥2

βQ−1
2
. (34)
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Note that (32) and Lemma 3.2 give

D̃T (rk −MΨ(rk)) = r̃k − D̃TMD̃Ψ̃(rk) =

(
r̃ak − M̃Ψ̃a(rk)

−ωQ2Ψ̃
b(rk)

)
.

This along with (34) leads to

∥rk −MΨ(rk)∥2Pβ
= ∥r̃ak − M̃Ψ̃a(rk)∥2P̃β

+ ∥ωQ2Ψ̃
b(rk)∥2βQ−1

2

= ∥r̃ak − M̃Ψ̃a(rk)∥2P̃β
+ ω2β∥Ψ̃b(rk)∥2Q2

.

Using (23), (34) and r̃bk = 0 yields

∥r̃ak − M̃Ψ̃a(rk)∥P̃β
≤ ∥rk −MΨ(rk)∥Pβ

≤ δ∥rk∥Pβ
= δ∥r̃ak∥P̃β

.

We are now ready to establish the convergence theorem for Algorithm 2 when B is rank-deficient.

Theorem 6. Suppose B ∈ Rn×m is rank-deficient with rank s and G ∈ Rn×n is unsymmetric but

positive definite on Null(BT ). For any β > 0 and SPD Q1 ∈ R(n+s)×(n+s) and Q2 ∈ R(m−s)×(m−s),

let Q, η and δ be defined by (29), (13) and (23), and λ1 be the minimum eigenvalue of 2ωH+BQ−1BT .

If ω and δ satisfy

0 < ω < min

{
1

(−2η)+
,

√
λ1

β

}
and 0 ≤ δ ≤ 1

2

(
1− ∥ÑM̃−1∥P̃β

)
,

then {xk, yk} produced by Algorithm 2 converges to a solution of the singular saddle-point system (1).

Proof. By Lemma 3.2, we just need to prove lim
k→0

r̃ak = 0. Since D̃ is an orthogonal matrix, it follows

from (24), (29), (32) and (33) that(
r̃ak+1

r̃bk+1

)
= r̃k+1 = D̃Trk+1 = D̃T

[
NM−1rk + (I −NM−1)(rk −MΨ(rk))

]
= D̃TND̃(D̃TMD̃)−1D̃Trk +

[
I − D̃TND̃(D̃TMD̃)−1

] (
D̃Trk − D̃TMD̃D̃TΨ(rk)

)
=

(
ÑM̃−1 0

0 I

)(
r̃ak
r̃bk

)
+

[
I −

(
ÑM̃−1 0

0 I

)][(
r̃ak
r̃bk

)
−
(
M̃ 0
0 ωQ2

)(
Ψ̃a(rk)

Ψ̃b(rk)

)]

=

(
ÑM̃−1r̃ak + (I − ÑM̃−1)(r̃ak − M̃Ψ̃a(rk))

r̃bk

)
.

Thus, r̃ak+1 = ÑM̃−1r̃ak + (I − ÑM̃−1)(r̃ak − M̃Ψ̃a(rk)). Using (24), (31), (32), (33) and Lemma 3.3,

we know that r̃ak is the k-th residual of Algorithm 2 applying to the saddle-point problem Ãz̃ = ℓ̃.

Note that x ∈ Null(ΣT ) if and only if Ux ∈ Null(BT ) and UTGU is positive definite on Null(ΣT ).

With (13), (29), and the SVD of B, we have

inf
x/∈Null(ΣT)

xTUTHUx

xTΣQ−1
1 ΣTx

x̂=Ux
===== inf

x̂/∈Null(BT)

x̂THx̂

x̂TUΣQ−1
1 ΣTUT x̂

= inf
x̂/∈Null(BT)

x̂THx̂

x̂TU
(
Σ 0

)
V TQ−1V

(
ΣT

0

)
UT x̂

= inf
x̂/∈Null(BT)

x̂THx̂

x̂TBQ−1BT x̂
= η.

Since ω(UTGU + UTGTU) + ΣQ−1
1 ΣT is similar to 2ωH + UΣQ−1

1 ΣTUT = 2ωH + BQ−1BT and Σ

has full column rank, Lemma 3.1 and Theorem 5 imply ∥ÑM̃−1∥P̃β
< 1 and hence r̃ak converges to

zero as k → ∞. Combining with r̃bk = 0 concludes.
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Similar to Remarks 3.3 and 3.4, when B is rank-deficient, for any given 0 < ω < 1/(−2η)+,

Algorithm 2 is still convergent for sufficiently small δ ≥ 0. Furthermore, whenG is positive semidefinite,

Algorithm 2 is convergent for any ω > 0 and sufficiently small δ ≥ 0.

3.3 Augmented Lagrangian BB algorithm

Gradient-type iterative methods for the unconstrained optimization problem min
z∈Rn̂

f̂(z) have the form

zk+1 = zk − αkgk, (35)

where f̂ : Rn̂ → R is a sufficiently smooth function, gk = ∇f̂(zk) is the gradient, and αk > 0 is a

stepsize. Methods of this type differ in their stepsize rules. In 1988, Barzilai and Borwein [5] proposed

two choices of αk, usually referred to as the BB method:

αBB1
k =

sTk−1sk−1

sTk−1dk−1
and αBB2

k =
sTk−1dk−1

dTk−1dk−1
, (36)

where sk−1 = zk−zk−1 and dk−1 = gk−gk−1. The rationale behind these choices is related to viewing

the gradient-type methods as quasi-Newton methods, where αk in (35) is replaced by Dk = αkI.

This matrix serves as an approximate inverse Hessian. Following the quasi-Newton approach, the

stepsize is calculated by forcing either D−1
k (BB1 method) or Dk (BB2 method) to satisfy the secant

equation in the least squares sense. The corresponding problems are min
D=αI

∥D−1sk−1 − dk−1∥ and

min
D=αI

∥sk−1 −Ddk−1∥.

When f̂(z) is a convex quadratic, i.e., f̂(z) = 1
2z

T Âz−ℓ̂T z with Â SPD, this quadratic programming

is equivalent to Âz = ℓ̂. In this case, gk = Âzk − ℓ̂ = rk,

sk−1 = −αk−1rk−1 and dk−1 = rk − rk−1 = Âsk−1 = −αk−1Ârk−1. (37)

Then the two BB stepsizes (36) can be reformulated as

αBB1
k =

rTk−1rk−1

rTk−1Ârk−1

and αBB2
k =

rTk−1Ârk−1

rTk−1Â
T Ârk−1

.

