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Abstract : The arithmetic-geometric index is a newly proposed degree-based graph invariant in
mathematical chemistry. We give a sharp upper bound on the value of this invariant for connected
chemical graphs of given order and size and characterize the connected chemical graphs that reach
the bound. We also prove that the removal of the constraint that extremal chemical graphs must be
connected does not allow to increase the upper bound.

Acknowledgements: The authors would like to thank Pierre Hauweele for his help.
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1 Introduction

In mathematical chemistry, and more specifically in chemical graph theory, topological indices are

values that characterize a graph representing a molecule. This value is correlated with some properties

of said molecule. One largely studied class of such indices is composed of degree-based invariants. A

well known example of these is the Randić index, proposed by Randić [14] in 1975. Following the

interest in this index, many others were later introduced. Of interest here is the arithmetic-geometric

index proposed in 2015 by Shegehalli and Kanabur [17]. Let G be a graph with edge set E and let

du and dv be the degrees of the endpoints of an edge uv ∈ E. The arithmetic-geometric index AG(G)

of G, is defined as

AG(G) =
∑
uv∈E

du + dv

2
√
dudv

.

The summand in the above formula is the ratio between the arithmetic and geometric means of du
and dv. If we replace each summand by its inverse, we obtain another graph invariant known as the

geometric-arithmetic index introduced in 2009 by Vukičević and Furtula [20] and studied for example

in [1, 2, 5, 15]. Several papers have focused on properties of the arithmetic-geometric index. For

example, Shegehalli and Kanabur [17, 18] give the value of this index for some families of graphs. Lower

bounds for graphs of fixed size (i.e., number of edges) are provided in [12, 16, 19], while an upper bound

for graphs with fixed size and order (i.e., number of vertices) is established in [19]. Upper bounds for

graphs of fixed size and fixed minimum and maximum degrees are given in [11, 12, 16]. The maximum

value of the arithmetic-geometric index of graphs of fixed order is known for unicyclic graphs [21],

bicyclic graphs [13], bipartite graphs and trees [19]. In addition, Vujošević et al. [19] have characterized

the chemical trees with maximum arithmetic-geometric index value. The relationship between the

arithmetic-geometric index and other topological indices is studied, for example in [3, 4, 8, 9, 11, 12, 16].

In this paper, we prove the following upper bound on the value of the arithmetic index of a connected

chemical graphs G of order n and size m:

AG(G) ≤ 2n+ 5m

6
+


0 if 2m− n ≡ 0 mod 3,
3√
2
− 13

6 if 2m− n ≡ 1 mod 3,
21
4
√
3
− 37

12 if 2m− n ≡ 2 mod 3.

We show that with the exception of 22 (n,m) pairs, the bound is sharp, and we characterize the

connected chemical graphs of order n and size m ≥ n − 1 that reach the bound. We also prove that

no better value can be obtained by removing the constraint that the graph must be connected. Note

that for m = n − 1, this gives a characterization of extremal chemical trees of fixed order n. While

such a characterization is given in [19], we show that their result is not valid for 7 values of n.

In the next section we fix some notations, while Section 3 is devoted to observations that will

motivate our characterization of connected chemical graphs with maximum arithmetic-geometric index

value. Lemmas are proved in Section 4 and then used in Section 5 to prove the main theorem.

2 Notations

For basic notions of graph theory that are not defined here, we refer to Diestel [7]. Let G = (V,E) be

a simple undirected graph. The order n = |V | of G is its number of vertices and the size m = |E| of
G is its number of edges. We write G ≃ H if G and H are isomorphic. The degree of v, denoted dv is

the number of edges incident to v, and we say that v is isolated if dv = 0.

A chemical graph is a graph whose vertices have degree at most 4. The arithmetic-geometric index

AG(G) of a graph G can be seen as a sum of costs on the edges of G. In particular, if we deal with

chemical graphs, there is a limited number of possible values for the costs since they are computed



Les Cahiers du GERAD G–2024–27 2

from the degrees of the endpoints of the edges. Let ci,j =
i+j
2
√
ij

be the cost of an edge with endpoints of

degree i and j. The 4× 4 cost matrix CAG associated with the arithmetic-geometric index of chemical

graphs is

CAG =


1 3

2
√
2

2√
3

5
4

3
2
√
2

1 5
2
√
6

3
2
√
2

2√
3

5
2
√
6

1 7
4
√
3

5
4

3
2
√
2

7
4
√
3

1

 ≈


1.0000 1.0607 1.1547 1.2500
1.0607 1.0000 1.0206 1.0607
1.1547 1.0206 1.0000 1.0104
1.2500 1.0607 1.0104 1.0000

 .

For a chemical graph G, let ni(G) (i = 0, . . . , 4) be the number of vertices of degree i and let

xi,j(G) (1 ≤ i ≤ j ≤ 4) be the number of edges with extremities of degrees i and j in G. Then, since

CAG is symmetric, we have

AG(G) =
∑

1≤i≤j≤4

ci,j xi,j(G).

In what follows, we say that a chemical graph G is extremal if AG(G) ≥ AG(G′) for all chemical

graphs G′ with the same order and the same size as G.

3 Preliminaries

We begin this section with the definition of a class of chemical graphs which, as we will see, contains

most of the extremal chemical graphs of order n and size m.

Definition 1. Gn,m is the set of chemical graphs of order n and size m, and such that n0(G) = 0,

n2(G) + n3(G) ≤ 1 and all edges have at least one endpoint of degree 4.

For example, using Nauty geng [10] or PHOEG [6] to enumerate all chemical graphs having order n

and size m, it can be observed that there is only one graph Gn,m in Gn,m for (n,m) = (5, 4), (6, 10),

(7, 7), (7, 9), (8, 9), (9, 8), (9, 9) and (11, 11), and there are two graphs in G12,11, one connected and

one non-connected (see also Table 3 at the end of the paper). These graphs are shown in Figure 1 and

they were chosen because they will appear in the proofs of the next sections.

G7,7 G8,9 G9,9

  the only graph 

in    6,10

G6,10

  the only graph 

in    7,7

  the only graph 

in    8,9

  the only connected

  graph in    12,11

  the only non-connected

graph in    12,11

  the only graph 

in    9,9

G11,11

  the only graph 

in    11,11

G7,9

  the only graph 

in    7,9

G9,8

  the only graph 

in    9,8

G5,4

  the only graph 

in    5,4

Figure 1: Examples of graphs in Gn,m for some pairs (n,m).

