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les exigences légales associées à ces droits. Ainsi, les utilisateurs:
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Abstract : In this work, we study a class of two-player deterministic finite-horizon difference games
with coupled inequality constraints, where both players have two types of decision variables. In one
type of decision variables players interact sequentially whereas in the other type they interact simul-
taneously. We refer to this class of games as quasi-hierarchical dynamic games and define a solution
concept called feedback Stackelberg-Nash (FSN) equilibrium. Under separability assumption of cost
functions, we provide a recursive formulation of the FSN solutions using an approach similar to dy-
namic programming. Furthermore, we show that the FSN solution of this class of constrained games
can be obtained from the parametric feedback Stackelberg solution of an associated unconstrained
parametric game involving only sequential interactions, with a specific choice of the parameters that
satisfy some implicit complementarity conditions. For the linear-quadratic case, we numerically obtain
the FSN solutions by reformulating these implicit complementarity conditions as a single large-scale
linear-complementarity problem. Finally, we illustrate our results using a dynamic duopoly game with
production constraints.

Keywords: Difference games, feedback Stackelberg-Nash equilibrium, coupled inequality constraints,
complementarity problem
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1 Introduction

Dynamic game theory (DGT) provides a mathematical framework to model multi-agent decision pro-

cesses that evolve over time. In contrast to static games, where players/agents act only once, dynamic

games involve multiple (or even continuous) sequential or simultaneous decisions over a given, or en-

dogenously determined, planning horizon. This temporal aspect comes with strategic complexities,

requiring players to not only consider their immediate choices but also anticipate and respond to fu-

ture decisions made by others over time. The practical utility of DGT is well evident from its successful

applications across diverse fields such as engineering, management science, and economics, where dy-

namic multi-agent decision problems naturally arise (see [2, 5, 15, 16, 20, 23] and the handbook on

DGT [3]). In particular, in engineering DGT has been applied to address problems in, e.g., cyber-

physical systems [46], communication and networking [7, 44], autonomous vehicles [17], and smart

grids [25].

The two main solution concepts in noncooperative dynamic games are Nash and Stackelberg equi-

libria. One main difference between the two concepts is the information available to a player when

making her decision. In a Nash game [30], the information is imperfect, that is, each player makes

her strategic choice without knowing the decisions made by the others. In a Stackelberg game [39],

the information is perfect, that is, each player knows the opponent’s last move when choosing her

decision. Put differently, whereas the mode of play is simultaneous in a Nash game, it is sequential,

or hierarchical, in two-player Stackelberg game, where one player acts first (the leader), and the other

one (the follower) best replies to the leader’s decision. Anticipating the follower’s response, the leader

chooses a strategy that optimizes her performance index. Nash equilibrium solution has been retained

in various engineering applications such as smart grid [25], communication and networking [44], col-

lision avoidance [29], and formation control [19]. Stackelberg equilibrium has been implemented in,

e.g., communication networks [7], demand response management in smart grid [25], supply chains and

marketing channels [13, 21, 24], and traffic routing [18].

Two features are often observed in the literature in dynamic games, both in discrete and continu-

ous time. Firstly, the models assume away constraints linking the control (strategies, decisions) and

state variables. To illustrate, theorems giving the conditions for existence and uniqueness of Nash and

Stackelberg equilibria are typically stated without considering coupling between the players’ decision

sets, and mixed control-state constraints; see, e.g., the textbooks [2, 15, 16, 20]. Clearly, practical

considerations such as saturation constraints, bandwidth limitations, production capacity, budget con-

straints, and limits on pollution emissions, come into play in real-world multi-agent decision situations.

When integrated into a dynamic game, these factors introduce equality and inequality constraints in

the model, which couples the players’ decision sets at each stage of the game. In [31] and [32], the

authors analyzed, respectively, open loop and feedback Nash equilibria for linear-quadratic (LQ) games

under private type constraints. Recently, [26] characterized open-loop Nash equilibrium strategies un-

der coupled constraints, and [27] studied the open-loop Nash equilibrium in the mean-field-type games

in the presence of deterministic coupled constraints. To the best of our knowledge, the hierarchical

counterparts to the setups in [26, 27, 31, 32] have not yet been considered.

Secondly, with a few exceptions [4, 8, 9, 11, 22, 42], the mode of play in (typically) two-player

games is either simultaneous or sequential. In [11], the players assume in turn the roles of leader and

follower when setting their advertising budgets (control variables), which affect their market shares

(state variables) and profits. In [4, 8, 9, 22, 42], the mode of play is referred to as mixed-leadership,

where each of the two players make decisions on two variables. First, they select simultaneously the

levels of one type of variables, and second, they react, also simultaneously, by choosing the levels of

the other variable. Therefore, we have two Nash games and one Stackelberg game. Mixed-leadership

games have been applied to cooperative advertising [8] and innovation and pricing decisions [22].

In this paper, we are interested in a class of two-player finite-horizon dynamic games, where at any

period k, each player i has two types of decision variables uik and vik. At any k, with the exception
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of the last period, the decision process is decomposed into three stages. In the first stage, the leader

announces an action u1k and in the second stage, the follower responds by choosing u2k. In the third

stage, the two players choose simultaneously v1k and v2k. At terminal instant K, the players only

interact simultaneously in their choices of v1K and v2K . From this description, it is clear that our class

of games, to which we shall refer as quasi-hierarchical dynamic games, differ from the class of mixed-

leadership games by having a sequential interaction followed by a simultaneous one instead of having

two simultaneous interactions. We illustrate our setup with two simple generic examples.

As a first example, we consider a supply chain formed of a manufacturer and a retailer and let the

decision process at each period be decomposed into three stages. In the first stage, the manufacturer

(the leader) announces the wholesale price of the product to the retailer (the follower) who reacts in a

second stage by choosing the price to consumers. In the third stage, both players choose simultaneously

some demand-enhancing activities, e.g., national brand advertising by the manufacturer and local

advertising by the retailer. Note that advertising expenditures are typically upper bounded by the

available budget.

In the previous example, we have a so-called vertical strategic interaction between the players, that

is, a same product is sold by the manufacturer to the retailer who sells it to consumers. As a second

example, we consider a foreign firm and a local company competing in the same market by offering

two partially substitutable products, and the demand to each firm depends on both competitors’

prices. Here, the strategic interaction is horizontal.1 As before, the decision process at any period is

decomposed into three stages. In the first two stages, the firms adjust sequentially their production

capacities by adding, or decommissioning, some equipment, and in the third stage they compete in

prices. We suppose that the foreign firm announces first its global investment strategy, including in

the market of interest, which gives the local firm the opportunity to observe the capacity adjustment

made by the foreign firm before adjusting its own in the second stage. Therefore, in any time period,

the investment decisions are sequential, with the foreign firm acting as leader and the local firm as

follower, while pricing decisions are next made simultaneously by both firms. In this example, the

quantity produced must be non-negative and is upper bounded by the production capacity.

Inspired by the two illustrative examples given above, our dual objective is to characterize equi-

librium strategies for the class of two-player quasi-hierarchical dynamic games, with mixed coupled

inequality constraints, and to provide a method for computing them.

1.1 Related literature

Nash equilibrium was first introduced in dynamic games setting in [40, 41]. In particular, [40] empha-

sized the significance of available information to the players during their decision-making process in

dynamic games, noting how it leads to different types of Nash equilibria. Similarly, [36, 38] extended

the notion of Stackelberg solution to multi-period settings using a control-theory framework. Addi-

tionally, in [37], the authors also introduced the notion of a feedback Stackelberg solution where the

leader enforces stage-wise her policy choices on the follower rather than globally. This solution concept

requires the players to know the current state of the game at each time instant. The derivation of feed-

back Stackelberg solution involves a backward recursion [2], similar to dynamic programming, where

at each step of the recursion, the Stackelberg solution of a static game is determined. In scenarios

where the leader possesses dynamic information and can announce in advance her policy for the entire

duration of the game [10], the computation of Stackelberg solution, while conceptually well-defined,

becomes challenging. This difficulty arises because the underlying optimization problems involve the

policy spaces of both players, with reaction sets typically being of infinite dimension. In [1] and [6],

1The meaning and impact of cooperation are different in these two types of interactions. Whereas coordination of
players’ strategies in a vertical channel is socially desirable because it leads to both higher profits for firms and higher
consumer surplus, coordination between competing firms is synonymous to collusion between firms, which is detrimental
to consumer surplus and total welfare.
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indirect methods using an incentive approach have been proposed for the derivation of such global

Stackelberg solutions, in discrete and continuous time setting, respectively.

In [4], the authors introduced the class of mixed-leadership games under open-loop information

structure and used the maximum principle to characterize an open-loop Stackelberg solution, which

led to a set of algebraic equations and differential equations with mixed-boundary conditions. In

particular, for LQ differential games they showed that an associated coupled Riccati equations with

mixed-boundary conditions must be solved to express the Stackelberg solution in terms of the system

state. The existence of unique open-loop Stackelberg equilibrium for two player LQ differential games

with mixed leadership was investigated in [9]. The authors also provided sufficient conditions for the

existence and uniqueness of solutions to the associated coupled Riccati equations with mixed-boundary

conditions. Stochastic mixed-leadership games under feedback information structure are analyzed

in [8], where the diffusion term is assumed to be independent of players controls. In [22], a mixed-

leadership game under feedback information structure is studied with state and control dependent

diffusion term in the state dynamic.

In DGT framework, the simultaneous interaction has been studied in the presence of dynamic

mixed state control constraints. In particular, the existence of constrained open-loop and feedback

Nash equilibria for a specific class of LQ difference games with affine inequality constraints are analyzed

in [31] and [32], respectively. These works considered two types of control variables: one influencing the

state evolution, and another only affecting the constraints. Therefore, the control variables associated

with the first type are not coupled. Recently, [26] and [27] characterized open-loop Nash equilibria in

games with coupled constraints, and in mean-field-type LQ games, respectively. In [28], the necessary

and sufficient conditions for the existence of open-loop Stackelberg solution in two-player LQ difference

games with constraints was studied. However, their analysis was restricted to a simpler case where

only the leader had linear state control inequality constraints with the follower having no constraint.