Global convergence of the BB method for minimizing quadratic forms was established

by Raydan [39], and its R-linear convergence rate was established by Dai and Liao [17]. For gen-

eral strongly convex functions with Lipschitz gradient, the local convergence of the BB method with

R-linear rate was rigorously proved by Dai et al. [19]. Extensive numerical experiments show that the

BB method can solve unconstrained optimization problems efficiently and is considerably superior to

the steepest descent method [12, 40]. A variety of modifications and extensions of the BB method

have been developed for optimization.

Several researchers used the BB method to solve UPD linear systems. Dai et al. [18] gave an

analysis of the BB1 method for two-by-two unsymmetric linear systems. Under mild conditions, they

showed that the convergence rate of the BB1 method is Q-superlinear if the matrix has a double

eigenvalue, but only R-superlinear if the matrix has two different real eigenvalues. We find that the

BB1 method for solving UPD linear systems could be divergent. Indeed, consider

Âz :=

(
1 2
−2 1

)(
x
y

)
=

(
0
0

)
.

Note that Â has two complex eigenvalues 1±2i. The conditions in [18] do not hold. It follows from (36)

and (37) that αBB1
k = (sTk−1sk−1)/(s

T
k−1Âsk−1) = 1. Then, one BB1 iteration gives

zk+1 = zk − rk =

(
xk

yk

)
−
(

xk + 2yk
−2xk + yk

)
=

(
−2yk
2xk

)
.
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This leads to ∥zk+1∥2 = 8∥zk∥2, which means that the sequence {zk} of the BB1 iterations diverges

for any initial z0 ̸= 0.

For quadratic programming with Â unsymmetric, the minimal gradient method [31, 32, 42] uses

the stepsize αMG
k = (rTk Ârk)/(r

T
k Â

T Ârk), which gives an optimal residual in each iteration, namely,

αMG
k = argmin

α>0
∥Â(zk − αrk)− b∥ = argmin

α>0
∥rk − αÂrk∥.

Therefore, the minimal gradient method is convergent for solving UPD linear systems. Note that the

difference between αMG
k and αBB2

k is that one uses rk and the other uses rk−1. The BB2 method can be

regarded as the minimal gradient method with delay [24]. Gradient methods with delay significantly

improve the performance of gradient methods, see [51] and references therein. Hence, we use the BB2

method to derive the new iterates xk+1 and yk+1 in Algorithm 2 when G is positive definite. Then the

augmented Lagrangian BB algorithm for solving (1) is as in Algorithm 3.

Algorithm 3 Augmented Lagrangian BB algorithm, SPALBB

1: Given z−1 = (x−1, y−1), z0 = (x0, y0) ∈ Rn+m, ω > 0, 0 ≤ δ < 1, and SPD Q, compute r0 = Mz0 − (f, ωQy0 + g)
and set k = 0.

2: while a stopping condition is not satisfied do
3: Compute ℓk = (f, ωQyk + g).
4: while ∥rj −Mzj∥∗ > δ∥rj∥∗ do
5: Compute sj = zj − zj−1.
6: Compute dj = Msj .
7: Compute rj = Mzj − ℓk.

8: Compute αj =
sTj dj

∥dj∥2
.

9: Compute zj+1 = zj − αjrj .
10: end while
11: Increment k by 1.
12: end while

In the following, we establish the convergence of Algorithm 3. First, under some assumptions, we

show that the BB2 method is convergent for solving a general UPD linear system Âz = ℓ̂, where the

iterative scheme is zk+1 = zk − αBB2
k rk and rk = Âzk − ℓ̂. For convenience, we introduce

Âh = 1
2 (Â+ ÂT ), W = Â−1

h ÂTÂ,

θj = max

{
1− 2uj

λmin(W )
+

|λj |2

λmin(W )2
, 1− 2uj

λmax(W )
+

|λj |2

λmax(W )2

}
, (38)

where λj = uj+ivj (1 ≤ j ≤ n) are the eigenvalues of Â. When Â is UPD, we know that Âh is SPD and

uj > 0 (1 ≤ j ≤ n). By direct calculation, for all 1 ≤ j ≤ n, θj < 1 holds by 1− 2uj

λmin(W ) +
|λj |2

λmin(W )2 < 1

and 1− 2uj

λmax(W ) +
|λj |2

λmax(W )2 < 1, which are equivalent to

max
1≤j≤n

|λj |2

uj
< 2λmin(W ). (39)

We are now ready to study the convergence of the BB2 method.

Theorem 7. Suppose Â ∈ Rn̂×n̂ is UPD. If its n eigenvalues λj = uj + ivj (1 ≤ j ≤ n) satisfy (39),

then the sequence {zk} produced by the BB2 method converges to the unique solution of Âz = ℓ̂.

Proof. It is well known that the BB method is invariant under unitary transformation of the vari-

ables [17]. By the Schur decomposition, we can assume without loss of generality that Â is of the form
λ1 a12 a13 · · · a1n̂
0 λ2 a23 · · · a2n̂
...

. . .
. . .

. . .
...

0 · · · 0 λn̂−1 an̂−1,n̂

0 · · · · · · 0 λn̂

 ,
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where λj = uj + ivj ∈ C, j = 1, 2, . . . , n̂. Because rk+1 = Âzk+1 − ℓ̂ = rk − αBB2
k Ârk,

r
(n̂)
k+1 = r

(n̂)
k − αBB2

k λn̂r
(n̂)
k ,

r
(j)
k+1 = r

(j)
k − αBB2

k λjr
(j)
k − αBB2

k

n̂∑
t=j+1

aj,tr
(t)
k , j = n̂− 1, . . . , 1,

(40)

where r
(j)
k is the j-th component of rk. Note that Âh = 1

2 (Â + ÂT ) and rTk−1Ârk−1 = rTk−1Â
T rk−1,

giving rTk−1Ârk−1 = 1
2

(
rTk−1Ârk−1 + rTk−1Â

T rk−1

)
= rTk−1Âhrk−1. Since Âh is SPD, it leads to

αBB2
k =

rTk−1Ârk−1

rTk−1Â
T Ârk−1

=
rTk−1Âhrk−1

rTk−1Â
T Ârk−1

r̂=Â
1
2
h rk−1

=========
r̂T r̂

r̂T Â
− 1

2

h ÂT ÂÂ
− 1

2

h r̂
.