If all edges of a chemical graph G have at least one endpoint of degree 4, then AG(G) = c1,4n1(G)+

2c2,4n2(G)+3c3,4n3(G)+ (m−n1(G)−2n2(G)−3n3(G)) and since 2m = n1(G)+2n2(G)+3n3(G)+

4n4(G), we have

AG(G) =c1,4n1(G) + 2c2,4n2(G) + 3c3,4n3(G) + 4n4(G)−m

=c1,4n1(G) + 2c2,4n2(G) + 3c3,4n3(G) + 4n4(G)

− 1
2 (n1(G) + 2n2(G) + 3n3(G) + 4n4(G))

= 3
4n1(G) + ( 3√

2
− 1)n2(G) + ( 21

4
√
3
− 3

2 )n3(G) + 2n4(G).

For a pair (n,m) of integers, let Tn,m be the set of quadruplets (t1, t2, t3, t4) of positive integers such

that
∑4

i=1 ti = n and
∑4

i=1 iti = 2m. Hence, we have 2m − n = t2 + 2t3 + 3t4. Note that T1,0 = ∅
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since
∑4

i=1 ti ≤
∑4

i=1 iti. For (t1, t2, t3, t4) ∈ Tn,m, let f(t1, t2, t3, t4) be defined as

f(t1, t2, t3, t4) =
3
4 t1 + ( 3√

2
− 1)t2 + ( 21

4
√
3
− 3

2 )t3 + 2t4.

Clearly, if G is a chemical graph of order n and size m, with no isolated vertex and in which all edges

have at least one endpoint of degree 4, then (n1(G), n2(G), n3(G), n4(G)) belongs to Tn,m and we have

observed above that

AG(G) = f(n1(G), n2(G), n3(G), n4(G)).

Let (t1, t2, t3, t4) be a quadruplet in Tn,m with t2 + t3 ≤ 1:

• if t2 = 1 then t3 = 0, which means that 2m − n = 3t4 + 1 and 2m = t1 + 2 + 4(n − t1 − 1), or

equivalently, t1 = 4n−2m−2
3 ;

• if t3 = 1 then t2 = 0, which means that 2m − n = 3t4 + 2 and 2m = t1 + 3 + 4(n − t1 − 1), or

equivalently, t1 = 4n−2m−1
3 ;

• if t2 = t3 = 0, then 2m− n = 3t4 and 2m = t1 + 4(n− t1), or equivalently, t1 = 4n−2m
3 .

Hence in all cases, we deduce the following property.

Property 1. If (t1, t2, t3, t4) is a quadruplet in Tn,m with t2 + t3 ≤ 1, then

• t1 = ⌊ 4n−2m
3 ⌋

• t2 =

{
1 if 2m− n ≡ 1 mod 3
0 otherwise

• t3 =

{
1 if 2m− n ≡ 2 mod 3
0 otherwise

• t4 = ⌊ 2m−n
3 ⌋.

Corollary 1. There is at most one quadruplet (t1, t2, t3, t4) in Tn,m with t2 + t3 ≤ 1.

Corollary 2. If G is a graph in Gn,m, then the quadruplet (t1, t2, t3, t4) = (n1(G), n2(G), n3(G), n4(G))

is the unique one in Tn,m with t2 + t3 ≤ 1.

Proof. Let G be a graph in Gn,m. Then
∑4

i=1 ni(G) = n and
∑4

i=1 ini(G) = 2m, which means that

(t1, t2, t3, t4) = (n1(G), n2(G), n3(G), n4(G)) is a quadruplet in Tn,m with t2 + t3 ≤ 1. By Corollary 1,

it is unique.

Some connected extremal chemical graphs have all edges with at least one endpoint of degree 4,

but have n0(G) > 0 or n2(G) + n3(G) > 1. Seven examples are shown in Figure 2 and we will prove

that there are no other ones.

H5,7 H5,9 H6,7 H7,8 H8,8H6,9H1,0

Figure 2: Seven connected extremal chemical graphs with all edges having at least one endpoint of degree 4 and with
n0(G) > 0 or n2(G) + n3(G) > 1.

Also, some connected extremal chemical graphs have at least one edge with no endpoint of degree 4.

Fifteen examples are shown in Figure 3 and we will prove that there are no other ones.

For each pair (n,m) such that Hn,m appears in Figures 2 or 3, we can enumerate all chemical

graphs having order n and size m, using again Nauty geng [10] or PHOEG [6]. Table 1 gives the

number of such graphs and it is therefore easy to verify that the following property holds.

Property 2. The 22 graphs in Figures 2 and 3 are the only extremal graphs of their order and size.
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H3,3H3,2H2,1 H4,4 H4,5 H5,5 H5,6H4,6

H6,6 H6,8 H10,9H6,5 H7,6

H4,3 H5,8

Figure 3: Fifteen connected extremal chemical graphs with at least one edge having no endpoint of degree 4.

Table 1: Number N of chemical graphs for some orders n and sizes m.

n 1 2 3 3 4 4 4 4 5 5 5 5 5 6 6 6 6 6 7 7 8 10
m 0 1 2 3 3 4 5 6 5 6 7 8 9 5 6 7 8 9 6 8 8 9
N 1 1 1 1 3 2 1 1 6 6 4 2 1 14 20 22 20 15 38 82 188 883

The next property relates quadruplets in Tn,m with connected graphs in Gn,m. Note that a con-

nected chemical graph of order n has m edges, with n− 1 ≤ m ≤ min{2n, n(n−1)
2 }.

Property 3. Let n and m be two positive integers such that n− 1 ≤ m ≤ min{2n, n(n−1)
2 } and (n,m)

is not one of the 22 pairs for which there is a graph Hn,m in Figures 2 or 3. If (t1, t2, t3, t4) ∈ Tn,m

and t2 + t3 ≤ 1, then Gn,m contains at least one connected graph G with ni(G) = ti (i = 1, 2, 3, 4).

Proof. Consider a pair (n,m) of positive integers such that n − 1 ≤ m ≤ min{2n, n(n−1)
2 } and let

(t1, t2, t3, t4) be any quadruplet in Tn,m. Note that n ≥ 2 since T1,0 = ∅. According to Property 1 and

Corollary 2, a graph in Gn,m with ni(G) = ti (i = 1, 2, 3, 4) must have

• n1(G) = ⌊ 4n−2m
3 ⌋

• n2(G) =

{
1 if 2m− n ≡ 1 mod 3
0 otherwise

• n3(G) =

{
1 if 2m− n ≡ 2 mod 3
0 otherwise

• n4(G) = ⌊ 2m−n
3 ⌋.