Global Stackelberg solution for stochastic games under adapted open-loop and closed-loop memoryless

information structure with convex control constraints were studied in [45]. In [42], mixed-leadership

games with input constraints were considered. Their analysis was restricted to the case where only

the decision variables, for which players act as leader, were constrained to be in a closed convex set.

However, the other decision variables, for which players act as follower, were free.

1.2 Contribution

The contribution of our paper to the literature in dynamic games is three-fold. First, we introduce the

new class of quasi-hierarchical dynamic games, which we believe has practical relevance as illustrated

in the supply chain and duopoly examples. One difference with respect to its closest class of mixed-

leadership games [4, 8, 9, 22, 42], lies in the information structure and type of interactions between

the players. Instead of having two successive simultaneous interactions, here we have one sequential

interaction followed by a simultaneous one. In short, we have a different model of strategic interactions,

and consequently a different solution. Second, we define an equilibrium concept for this class of games,

i.e., the feedback Stackelberg-Nash (FSN) equilibrium, and provide sufficient conditions for its exis-

tence. Finally, we provide a computational approach of the FSN equilibrium. We show that a solution

to the original constrained difference game can be obtained from a parametric feedback Stackelberg

solution of an associated unconstrained parametric game involving only sequential interactions, with

a specific choice of the parameters that satisfy some implicit complementarity conditions. Further,

we show that the FSN equilibrium of a linear quadratic game can be obtained by reformulating these

complementarity conditions as a single large scale linear complementarity problem.

The rest of the paper is organized as follows. In Section 2, we introduce the finite-horizon nonzero-

sum difference games with coupled inequality constraints involving two types of decision variables

and also describe the quasi-hierarchical interaction. We define the feedback Stackelberg-Nash (FSN)

solution in Section 3. In Section 4.3, we present a sufficient condition for the existence of FSN solution

in these games. Next, in Section 4.4, we show that the FSN solution can be obtained from the
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parametric feedback Stackelberg solution of an associated unconstrained parametric game involving

only sequential decision variables, with a specific choice of the parameters satisfying some implicit

complementarity conditions. We specialize these results to a linear-quadratic setting involving affine

inequality constraints in Section 5. In Section 6 we illustrate our results using a simple dynamic

duopoly game between a foreign firm and a local firm. Finally, conclusions are provided in Section 7.

Notation: We denote real numbers as R, non-negative real numbers as R+, n-dimensional Euclidean

space as Rn, and n ×m real matrices as Rn×m. For any matrix A ∈ Rn×m, its transpose is denoted

A′ ∈ Rm×n. The identity matrix and matrix with all zero entries are denoted by I and 0, with

dimensions inferred from context. Let A ∈ Rn×n and a ∈ Rn, where n = n1 + n2 + · · · + nK . We

represent [A]ij as the ni × nj sub-matrix with row indices ni and column indices nj , and [a]i as the

ni × 1 sub-vector with index ni. The column vector [v′1, · · · , v′n]′ is denoted by col(v1, · · · , vn) or more

compactly as col(vk)k = 1n. The block diagonal matrix formed by taking matrices M1,M2, · · · ,MK

as diagonal elements is denoted by ⊕K
k=1Mk. Vectors x, y ∈ Rn are complementary if x ≥ 0, y ≥ 0, and

x′y = 0, denoted as 0 ≤ x ⊥ y ≥ 0. The composition of functions f(·) : Rl → Rm and g(·) : Rn → Rl

is denoted as (f ◦ g)(·) : Rn → Rm.

2 Preliminaries

2.1 Dynamic game with inequality constraints

In this section, we introduce a class of two-person discrete-time nonzero-sum finite-horizon dynamic

game involving inequality constraints (CNZDG). Let {1, 2} denote the set of players and

K = {0, 1, ...,K} denote the set of decision instants or time periods. We also define the two set

Kl := K \ {K} and Kr := K \ {0}. At each time instant k ∈ Kl, player i ∈ {1, 2} chooses an action

uik ∈ Ui
k, where Ui

k ⊂ Rmi denotes the admissible set of actions for player i. Players, through their

actions, influence the evolution of state variable xk ∈ Rn according to the following discrete-time

dynamics:

xk+1 = fk(xk, u
1
k, u

2
k), k ∈ Kl, (1)

where fk : Rn ×Rm1 ×Rm2 → Rn and the initial state x0 ∈ Rn is given. We assume that at each time

instant k ∈ K both players are endowed with additional decision variables vik ∈ Rsi , i ∈ {1, 2}, which
do not enter the dynamics directly, but only influence the player’s decision making process at every

time instant k ∈ K in the form of the following mixed inequality constraints:

hik(xk, v
1
k, v

2
k) ≥ 0, vik ≥ 0, k ∈ K, i ∈ {1, 2}, (2)

where hik : Rn ×Rs → Rci
+ . Observe that the constraints (2) are coupled, that is, at each stage k ∈ K,

player 1’s control action v1k is related to player 2’s control action v2k and vice versa. Using the above

constraints (2) of both players, we define the joint admissible action set Vk(xk) at stage k ∈ K. To

this end, we first introduce the reachable set Xk ⊂ Rn, that is, the set of all state variables at stage

k that are reachable when players i ∈ {1, 2} use some arbitrary combinations of admissible actions

uiτ ∈ Ui
τ , τ = 0, · · · , k − 1 in the upstream stages. For any xk ∈ Xk, the joint admissible action set

Vk(xk) at stage k ∈ K is defined as

Vk(xk) := {(v1k, v2k) ∈ Rs | hik(xk, v1k, v2k) ≥ 0, vik ≥ 0, i ∈ {1, 2}}.

The admissible action set of player i ∈ {1, 2} for decision variable vik ∈ Rsi , for a given xk ∈ Xk and

action vjk of other player j ∈ {1, 2}, i ̸= j, is defined as follows:

Vi
k(v

j
k) := {vik ∈ Rsi | (v1k, v2k) ∈ Vk(xk)}. (3)

We denote the joint actions of players by uk := col(u1k, u
2
k), k ∈ Kl and vk := col(v1k, v

2
k), k ∈ K.

The collection or profile of actions of player i ∈ {1, 2} is denoted by (ũi, ṽi), where ũi := col(uik)
K−1
k=0
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and ṽi := col(vik)
K
k=0. The corresponding strategy set of player i is

∏K−1
k=0 Ui

k ×
∏K

k=0 V
i
k. Player

i (i ∈ {1, 2}) minimizes the following stage-additive cost functional:

Ji(x0, (ũ
1, ṽ1), (ũ2, ṽ2)) = giK(xK , vK) +

K−1∑
k=0

gik (xk, uk, vk) , (4)

where gik : Rn × Rm1+m2 × Rs1+s2 → R, k ∈ Kl and g
i
K : Rn × Rs1+s2 → R denote the instantaneous

and terminal cost functions of player i, respectively.

Remark 1. The dynamic game described by (1)–(4) was first studied in [31], [32], and [33] in a linear-

quadratic setting. In this class of games, the decision variables uk−1 at time instant k−1 influence the

state variable xk at instant k. On the other hand, the decision variables vk at instant k are affected by

the state variable xk of the same instant k through the inequality constraints (2). In other words, the

decision variables uik, i ∈ {1, 2}, influence the constraints (2) indirectly through the state Equation (1).

We make the following assumptions related to the dynamic game (1)–(4):

Assumption 1.

(i) The admissible action sets Ui
k ⊂ Rmi for k ∈ Kl, i ∈ {1, 2} are such that the joint action sets

Vk(xk) for all k ∈ K are nonempty, convex, closed and bounded.

(ii) The functions {fk, k ∈ Kl, h
i
k, g

i
k, k ∈ K, i ∈ {1, 2}} are continuously differentiable in their

arguments.

(iii) The matrices
{∂hi

k

∂vi
k

, k ∈ K, i ∈ {1, 2}
}
are full rank for each vk ∈ Vk(xk) and xk ∈ Xk.

We recall from Remark 1 that the control actions from the sets Ui
k−1, i ∈ {1, 2} influence the state

xk at time k. So, to ensure the feasibility of the joint action sets V(xk), Assumption 1.(i) is required.

Assumption 1.(iii) ensures that the constraint qualification conditions hold; see also [12] for other

formulations of constraint qualifications.

2.2 Quasi-hierarchical interaction and information structure

In this paper, we analyze a quasi-hierarchical interaction between the players, in the two types of

decision variables, as described in the following definition:

Definition 1 (Quasi-hierarchical interaction). The leader and follower are denoted by the labels 1 and 2,

respectively. Between any two time instants k and k+1, with k ∈ Kl, the players interact in three stages.

In the first stage, the leader announces her action u1k and in the second stage, the follower responds by

announcing her action u2k. In the third stage, the players choose simultaneously their decisions v1k and

v2k. At the terminal instant K, the players choose simultaneously the decision variables v1K and v2K .

The decision process between the time instants k and k+1 is illustrated in Figure 1. In the sequential

interaction after the leader announces her action u1k ∈ U1
k and the follower gives her response u2k ∈ U2

k,

the state variable xk+1 is determined. The state variable xk influences the joint actions set Vk(xk) of

the players when they choose actions (v1k, v
2
k) simultaneously in the third stage. Before the start of the

next period k + 1, player i ∈ {1, 2} incurs a cost gik(xk, uk, vk). At terminal stage K, the two players

interact simultaneously and player i ∈ {1, 2} incurs a cost giK(xK , vK).

In the presence of constraints, [31, 32] introduce constrained information structure both in the

open-loop and feedback forms, and demonstrate that this information structure leads to a semi-analytic

characterization of Nash equilibrium strategies. Motivated by this aspect, in this paper, we assume

constrained feedback information structure, which is described as follows; see also [32, Section III.A].