By the Courant-Fischer min-max theorem and the fact that Â
− 1

2

h ÂT ÂÂ
− 1

2

h is similar to W , we have

1

λmax(W )
≤ αBB2

k ≤ 1

λmin(W )
. (41)

It follows from λj = uj + ivj , (38), (41), and the behavior of the quadratic function for αBB2
k that, for

any j = 1, . . . , n̂,∣∣1− αBB2
k λj

∣∣2 =
(
1− αBB2

k uj

)2
+
(
αBB2
k vj

)2
= 1− 2αBB2

k uj +
(
αBB2
k

)2 |λj |2

≤ max
{
1− 2uj

λmin(W ) +
|λj |2

λmin(W )2 , 1−
2uj

λmax(W ) +
|λj |2

λmax(W )2

}
= θj . (42)

Combining with (39) and (40) gives∣∣∣r(n̂)k+1

∣∣∣ = ∣∣1− αBB2
k λn̂

∣∣ ∣∣∣r(n̂)k

∣∣∣ ≤√θn̂

∣∣∣r(n̂)k

∣∣∣ < ∣∣∣r(n̂)k

∣∣∣ .
This implies that r

(n̂)
k → 0 as k → ∞. For j = n̂−1, . . . , 1, by (40) and (42),

∣∣∣r(j)k+1

∣∣∣ ≤ ∣∣1− αBB2
k λj

∣∣ ∣∣∣r(j)k

∣∣∣
+αBB2

k

∣∣∣∣∣ n̂∑
t=j+1

aj,tr
(t)
k

∣∣∣∣∣ ≤ √
θj

∣∣∣r(j)k

∣∣∣ + αBB2
k

∣∣∣∣∣ n̂∑
t=j+1

aj,tr
(t)
k

∣∣∣∣∣ . Using this recurrence relation, θj < 1 and

lim
k→∞

r
(n̂)
k = 0, we complete the proof.

Remark 3.5. As Â is positive definite, so is Â−1. Let λ̃j = ũj + iṽj (1 ≤ j ≤ n̂) be the eigenvalues of

Â−1. Clearly, 1
λ̃j

=
ũj−iṽj
ũ2
j+ṽ2

j
is an eigenvalue of Â. Then max

1≤j≤n̂

|λj |2
uj

= 1
min1≤j≤n̂ ũj

. This, along with

λmin(W ) = 2λmin

(
(Â+ ÂT )−1ÂT Â

)
= 2λmin

(
Â(Â+ ÂT )−1ÂT

)
= 2λmin

(
(Â−1 + Â−T )−1

)
=

2

λmax(Â−1 + Â−T )
,

shows that condition (39) is equivalent to λmax(Â
−1 + Â−T ) < 4 min

1≤j≤n̂
ũj . Note that min

1≤j≤n̂
ũj ≥

1
2λmin(Â

−1 + Â−T ),1 so the above inequality can be reinforced as λmax(Â
−1 + Â−T ) < 2λmin(Â

−1 +

Â−T ). When Â is SPD, it reduces to λmax(Â) < 2λmin(Â), which is the same as the convergence condi-

tion of the preconditioned BB method for SPD linear systems [34]. This means that our condition (39)

is weaker than that of [34].

1For any j = 1, . . . , n̂, let x̃j be the eigenvector of Â−1 corresponding to λ̃j . Then we have λ̃j =
x̃∗
j Â

−1x̃j

x̃∗
j x̃j

. Since

Â−1 + Â−T is SPD, it gives ũj = 1
2

(
λ̃j + λ̃∗

j

)
= 1

2

(
x̃∗
j Â

−1x̃j

x̃∗
j x̃j

+
x̃∗
j Â

−T x̃j

x̃∗
j x̃j

)
=

x̃∗
j (Â

−1+Â−T )x̃j

2x̃∗
j x̃j

≥ 1
2
λmin(Â

−1 + Â−T ).
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When G is UPD, so is M in (12). Combining Theorem 7 with the convergence conditions of

Algorithm 2 gives the following result.

Theorem 8. Suppose G ∈ Rn×n is UPD. For any SPD Q ∈ Rm×m and any ω > 0, let M be defined

by (12) and λj = uj + ivj (1 ≤ j ≤ n+m) be its n+m eigenvalues. If

max
1≤j≤n+m

|λj |2

uj
<

4

λmax (M−1 +M−T )
, (43)

then for sufficiently small δ, {xk, yk} produced by Algorithm 3 converges to a solution of (1).

Remark 3.6. The residuals generated by the BB method, even for SPD linear systems, are strong

nonmonotonic, which poses a challenge for the convergence [17, 40]. This is also the reason why

the convergence of Algorithm 3 is intricate. Our convergence analysis of Algorithm 3 by ensuring a

decrease of ∥rk∥∗ is quite stringent, relying on a rather strong assumption (43). The nonmonotonic

behavior of ∥rk∥ in Figures 1 and 2 also indicates that the choices of ω in our numerical experiments

do not meet (43). Thus, there is significant room for improving the convergence of the BB method for

UPD linear systems and Algorithm 3.

Remark 3.7. Although assumption (43) is strong, it is still possible to choose ω to satisfy it. Indeed,

consider the special case n = m = 1 and M =

(
a b
−b ω

)
with a > 0 and b ∈ R. Since M−1 =

1
aω+b2

(
ω −b
b a

)
, we have

λmin

(
M−1 +M−T

)
=

2min{a, ω}
aω + b2

and λmax

(
M−1 +M−T

)
=

2max{a, ω}
aω + b2

.

It follows from Remark 3.5 that (43) can be reinforced as λmax

(
M−1 +M−T

)
≤ 2λmin

(
M−1 +M−T

)
,

namely, max{a, ω} ≤ 2min{a, ω}. This implies that (43) holds when ω ∈ [a/2, 2a].

For the general case, we can apply preconditioning techniques to (7) such thatM is well-conditioned.

Preconditioning techniques for M have been widely studied; see [8] and the references therein.

4 Numerical experiments

We present the results of numerical tests to examine the feasibility and effectiveness of SPALBB.

All experiments were run using MATLAB R2022b on a PC with an Intel(R) Core(TM) i7-1260P

CPU @ 2.10GHz and 32GB of RAM. The initial guess is taken to be the zero vector, and the algorithms

are terminated when the number of iterations exceeds 105 or Res := ∥rk∥/∥r0∥ ≤ 10−6. We report

the number of outer iterations, the total number of iterations (for SPALBB, it includes the number

of inner iterations), the CPU time in seconds, and the final value of the relative residual, denoted by

“Oiter”, “Titer”, “CPU” and “Res”.

In SPALBB, we set Q = I, the stopping criterion (23) for inner iterations with δ = 0.5 and 2-norm,

and tried ω = 10−i with i = 1, 2, 3, 4, 5, denoted SPALBB(ω). We compared our method with

BICGSTAB and restarted GMRES. We tested two restart values: 20 and 50, denoted GMRES(20)

and GMRES(50).