Moreover, in order to impose that all edges in G have at least one endpoint of degree 4, we must have

• x1,1(G) = x1,2(G) = x1,3(G) = x2,2(G) = x2,3(G) = x3,3(G) = 0,

• x1,4(G)=n1(G), x2,4(G)=2n2(G), x3,4(G)=3n3(G), x4,4(G)=m−n1(G)−2n2(G)−3n3(G).

The following algorithm builds such a connected graph G, where Vi (i = 1, . . . , 4) is the set of vertices

of degree i in G. It is illustrated in Figure 4.

1. Start from a graph of order n and size 0. Put ni(G) vertices in Vi, i = 1, . . . , 4;

2. if 2m− n ≡ 1 mod 3 then connect the vertex in V2 to 2 vertices in V4;

3. if 2m− n ≡ 2 mod 3 then connect the vertex in V3 to 3 vertices in V4;

4. add n4(G)−n2(G)−2n3(G)−1 edges that link pairs of vertices in V4 so that the graph induced

by V2 ∪ V3 ∪ V4 is a tree;

5. add m − n1(G) − n2(G) − n3(G) − n4(G) + 1 edges that link pairs of vertices in V4 so that no

vertex in V4 is incident to more than 4 edges;

6. add edges linking each vertex of V1 to a vertex of V4 so that every vertex in V4 has degree 4.

Steps 2 and 3 add the required number of edges with one endpoint of degree 4 and the other of

degree 2 or 3, and Step 6 adds the required number of edges with one endpoint of degree 4 and the
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other of degree 1. Step 4 adds n4(G)−n2(G)−2n3(G)−1 edges linking pairs of vertices in V4, while

Step 5 adds m − n1(G) − n2(G) − n3(G) − n4(G) + 1 such edges. In total we will therefore have

m − n1(G) − 2n2(G) − 3n3(G) edges linking pairs of vertices of V4, which is the required number of

edges with both endpoints of degree 4. It remains to prove that such a construction is always possible.

For this purpose, the following constraints must be satisfied :

• 2n2(G) ≤ n4(G) and 3n3(G) ≤ n4(G) to ensure that Steps 2 and 3 can be performed;

• m−n1(G)−2n2(G)−3n3(G) ≤ n4(G)(n4(G)−1)
2 to avoid creating parallel edges in Steps 4 and 5;

• n1(G) ≤ 4n4(G), to ensure that Step 6 can be performed.

It is easy to check that these conditions are satisfied for all pairs (n,m) with n ≤ 13 and n− 1 ≤
m ≤ min{2n, n(n−1)

2 }, except for the 22 pairs for which we have a graph Hn,m in Figures 2 or 3. So

assume n ≥ 14. We then have

• n4(G) ≥ 2m−n−2
3 ≥ n−4

3 > 3 ≥ max{2n2(G), 3n3(G)} (since n1(G) + n2(G) ≤ 1).

• n4(G)(n4(G)−1)

2
−x4,4(G) ≥1

2

(
2m−n−2

3

(
2m−n−2

3
−1

))

−
(
m−4n−2m−2

3

)
=
4m(m− n− 11) + n2 + 31n− 2

18

≥4(n−1)(n−1−n−11)+n2+31n−2

18

=
n2 − 17n+ 46

18
> 0.

• 4n4(G)− n1(G) ≥ 4(2m−n)
3 − 4n−2m+2

3 = 10m−8n−2
3 ≥ 10(n−1)−8n−2

3 = 2n
3 − 4 > 0.

In summary, G has the right number of edges of each type and thanks to Step 4, it is connected.

The algorithm in the above proof is illustrated in Figure 4 for n = m = 17. In such a case, we

have n1(G) = 11, n2(G) = 0, n3(G) = 1, n4(G) = 5 and x4,4(G) = 3. In Step 1, we have represented

the vertices of V1 with the white color, while the vertex in V3 is grey and the vertices in V4 are black.

Step 3 links the grey vertex to 3 black vertices. Step 4 adds 2 edges between black vertices. Step 5

adds the last edge between two black vertices and Step 6 adds the edges between the white and the

black vertices. Notice that Step 4 was crucial to obtain a connected graph. Indeed another set of 3

edges linking black vertices could have produced a non-connected graph in Gn,m as illustrated at the

bottom right of Figure 4.

Step 1
Step 3 Step 4

Step 5 Step 6 a non-connected graph in

Figure 4: Illustration of the algorithm in the proof of Theorem 1.

The main objective of this paper is to prove the following theorem.

Theorem 1. Let G be a connected chemical graph of order n and size m. If G is extremal, then either

G is one of the 22 graphs Hn,m of Figures 2 and 3, or G belongs to Gn,m.

To prove this theorem, we need some tools which are given in the next section.
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4 Tools

Lemma 1. Let G be a connected extremal chemical graph. Assume that G has a vertex u of degree 2

where v and w are its two neighbors.

(a) If v and w are nonadjacent, then none of them has degree 3.

(b) If v and w are adjacent, dv≥3 and dw≤3, then no vertex nonadjacent to w has degree 2 or 3.

Proof.

(a) Assume that v and w are nonadjacent, and that one of them, say v, has degree 3. Let G′ be the

graph obtained from G by replacing uw with vw. Then, with i = du and j = dx, where x is any

neighbor of v other than u, we have

AG(G′)−AG(G) ≥ c1,4 − c2,3 + min
i=1,...4

(c4,i − c2,i) + 2 min
j=1,...4

(c4,j−c3,j)

≈ 0.1479 > 0.

(b) Assume that v and w are adjacent with dv ≥ 3 and dw ≤ 3, and let x be a vertex nonadjacent to

w such that dx = 2 or 3. Let G′ be the graph obtained from G by replacing uw with xw. Then,

with i = dv, j = dw, k = dx and ℓ = dy, where y is any neighbor of x, we have
AG(G′)−AG(G) ≥ min

i=3,4
(c1,i − c2,i)

+ min
k=2,3

(
min
j=2,3

(cj,k+1−cj,2)+k min
ℓ=1,...,4

(cℓ,k+1−cℓ,k)

)
≈ 0.0128 > 0.

In both cases, G′ is connected and AG(G′) > AG(G), which means that G is not an extremal, connected

chemical graph, a contradiction.

Lemma 2. A connected extremal chemical graph does not contain a chain v1, v2, . . . , vr as partial

subgraph with v1 nonadjacent to vr−1 and v2 nonadjacent to vr in G and with dv1 < dvr
, dv2 ≤ 3, and

dvr−1
= 4.