Definition 2 (Constrained feedback information structure). The control action (uik, v
i
k) of player i (i ∈

{1, 2}) at stage k is given by uik := γik(xk) ∈ Ui
k and vik ∈ Vi

k(v
−i
k ), where γik : Rn → Ui

k is a measurable

mapping and the set of all such mappings is denoted by Γi
k.
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xk xk+1

k k + 1

Player 1

announces

u1
k

Player 2

responds

with u2
k

Player 1 and Player 2
interact

simultaneously

with (v1
k, v

2
k)

(v1
k+1, v

2
k+1)

(u1
k+1, u

2
k+1)(u1

k−1, u
2
k−1)

Figure 1: Three step decision process involving sequential and simultaneous interactions between the time instants k and
k + 1.

3 Feedback Stackelberg-Nash solution

First, we introduce some additional notations. Let ψi
k := (γik, v

i
k) ∈ Ψi

k denote the mapping associated

with the joint action (uik, v
i
k), i ∈ {1, 2}, where we represent the joint action space as Ψi

k, i.e., ∀k ∈
Kl,Ψ

i
k := Γi

k × V i
k and Ψi

K := V i
K . Consequently, we have (uik, v

i
k) = (γik(xk), v

i
k) = ψi

k for k ∈ Kl and

ψi
K := viK at the terminal time. We denote the strategy of player i by ψi := ((γik(xk), v

i
k)k∈Kl

, viK)

and the joint strategy (ψ1, ψ2) by ψ. The strategy space for player i is denoted by Ψi :=
∏K

k=0 Ψ
i
k.

For any a, b ∈ K, with 0 ≤ a ≤ b ≤ K, we denote the collection of actions for time periods from

a to b (including both a and b) by ψi
[a,b] := (ψi

a, · · · , ψi
b) and the corresponding admissible sets by

Ψi
[a,b] :=

∏b
k=a Ψ

i
k. Using the above notations, we define the FSN solution as follows:

Definition 3 (Feedback Stackelberg-Nash solution). A pair (ψ1⋆, ψ2⋆) ∈ (Ψ1,Ψ2) constitutes a feedback

Stackelberg-Nash solution for CNZDG if the following conditions are satisfied:

1. For all ψi
[0,K−1] ∈ Ψi

[0,K−1], i ∈ {1, 2}, (ψ1⋆
K , ψ

2⋆
K ) ∈ Ψ1

K × Ψ2
K satisfy

J1
(
x0, (ψ

1
[0,K−1], ψ

1⋆
K ), (ψ2

[0,K−1], ψ
2⋆
K )

)
≤ J1

(
x0, (ψ

1
[0,K−1], ψ

1
K), (ψ2

[0,K−1], ψ
2⋆
K )

)
, ∀ψ1

K ∈ Ψ1
K , (5a)

J2
(
x0, (ψ

1
[0,K−1], ψ

1⋆
K ), (ψ2

[0,K−1], ψ
2⋆
K )

)
≤ J2

(
x0, (ψ

1
[0,K−1], ψ

1⋆
K ), (ψ2

[0,K−1], ψ
2
K)

)
, ∀ψ2

K ∈ Ψ2
K . (5b)

2. Recursively for k = K−1, · · · , 0 and for all ψi
[0,k−1] ∈ Ψi

[0,k−1], i ∈ {1, 2}, in the decision process

between time instants k and k + 1,

(a) For all (γ1k, γ
2
k) ∈ Γ1

k×Γ2
k, (v

1⋆
k , v

2⋆
k ) ∈ Vk satisfy in the third stage the following inequalities:

J1
(
x0,

(
ψ1
[0,k−1], (γ

1
k, v

1⋆
k ), ψ1⋆

[k+1,K]

)
,
(
ψ2
[0,k−1], (γ

2
k, v

2⋆
k ), ψ2⋆

[k+1,K]

))
≤ J1

(
x0,

(
ψ1
[0,k−1], (γ

1
k, v

1
k), ψ

1⋆
[k+1,K]

)
,
(
ψ2
[0,k−1], (γ

2
k, v

2⋆
k ), ψ2⋆

[k+1,K]

))
, ∀v1k ∈ V 1

k (v
2⋆
k ), (5c)

J2
(
x0,

(
ψ1
[0,k−1], (γ

1
k, v

1⋆
k ), ψ1⋆

[k+1,K]

)
,
(
ψ2
[0,k−1], (γ

2
k, v

2⋆
k ), ψ2⋆

[k+1,K]

))
≤ J2

(
x0,

(
ψ1
[0,k−1], (γ

1
k, v

1⋆
k ), ψ1⋆

[k+1,K]

)
,
(
ψ2
[0,k−1], (γ

2
k, v

2
k), ψ

2⋆
[k+1,K]

))
, ∀v2k ∈ V 2

k (v
1⋆
k ). (5d)

(b) For every γ1k ∈ Γ1
k, there exists a unique map R2

k : Γ1
k → Γ2

k such that the following inequality

is satisfied in the second stage:

J2
(
x0,

(
ψ1
[0,k−1], (γ

1
k, v

1⋆
k ), ψ1⋆

[k+1,K]

)
,
(
ψ2
[0,k−1], (R

2
k(γ

1
k), v

2⋆
k ), ψ2⋆

[k+1,K]

))
≤ J2

(
x0,

(
ψ1
[0,k−1], (γ

1
k, v

1⋆
k ), ψ1⋆

[k+1,K]

)
,
(
ψ2
[0,k−1], (γ

2
k, v

2⋆
k ), ψ2⋆

[k+1,K]

))
, ∀γ2k ∈ Γ2

k. (5e)

(c) In the first stage, γ1⋆k ∈ Γ1
k satisfies the inequality

J1
(
x0,

(
ψ1
[0,k−1], (γ

1⋆
k , v1⋆k ), ψ1⋆

[k+1,K]

)
,
(
ψ2
[0,k−1], (R

2
k(γ

1⋆
k ), v2⋆k ), ψ2⋆

[k+1,K]

))
≤ J1

(
x0,

(
ψ1
[0,k−1], (γ

1
k, v

1⋆
k ), ψ1⋆

[k+1,K]

)
,
(
ψ2
[0,k−1], (R

2
k(γ

1
k), v

2⋆
k ), ψ2⋆

[k+1,K]

))
, ∀γ1k ∈ Γ1

k, (5f)

with γ2⋆k = R2
k(γ

1⋆
k ).

The feedback Stackelberg-Nash equilibrium costs incurred by the leader and the follower are given by

J1(x0, ψ
1⋆, ψ2⋆) and J2(x0, ψ

1⋆, ψ2⋆), respectively.
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In Definition 3, the conditions (5) characterize the FSN solution using dynamic programming. As

a result, these conditions decompose the computation of FSN solution as solving K + 1 static game

problems backward in time. Since (v1K , v
2
K) are the only decision variables involved at the terminal

period K, and the interaction in these decision variables is simultaneous, the outcome is a Nash

equilibrium (ψ1⋆
K , ψ

2⋆
K ). More specifically, the condition (5a)–(5b) implies that whatever admissible

strategies used by the players to reach periodK, that is, for any arbitrary choice of admissible strategies

ψi
[0,K−1] ∈ Ψi

[0,K−1], the decisions specified by FSN solution (ψ1⋆
K , ψ

2⋆
K ) satisfy conditions (5a)–(5b) at

K. Next, for all other time periods k ∈ Kl, the players interact sequentially using (u1k, u
2
k) and

simultaneously using (v1k, v
2
k). The FSN solutions are computed during the time periods k ∈ Kl, for

any arbitrary choice of admissible upstream strategies (ψ1
[0,k−1], ψ

2
[0,k−1]), by fixing the downstream

decisions at (ψ1⋆
[k+1,K], ψ

2⋆
[k+1,K]). Between the time periods k and k+1, the players interact according

to the three-stage decision process pictured in Figure 1. Again, using dynamic programming principle,

starting from the third stage, the conditions (5c)–(5d) imply that the interaction is simultaneous and

(v1⋆k , v
2⋆
k ) is the corresponding Nash outcome. At the second stage, fixing the third stage decisions

at (v1⋆k , v
2⋆
k ), (5e) implies that the follower gives best response, denoted by R2

k(γ
1
k), for every leader’s

announcement γ1k ∈ Γ1
k. At the first stage, (5f) implies that the leader minimizes her cost, by taking

the follower’s best response obtained at stage two, to obtain her FSN Stackelberg strategy γ1⋆k ∈ Γ1
k.

Remark 2. If the decision variables (v1k, v
2
k), the associated constraints (2), and the corresponding terms

in the objectives (4), are absent in the model, then the FSN solution coincides with the canonical

feedback-Stackelberg solution; see [2, Definition 3.29].

Remark 3. In Definition 3, it is required that the follower’s rational reaction set R2
k(γ

1
k) is a singleton

for every leader’s announcement γ1k ∈ Γ1
k at all periods k ∈ Kl. In the subgame starting at stage k,

if R2
k(γ

1
k) is not a singleton, then the leader’s cost depends on the strategy used by the follower from

R2
k(γ

1
k). The leader can secure her cost against multiple follower’s optimal responses from R2

k(γ
1
k) by

considering the follower’s response that gives her the worst cost. When R2
k(γ

1
k) is not a singleton, the

leader cannot enforce her strategy on the follower, which creates an important difficulty in determin-

ing a Stackelberg equilibrium. This explains why the literature typically assumes that R2
k(γ

1
k) is a

singleton [2, Theorem 7.1 and Theorem 7.2].

Remark 4. In Definition 3, the recursive formulation of FSN solution leads to a static game problem

at every instant k, where the downstream decisions are fixed at FSN solutions for stages k+1, · · · ,K.

During this recursive procedure if there exist, at any time instant k, more than one solution (v1⋆k , v
2⋆
k ),

then the upstream static games need to be solved for each one of these solutions to obtain the complete

set of FSN solutions.