Example 1. The steady-state Navier-Stokes equations are

−ν∇2u+ u · ∇u+∇p = h and divu = 0, z = (x, y) ∈ Ω, (44)

where Ω ⊆ R2 is a bounded domain, the vector field u represents the velocity in Ω, p represents

pressure, and ν > 0 is the kinematic viscosity. The test problem is a model of the flow in a square

cavity Ω = (−1, 1)× (−1, 1) with the lid moving from left to right. A Dirichlet no-flow (zero velocity)

condition is applied on the side and bottom boundaries, and the nonzero horizontal velocity on the lid

is {y = 1;−1 ≤ x ≤ 1 | ux = 1− x4}.
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Finite element discretization of (44) results in system (1) with G = νG1 + G2. Here G1 is SPD

and consists of a set of uncouple discrete Laplace operators, corresponding to diffusion, and G2 is

a discrete convection operator and is unsymmetric. Evidently, G becomes more unsymmetric as ν

decreases. Various methods have been developed for solving (44). However, the convergence rates of

some approaches deteriorate as ν decreases [22]. Thus, for (44), we test three small viscosity values of

ν: 0.005, 0.01, 0.05.

Example 1 is a classical test problem used in fluid dynamics, known as driven-cavity flow. We

discretize (44) using Picard iterations and the Q2–Q1 mixed finite element approximation [23] on

uniform grids with grid parameter h = 2−6, 2−7, 2−8, 2−9. This discrete process can be accomplished

by the IFISS software package [23, 46]. In this example, G is UPD and B is rank-deficient with rank

m− 1. Thus, the matrix in (1) is singular. The numerical results are reported in Tables 1 to 3 and in

the left-hand plots of Figure 1, where “-” means that the method failed to solve the problem and bold

face indicates that the method performs best in terms of CPU time. It can be seen from Tables 1 to 3

that the CPU time of all tested methods increases as ν decreases, and BICGSTAB and SPALBB(1)

fail when h = 2−9 for ν = 0.005. The CPU time of SPALBB with ω ≤ 10−2 is about half that of

GMRES, and the best cases of SPALBB are only a third of GMRES for h = 2−9. The number of outer

iterations of SPALBB decreases with ω, which is consistent with Remark 2.1. Nevertheless, the total

number of iterations is not the least for ω = 10−5.

Table 1: Numerical results for Example 1 with ν = 0.005

h(n,m) 2−6 (n = 8, 450,m = 1, 089) 2−7 (n = 33, 282,m = 4, 225)

Oiter Titer CPU RES Oiter Titer CPU RES

BICGSTAB 6665.5 2.28 9.83E−07 14211.5 22.75 8.95E−07
GMRES(20) 4221 2.55 9.99E−07 7735 16.86 9.99E−07
GMRES(50) 4040 4.64 9.99E−07 7162 27.94 1.00E−06
SPALBB(1) 1594 6765 1.231.231.23 9.97E−07 22057 50212 42.16 9.93E−07
SPALBB(2) 51 16705 2.83 9.98E−07 243 18537 15.4215.4215.42 9.83E−07
SPALBB(3) 17 18762 3.18 1.00E−06 27 24084 20.45 7.70E−07
SPALBB(4) 14 19036 3.22 9.99E−07 15 22801 18.78 1.00E−06
SPALBB(5) 14 24496 4.28 1.00E−06 14 35119 29.70 1.00E−06

h(n,m) 2−8 (n = 132, 098,m = 16, 641) 2−9 (n = 526, 338,m = 66, 049)

Oiter Titer CPU RES Oiter Titer CPU RES

BICGSTAB 39440.5 378.63 8.31E−07 - - -
GMRES(20) 15638 138.37 1.00E−06 37240 1563.36 1.00E−06
GMRES(50) 13265 179.20 1.00E−06 25858 1518.14 1.00E−06
SPALBB(1) 55401 77589 374.99 9.99E−07 - - - -
SPALBB(2) 2412 17982 85.9185.9185.91 1.00E−06 14384 38247 808.82 9.94E−07
SPALBB(3) 51 26095 127.44 1.00E−06 340 26085 539.99539.99539.99 9.69E−07
SPALBB(4) 17 28805 138.84 1.00E−06 23 36728 778.87 1.00E−06
SPALBB(5) 14 32707 165.62 1.00E−06 14 36635 783.08 1.00E−06

Example 2. We consider the steady-state Navier-Stokes equations (44), where the domain Ω is a

rectangular region (0, 8) × (−1, 1) generated by deleting the square (7/4, 9/4) × (−1/4, 1/4). This

test problem is a model of the flow in a rectangular channel with an obstacle. A Poiseuille profile is

imposed on the inflow boundary {x = 0;−1 ≤ y ≤ 1}, and a Dirichlet no-flow condition is imposed

on the obstruction and on the top and bottom walls. A Neumann condition is applied at the outflow

boundary that automatically sets the mean outflow pressure to zero.

In our tests, we set ν = 0.005, 0.01, 0.05 and discretize the Navier-Stokes equations (44) using

Picard iterations and the Q2–Q1 mixed finite element approximation [23] on uniform grids with grid

parameter h = 2−5, 2−6, 2−7, 2−8. This discretization was accomplished using IFISS [23, 46]. The

resulting matrices have G UPD and B full column rank. The numerical results are reported in Tables 4

to 6 and Figure 1. Tables 4 to 6 show that all choices of ω are successful in solving the tested

problems, and, in terms of CPU time, ω = 10−1 and 10−2 perform better than other choices. Although
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(f) ν = 0.05

Figure 1: Evolution of the relative residual of SPALBB tested on Example 1 (left) with n = 8450, m = 1089, and on
Example 2 (right) with n = 8416, m = 1096 and ω as in (7)

BICGSTAB requires the least CPU time for ν = 0.05, it fails for ν = 0.005 and ν = 0.01 with

h = 2−5, 2−8. The CPU time for every SPALBB test is less than for GMRES, and the best case of

SPALBB takes about half the time of GMRES. Overall, SPALBB is more stable and efficient.

Example 3. We consider the steady-state Navier-Stokes equations (44), where the domain Ω is a

rectangular region (−1, 5) × (−1, 1) generated by deleting (−1, 0) × (−1,−1/2) ∪ (−1, 0) × (1/2, 1).