Proof. Let G′ be the graph obtained from G by replacing the edges v1, v2 and vr−1, vr by v1, vr−1 and

v2, vr. Then, with dv1 = i, dv2 = j and dvr = k, we have

AG(G′)− AG(G) ≥ min
i=1,2,3

min
j=2,3

min
k=i+1,...,4

(ci,4 + cj,k − ci,j − c4,k) ≈ 0.0207 > 0.

Since G′ is connected and AG(G′) > AG(G), this means that G is not an extremal, connected chemical

graph, a contradiction.

The next lemmas have a label (i, j) with i < j to indicate that they state that a connected extremal

chemical graph G has xi,j(G) = 0, with a few exceptions.

Lemma (1,1). The only connected extremal chemical graph G with x1,1(G) > 0 is H2,1.

Proof. Let G be a connected extremal chemical graph with two adjacent vertices of degree 1. Since

G is connected, it does not contain any other vertex, which means that G ≃ H2,1.

Lemma (2,2). The only connected extremal chemical graphs G with

x2,2(G)>0 are H3,3, H4,4 and H5,5.

Proof. Let u and v be two adjacent vertices of degree 2 in a connected extremal chemical graph G.
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• Assume that u and v have a common neighbor w. If w has degree 2, then G ≃ H3,3. So suppose

w has degree at least 3. We know from Lemma 1(b) that all other vertices in the graph have

degree 1 or 4. If they have all degree 1, then G ≃ H4,4 (if w has degree 3) or G ≃ H5,5 (if w has

degree 4). So assume w is adjacent to a vertex x of degree 4. If x is adjacent to a vertex y ̸= w

of degree 4, then Lemma 2 with the partial chain u, v, w, x, y contradicts the fact that G is a

connected extremal chemical graph. Hence, all neighbors y ̸= w of x have degree 1. Similarly, if

w has a second neighbor z of degree 4, then all neighbors of z, except w, have degree 1. There

are therefore only three possible cases:

– if w has degree 3 then AG(G) ≈ 7.80 < 8.12 ≈ AG(G7,7) (see Figure 1);

– if w has degree 4 and a neighbor of degree 1, then AG(G) ≈ 9.12 < 9.24 ≈ AG(H8,8) (see

Figure 2);

– if w has degree 4 and a second neighbor of degree 4, then AG(G) ≈ 12.62 < 12.78 ≈
AG(G11,11) (see Figure 1);

In all cases G is not a connected extremal chemical graph, a contradiction.

• Assume that u and v have no common neighbor. Let x ̸= v (resp. y ̸= u) be the second neighbor

of u (resp. v). Let G′ be the graph obtained from G by replacing xu with xv. Then, with i = dx
and j = dy, we have

AG(G′)− AG(G) ≥ c1,3 − c2,2 + min
i=1,...4

(c3,i − c2,i) + min
j=1,...4

(c3,j − c2,j)

≈ 0.0541 > 0.

Hence, G is not extremal, a contradiction.

Lemma (1,2). The only connected extremal chemical graphs G with x1,2(G) > 0 are H3,2 and H6,5.

Proof. Let G be a connected extremal chemical graph with two adjacent vertices u and v such that

du = 1 and dv = 2, and let w be the other neighbor of v. If w has degree 1 then G ≃ H3,2. We

know from Lemma (2,2) that w does not have degree 2, and from Lemma 1(a) that w does not have

degree 3. Hence, dw = 4. If w has three neighbors of degree 1, then G ≃ H6,5; otherwise, w has a

neighbor x ̸= v of degree at least 2 and Lemma 2 with the partial chain u, v, w, x contradicts the fact

that G is a connected extremal chemical graph.

Lemma (3,3). The only connected extremal chemical graphs G with

x3,3(G) > 0 are H4,5, H4,6, H5,8 and H6,8.

Proof. Let G be a connected extremal = chemical graph with two adjacent vertices u and v of degree

3. Let us first show that all vertices x ̸= u, v are either adjacent to both u and v, or to neither. If this

is not the case then, we consider two cases.

• If u and v have a common neighbor w, then let x ̸= v be a vertex adjacent to u but not to v,

and let y ̸= u be a vertex adjacent to v but not to u. Then G is not extremal. Indeed, let G′ be

the graph obtained from G by replacing xu with xv. Then, with i = dx, j = dy and k = dw, we

have

AG(G′)− AG(G)≥c2,4 − c3,3 + min
i=1,2,3,4

(c4,i−c3,i)

+ min
j=1,2,3,4

(c4,j−c3,j) + min
k=2,3,4

(c4,k+c2,k−2c3,k)

≈0.0593 > 0.

• If u and v have no common neighbor, then there are two possible cases.

– if all neighbors x ̸= u, v of u and v have degree 1, then G is not extremal since AG(G) ≈
5.62 < 5.87 ≈ AG(H6,5) (see Figure 3);
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– if at least one of u, v, say u, has a neighbor x ̸= v of degree at least 2, then G is not

extremal. Indeed, let y be the other neighbor of u and let G′ be the graph obtained from

G by replacing yu with yv. Then, with i = dx, j = dy and k = dz, where z is any neighbor

of v other than u, we have

AG(G′)−AG(G) ≥c2,4−c3,3 + min
i=2,3,4

(c2,i−c3,i)

+ min
j=1,2,3,4

(c4,j−c3,j) + 2 min
k=1,2,3,4

(c4,k−c3,k)

≈0.0089 > 0.

Hence, let x, y the the two common neighbors of u and v. We next show that at least one of x, y has

degree 4, or G is H4,5 or H4,6.

• If x has degree 3, then x is adjacent to y since xu is an edge linking two vertices of degree 3 and

we have seen that this implies that y cannot be adjacent to exactly one of u, x. Hence, either

G ≃ H4,6, or y has degree 4.

• If x has degree 2, then we know from the previous case that y is of degree 2 or 4. Hence, either

G ≃ H4,5, or y has degree 4.

So, without loss of generality, assume dx = 4. Let W = V \ {u, v, x, y} where V is the vertex set of G.

Assume that W contains at least one vertex w in W of degree at least 3.

• If dw = 4, then let z be a vertex adjacent to w but not to x and let G′ be the graph obtained

from G by replacing the edges ux and wz by uw and xz. Clearly, AG(G′) = AG(G), which means

that G′ is also a connected extremal chemical graph. But u and v are two adjacent vertices in

G′, and they are both of degree 3, while x is adjacent to u but not to v. We have shown above

that this is impossible.