4 Recursive formulation of feedback Stackelberg-Nash solution

In this section, we provide a recursive formulation of the FSN solution. To this end, we make the

following assumption on the players’ cost functions:

Assumption 2. For all k ∈ Kl and i ∈ {1, 2} the players’ cost functions have the following separable

structure:

gik(xk, uk, vk) = giu,k(xk, uk) + giv,k(xk, vk). (6)

This assumption excludes having a cross term between the sequential and simultaneous decision

variables in the players’ objective. The following example illustrates the complications induced by the

presence of such cross term:

Example 1. Consider a scalar two-period game with state dynamics given by x1 = x0−(u10+u
2
0) and the

initial state x0 ∈ R. The leader minimizes the cost function J1 = 4(x1)
2+2(u10)

2+(u20)
2+(v10)

2+v10v
2
0

subject to the constraints x0 + v10 ≥ 0, v10 ≥ 0. Similarly, the follower minimizes the cost J2 =

(x1)
2 + (u20)

2 + u20v
2
0 + (v20)

2 + v10v
2
0 subject to the constraints x0 + 2v20 ≥ 0 and v20 ≥ 0. Since the

players have decision variables only for stage 0, we consider the three stage decision process for this
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time period. For any admissible sequential actions u10 and u20 of leader and follower, respectively, the

Nash (simultaneous) solution at stage 0 will be given by the following optimization problems:

min
v1
0≥0

{
4(x1)

2 + 2(u10)
2 + (u20)

2 + (v10)
2 + v10v

2⋆
0

}
subject to x0 + v10 ≥ 0.

min
v2
0≥0

{
(x1)

2 + (u20)
2 + u20v

2
0 + (v20)

2 + v1⋆0 v
2
0

}
subject to x0 + 2v20 ≥ 0.

Using the relation x1 = x0−(u10+u
2
0), the associated Lagrangians can be written as 4(x0−(u10+u

2
0))

2+

2(u10)
2+(u20)

2+(v10)
2+v10v

2⋆
0 −µ1

0(x0+v
1
0) and (x0−(u10+u

2
0))

2+(u20)
2+u20v

2
0+(v20)

2+v1⋆0 v
2
0−µ2

0(x0+2v20).

Here, µ1
0 and µ1

0 are the Lagrange multipliers associated with the inequality constraints x0 + v10 ≥ 0

and x0 + 2v20 ≥ 0, respectively. The associated KKT conditions are

0 ≤ 2v1⋆0 + v2⋆0 − µ1⋆
0 ⊥ v1⋆0 ≥ 0,

0 ≤ u20 + 2v2⋆0 + v1⋆0 − 2µ2⋆
0 ⊥ v2⋆0 ≥ 0,

0 ≤ x0 + v1⋆0 ⊥ µ1⋆
0 ≥ 0, 0 ≤ x0 + 2v2⋆0 ⊥ µ2⋆

0 ≥ 0

 (7)

Next, at stage two, the optimal response of the follower for any leader’s admissible action u10, upon

fixing the third stage decisions at (v1⋆0 , v
2⋆
0 ), is obtained by solving the optimization problem (5e),

which after substituting for x1 = x0 − (u10 + u20) is given by

min
u2
0

{
(x0 − (u10 + u20))

2 + (u20 + v2⋆0 )2 − u20v
2⋆
0 + v1⋆0 v

2⋆
0

}
subject to (7).

Due to presence of the cross term u20v
2
0 between the sequential and simultaneous decision variables

in the follower’s objective, her optimization problem is a mathematical programming problem with

complementarity constraint (MPCC). In general, MPCC are extremely hard to solve because of the

non-convexity and non-smoothness of the feasible set. Also, the lack of constraints qualification in

every feasible point makes them intractable; see [35, 43].

Next, using Definition 3, we develop a recursive formulation of FSN solution. To this end, we make

use of the reachable set Xk ⊂ Rn, which is the set of all state variables at stage k that are reachable

when players use admissible strategies in Ψ1
[0,k−1] × Ψ2

[0,k−1]. Let the FSN strategies of the players be

denote by {ψi⋆ ≡ ({(γi⋆k (xk), v
i⋆
k )}k∈Kl

, vi⋆K), i ∈ {1, 2}}. Recall that the FSN solution characterized

in Definition 3 at time k leads to a static game at the same time where the down-stream decisions

from instants k + 1 to K are fixed at FSN strategies. We denote by Gi
k(xk, ψ

1
k, ψ

2
k) the cost incurred

by player i in this game when players use (ψ1
k, ψ

2
k) ∈ Ψ1

k × Ψ2
k at stage k, then we have

Gi
k(xk, ψ

1
k, ψ

2
k) := gik(xk, (γ

1
k(xk), γ

2
k(xk)), (v

1
k, v

2
k)) +

K−1∑
τ=k+1

giτ (xτ , (γ
1⋆
τ (xτ ), γ

2⋆
τ (xτ )), (v

1⋆
τ , v

2⋆
τ ))

+ giK(xK , (v
1⋆
K , v

2⋆
K )), (8)

where xk+1 = fk(xk, γ
1
k(xk), γ

2
k(xk)) and xτ+1 = fτ (xτ , γ

1⋆
τ (xτ ), γ

2⋆
τ (xτ )) for τ = k + 1, · · · ,K − 1.

Following the state-additive structure of the cost functions, Gi
k can be written recursively backwards

for k = K − 1, · · · , 0 as

Gi
k(xk, ψ

1
k, ψ

2
k) = gik(xk, (γ

1
k(xk), γ

2
k(xk)), (v

1
k, v

2
k)) +Gi

k+1(fk(xk, γ
1
k(xk), γ

2
k(xk)), ψ

1⋆
k+1, ψ

2⋆
k+1), (9a)

Gi
K(xk, ψ

1⋆
K , ψ

2⋆
K ) = giK(xK , v

1⋆
K , v

2⋆
K ). (9b)

Using the separability Assumption 2, we introduce the auxiliary cost of player i as

G̃i
u,k(xk, γ

1
k(xk), γ

2
k(xk)) := giu,k(xk, γ

1
k(xk), γ

2
k(xk)) +Gi

k+1(fk(xk, γ
1
k(xk), γ

2
k(xk)), ψ

1⋆
k+1, ψ

2⋆
k+1). (9c)

Then, using (9), player i’s cost (8) is given by

Gi
k(xk, ψ

1
k, ψ

2
k) = G̃i

u,k(xk, γ
1
k(xk), γ

2
k(xk)) + giv,k(xk, (v

1
k, v

2
k)). (10)
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4.1 Simultaneous interaction

The third-stage decision problem at any time instant k ∈ Kl given by (5c)–(5d) translates as

G1
k(xk, (γ

1
k(xk), v

1∗
k ), (γ2k(xk), v

2∗
k )) ≤ G1

k(xk, (γ
1
k(xk), v

1
k), (γ

2
k(xk), v

2∗
k )), ∀v1k ∈ V 1

k (v
2⋆
k ), (11a)

G2
k(xk, (γ

1
k(xk), v

1∗
k ), (γ2k(xk), v

2∗
k )) ≤ G2

k(xk, (γ
1
k(xk), v

1∗
k ), (γ2k(xk), v

2
k)), ∀v2k ∈ V 2

k (v
1⋆
k ). (11b)

Clearly, from (10), the above third-stage problem results in a static parametric (in xk) nonzero-sum

game denoted by Γk(xk) :=
〈
{1, 2},Vk(xk), {giv,k(xk, v1k, v2k)}i∈{1,2}

〉
, where each player i ∈ {1, 2}

solves

min
vi
k∈Rsi

giv,k(xk, (v
i
k, v

−i⋆
k )),

subject to hik(xk, (v
i
k, v

−i⋆
k )) ≥ 0, vik ≥ 0. (12)

Introduce the Lagrangian associated with the above constrained optimization problem as

Li
k(xk, v

i
k, µ

i
k) := giv,k(xk, (v

i
k, v

−i⋆
k ))− µi

k

′
hik(xk, (v

i
k, v

−i⋆
k )),

where µi
k is the Lagrange multiplier associated with the constraint hik(xk, (v

i
k, v

−i⋆
k )) ≥ 0. The KKT

conditions associated with the third-stage interaction can be represented compactly as the following

parametric (in xk) complementarity problem at time instant k, denoted by pCPk(xk):

pCPk(xk) : 0 ≤
[
∇Lk(xk, v

⋆
k,µ

⋆
k)

hk(xk, v
⋆
k)

]
⊥

[
v⋆k
µ⋆
k

]
≥ 0, (13)

where

∇Lk(xk, v
⋆
k,µ

⋆
k) = ∇gv,k(xk, v⋆k)− µ⋆

k
′∇hk(xk, v⋆k), (14a)

∇gv,k(xk, v⋆k) =
[
∇v1

k
g1v,k(xk, v

⋆
k)

∇v2
k
g2v,k(xk, v

⋆
k)

]
,µ⋆

k =

[
µ1⋆
k

µ2⋆
k

]
, (14b)

∇hk(xk, v⋆k) =
[
∇v1

k
h1k(xk, v

⋆
k)

∇v2
k
h2k(xk, v

⋆
k)

]
, hk(xk, v

⋆
k) =

[
h1k(xk, v

⋆
k)

h2k(xk, v
⋆
k)

]
. (14c)

Remark 5. Recall that in our class of games, the players interact only simultaneously at terminal

time K. Therefore, the decision problem at K is similar to (12) and results in the complementarity

problem pCPK(xK).

We denote the solution of (13) by (v⋆k,µ
⋆
k) := SOL(pCPk(xk)). It is well-known that a static game

can admit multiple Nash equilibria. As a consequence, the upstream decision problems have to be

solved for each one of these solutions; see Remark 4. This can be avoided if pCPk(xk) has a unique

solution at every time instant k ∈ K. To ensure this, we have from [34, Theorem 2] the following

assumption on the cost functions giv,k associated with the third stage game Γk(xk).