This test problem is a model of the flow in a symmetric step channel. A Poiseuille flow profile is
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Table 2: Numerical results for Example 1 with ν = 0.01

h(n,m) 2−6 (n = 8, 450,m = 1, 089) 2−7 (n = 33, 282,m = 4, 225)

Oiter Titer CPU RES Oiter Titer CPU RES

BICGSTAB - - - 7211.5 11.63 9.90E−07
GMRES(20) 2453 1.60 9.98E−07 5127 10.15 9.99E−07
GMRES(50) 2237 2.63 9.98E−07 4422 14.82 1.00E−06
SPALBB(1) 1649 4803 0.870.870.87 9.96E−07 8611 17952 15.60 9.49E−07
SPALBB(2) 38 5475 0.91 1.00E−06 411 9982 8.26 1.00E−06
SPALBB(3) 16 6295 0.98 1.00E−06 22 8554 6.946.946.94 1.00E−06
SPALBB(4) 15 10835 1.76 1.00E−06 15 10388 8.35 1.00E−06
SPALBB(5) 15 17674 2.89 1.00E−06 15 24493 20.09 1.00E−06

h(n,m) 2−8 (n = 132, 098,m = 16, 641) 2−9 (n = 526, 338,m = 66, 049)

Oiter Titer CPU RES Oiter Titer CPU RES

BICGSTAB 17765.5 161.00 8.20E−07 29320 1024.60 1.46E−05
GMRES(20) 13579 113.90 1.00E−06 34224 1186.20 1.00E−06
GMRES(50) 9419 118.86 1.00E−06 22827 1140.94 1.00E−06
SPALBB(1) 25643 36571 165.72 9.99E−07 77225 87388 1632.85 9.94E−07
SPALBB(2) 2154 14993 67.21 1.00E−06 8277 31640 581.72 9.99E−07
SPALBB(3) 42 13434 60.3260.3260.32 9.99E−07 554 22207 402.99 1.00E−06
SPALBB(4) 16 14113 65.49 9.99E−07 22 21902 395.92 9.14E−07
SPALBB(5) 15 21503 101.01 1.00E−06 15 20219 369.43369.43369.43 1.00E−06

Table 3: Numerical results for Example 1 with ν = 0.05

h(n,m) 2−6 (n = 8, 450,m = 1, 089) 2−7 (n = 33, 282,m = 4, 225)

Oiter Titer CPU RES Oiter Titer CPU RES

BICGSTAB 917.5 0.33 9.32E−07 1648.5 2.72 9.61E−07
GMRES(20) 1508 0.94 9.96E−07 4507 9.58 9.98E−07
GMRES(50) 989 1.15 9.96E−07 2769 11.11 1.00E−06
SPALBB(1) 782 2947 0.54 9.96E−07 3142 9527 7.89 1.00E−06
SPALBB(2) 79 1952 0.34 9.95E−07 300 4762 3.84 9.98E−07
SPALBB(3) 19 1729 0.280.280.28 9.97E−07 36 3272 2.692.692.69 6.68E−07
SPALBB(4) 17 4261 0.67 9.98E−07 15 3878 3.21 9.95E−07
SPALBB(5) 17 5252 0.86 1.00E−06 16 8563 7.24 9.97E−07

h(n,m) 2−8 (n = 132, 098,m = 16, 641) 2−9 (n = 526, 338,m = 66, 049)

Oiter Titer CPU RES Oiter Titer CPU RES

BICGSTAB 3253.5 30.99 8.58E−07 6277.5 252.29 9.54E−07
GMRES(20) 11071 99.96 1.00E−06 21205 797.99 1.00E−06
GMRES(50) 7775 104.78 1.00E−06 18460 1048.97 1.00E−06
SPALBB(1) 10731 30596 141.61 9.99E−07 - - - -
SPALBB(2) 1005 13335 62.92 1.00E−06 3330 34174 700.69 9.99E−07
SPALBB(3) 100 7869 36.87 9.99E−07 339 21075 433.98 1.00E−06
SPALBB(4) 19 5156 24.6424.6424.64 7.36E−07 37 10542 216.78216.78216.78 9.99E−07
SPALBB(5) 17 12476 60.19 9.99E−07 16 11154 231.77 9.99E−07

imposed on the inflow boundary {x = −1;−1/2 ≤ y ≤ 1/2}, and a Dirichlet no-flow condition is

imposed on the top and bottom walls and the boundaries of deleted parts. A Neumann condition is

applied at the outflow boundary that sets the mean outflow pressure to zero.

The discretization of the Navier-Stokes equations (44) is done as in Example 2 with the same

setting. In this example, G is UPD and B has full column rank. The numerical results are reported

in Tables 7 to 9 and in the left-hand plots of Figure 2. As in Example 2, all choices of ω solve the

problems successfully, and BICGSTAB performs best in the case of ν = 0.05. Except for ν = 0.05 and

ν = 0.01 with h = 2−6, SPALBB requires the least CPU time. Hence, Tables 7 to 9 still demonstrate

the efficiency of SPALBB.



Les Cahiers du GERAD G–2024–30 19

Table 4: Numerical results for Example 2 with ν = 0.005

h(n,m) 2−5 (n = 8, 416,m = 1, 096) 2−6 (n = 32, 960,m = 4, 208)

Oiter Titer CPU RES Oiter Titer CPU RES

BICGSTAB - - - - - -
GMRES(20) 6319 3.60 9.99E−07 11462 25.25 9.99E−07
GMRES(50) 5540 6.10 9.98E−07 11386 42.46 1.00E−06
SPALBB(1) 632 17567 2.782.782.78 1.00E−06 2211 16590 12.8812.8812.88 1.00E−06
SPALBB(2) 110 29351 4.95 1.00E−06 330 34576 27.70 9.99E−07
SPALBB(3) 30 29332 4.64 1.00E−06 61 34000 26.83 8.13E−07
SPALBB(4) 18 34374 5.25 1.00E−06 20 34842 27.95 9.99E−07
SPALBB(5) 18 40951 6.20 1.00E−06 17 44791 36.40 1.00E−06

h(n,m) 2−7 (n = 130, 432,m = 16, 480) 2−8 (n = 518, 912,m = 65, 216)

Oiter Titer CPU RES Oiter Titer CPU RES

BICGSTAB - - - - - -
GMRES(20) 20442 173.54 1.00E−06 39863 1385.75 1.00E−06
GMRES(50) 20511 276.89 1.00E−06 38382 2019.57 1.00E−06
SPALBB(1) 9013 23219 102.78102.78102.78 1.00E−06 43791 61073 1155.48 1.00E−06
SPALBB(2) 917 46379 211.82 9.97E−07 2765 35310 651.49651.49651.49 1.00E−06
SPALBB(3) 135 44805 214.76 1.00E−06 361 60088 1099.24 1.00E−06
SPALBB(4) 32 46194 221.46 9.10E−07 65 59081 1080.07 8.08E−07
SPALBB(5) 16 52684 255.82 1.00E−06 19 57737 1064.29 1.00E−06