• If dw = 3, then w is adjacent to x. Indeed, if this is not the case, then let z be any vertex in

W adjacent to w and let G′ be the graph obtained from G by replacing the edges ux and wz by

uz and xw. Clearly, AG(G′) = AG(G) and u, v are two adjacent vertices of degree 3 in G′ with

z adjacent to u but not to v, a contradiction. Moreover, all neighbors of w in W are adjacent

to x. Indeed, assume that a vertex z ∈ W is adjacent to w but not to x. Then dz ≤ 2 (since

vertices of degree 3 in W are adjacent to x and no vertex in W has degree 4), and Lemma 2

with the partial chain z, w, x, u shows that G is not extremal, a contradiction. In summary, we

have shown that w can have only one neighbor in W (else x would be of degree at least 5),

which means that w is adjacent to y. We know from Lemma 1(b) that the neighbor z of w

in W cannot be of degree 2 (since u has degree 3 and is not adjacent to w). Hence, dz = 3,

which means that w, x and y are its three neighbors (as z, x, y are the 3 neighbors of w). Hence,

AG(G) ≈ 10.08 < 10.28 ≈ AG(G6,10) (see Figure 1), a contradiction.

Hence, all vertices in W have degree 1 or 2. At least one vertex in W has degree 2, else

• if dy = 3, then x is adjacent to y since uy is an edge linking two vertices of degree 3 and we have

seen that this implies that x cannot be adjacent to exactly one of u, y. Hence, AG(G) ≈ 7.28 <

7.36 ≈ AG(H5,7) (see Figure 2);

• if dy = 4, then either G ≃ H6,8, or AG(G) ≈ 10.04 < 10.12 ≈ AG(G8,9) (see Figure 1).

So let z be a vertex of degree 2 in W . We know from Lemmas (2,2) and (1,2) that z is adjacent

to x and y, which implies that y has degree 4, else u and y are two adjacent vertices of degree 3 and

z is adjacent to y but not to u, which is impossible. There are therefore three possible cases:

• if W has two vertices of degree 2, then AG(G) ≈ 9.28 < 9.40 ≈ AG(H6,9) (see Figure 2);

• if W has one vertex of degree 2 and x is not adjacent to y, then AG(G) ≈ 9.66 < 9.78 ≈ AG(G7,9)

(see Figure 1);
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• if W has one vertex of degree 2 and x is adjacent to y, then G ≃ H5,8.

Lemma (1,3). The only connected extremal chemical graphs G with

x1,3(G) > 0 are H4,3, H4,4, H6,6, H7,6 and H10,9.

Proof. Let G be a connected extremal chemical graph with two adjacent vertices u and v such that

du = 1 and dv = 3. If v has a neighbor w of degree 2, we know from Lemma 1(a) that the second

neighbor x of w is adjacent to v. Then, either G ≃ H4,4 or it follows from Lemmas (2,2) and (3,3) that

dx = 4. If x has two neighbors of degree 1, then G ≃ H6,6, else x has a neighbor y ̸= v, w such that

dy ≥ 2, and Lemma 2 with the partial chain u, v, x, y shows that G is not extremal, a contradiction.

So assuming that G is not H4,4 or H6,6, we know that no neighbor of v has degree 2. It then follows

from Lemma (3,3) that they all have degree 1 or 4. If v has a neighbor x of degree 4, then all neighbors

y ̸= v of x that are also not adjacent to v have degree 1, else Lemma 2 with the partial chain u, v, x, y

shows that G is not extremal. Hence there are only 4 cases:

• if all neighbors of v have degree 1, then G ≃ H4,3;

• if v has only one neighbor of degree 4, then G ≃ H7,6;

• if v has two non-adjacent neighbors of degree 4, then G ≃ H10,9;

• if v has two adjacent neighbors of degree 4, then AG(G) ≈ 9.18 < 9.24 ≈ AG(H8,8) (see Figure 2).

Lemma (2,3). The only connected extremal chemical graphs G with

x2,3(G) > 0 are H4,4, H4,5, H5,6 and H6,6.

Proof. Let G be a connected extremal chemical graph with two adjacent vertices u and v such that

du = 2 and dv = 3. We know from Lemma 1(a) that the second neighbor w of u is adjacent to v. If

G is not equal to H4,4 or H4,5, it follows from Lemmas (2,2) and (3,3) that w has degree 4. Also, it

follows from Lemmas (1,3) and (3,3) that if G is not H6,6, then the third neighbor x ̸= u,w of v has

degree 2 or 4.

• If dx = 2, then x is adjacent to w since, by Lemma 1(a), the second neighbor of x must be

adjacent to v. It follows from Lemma 1(b) that all vertices other than u, v, w, x have degree 1

or 4. Hence, the fourth neighbor y ̸= u, v, x of w has degree 1 or 4. If dy = 1 then G ≃ H5,6. If

dy = 4, then there are two cases:

– if y has 3 neighbors of degree 1, then AG(G) ≈ 9.92 < 10.12 ≈ AG(G8,9) (see Figure 1);

– if y has a neighbor z ̸= w of degree 4, then Lemma 2 with the partial chain u, v, w, y, z

shows that G is not extremal, a contradiction.

• If dx = 4, then let y ̸= v, w be a neighbor of x. It follows from Lemmas 1(b) and 2 with the

partial chain u, v, x, y that dy = 1. Let G′ be the graph obtained from G by replacing the edges

uw and xy by ux and wy. Clearly, AG(G′) = AG(G), which means that G′ is also a connected

extremal chemical graph and since w is now the neighbor of v of degree 4 that is not adjacent to

u, this means that all neighbors of w different from v, x have degree 1. Hence,

– if w is adjacent to x then AG(G) ≈ 8.85 < 8.86 ≈ AG(H7,8) (see Figure 2);

– if w is not adjacent to x then AG(G) ≈ 10.35 < 10.5 ≈ AG(G9,9) (see Figure 1).

5 Characterization of extremal chemical graphs

In this section, we characterize extremal chemical graphs of order n and size m ≥ n − 1. We first

consider the connected extremal chemical graphs, and then the non-connected ones. We conclude the

section with a property of extremal chemical graphs or order n and size m ≤ n− 2.
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We start with the proof of Theorem 1 that states that a connected extremal chemical graph of

order n and size m necessarily belongs to Gn,m, except for 22 pairs (n,m).