Assumption 3. For every (k, xk) ∈ K × Xk the cost functions giv,k(xk, .) : Rs → R, i ∈ {1, 2} are

diagonally strictly convex (DSC). That is, for every α,β ∈ Rs we have

(α− β)′∇gv,k(xk,β) + (β −α)′∇gv,k(xk,α) < 0. (15)

Remark 6. A sufficient condition for the cost functions to satisfy the DSC property is that the symmetric

matrix [G(xk, vk) +G′(xk, vk)] be positive definite for every vk ∈ Rs, where G(xk, vk) is the Jacobian

of ∇gv,k(xk, vk) with respect to vk.

Lemma 1. Consider the CNZDG described by (1)–(4). Let Assumptions 1, 2 and 3 hold. Then, for

every (k, xk) ∈ K × Xk, SOL(pCPk(xk)) is unique (a singleton), and the FSN control actions v⋆k are

obtained as (v⋆k,µ
⋆
k) = SOL(pCPk(xk)).
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Proof. From Assumption 1.(i), the constraint sets VK(xK) are nonempty, convex, closed and bounded

for every i ∈ {1, 2} and xK ∈ XK . Further, from Assumption 3, the cost functions are strictly

diagonally convex. Then, from [34, Theorem 2], ΓK(xK) is a convex game, and in particular, the

Nash equilibrium obtained as (v⋆K ,µ
⋆
K) = SOL(pCPK(xK)) is unique for all xK ∈ Xk. For any non-

terminal instant k ∈ Kl and any xk ∈ Xk, due to Assumption 2 on separability of cost functions, the

optimization problems (11a)–(11b) result in a static parametric nonzero-sum game Γk(xk). Again,

from Assumption 3 the cost functions giv,k, i ∈ {1, 2} satisfy the DSC property, which implies that the

Nash equilibrium obtained by solving the complementary problem (13) is unique. Therefore, the FSN

control actions v⋆k are unique for any xk ∈ Xk.

4.2 Sequential interaction

In the second stage, the follower solves the optimization problem (5e) for any leader’s announcement

γ1k ∈ Γ1
k. Again, from Assumption 2 on separability of cost functions, the follower’s optimal response

is obtained as

R2
k(γ

1
k) = argmin

γ2
k∈Γ2

k

G2
k(xk, (γ

1
k(xk), v

1⋆
k ), (γ2k(xk), v

2⋆
k ))

= argmin
γ2
k∈Γ2

k

G̃2
u,k(xk, γ

1
k(xk), γ

2
k(xk)). (16)

Next, in the first stage, the leader solves the optimization problem (5f) considering the follower’s best

response. That is, the leader’s optimization problem is given by

γ1⋆k ∈ argmin
γ1
k∈Γ1

k

G1
k(xk, (γ

1
k(xk), v

1⋆
k ), ((R2

k ◦ γ1k)(xk), v2⋆k )) (17)

Again, from Assumption 2 the leader’s FSN solution γ1⋆k satisfies

G̃1
u,k(xk, γ

1⋆
k (xk), (R

2
k ◦ γ1⋆k )(xk)) ≤ G̃1

u,k(xk, γ
1
k(xk), (R

2
k ◦ γ1k)(xk)), ∀γ1k ∈ Γ1

k. (18)

Remark 7. In our model, Assumption 2 (separability) and Assumption 3 (DSC property) enable to

compute the third stage FSN decisions uniquely as (v⋆k,µ
⋆
k) = SOL(pCPk(xk)) at every time instant

k ∈ K. As a result, the third stage decisions taken at time instant k are decoupled from the first and

second stage decisions (u1k, u
2
k) taken at k. However, they are influenced by the sequential decisions

(u1k−1, u
2
k−1) taken at the upstream time instant k − 1 indirectly through the state variable xk.

Remark 8. In accordance with the definition of FSN solution, in (17), it is assumed that the optimal

response set of the follower is a singleton set. This condition is readily met when G̃2
u,k(xk, γ

1
k(xk), .) is

a strictly convex function on U2
k; see also [2, Theorem 7.1 and Theorem 7.2].

Remark 9. When the leader’s optimization problem (19b) at any stage k has more than one solution

γ1⋆k , then the leader is indifferent between them as all the solutions give her the same stage wise cost.

However, the follower’s optimal response γ2⋆k may vary with the leader’s choice and consequently the

next stage state xk+1 given by (1). But xk+1 determines the decisions (v1⋆k+1, v
2⋆
k+1) at stage k + 1,

which implies that stage-wise multiplicities in the leader’s decisions could result in different global FSN

costs for her. More precisely, if (ψ̂1, ψ̂2) and (ψ̄1, ψ̄2) are two FSN solutions for CNZDG such that

J1(x0, ψ̂
1, ψ̂2) < J1(x0, ψ̄

1, ψ̄2), then the leader would definitely prefer ψ̂1 over ψ̄1 and tries to enforce

the component γ̂1⋆k of the strategy ψ̂1 at each stage k of the game. Note that due to uniqueness of

the simultaneous decision variables (under Assumption 3) and uniqueness of follower’s response, the

leader’s cost is unambiguously determined by γ1⋆k at every stage. So, this reasoning leads to a total

ordering among different FSN solutions of CNZDG from leader’s perspective. In this view, we call a

FSN solution (ψ̂1, ψ̂2) of CNZDG admissible (also see [2, Definition 3.30]) if there exists no other FSN

solution (ψ̄1, ψ̄2) with the property J1(x0, ψ̄
1, ψ̄2) < J1(x0, ψ̂

1, ψ̂2). Clearly, the leader can resolve the

multiplicity issue in her optimization problem (19b) by enforcing the admissible ones on the follower

at every stage.
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4.3 Sufficient conditions for a FSN solution

In this subsection, we provide sufficient conditions for the existence of a FSN solution. The next

theorem utilizes the reachable sets Xk, k ∈ K to transform conditions (5a)–(5f) in Definition 3 into a

recursive characterization of FSN solution.

Theorem 1. Consider the CNZDG described by (1)–(4). Let Assumptions 1, 2 and 3 hold true. If

there exist functions W i(k, . ) : Xk → R, k ∈ K i ∈ {1, 2} such that for all k ∈ Kl and γ1k ∈
Γ1
k, g

2
u,k(xk, γ

1
k(xk), · ) + W 2(k + 1, fk(xk, γ

1
k(xk), · )) is strictly convex function on U2

k and for all

k ∈ K, W i(k, · ) satisfy the following (backward) recursive relations:

1. At period K

W i(K,xK) = giK(xK , (v
1⋆
K , v

2⋆
K )), i ∈ {1, 2}, (19a)

where (v⋆K ,µ
⋆
K) = SOL(pCP(xK)).

2. At periods k = K − 1, · · · , 1, 0

W i(k, xk) = gik
(
xk, γ

1∗
k (xk), γ

2∗
k (xk), (v

1⋆
k , v

2⋆
k )

)
+W i

(
k + 1, fk(xk, γ

1∗
k (xk), γ

2∗
k (xk))

)
, i ∈ {1, 2}, (19b)

where

(v⋆k,µ
⋆
k) = SOL(pCPk(xk)), (19c)

R2
k(γ

1
k) = argmin

γ2
k∈Γ2

k

{
g2u,k

(
xk, γ

1
k(xk), γ

2
k(xk)

)
+W 2

(
k + 1, fk(xk, γ

1
k(xk), γ

2
k(xk))

)}
, (19d)

γ1⋆k ∈ argmin
γ1
k∈Γ1

k

{
g1u,k

(
xk, γ

1
k(xk), (R

2
k ◦ γ1k)(xk)

)
+W 1

(
k + 1, fk(xk, γ

1
k(xk), (R

2
k ◦ γ1k)(xk))

)}
,

(19e)

γ2⋆k = R2
k(γ

1⋆
k ). (19f)

Then, the pair of strategies {ψi⋆ = ((γi⋆k (xk), v
i⋆
k )Kl

, vi⋆K), i = 1, 2} constitutes a FSN solution for

CNZDG. Further, every such FSN solution is strongly time consistent.

Proof. We prove the theorem by backward induction. First, we start with the set of inequalities (5a)–

(5b) defined at terminal time K. Since they have to hold true for all admissible actions {ψi
[0,K−1], i ∈

{1, 2}}, it must be that they hold true for all the states xK that are reachable by the utilization of a

combination of these admissible actions. Then, conditions (5a)–(5b) are equivalent to solving a static

game where each player i ∈ {1, 2} solves the following problem:

giK(xK , (v
i⋆
K , v

−i⋆
K )) ≤ giK(xK , (v

i
K , v

−i⋆
K ), ∀viK ∈ V i

K(v−i⋆
k ). (20)

From Assumption 3 and Lemma 1 the solution of (20), given by (v⋆K ,µ
⋆
K) = SOL(pCPK(xK)), is unique

and provides the FSN solution of the subgame at terminal time K. Further, we notice that the FSN

decisions (v1⋆K , v
2⋆
K ) depend only on the current state xK and not on the past values of the state variable

(including x0).