Table 5: Numerical results for Example 2 with ν = 0.01

h(n,m) 2−5 (n = 8, 416,m = 1, 096) 2−6 (n = 32, 960,m = 4, 208)

Oiter Titer CPU RES Oiter Titer CPU RES

BICGSTAB - - - 5336 7.877.877.87 9.89E−07
GMRES(20) 5145 2.98 9.99E−07 9162 18.05 1.00E−06
GMRES(50) 4904 5.59 1.00E−06 9446 37.68 1.00E−06
SPALBB(1) 604 10445 1.541.541.54 9.99E−07 2455 10813 8.26 9.99E−07
SPALBB(2) 108 13769 2.06 9.42E−07 294 20425 15.79 9.77E−07
SPALBB(3) 30 14084 2.95 6.63E−07 57 19994 14.99 9.99E−07
SPALBB(4) 18 16042 2.50 9.98E−07 20 21636 16.45 7.17E−07
SPALBB(5) 18 18160 2.75 1.00E−06 17 26448 20.12 1.00E−06

h(n,m) 2−7 (n = 130, 432,m = 16, 480) 2−8 (n = 518, 912,m = 65, 216)

Oiter Titer CPU RES Oiter Titer CPU RES

BICGSTAB 11686.5 104.74 7.60E−07 - - -
GMRES(20) 17521 151.67 1.00E−06 34452 1190.29 1.00E−06
GMRES(50) 17430 237.68 1.00E−06 33304 1629.56 1.00E−06
SPALBB(1) 8001 17667 79.7179.7179.71 9.98E−07 30579 43828 851.71 9.99E−07
SPALBB(2) 818 26085 115.24 1.00E−06 2576 28375 496.34496.34496.34 1.00E−06
SPALBB(3) 138 29649 143.63 9.98E−07 308 40365 719.53 9.99E−07
SPALBB(4) 31 28824 133.78 6.90E−07 67 47090 870.44 9.64E−07
SPALBB(5) 17 40333 172.89 1.00E−06 20 48639 909.21 7.29E−07
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Table 6: Numerical results for Example 2 with ν = 0.05

h(n,m) 2−5 (n = 8, 416,m = 1, 096) 2−6 (n = 32, 960,m = 4, 208)

Oiter Titer CPU RES Oiter Titer CPU RES

BICGSTAB 1127.5 0.390.390.39 7.52E−07 2187.5 3.243.243.24 5.81E−07
GMRES(20) 2420 2.63 9.97E−07 5288 10.27 1.00E−06
GMRES(50) 2686 4.79 9.99E−07 5168 17.39 9.99E−07
SPALBB(1) 616 2780 0.47 9.92E−07 1877 6454 4.69 9.99E−07
SPALBB(2) 90 4043 0.59 9.98E−07 222 6876 4.96 9.96E−07
SPALBB(3) 28 3888 0.63 1.00E−06 47 6949 5.06 9.98E−07
SPALBB(4) 19 5246 0.79 9.97E−07 21 8136 6.06 1.00E−06
SPALBB(5) 18 5470 0.83 9.97E−07 18 9266 6.89 9.99E−07

h(n,m) 2−7 (n = 130, 432,m = 16, 480) 2−8 (n = 518, 912,m = 65, 216)

Oiter Titer CPU RES Oiter Titer CPU RES

BICGSTAB 4516.5 39.7739.7739.77 9.48E−07 9366.5 340.85340.85340.85 8.40E−07
GMRES(20) 10778 89.17 9.99E−07 20466 711.25 1.00E−06
GMRES(50) 10134 130.59 1.00E−06 18845 921.70 9.99E−07
SPALBB(1) 6815 19080 83.73 9.98E−07 22561 57886 1903.39 1.00E−06
SPALBB(2) 738 11894 53.23 9.96E−07 2657 29081 536.54 9.99E−07
SPALBB(3) 100 12759 57.35 9.98E−07 304 24471 451.52 1.00E−06
SPALBB(4) 28 13047 59.88 1.00E−06 48 23291 434.16 1.00E−06
SPALBB(5) 18 15504 71.03 1.00E−06 21 25483 469.27 9.98E−07

Table 7: Numerical results for Example 3 with ν = 0.005

h(n,m) 2−5 (n = 5, 890,m = 769) 2−6 (n = 23, 042,m = 2, 945)

Oiter Titer CPU RES Oiter Titer CPU RES

BICGSTAB - - - - - -
GMRES(20) 5662 2.23 9.98E−07 12340 17.73 1.00E−06
GMRES(50) 3918 3.01 1.00E−06 10459 26.94 9.99E−07
SPALBB(1) 510 10007 0.960.960.96 9.96E−07 2392 13447 6.736.736.73 9.99E−07
SPALBB(2) 99 26993 2.44 9.44E−07 322 36764 17.71 1.00E−06
SPALBB(3) 23 21194 1.92 1.00E−06 54 29542 14.58 9.39E−07
SPALBB(4) 17 34776 3.20 1.00E−06 20 36454 18.04 1.00E−06
SPALBB(5) 18 43570 3.94 1.00E−06 17 47559 23.47 1.00E−06

h(n,m) 2−7 (n = 91, 138,m = 11, 521) 2−8 (n = 362, 498,m = 45, 569)

Oiter Titer CPU RES Oiter Titer CPU RES

BICGSTAB - - - - - -
GMRES(20) 21340 119.38 1.00E−06 41829 954.23 1.00E−06
GMRES(50) 22164 196.79 9.99E−07 41230 1409.32 1.00E−06
SPALBB(1) 9838 20630 50.4150.4150.41 9.97E−07 44486 63899 834.13 1.00E−06
SPALBB(2) 799 41186 103.26 9.99E−07 3052 37812 490.00490.00490.00 9.97E−07
SPALBB(3) 152 51307 133.36 6.43E−07 429 72440 930.67 9.88E−07
SPALBB(4) 25 33030 86.80 1.00E−06 56 51184 667.27 9.53E−07
SPALBB(5) 16 51574 139.75 1.00E−06 16 54033 707.80 1.00E−06
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Table 8: Numerical results for Example 3 with ν = 0.01

h(n,m) 2−5 (n = 5, 890,m = 769) 2−6 (n = 23, 042,m = 2, 945)