Proof of Theorem 1. Observe first that if (t1, t2, t3, t4) is a quadruplet in Tn,m with t2+ t3 > 1. Then

there is (s1, s2, s3, s4) ∈ Tn,m such that s2 + s3 < t1 + t2 and f(s1, x2, s3, s4) > f(t1, t2, t3, t4). Indeed:

• If t2 ≥ 2 then set s1 = t1+1, s2 = t2−2, s3 = t3+1 and s4 = t4. We have,
∑4

i=1 si =
∑4

i=1 ti = n

and
∑4

i=1 isi =
∑4

i=1 iti = 2m, which means that (s1, s2, s3, s4) ∈ Tn,m. Moreover,

f(s1, s2, s3, s4)− f(t1, t2, t3, t4) = c1,4 − 4c2,4 + 3c3,4 ≈ 0.0384 > 0.

• if t3 ≥ 2 then set s1 = t1, s2 = t2+1, s3 = t3−2 and s4 = t4+1. We have
∑4

i=1 si =
∑4

i=1 ti = n

and
∑4

i=1 isi =
∑4

i=1 iti = 2m, which means that (s1, s2, s3, s4) ∈ Tn,m. Moreover,

f(s1, s2, s3, s4)− f(t1, t2, t3, t4) = 2c2,4 − 6c3,4 + 4 ≈ 0.0591 > 0.

• if t2 ≥ 1 and t3 ≥ 1, then set s1 = t1 + 1, s2 = t2 − 1, s3 = t3 − 1 and s4 = t4 + 1. Hence,∑4
i=1 si =

∑4
i=1 ti = n and

∑4
i=1 isi =

∑4
i=1 iti = 2m, which means that (s1, s2, s3, s4) ∈ Tn,m.

Moreover,

f(s1, s2, s3, s4)− f(t1, t2, t3, t4) = c1,4 − 2c2,4 − 3c3,4 + 4 ≈ 0.0975 > 0.

Note that if s2 + s3 > 1, then we can repeat the same reasoning. We can therefore conclude that

if (t1, t2, t3, t4) is a quadruplet in Tn,m with t2 + t3 > 1, then there is (s1, s2, s3, s4) ∈ Tn,m such that

s2 + s3 ≤ 1 and f(s1, s2, s3, s4) > f(t1, t2, t3, t4).

So let G be a connected extremal chemical graph of order n and size m, and suppose that G is not

one of the 22 graphs of Figures 2 and 3. It follows from the lemmas of the previous section that all

edges in G have at least one endpoint of degree 4. Since n0(G) = 0 (else G ≃ H1,0), we have AG(G) =

f(n1(G), n2(G), n3(G), n4(G)). We have shown above that if n2(G)+n3(G) > 1, then there is a quadru-

plet (s1, s2, s3, s4) in Tn,m such that s2 + s3 ≤ 1 and f(s1, s2, s3, s4) > f(n1(G), n2(G), n3(G), n4(G)).

Hence, if n2(G)+n3(G) > 1, then it follows from Property 3 that there is a connected chemical graph

G′ in Gn,m with AG(G′) = f(s1, s2, s3, s4) > f(n1(G), n2(G), n3(G), n4(G)) = AG(G), a contradiction.

We can therefore conclude that n2(G) + n3(G) ≤ 1, which implies that G belongs to Gn,m.

It follows from Theorem 1 and Corollary 2 that if 1 ≤ n− 1 ≤ m and (n,m) is not a pair for which

there is a graph Hn,m in Figure 2 or 3 and if there exists a connected extremal graph of order n and

size m, then all graphs in Gn,m are extremal and their arithmetic-geometric index is easy to compute

since we know the number of edges with endpoints of degree i and j for all 1 ≤ i ≤ j ≤ 4. We can

therefore state the following corollary.

Corollary 3. Let G be a connected extremal chemical graph. If G is not one of the 22 graphs Hn,m in

Figure 2, then AG(G) = UBn,m, where

UBn,m =
2n+ 5m

6
+


0 if 2m− n ≡ 0 mod 3,
3√
2
− 13

6 if 2m− n ≡ 1 mod 3,
21
4
√
3
− 37

12 if 2m− n ≡ 2 mod 3.

Proof. Theorem 1 shows that G belongs to Gn,m. Let us compute AG(G).

• If 2m−n ≡ 0 mod 3, then 4n−2m ≡ 0 mod 3, which means that n1(G)= 4n−2m
3 , n2(G)=n3(G)=0

and n4(G)= 2m−n
3 . Hence, AG(G) = 3

4
4n−2m

3 + 2 2m−n
3 = 2n+5m

6 .

• If 2m−n ≡ 1 mod 3, then 4n−2m ≡ 2 mod 3, which means that n1(G)= 4n−2m−2
3 , n2(G)=1,

n3(G)=0 and n4(G)= 2m−n−1
3 . Hence, AG(G) = 3

4
4n−2m−2

3 +( 3√
2
−1)+2 2m−n−1

3 = 2n+5m−13
6 + 3√

2
.
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• If 2m−n ≡ 2 mod 3, then 4n−2m ≡ 1 mod 3, which means that n1(G)= 4n−2m−1
3 , n2(G)=0,

n3(G)=1 and n4(G)= 2m−n−2
3 . Hence, AG(G) = 3

4
4n−2m−1

3 + ( 21
4
√
3
− 3

2 ) + 2 2m−n−2
3 = 2n+5m

6 +
21
4
√
3
− 37

12 .

As shown in Table 2, if (n,m) is one of the pairs for which there is a graph Hn,m in Figures 2

or 3, then AG(Hn,m) < UBn,m. Hence, the connected graphs in Gn,m are the only connected chemical

graphs G of order n and size m with AG(G) = UBn,m. The sharp upper bound AG(Hn,m) for the 22

pairs (n,m) that are exceptions is slightly smaller than UBn,m. We give in Table 2 the values of this

upper bound as well as the differences between UBn,m and AG(Hn,m). We observe that the largest

difference is 1
2 while the smallest is approximately equal to 0.0384.