Next, we assume that the theorem holds up to time period k + 1 ∈ Kr backwards in time, that

is, the strategies {ψi⋆
[k+1,K], i ∈ {1, 2}} obtained from (19b)–(19f), satisfy the Definition 3 of FSN

solution. The FSN cost accumulated by player i ∈ {1, 2} for any xk+1 ∈ Xk+1 is given by

W i(k + 1, xk+1) =

K∑
τ=k+1

giτ (xτ , ψ
1⋆
τ , ψ

2⋆
τ ).
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We show that for period k the theorem holds true. The set of inequalities (5c)–(5f) defined at time

k, by fixing the downstream decisions at the FSN solutions {ψi⋆
[k+1,K], i ∈ {1, 2}}, correspond to the

quasi-hierarchical interaction involving three decision stages. These inequalities must hold true for all

admissible actions {ψi
[0,k−1], i ∈ {1, 2}}, and as a result, they hold true for all the states xk ∈ Xk

that are reachable by the utilization of a combination of these admissible actions. Between the time

instants k and k + 1, players interact in three decision stages where each player i ∈ {1, 2} seeks to

minimize the cost functional

gik(xk, (u
1
k, u

2
k), (v

1
k, v

2
k)) +W i(k + 1, xk+1),

subject to the constraints hik(xk, vk) ≥ 0, vik ≥ 0 and with xk+1 = fk(xk, u
1
k, u

2
k). From the separa-

bility Assumption 2 and Lemma 1, the unique Nash outcome v⋆k of the third stage problem is given

by (19c). In the second stage, under the assumption of strict convexity of g2u,k(xk, γ
1
k(xk), · )+W 2(k+

1, fk(xk, γ
1
k(xk), .) on U2

k, the optimal response R2
k defined by (19d) is unique. In the first stage, us-

ing the follower’s response, the leader’s problem is given by (19e). Then, W i(k, xk), given by (19b),

denotes precisely the FSN cost of player i in the subgame starting at (k, xk). We note that the FSN

decisions at each time instant k depend only on the current xk and not on the past values of the

state variable (including x0). The strong time consistency property of the FSN solution is a direct

consequence of the backward recursive nature of construction of the solution.

Remark 10. We note that Theorem 1 provides only sufficient conditions for the existence of FSN solution

for CNZDG. This is because the strict convexity of g2u,k(xk, γ
1
k(xk), · ) +W 2(k + 1, fk(xk, γ

1
k(xk), · ))

over U2
k and DSC Assumption 3 on cost functions giv,k are sufficient for unique follower’s response and

unique Nash equilibrium for the static game Γk(xk), respectively, at every time period.

4.4 Parametric feedback Stackelberg solution and its relation to FSN solution

In this subsection, we show that a FSN solution is closely related to a feedback Stackelberg solu-

tion of an unconstrained parametric nonzero-sum difference game (pNZDG) involving only sequential

interactions. To this end, we first define a pNZDG associated with the CNZDG, with parameters

{wτ := (w1
τ , w

2
τ ) ∈ Rs1+s2 , θτ := (θ1τ , θ

2
τ ) ∈ Rc1+c2 , τ ∈ K} as follows:

pNZDG : min
ũi

{
J̄i
(
x0, ũ

1, ũ2; {(wτ , θτ )}τ∈K

)
= giK(xK , (w

1
K , w

2
K))− θi

′
Kh

i
K(xK ,wK)

+

K−1∑
k=0

(
gik((xk, (u

1
k, u

2
k)), (w

1
k, w

2
k))− θi

′
k h

i
k(xk,wk)

)}
, (21a)

subject to xk+1 = fk(xk, u
1
k, u

2
k), k ∈ Kl, x0 given. (21b)

In pNZDG, the players interact sequentially in the decision variables (u1k, u
2
k) at every time instant

k ∈ Kl. Under feedback information structure, the control action uik of player i at instant k is denoted

by uik := ξik(xk) ∈ Ui
k, where ξ

i
k : Rn → Ui

k is a measurable mapping with the set of all such mappings

be denoted by Ξi
k. The feedback strategy profile of player i be denoted by ξi and the corresponding

strategy set by Ξi =
∏K−1

k=0 Ξi
k. As there are no constraints, the reachable set X̄k is entire Rn. The

definition of parametric feedback Stackelberg solution for pNZDG follows from the standard feedback

Stackelberg solution [2], which is given as follows.

Definition 4 ([2, Definition 3.29]). A pair (ξ1⋆, ξ2⋆) ∈ (Ξ1,Ξ2) constitutes a parametric feedback Stack-

elberg (pFS) solution for pNZDG if the following conditions are satisfied

1. For all ξi[0,k−1] ∈ Ξi
[0,k−1], i ∈ {1, 2} with k = K − 1, · · · , 1

J̄1
(
x0, (ξ

1
[0,k−1], ξ

1⋆
k , ξ1⋆[k+1,K−1]), (ξ

2
[0,k−1], ξ

2⋆
k , ξ2⋆[k+1,K−1]); {(wτ , θτ )}τ∈K

)
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= min
ξ1
k
∈Ξ1

k

max
ξ̂2
k
∈R̄2

k
(ξ1

k
)
J̄1

(
x0, (ξ

1
[0,k−1], ξ

1
k, ξ

1⋆
[k+1,K−1]), (ξ

2
[0,k−1], ξ̂

2
k, ξ

2⋆
[k+1,K−1]); {(wτ , θτ )}τ∈K

)
, (22a)

where R̄2
k(ξ

1
k) is the optimal response set of the follower at stage k, defined by

R̄2
k(ξ

1
k) : = argmin

ξ2
k
∈Ξ2

k

J̄2
(
x0, (ξ

1
[0,k−1], ξ

1
k, ξ

1⋆
[k+1,K−1]), (ξ

2
[0,k−1], ξ

2
k, ξ

2⋆
[k+1,K−1]); {(wτ , θτ )}τ∈K

)
, (22b)

2. The optimal response set R̄2
k(ξ

1⋆
k ) is a singleton set.

Further, J1(x0, ξ
1⋆, ξ2⋆; {(wτθτ )}τ∈K) and J2(x0, ξ

1⋆, ξ2⋆; {(wτ , θτ )}τ∈K) represent the parametric feed-

back Stackelberg costs incurred by the leader and the follower, respectively, with

parameters {(wτ , θτ )}τ∈K.

Remark 11. Following Assumption 2, the cost functions gk, k ∈ Kl in (21a) have the separable structure,

that is, they do not contain cross-terms involving the decision variables (u1k, u
2
k) and the parameters

(w1
k, w

2
k).

The recursive formulation of a pFS solution for pNZDG follows from (22a) and (22b). Using the

standard feedback-Stackelberg solution [2, Theorem 7.2], the next lemma reveals the structure of a

pFS solution for pNZDG. We omit the proof of the lemma as it follows directly from [2, Theorem 7.2].

Lemma 2. Consider the pNZDG described by (21). Let Assumption 2 hold. If there exist functions

W i
p(k, . ) : X̄k → R, k ∈ K, i ∈ {1, 2} such that for all k ∈ Kl and ∀ξ1k ∈ Ξ1

k, g
2
u,k(xk, ξ

1
k(xk), · ) +

W 2
p (k+1, fk(xk, ξ

1
k(xk), · )) is strictly convex on U2

k (k ∈ Kl) and ∀k ∈ K, W i
p(k, · ) satisfy the following

(backward) recursive relations:

1. At period K

W i
p(K,xK ; (wK , θK)) = giK(xK ,wK)− θiK

′
hiK(xK ,wK), i ∈ {1, 2}. (23a)

2. At periods k = K − 1, · · · , 1, 0

W i
p

(
k, xk; {(wτ , θτ )}Kτ=k

)
= gik(xk, ξ

1⋆
k (xk), ξ

2⋆
k (xk),wk)

− θik
′
hik(xk,wk) +W i

p

(
k + 1, fk(xk, ξ

1⋆
k (xk), ξ

2⋆
k (xk)); {(wτ , θτ )}Kτ=k+1

)
, (23b)

where

R̄2
k(ξ

1
k) = argmin

ξ2k∈Ξ2
k

{
g2u,k(xk, ξ

1
k(xk), ξ

2
k(xk))

+W 2
p

(
k + 1, fk(xk, ξ

1
k(xk), ξ

2
k(xk)); {(wτ , θτ )}Kτ=k+1

)}
, (23c)

ξ1⋆k ∈ argmin
ξ1k∈Ξ1

k

{
g1u,k

(
xk, ξ

1
k(xk), (R̄

2
k ◦ ξ1k)(xk)

)
+W 1

p

(
k + 1, fk

(
xk, ξ

1
k(xk), (R̄

2
k ◦ ξ1k)(xk)

)
; {(wτ , θτ )}Kτ=k+1

)}
, (23d)

ξ2⋆k = R̄2
k(ξ

1⋆
k ). (23e)

Then, the pair of strategies {ξ1⋆, ξ2⋆} constitutes a pFS solution for pNZDG. Further, every such

solution is strongly time consistent, and admits a parametric representation given by{
ξi⋆k (xk; {(wτ , θτ )}Kτ=k+1), k ∈ Kl, i ∈ {1, 2}

}
. (24)

Remark 12. We notice that for any stage k ∈ Kl, and any xk ∈ X̄k,W
i
p(k, xk; {(wτ , θτ )}Kτ=k) denotes the

cost incurred by player i using the pFS strategies (ξ1⋆[k,K−1], ξ
2⋆
[k,K−1]) and thus it represents the value

function for player i. Here, the value functions in (23b) are obtained by solving the game recursively

backwards, and depend on the past values of the parameters. For this reason, we represent the value

function at time instant k explicitly in parametric form as W i
p(k, xk; {(wτ , θτ )}Kτ=k).
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Next, we present the main result of this section where we show that a FSN solution for CNZDG

can be obtained from a pFS solution for pNZDG through a specific choice of the parameters.