Oiter Titer CPU RES Oiter Titer CPU RES

BICGSTAB - - - 4746.5 4.534.534.53 9.85E−07
GMRES(20) 5518 2.17 1.00E−06 10529 14.70 1.00E−06
GMRES(50) 3782 2.87 1.00E−06 9379 26.42 1.00E−06
SPALBB(1) 584 8002 0.730.730.73 9.96E−07 2340 9722 4.70 1.00E−06
SPALBB(2) 106 12810 1.15 9.99E−07 297 20437 9.54 8.66E−07
SPALBB(3) 24 10581 0.91 4.68E−07 53 17322 8.02 9.98E−07
SPALBB(4) 17 16101 1.42 9.99E−07 18 18021 8.45 9.99E−07
SPALBB(5) 18 19627 1.75 1.00E−06 17 26925 13.12 1.00E−06

h(n,m) 2−7 (n = 91, 138,m = 11, 521) 2−8 (n = 362, 498,m = 45, 569)

Oiter Titer CPU RES Oiter Titer CPU RES

BICGSTAB 9904.5 48.44 9.99E−07 - - -
GMRES(20) 19010 104.40 9.99E−07 37453 841.47 1.00E−06
GMRES(50) 19738 187.88 1.00E−06 37074 1319.69 1.00E−06
SPALBB(1) 9286 19210 45.6545.6545.65 9.98E−07 34222 47839 825.49 9.97E−07
SPALBB(2) 781 24365 61.89 1.00E−06 3013 28458 343.04343.04343.04 1.00E−06
SPALBB(3) 145 29784 77.31 9.74E−07 375 46354 557.08 9.99E−07
SPALBB(4) 25 23353 62.19 9.23E−07 60 41959 500.22 9.99E−07
SPALBB(5) 16 39604 103.42 1.00E−06 17 41434 507.15 1.00E−06

Table 9: Numerical results for Example 3 with ν = 0.05

h(n,m) 2−5 (n = 5, 890,m = 769) 2−6 (n = 23, 042,m = 2, 945)

Oiter Titer CPU RES Oiter Titer CPU RES

BICGSTAB 914.5 0.220.220.22 8.68E−07 1888.5 1.891.891.89 2.44E−07
GMRES(20) 3139 1.35 9.98E−07 6106 8.44 9.99E−07
GMRES(50) 2808 2.14 9.99E−07 6467 16.24 9.99E−07
SPALBB(1) 427 2487 0.27 9.81E−07 1449 5128 2.32 1.00E−06
SPALBB(2) 81 3657 0.33 8.61E−07 196 6386 3.11 9.99E−07
SPALBB(3) 24 4135 0.37 1.00E−06 45 7116 3.23 7.23E−07
SPALBB(4) 19 6332 0.59 1.00E−06 19 8819 4.27 9.98E−07
SPALBB(5) 18 7035 0.65 9.98E−07 18 11447 5.33 1.00E−06

h(n,m) 2−7 (n = 91, 138,m = 11, 521) 2−8 (n = 362, 498,m = 45, 569)

Oiter Titer CPU RES Oiter Titer CPU RES

BICGSTAB 3811.5 18.2918.2918.29 6.50E−07 8153.5 194.33194.33194.33 8.93E−07
GMRES(20) 12413 64.26 9.99E−07 23112 526.24 1.00E−06
GMRES(50) 11779 99.11 9.99E−07 21620 1401.43 1.00E−06
SPALBB(1) 4898 13457 30.89 9.98E−07 15210 36389 441.11 9.99E−07
SPALBB(2) 542 9821 22.50 9.97E−07 1601 21727 264.76 1.00E−06
SPALBB(3) 101 12949 30.46 9.98E−07 250 21972 267.31 1.00E−06
SPALBB(4) 27 13639 33.74 6.40E−07 46 22431 274.17 9.98E−07
SPALBB(5) 18 17621 44.04 9.99E−07 19 26577 328.06 1.00E−06
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(f) ν = 0.05

Figure 2: Evolution of the relative residual of SPALBB tested on Example 3 (left) with n = 5890, m = 769, and on
Example 4 with n = 12675, m = 1089 and ω as in (7)

Example 4. Fluid flow in Ωf ⊂ R2 coupled with porous media flow in Ωp ⊂ R2 is governed by the

static Stokes equations

−ν∆uf +∇ pf = f , and divuf = 0, z ∈ Ωf , (45)

where Ωf ∩ Ωp = ∅ and Ωf ∩ Ωp = Γ with Γ being an interface, ν > 0 is the kinematic viscosity, and

f is the external force. In the porous media region, the governing variable is ϕ =
pp

ρfg
, where pp is the
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pressure in Ωp, ρf is the fluid density, and g is the acceleration due to gravity. The velocity up of the

porous media flow is related to ϕ via Darcy’s law and is also divergence free:

up = − ϵ2

rν
∇ϕ and − divup = 0, z ∈ Ωp, (46)

where r is the volumetric porosity and ϵ the characteristic length of the porous media.

In our numerical experiments, the computational domain is Ωf = (0, 1) × (1, 2), Ωp = (0, 1) ×
(0, 1) and the interface is Γ = (0, 1) × {1}. We use a uniform mesh with grid parameters h =

2−5, 2−6, 2−7, 2−8 to decompose Ωf , P2–P1 elements in the fluid region, and P2 Lagrange elements in

the porous media region. We set r = 1 and ϵ =
√
0.1ν, and again test ν = 0.005, 0.01, 0.05. Applying

finite element discretization to the mixed Stokes-Darcy model (45)–(46) with the Dirichlet no-flow

boundary conditions leads to linear systems of form (1) with G =

(
G11 G12

−GT
12 νG22

)
[13]. Here G is

UPD and B has full column rank. The numerical results are reported in Tables 10 to 12 and Figure 2.

According to Tables 10 to 12, all methods again perform better for larger ν, and BICGSTAB requires

the least CPU time in most cases, while SPALBB is more competitive for smaller ν. For Example 4,

SPALBB prefers smaller ω, such as ω = 10−5.