Table 2: Sharp upper bound AG(Hn,m) on the arithmetic-geometric index of graphs of order n and size m, for the 22 pairs
(n,m) not included in Corollary 3, and difference with UBn,m.

n m AG(Hn,m) UBn,m − AG(Hn,m)
1 0 0 − 11

4
+ 21

4
√
3

≈ 0.2811

2 1 1 1
2

≈ 0.5000

3 2 3√
2

1
2

≈ 0.5000

3 3 3 1
2

≈ 0.5000

4 3 6√
3

3
4
− 3

4
√
3

≈ 0.3170

4 4 1 + 2√
3
+ 5√

6
3
2
+ 3√

2
− 2√

3
− 5√

6
≈ 0.4254

4 5 1 + 10√
6

9
2
− 10√

6
≈ 0.4175

4 6 6 − 11
4

+ 21
4
√
3

≈ 0.2811

5 5 7
2
+ 3√

2
− 3

4
− 3√

2
+ 21

4
√
3

≈ 0.1598

5 6 5
4
+ 3√

2
+ 7

4
√
3
+ 5√

6
13
4

− 7
4
√
3
− 5√

6
≈ 0.1984

5 7 1 + 9√
2

13
2

− 9√
2

≈ 0.1360

5 8 2 + 3√
2
+ 7√

3
13
4

− 3√
2
− 7

4
√
3

≈ 0.1183

5 9 3 + 21
2
√
3

4 + 3√
2
− 21

2
√
3

≈ 0.0591

6 5 15
4

+ 3√
2

1
4

≈ 0.2500

6 6 5
2
+ 3

2
√
2
+ 15

4
√
3
+ 5

2
√
6

9
2
− 3

2
√
2
− 15

4
√
3
− 5

2
√
6

≈ 0.2537

6 7 7
2
+ 6√

2
5
4
− 6√

2
+ 21

4
√
3

≈ 0.0384

6 8 9
2
+ 7√

3
2 + 3√

2
− 7√

3
≈ 0.0799

6 9 17
4

+ 3√
2
+ 21

4
√
3

21
4

− 3√
2
− 21

4
√
3

≈ 0.0976

7 6 15
4

+ 4√
3
+ 7

4
√
3

1
2
− 1

2
√
3

≈ 0.2113

7 8 5
2
+ 9√

2
13
2

− 9√
2

≈ 0.1360

8 8 5 + 6√
2

5
4
− 6√

2
+ 21

4
√
3

≈ 0.0384

10 9 15
2

+ 11
2
√
3

1
4
− 1

4
√
3

≈ 0.1057

When m = n − 1, Corollary 3 gives an upper bound for chemical trees. More precisely, if T is a

chemical tree of order n, then

AG(T ) ≤ UBn,n−1 =
7n− 5

6
+


0 if n ≡ 2 mod 3,
3√
2
− 13

6 if n ≡ 0 mod 3,
21
4
√
3
− 37

12 if n ≡ 1 mod 3.

and this bound is reached for all n, except for n = 1, 2, 3, 4, 6, 7, 10 sinceH1,0, H2,1, H3,2, H4,3, H6,5, H7,6

and H10,9 appear in Figure 3. The same upper bound is given in [19], but the authors did not mention

the 7 exceptions. For example, they state that when n ≡ 1 mod 3, there are n−1
3 − 1 vertices of degree

4, and one vertex of degree 3 that must be adjacent to vertices of degree 4. This is clearly impossible

for n = 1, 4, 7 and 10.

We now show that if we remove the constraint that extremal chemical graphs must be connected,

then no better value of AG can be obtained.

Theorem 2. Let G be a non-connected chemical graph of order n and size m ≥ n−1. If G is extremal,

then G belongs to Gn,m.



Les Cahiers du GERAD G–2024–27 12

Proof. Assume that the theorem is not valid and let G be a non-connected extremal chemical graph

of order n and size m ≥ n − 1 that is a counterexample with the smallest number of connected

components. It follows from Property 2 that (n,m) is not one of the 22 pairs for which there is a

graph Hn,m in Figure 2 or 3. Let G1, . . . , Gk (k ≥ 2) be the connected components of G, and let Ni

and Mi be the order and the size of Gi, respectively. Clearly, AG(G) =
∑k

i=1 AG(Gi). Hence, since G

is extremal, every Gi is a connected extremal graph of order Ni and size Mi. At least one Gi, say G1,

contains a cycle C. If C contains an edge xy with dx = 4 and dy ≥ 3 then:

• if G2 contains only one vertex z then let G′ be the graph obtained from G by replacing the edge

xy by the edge xz. Since y belongs to a cycle, at least one of its neighbors z ̸= x has degree at

least 2. Hence, with i = dy, j = dz and k = du, where u is any neighbor of y other than x and

w, we have

AG(G′)−AG(G) ≥ c1,4 + min
i=3,4

(
min

j=2,3,4
(ci−1,j−ci,j)− c4,i

)
+ min

i=3,4

(
(i−2) min

k=1,2,3,4
(ci−1,k−ci,k)

)
≈ 0.0193 > 0.

Hence G is not extremal, a contradiction.

• if G2 contains at least two vertices, then consider any edge zw in G2 and assume without loss

of generality that dz ≤ dw. Let G
′ be the graph obtained from G by replacing the edges xy and

zw by the edges xz and yw. Then, with i = dy, j = dz and k = dw, we have

AG(G′)−AG(G) ≥ min
i=3,4

min
j=1,2,3,4

min
k=j,...,4

(c4,j + ci,k − c4,i − cj,k) = 0.

Moreover, all cases where AG(G′) = AG(G) have dx = dw or/and dy = dz. Hence, G′ has a

smaller number of connected components than G, while ni(G) = ni(G
′) for 0 ≤ i ≤ 4 and

xi,j(G) = xi,j(G
′) for 1 ≤ i ≤ j ≤ 4. It follows that G′ is also extremal, and either both of

G and G′ belong to Gn,m, or none of them. If G′ is connected, then we know from Theorem 1

that G′ (and hence also G) belongs to Gn,m, which means that G is not a counterexample to the

theorem, a contradiction. If G′ is not connected, then G is not a counterexample to the theorem

with the smallest number of connected components, a contradiction.

Note that if G1 belongs to GN1,M1
, then the cycle C contains two adjacent vertices of degree 4

(since vertices of degree 1 do not belong to a cycle and there is at most one vertex of degree 2 or 3

in G1). Also, the 8 graphs H5,6, H5,7, H5,8, H5,9, H6,6, H6,7, H6,8, H6,9, in Figures 2 and 3 which

have a cycle and an edge linking a vertex of degree 4 to a vertex of degree at least 3, have such an

edge in a cycle. Hence, x3,4(Gi) + x4,4(Gi) = 0 for all connected components Gi of G with a cycle.

Suppose now that G2 contains an edge xy with dx = 4 and dy ≥ 3. Consider any edge zw on C

and assume without loss of generality that dz ≤ dw. Let G
′ be the graph obtained from G by replacing

the edges xy and zw by the edges xz and yw. Then, with i = dy, j = dz and k = dw, we have

AG(G′)−AG(G) ≥ min
i=3,4

min
j=2,3,4

min
k=j,...,4

(c4,j + ci,k − c4,i − cj,k) = 0.