Theorem 2. Consider the CNZDG described by (1)–(4) and the pNZDG described by (21). Let As-

sumptions 1, 2 and 3 hold true. Assume there exist functions W i(k, . ) : Xk → R and W i
p(k, . ) :

X̄k → R for k ∈ K, i ∈ {1, 2} satisfying conditions (19) and (23), respectively. Further, assume

that for all k ∈ Kl the functions g2u,k(xk, γ
1
k(xk), · ) + W 2(k + 1, fk(xk, γ

1
k(xk), · )), ∀γ1k ∈ Γ1

k and

g2u,k(xk, (ξ
1
k(xk), · ), · )+W 2

p (k+1, fk(xk, ξ
1
k(xk), · )), ∀ξ1k ∈ Ξ1

k are strictly convex on U2
k. Let for player

i ∈ {1, 2}, {ξi⋆k (xk; {(wτ , θτ )}Kτ=k), k ∈ Kl denote a pFS solution for PNZDG. Then, a FSN solution

for player i ∈ {1, 2} satisfies

γi⋆k (xk) = ξi⋆k (xk; {(v⋆τ ,µ⋆
τ )}Kτ=k+1), ∀k ∈ Kl, (25a)

where (v⋆k, µ
⋆
k) = SOL(pCPk(xk)) for all k ∈ K, and {xk, k ∈ K} is the state trajectory generated by

the difference equation

xk+1 = fk
(
xk, ξ

1⋆
k (xk; {(v⋆τ ,µ⋆

τ )}Kτ=k+1), ξ
2⋆
k (xk; {(v⋆τ ,µ⋆

τ )}Kτ=k+1)
)
.

Further, for all k ∈ K and i ∈ {1, 2} the (value) function W i(k, .) : Xk → R satisfies

W i(k, xk) =W i
p(k, xk; {(v⋆τ ,µ⋆

τ )}Kτ=k), xk ∈ Xk. (25b)

Proof. We prove the theorem using (backward) induction principle. The terminal game associated

with CNZDG at time instantK, with xK ∈ XK , is characterized by (19a). Following Assumption 3, and

Lemma 1, there exists a unique (v⋆K ,µ
i⋆
K) = SOL(pCPK(xK)). Upon setting the parameters (wK , θK)

equal to (v⋆K ,µ
⋆
K) in (23a), and from the FSN costs of players (19a) along with the complimentarity

condition µi⋆
K

′
hiK(xK , v

⋆
K) ≡ 0 for i ∈ {1, 2}, we get

W i(K,xK) = giK(xK , (v
1⋆
K , v

2⋆
K ))− µi⋆

K

′
hiK(xK , v

⋆
K) =W i

p(K,xK ; (v⋆K ,µ
⋆
K)).

Therefore, the statement of the theorem at terminal time is verified. Next, assuming that the theorem

holds for time instant k + 1 we show it also holds for instant k, with k = K − 1, · · · , 0. Since the

theorem holds for time k+1, we have for time instants l = k+1 to l = K − 1, FSN solution of player

i ∈ {1, 2} is related to the pFS solution as

γi⋆l (xl) = ξi⋆l (xl; {(v⋆τ ,µ⋆
τ )}Kτ=l+1), (26)

and the FSN costs of the player i in the subgame starting at (k + 1, xk+1) is given by

W i(k + 1, xk+1) =W i
p(k + 1, xk+1; {(v⋆τ ,µ⋆

τ )}Kτ=k+1), (27)

where (v⋆τ ,µ
⋆
τ ) = SOL(pCPτ (xτ )) for τ = k+1, · · · ,K. Now, we consider the static game characterized

by conditions (5c)–(5f) at time instant k, for any xk ∈ Xk, with player i cost function given by

gik(xk, (u
1
k, u

2
k), (v

1
k, v

2
k)) +W i(k + 1, fk(xk, u

1
k, u

2
k)). (28)

From Assumption 3, and Lemma 1, the third stage decisions are obtained as the unique Nash outcome

given by (v⋆k,µ
⋆
k) = SOL(pCPk(xk)). Using (27) in the second and first stage decision problems (19d)

and (19e), respectively, we get

R2
k(γ

1
k) = argmin

γ2
k∈Γ2

k

{
g2u,k

(
xk, γ

1
k(xk), γ

2
k(xk)

)
+W 2

p

(
k + 1, fk(xk, γ

1
k(xk), γ

2
k(xk)); {(v⋆τ ,µ⋆

τ )}Kτ=k+1

)}
, (29)

γ1⋆k ∈ argmin
γ1
k∈Γ1

k

{
g1u,k

(
xk, γ

1
k(xk), (R

2
k ◦ γ1k)(xk)

)
+W 1

p

(
k + 1, fk(xk, γ

1
k(xk), (R

2
k ◦ γ1k)(xk)); {(v⋆τ ,µ⋆

τ )}Kτ=k+1

)}
. (30)
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Now, consider the subgame starting at (k, xk) for pNZDG with the parameters fixed as (wτ , θτ ) =

(v⋆τ ,µ
⋆
τ ) = SOL(pCPτ (xτ )) for τ = k+1, · · · ,K. The follower’s rational response (23c), and the leader’s

optimization problem (23d) are given by

R̄2
k(ξ

1
k) = argmin

ξ2k∈Ξ2
k

{
g2u,k

(
xk, ξ

1
k(xk), ξ

2
n(xk)

)
+W 2

p

(
k + 1, fk(xk, ξ

1
n(xk), ξ

2
n(xk)); {(v⋆τ ,µ⋆

τ )}Kτ=k+1

)}
, (31)

ξ1⋆k ∈ argmin
ξ1k∈Ξ1

k

{
g1u,k

(
xk, ξ

1
k(xk), (R̄

2
k ◦ ξ1k)(xk)

)
+W 1

p

(
k + 1, fk

(
xk, ξ

1
k(xk), (R̄

2
k ◦ ξ1k)(xk)

)
; {(v⋆τ ,µ⋆

τ )}Kτ=k+1

)}
. (32)

In the follower’s optimization problems (29) and (31), from the strict convexity of the objective function

over U2
k we have that the optimal reaction sets R2

k(γ
1
k) and R̄2

k(ξ
1
k) are singleton sets. Further, in these

problems, the objective functions have identical functional forms, which implies R2
k(γ

1
k) = R2

k(γ
1
k) for

all γ1k ∈ Γ1
k. In other words, for all leader’s announcements in the strategy space Γ1

k, the follower’s

response is identical in both problems. We note that in the leader’s optimization problems (30) and (32)

the objective functions have identical forms. Consequently, when the leader’s strategy space in (30)

and (32) is restricted to Γ1
k ⊂ Ξ1

k, then the leader’s optimal strategy set is identical in both problems.

For pNZDG, from Lemma 2, the pFS solution of the optimization problems (31) and (32) is of

the form ξi⋆k (xk; {(v⋆τ ,µ⋆
τ )}Kτ=k+1) ∈ Ξi

k for i = 1, 2. We recall that the downstream parameters in

these strategies are set as (wτ , θτ ) = (v⋆τ ,µ
⋆
τ ) = SOL(pCPτ (xτ )) for τ = k + 1, · · · ,K. At time in-

stant k, using the pFS solutions we get xk+1 = f(xk, ξ
1⋆
k (xk), ξ

2⋆
k (xk)), which is required to satisfy

SOL(pCPτ (xk+1)) ̸= ∅ as the downstream parameters are fixed. From Assumption 1.(i), this implies

that the pFS strategies at time instant k are also admissible, that is, ξi⋆k (xk; {(v⋆τ ,µ⋆
τ )}Kτ=k+1) ∈ Γi

k, i =

1, 2. Next, following the uniqueness of the follower’s response in problems (29) and (31), and coinci-

dence of leader’s optimal announcement sets over the strategy set Γ1
k in problems (30) and (32), at

time instant k, the FSN solution is obtained from the pFS solution as

γi⋆k (xk) = ξi⋆k (xk; {(v⋆τ ,µ⋆
τ )}Kτ=k+1), i = 1, 2. (33)

The value function of player i in the subgame starting at (k, xk) for CNZDG is given by (19b).

From (27) and including the complementarity condition µi⋆′
k hik(xk, v

⋆
k) = 0 we get

W i(k, xk) = gik
(
xk, γ

1∗
k (xk), γ

2∗
k (xk), (v

1⋆
k , v

2⋆
k )

)
− µi⋆′

k hik(xk, v
⋆
k) +W i

p

(
k + 1, xk+1; {(v⋆τ ,µ⋆

τ )}Kτ=k+1

)
,

=W i
p

(
k, xk; {(v⋆τ ,µ⋆

τ )}Kτ=k

)
.

The last equality follows from (23b) by setting (wk, θk) = (v⋆k,µ
⋆
k) = SOL(pCPk(xk)). So, the statement

of the theorem follows by backward induction.

Theorem 2 is constructive and provides a relationship between pFS solution for pNZDG and FSN

solution for CNZDG. Next, using this relation, we characterize the FSN solution set. Substitution for

pFS strategies in (21b) generates the pFS state trajectory and is given by

xk+1 = fk
(
xk, ξ

1⋆
k (xk; {(wτ , θτ )}Kτ=k+1), ξ

2⋆
k (xk; {(wτ , θτ )}Kτ=k+1)

)
, k ∈ Kl. (34)

Clearly, for a given initial condition x0 ∈ Rn, this trajectory is completely determined by the choice of

the parameters (wτ , θτ ), τ ∈ K. Let xK := col(xk)
K
k=1, wK := col(wk)

K
k=1 and θK := col(θk)

K
k=1, then

the pFS state trajectory is given the following mapping

xK = XpFS((wK,θK);x0), (35)
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where XpFS : R(s+c)K
+ → RnK is a vector representation of (34) obtained by eliminating xk in the

right hand side. Next, using (13)–(14), we define ∇LK(xK,wK, θK) := col(∇Lk(xk,wk, θk))
K
k=1 and

hK(xK,wK) := col(hk(xk,wk))
K
k=1, and define the following complementarity problem

pCP(xK) : 0 ≤
[
∇LK(xK,wK, θK)
hK(xK,wK)

]
⊥

[
wK

θK

]
≥ 0. (36)

From Assumption 3, and Lemma 1, if the above problem has a solution, then it must be unique. So,

SOL(pCP) : RnK → R(c+s)K
+ is a piecewise single-valued mapping. Now, consider the composite map

SOL(pCP) ◦ XpFS : R(s+c)K
+ → R(s+c)K

+ . (37)

The fixed points of this above map are given by

Q :=
{
(wK, θK) ∈ R(s+c)K

+

∣∣∣ (wk,θk) = SOL(pCPk(xk) ̸= ∅,

k ∈ Kr, x0 ∈ Rn(given),

xk+1 = fk
(
xk, ξ

1⋆
k (xk; {(wτ , θτ )}Kτ=k+1), ξ

2⋆
k (xk; {(wτ , θτ )}Kτ=k+1)

)
, k ∈ Kl

}
. (38)

Notice that the set Q defined in (38) is exactly the set of parameters for which the relations (25) in

Theorem 2 holds. The above observation is summarized in the following proposition.