Table 10: Numerical results for Example 4 with ν = 0.005

h(n,m) 2−5 (n = 12, 675,m = 1, 089) 2−6 (n = 49, 923,m = 4, 225)

Oiter Titer CPU RES Oiter Titer CPU RES

BICGSTAB 3286.5 0.960.960.96 9.25E−07 7366.5 9.22 9.90E−07
GMRES(20) 7668 5.25 1.00E−06 21422 50.66 1.00E−06
GMRES(50) 6373 8.74 1.00E−06 15042 66.02 1.00E−06
SPALBB(1) 2048 9709 2.51 9.99E−07 6972 29955 56.13 1.00E−06
SPALBB(2) 230 7387 1.13 9.98E−07 740 15065 13.15 9.98E−07
SPALBB(3) 38 7709 1.08 9.98E−07 91 14640 9.56 1.00E−06
SPALBB(4) 18 8204 1.13 9.99E−07 23 13798 8.608.608.60 1.00E−06
SPALBB(5) 18 11310 1.77 9.99E−07 18 25189 15.77 1.00E−06

h(n,m) 2−7 (n = 198, 147,m = 16, 641) 2−8 (n = 789, 507,m = 66, 049)

Oiter Titer CPU RES Oiter Titer CPU RES

BICGSTAB 15174.5 107.22107.22107.22 8.93E−07 32027.5 829.92 9.79E−07
GMRES(20) 47298 450.74 1.00E−06 109310 4099.15 1.00E−06
GMRES(50) 40626 605.13 1.00E−06 81406 5300.94 1.00E−06
SPALBB(1) 23244 94747 1623.05 1.00E−06 - - - -
SPALBB(2) 2442 43102 305.56 1.00E−06 - - - -
SPALBB(3) 272 30164 132.12 1.00E−06 815 66624 1503.82 9.99E−07
SPALBB(4) 42 27889 113.17 9.99E−07 98 56613 907.24 9.99E−07
SPALBB(5) 18 33198 138.39 1.00E−06 24 47077 717.58717.58717.58 1.00E−06

In conclusion, Tables 1 to 12 and Figures 1 and 2 illustrate that SPALBB is a practical method, and

its advantages increase with problem size. SPALBB and GMRES are more robust than BICGSTAB.

Unlike GMRES, SPALBB has constant storage. In terms of CPU time, SPALBB is more efficient than

GMRES. We see from Tables 1 to 9 that the advantages of SPALBB are more obvious for smaller ν,

i.e., more unsymmetric G. Figures 1 and 2 indicate that the convergence rate of SPALBB depends

strongly on ω. For larger ω, the nonmonotonicity of ∥rk∥ in SPALBB becomes more pronounced. The

strong nonmonotone behavior is similar to the BB method [40].
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Table 11: Numerical results for Example 4 with ν = 0.01

h(n,m) 2−5 (n = 12, 675,m = 1, 089) 2−6 (n = 49, 923,m = 4, 225)

Oiter Titer CPU RES Oiter Titer CPU RES

BICGSTAB 2485.5 0.660.660.66 9.88E−07 4888.5 5.275.275.27 9.95E−07
GMRES(20) 5717 3.44 9.99E−07 14398 29.13 9.99E−07
GMRES(50) 4276 5.27 1.00E−06 11608 47.31 1.00E−06
SPALBB(1) 2346 9426 2.59 9.99E−07 7762 30273 58.77 1.00E−06
SPALBB(2) 265 5132 0.78 9.99E−07 829 13805 12.72 1.00E−06
SPALBB(3) 43 5380 0.69 9.97E−07 104 11902 7.44 9.99E−07
SPALBB(4) 18 6560 0.85 9.98E−07 25 11578 7.05 9.99E−07
SPALBB(5) 18 9092 1.14 1.00E−06 18 17747 10.45 9.98E−07

h(n,m) 2−7 (n = 198, 147,m = 16, 641) 2−8 (n = 789, 507,m = 66, 049)

Oiter Titer CPU RES Oiter Titer CPU RES

BICGSTAB 10216 70.4170.4170.41 9.78E−07 20513.5 579.78579.78579.78 9.94E−07
GMRES(20) 33336 326.81 1.00E−06 58210 6339.92 1.00E−06
GMRES(50) 28362 438.14 1.00E−06 48116 3648.93 1.00E−06
SPALBB(1) 25411 97928 1769.82 1.00E−06 - - - -
SPALBB(2) 2680 42275 318.61 9.99E−07 - - - -
SPALBB(3) 295 23860 111.65 9.97E−07 877 61065 1477.52 9.98E−07
SPALBB(4) 46 22297 93.48 9.98E−07 109 43631 703.09 1.00E−06
SPALBB(5) 19 21946 92.28 1.00E−06 26 37877 583.34 9.99E−07

Table 12: Numerical results for Example 4 with ν = 0.05

h(n,m) 2−5 (n = 12, 675,m = 1, 089) 2−6 (n = 49, 923,m = 4, 225)

Oiter Titer CPU RES Oiter Titer CPU RES

BICGSTAB 883.5 0.220.220.22 9.94E−07 1738.5 1.571.571.57 9.55E−07
GMRES(20) 2589 2.22 9.98E−07 5115 9.27 9.99E−07
GMRES(50) 2509 3.85 1.00E−06 4542 16.25 1.00E−06
SPALBB(1) 3077 10839 2.94 9.97E−07 10033 35063 68.21 1.00E−06
SPALBB(2) 346 4649 0.70 9.99E−07 1090 14684 12.95 9.98E−07
SPALBB(3) 54 3899 0.46 9.98E−07 131 7892 4.30 9.94E−07
SPALBB(4) 21 3344 0.38 9.99E−07 29 6819 3.38 9.98E−07
SPALBB(5) 18 3263 0.37 9.97E−07 18 6022 2.95 1.00E−06

h(n,m) 2−7 (n = 198, 147,m = 16, 641) 2−8 (n = 789, 507,m = 66, 049)

Oiter Titer CPU RES Oiter Titer CPU RES

BICGSTAB 3512.5 23.2123.2123.21 9.92E−07 7305.5 230.70230.70230.70 9.72E−07
GMRES(20) 10545 107.69 1.00E−06 30657 1438.72 1.00E−06
GMRES(50) 8036 164.70 1.00E−06 14974 1230.40 1.00E−06
SPALBB(1) - - - - - - - -
SPALBB(2) 3464 46071 375.30 9.98E−07 - - - -
SPALBB(3) 373 21106 102.87 9.97E−07 1105 60707 1291.67 9.96E−07
SPALBB(4) 55 13647 56.56 9.99E−07 126 26414 469.18 1.00E−06
SPALBB(5) 20 11646 48.65 1.00E−06 28 21844 341.45 9.99E−07

5 Conclusions

We presented a theoretical and numerical study of the augmented Lagrangian (SPAL) algorithm and

its inexact version for solving unsymmetric saddle-point systems. Specifically, we used a gradient

method, known as the Barzilai-Borwein (BB) method, to solve the linear system in SPAL inexactly

and proposed the augmented Lagrangian BB (SPALBB) algorithm. The numerical results for SPALBB

presented are highly encouraging. SPALBB often requires the least CPU time, and, especially for larger

problems, its advantages are clear. Practical methods for choosing ω and Q to balance the inner and

outer iterations is a topic for future research.
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