As above, the only cases where AG(G′) = AG(G) have dx = dw or/and dy = dz. Hence, either G is not

a counterexample to the theorem, or it is not a counterexample with the smallest number of connected

components, a contradiction.

Hence, we know that x3,4(G)+x4,4(G) = 0. We now prove that no connected component of G can

have more than 9 vertices. So assume G has a connected component H of order N ≥ 10 and size M .

We know from Theorem 1 that there are two possible cases:

• ifH is one of the 22 graphs in Figures 2 and 3, thenH ≃ H10,9, which implies x3,4(G)≥x3,4(H)=2,

a contradiction.
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• if H belongs to GN,M , then n3(H) = 0 else x3,4(G) ≥ x3,4(H) = 3, Hence,

x4,4(H) ≥ m− n1(H)− 2 ≥
⌈
m− 4n− 2m

3
− 2
⌉
=
⌈5m− 4n− 6

3

⌉
.

The four cases here below show that x3,4(G)+x4,4(G) ≥ x3,4(H)+x4,4(H) ≥ 1, a contradiction.

– If M = N − 1 = 9 then x3,4(H) = 2.

– If M = N − 1 = 10, then x4,4(H) = 2.

– If M = N − 1 ≥ 11, then x4,4(H) ≥ ⌈N−11
3 ⌉ ≥ 1.

– If M ≥ N ≥ 10 then x4,4(H) ≥ N−6
3 > 1.

We thus know that 3 ≤ N1 ≤ 9, N1 ≤ M1 ≤ min{2N1,
N1(N1−1)

2 } and G1 has no edge linking a

vertex of degree 4 to a vertex of degree at least 3. It is easy to check that there are exactly 7 such

graphs, namely, H3,3, H4,4, H4,5, H4,6, H5,5, H7,8 and H8,8 (see Figures 2 and 3). Also, 1 ≤ N2 ≤ 9,

N2 − 1 ≤ M2 ≤ min{2N2,
N2(N2−1)

2 } and G2 has no edge linking a vertex of degree 4 to a vertex of

degree at least 3. There are only 14 such graphs, namely, the 7 graphs mentioned above, and H1,0,

H2,1, H3,2, H4,3, G5,4, H6,5 and G9,8 (see Figures 1, 2 and 3).

Let in,m be equal to AG(G), where G is any connected extremal chemical graph of order n and

size m. It is easy to check by enumeration that iN1,M1
+ iN2,M2

< iN1+N2,M1+M2
for the 7 pairs

(N1,M1) and the 14 pairs (N2,M2). Hence by removing G1 and G2 and replacing these two connected

components of G by a connected extremal chemical graph of order N1 + N2 and size M1 + M2, one

gets a graph G′ with AG(G) < AG(G′), which means that G is not extremal, a contradiction.

Corollary 2 shows that all graphs in Gn,m have the same AG value, which means that they are all

extremal if (n,m) is not a pair appearing in Figures 2 or 3. Hence, putting together Property 2 and

Theorems 1 and 2, we get the following characterization of extremal chemical graphs.

Theorem (Characterization of extremal chemical graphs). A chemical graph G of order n and size

m ≥ n−1 is extremal if and only if G is one of the 22 graphs in Figures 2 and 3 or G belongs to Gn,m.

We indicate in Table 3 the number of connected and non-connected extremal chemical graphs of

order n and size m for 1 ≤ n ≤ 14 and n − 1 ≤ m ≤ min{2n, n(n−1)
2 }. For example, for n = 12 and

m = 11, we see that there are exactly one connected and one non-connected extremal chemical graph

and these two graphs are represented at the bottom of Figure 1. The 22 pairs (n,m) for which Hn,m is
the only extremal graph are shown in gray boxes. We observe that the number of connected extremal

chemical graphs grows exponentially, but not in a monotonic way.

The proof of Theorem 2 shows that if a non-connected chemical graph G contains a cycle, then there

is a chemical graph G′ having fewer connected components than G and such that AG(G) ≤ AG(G′).

This leads to the following corollary.

Corollary 4. For all n and m with 0 ≤ m ≤ n − 2 there is a chemical forest G∗ which is a disjoint

union of extremal chemical trees and such that AG(G) ≤ AG(G∗) for all chemical graphs G of order n

and size m.

6 Conclusion

We have determined a sharp upper bound on the value of the arithmetic-geometric index of chemical

graphs of order n and size m ≥ n − 1, and we have characterized the chemical graphs that reach the

bound. This allows, for example, to characterize extremal chemical trees as well as extremal unicyclic

or bicyclic chemical graphs. For m ≤ n− 2, we have shown that there is an extremal chemical graph

or order n and size m which is a disjoint union of extremal chemical trees.
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Table 3: Number of connected and non-connected extremal chemical graphs of order n and size m for 1 ≤ n ≤ 14 and

n− 1 ≤ m ≤ min{2n, n(n−1)
2

}.

n
1 2 3 4 5 6 7 8 9 10 11 12 13 14

m
0 1 0
1 1 0
2 1 0
3 1 0 1 0
4 1 0 1 0
5 1 0 1 0 1 0
6 1 0 1 0 1 0 1 0
7 1 0 1 0 1 0 1 0
8 1 0 1 0 1 0 1 0 1 0
9 1 0 1 0 1 0 1 0 1 0 1 0

10 1 0 1 0 1 0 1 0 1 0 2 0 1 0
11 1 0 1 0 2 0 3 0 1 0 1 0 1 1
12 1 0 2 0 4 0 2 0 4 0 6 0 2 0 1 0
13 2 0 3 0 10 0 12 0 4 0 5 1 7 1 2 1
14 2 0 8 0 17 0 8 1 21 1 23 1 5 1 3 1
15 7 0 9 0 47 0 58 1 14 1 27 2 27 3
16 6 0 37 0 77 0 31 1 113 2 111 4 18 2
17 28 0 35 0 249 0 303 3 59 4 159 11
18 16 0 198 0 399 0 134 2 684 8 625 20
19 126 0 154 0 1550 1 1786 9 298 11
20 59 1 1246 1 2395 1 707 7 4620 40
21 719 1 845 1 10801 4 11855 36
22 265 1 8789 3 16433 6 4399 20
23 4721 3 5440 4 83399 19
24 1544 3 68804 12 125829 28
25 35678 11 40399 14
26 10778 8 590342 55
27 300361 45
28 88168 25
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