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Abstract : This poster conceptually lays out recent advances in trustworthy machine learning (ML)
that are of great interest for power systems applications like virtual power plants. All of them hint
that ML, when done right, shouldn’t be labelled as unreliable for critical applications where it could
be beneficial. To be able to mitigate the recent uncertainty increase in power generation and demand,
these tools are now crucial to plan the safe, efficient, and flexible operation of the grid while facilitating
its decarbonization. The poster was presented at IVADO Digital Futures 2024 a popularization event
on artificial intelligence and its applications.
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(Trustworthy) AI for Québec’s Virtual Power Plant
Julien Pallage, Antoine Lesage-Landry GERAD & MILA

1. Our current setting
Recent social changes have made it harder to predict the behaviour of electrical grids
around the world. Our efforts in decarbonizing the grid, e.g., the addition of more in-
termittent renewable energy, the introduction of electrical vehicles on the road, and the
integration of distributed energy resources (DERs), have generated a lot of uncertainty in
the way we operate the grid. On the consumer side, the rising popularity of remote work
and connected objects have made consumption patterns harder to predict than before.

(a) DERs (b) Electrical vehicles (c) Remote work

Figure 1: Some sources of uncertainty on the grid.
Virtual power plant (VPP) operators must resort to more sophisticated predictive al-
gorithms, i.e., complex machine learning (ML), to plan the safe, efficient, and flexible
operation of the grid while accounting for this added uncertainty [1].

2. Pattern recognition
Machine Learning ≡ Algorithms that recognize patterns
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(a) Neural Networks (Complex)
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(b) Linear Regression (Simple)

Figure 2: Two popular ML models of different complexity level

3. What’s wrong with complex ML ?
Even though complex ML can recognize rich patterns in data to produce insightful pre-
dictions, they have been labelled as unreliable for critical sectors such as healthcare and
energy. They tend to have a lack of interpretability, limited performance guarantees, a
tendency to fail on never-seen data, complex training procedures, and a high sensitivity to
data corruption [2].

Le ML en énergie : Le frein
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(a) Hard to interpret (b) No guarantees (c) Overconfidence (d) We hate blackouts!

Figure 3: Low deployment acceptability in critical sectors
4. Trustworthy ML for the virtual power plant

Fortunately, recent scientific advances have
granted complex ML models more trustworthi-
ness and, in the process, have made them more
desirable for critical applications such as VPPs.
VPPs are connected systems that reinforce grid
flexibility through forecasting and control of
DERs [3]. Since VPP operation relies on many
predictions, e.g., weather, behaviour, and mar-
ket, trustworthy ML models are the best of
both worlds: they offer complex insights with-
out compromising on reliability. Image: [4]

5. Respecting the laws of physics

Figure 4: Architecture of a PINN [5]

Would you have more faith in a model embedded
with the physics of the application it is used in?
Through numerous methods, researchers have made
it possible to induce a physical intuition in ML mod-
els. As a result, these models usually require less
training data, than their conventional counterparts,
to perform as intended [5]. Physics-Informed Neural
Networks (PINNs) are a popular example of physics-
induced ML. In recent years, they have been used
in countless applications, from fluid mechanics [6]
to power systems modelling [7].

6. Learning the empirical uncertainty
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Uncertainty as a whole is conceived as a
combination of aleatoric and epistemic un-
certainty. Simply put, aleatoric uncertainty
accounts for what is purely random and
can’t be predicted, e.g., noise, while epis-
temic uncertainty reflects the uncertainty
associated with missing knowledge [8].
By combining the prediction of multiple ML models, i.e., ensemble learning, and by building
probabilistic predictive models, e.g., gaussian processes [9] and Bayesian Neural Networks
(BNNs) [10], researchers have been able to capture the empirical uncertainty associated
with model prediction.

(a) Ensembles [11]
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(b) Bayesian Neural Network

Figure 5: Two models that deal with epistemic uncertainty
In other words, these models offer confidence intervals on their forecasts which can be
useful for decision-making in critical sectors and applications, e.g., VPP operation.

7. Post-training verification
Since the training procedures of black box ML models is opaque and
hard to understand, post-training verification frameworks have been
developed to certify trained models’ performance. It is comparable to
a quality control (QC) procedure done on manufactured products be-
fore release. Some of these procedures can give theoretical worst-case
violation guarantees for models used in constrained environments [12]
or even theoretically bind the overall stability of a model [13].

8. Increased interpretability
Models whose decisions can’t be well-
interpreted or explained are hard to trust. As
such, a lot of research has been done to add
explainability to black-box models [14]. One
of the most renowned approaches uses tools
from game theory, i.e., Shapley values [15], to
assign each input an importance value for any
given prediction [16]. The figure presents a
Shapley values analysis of a model predicting
the hourly energy consumption of some Hilo
users. Ask me how to interpret it!

9. Distributional robustness
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Figure 6: Regression with an outlier

ML models tend to be sensitive to outliers in
the training data yet those outliers arise often
when developing models for a VPP. Indeed, bad
sensor readings, telemetry problems, numerical
errors, as well as rare events, e.g., blackouts,
snowstorms, and holidays, can corrupt the data
used for training. Even though outlier filters
are used to clean them out, it is impossible to
guarantee their total disappearance from the
dataset. Distributionally robust (DR) learning
and optimization is a mathematical tool that
can be leveraged to train ML models with em-
pirical data that is assumed to be filled with
outliers.

The intuition is that we aim to train our model to optimality on the most adverse dataset
found in a "close range" from our currently available data [17, 18]. This generalized model,
which is theoretically the best in the worst possible situation, has provable out-of-sample
performance guarantees that mean a lot in VPP applications.

10. Our contribution
On this poster, we have conceptually laid out recent advances in trustworthy ML that
we find very exciting. They all imply, in a way, that ML done right shouldn’t be labelled
as unreliable for critical applications. By using this as a starting point, our main goal
is to develop new trustworthy ML models with theoretical and empirical guarantees for
Québec’s VPP.

To this date, we have developed a model that estimates the hourly peak-shaving capacity
of Hilo users in localized demand response schemes. Also, we have been working on
developing a trustworthy nonlinear baseline estimator. Stay tuned for what’s next!

Special thanks to Salma, Bertrand, Ikhlas, Ahmed, Odile, and Steve from Hilo.
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