Proposition 1. Consider the CNZDG described by (1)–(4) and the pNZDG described by (21). Let the

assumptions stated in Theorem 2 hold. Assume SOL(pCP0(x0) ̸= ∅ and Q ̸= ∅, then the FSN strategies

of the players are given by {ψi⋆ ≡ ({(γi⋆k (xk), v
i⋆
k )}k∈Kl}, v

i⋆
K), i ∈ N} where the simultaneous decisions

(v1⋆k , v
2⋆
k ) satisfy (v⋆0,µ

⋆
0) ∈ SOL(pCP0(x0)) and (v⋆K ,µ

⋆
K) ∈ Q, and the sequential decisions (γ1⋆k , γ2⋆k )

satisfy γi⋆k (xk) = ξi⋆k (xk; {(v⋆τ ,µ⋆
τ )}Kτ=k+1), k ∈ Kl.

Proof. The proof follows from the proof of Theorem 2 and the parameter set (38).

Remark 13. From Proposition 1, for a given initial condition, the FSN solutions are characterized as

the intersection points of two parametric maps (35) and (36) (also see Figure 2). This implies that

there may exist none (when Q = ∅), a unique solution, multiple solutions, or even a continuum of

solutions (when Q ̸= ∅). In case of multiple solutions, along each FSN state trajectory, we will have

unique simultaneous equilibrium solution (due to Assumption 3) at every stage. As the follower’s

response is also unique for each leader’s sequential decision γ1⋆k , at every stage, the leader can enforce

her FSN sequential decision locally at every stage of the game. Further, following Remark 9, leader

can order the FSN solutions in terms of her global cost which result in admissible FSN solutions.

xK

(wK, θK)

Figure 2: Illustration of set Q defined in (38) as the intersection of the continuous map (35) (gray dashed curve) and
piecewise single valued map (36) (gray normal curve).

Remark 14. Following Theorem 2 and Proposition 1 the FSN solution is obtained using the parameter

set Q and the pFS solution of the associated unconstrained pNZDG. In particular, the FSN strategies

and value functions of the players are obtained as (25a) and (25b) respectively.
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Although characterizations of the set Q and the value functions W i
p(k, ·) are available through

equations (38) and (23), respectively, obtaining their exact functional forms for general CNZDGs

remains a challenge. In the next section, we demonstrate that for the specific class of linear-quadratic

games, solving a linear complementary problem allows us to obtain the elements of set Q. Further,

the parametric value functions W i
p(k, ·) can be shown to be quadratic functions of the state, enabling

the determination of FSN solutions.

5 Linear-quadratic case

In this section, we specialize the results of the previous section to a linear-quadratic setting and

provide a method for computing the FSN solution. To this end, we consider a discrete-time finite-

horizon linear-quadratic difference game with mixed affine coupled inequality constraints (CLQDG).

The state variable evolves according the following discrete-time linear dynamics:

xk+1 = Akxk +B1
ku

1
k +B2

ku
2
k, k ∈ Kl, (39a)

with a given initial state x0 ∈ Rn, where Ak ∈ Rn×n, Bi
k ∈ Rn×mi , uik ∈ Ui

k for i ∈ {1, 2} and Ui
k ⊂ Rmi

represents the admissible action set of player i. The mixed coupled constraints (2) of player i ∈ {1, 2}
for this case, is given by

M i
kxk +N i

kvk + rik ≥ 0, vik ≥ 0, k ∈ K, (39b)

whereM i
k ∈ Rci×n, N i

k ∈ Rci×s and rik ∈ Rci . The terminal and instantaneous costs of player i ∈ {1, 2}
are given by

giK(xK , vK) = 1
2x

′
KQ

i
KxK + piK

′
xK + 1

2v
′
KD

i
KvK + x′KL

i
KvK + diK

′
vK , (39c)

gik(xk, uk, vk) =
1
2x

′
kQ

i
kxk + pik

′
xk + 1

2

2∑
j=1

ujk
′
Rij

k u
j
k + 1

2v
′
kD

i
kvk + x′kL

i
kvk + dik

′
vk, (39d)

where Rij
k ∈ Rmi×mj for k ∈ Kl, and Qi

k ∈ Rn×n, Qi
k = Qi′

k , p
i
k ∈ Rn, Di

k ∈ Rsi×si , Li
k ∈ Rn×si ,

dik ∈ Rsi for k ∈ K. Similar to Assumption 1, we have the following assumptions for CLQDG.

Assumption 4.

(i) the admissible action sets Ui
k ⊂ Rmi for k ∈ Kl, i ∈ {1, 2} are such that the feasible action sets

V(xk) :=
{
vk ∈ Rs | M i

kxk + N i
kvk + rik ≥ 0, i = 1, 2, vk ≥ 0

}
for all k ∈ K, i ∈ {1, 2} are

nonempty and bounded.

(ii) The matrices {[N i
k]i, k ∈ K, i = 1, 2} have full rank.

(iii) The matrix Dk +D′
k is positive definite for all k ∈ K, where Dk =

[
[D1

k]11 [D1
k]12

[D2
k]21 [D2

k]22

]
.

Here, Assumption 4.(ii) ensures that the constraint qualification conditions hold. Assumption 4.(iii)

is a sufficient condition for the cost functions (39c)–(39d) to be strictly diagonally convex in the decision

variables vk at every stage k ∈ K; see also Assumption 3 for CNZDG. Similar to pNZDG as defined

in the previous section, using (39), we define the following parametric unconstrained linear-quadratic

difference game (pLQDG) associated with CLQDG.

pLQDG : min
ũi

{
J̄i(x0, ũ

1, ũ2; {(wτ , θτ )}τ∈K)

= giK(xK ,wK) +
∑
k∈Kl

gik(xk, uk,wk)−
∑
k∈K

θik
′
(M i

kxk +N i
kwk + rik)

}
, (40a)

subject to xk+1 = Akxk +B1
ku

1
k +B2

ku
2
k, k ∈ Kl. (40b)

For the pLQDG, due to linearity of the state dynamics and quadratic nature of the cost functions,

we have the following assumption on pFS solutions and value functions:
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Assumption 5. The pFS decisions of the players {ξ1⋆k , ξ2⋆k } are affine functions of the state variable

ui⋆k ≡ ξi⋆k (xk; {(wτ ,θτ )}Kτ=k+1) = Ei
kxk + F i

k, i ∈ {1, 2}, (41)

where, Ei
k ∈ Rmi×n, F i

k ∈ Rmi , k ∈ Kl. Further, the parametric value function for player i ∈ {1, 2} at

stage k ∈ K has the following form:

W i
p

(
k, xk; {(wτ ,θτ )}Kτ=k

)
= 1

2x
′
kS

i
kxk + sik

′
xk +mi

k

+

K∑
τ=k

(
1
2

[
wτ

θτ

]′ [
Di

τ −N i
τ
′

N i
τ 0

] [
wτ

θτ

]
+ diτ

′
wτ − riτ

′
θiτ

)
, (42)

where Si
k ∈ Rn×n, sik ∈ Rn and mi

k ∈ R.

At stage k ∈ Kl, for a fixed u1k, the follower minimizes the objective (see (23c)).

g2k(xk, (u
1
k, u

2
k),wk)− θ2k

′
(M2

kxk +N2
kwk + r2k) +W 2

p

(
k + 1, Akxk +B1

ku
1
k +B2

ku
2
k; {(wτ ,θτ )}Kτ=k+1

)
.

If the matrix (R22
k + B2

k
′
S2
k+1B

2
k) is positive definite, then for every leader’s action u1k, the follower’s

objective is strictly convex in u2k resulting in an unique follower optimal response at stage k as follows:

R̄2
k(u

1
k) = −Υ2

k(B
2
k
′
S2
k+1(Akxk +B1

ku
1
k) +B2

k
′
s2k+1), (43)

where Υ2
k := (R22

k + B2′
k S

2
k+1B

2
k)

−1. Now substituting the above in the leader’s optimization prob-

lem (23d) and writing the first-order condition results in(
R11

k +B1
k
′(
S2
k+1

′
B2

kΥ
2
k
′
R12

k Υ2
kB

2
k
′
S2
k+1 + (I −B2

kΥ
2
kB

2
k
′
S2
k+1)

′S1
k+1(I −B2

kΥ
2
kB

2
k
′
S2
k+1)

)
B1

k

)
u1⋆k

+B1
k
′(
S2
k+1

′
B2

kΥ
2
k
′
R12

k Υ2
kB

2
k
′
S2
k+1 + (I −B2

kΥ
2
kB

2
k
′
S2
k+1)

′S1
k+1(I −B2

kΥ
2
kB

2
k
′
S2
k+1)

)
Akxk

+B1
k
′(
S2
k+1

′
B2

kΥ
2
k
′
R12

k Υ2
kB

2
k
′ − (I −B2

kΥ
2
kB

2
k
′
S2
k+1)

′S1
k+1B

2
kΥ

2
kB

2
k
′)
s2k+1

+B1
k
′
(I −B2

kΥ
2
kB

2
k
′
S2
k+1)

′s1k+1 = 0. (44)

If the coefficient of u1⋆k in (44) is positive definite then the leader’s objective is strictly convex in u1k
resulting in a unique pFS strategy for leader at stage k. Next, using (41) from Assumption 5, the

follower’s pFS strategy is obtained from (43) as E2
kxk+F

2
k = −Υ2

k

(
B2

k
′
S2
k+1(Akxk+B

1
kE

1
kxk+B

1
kF

1
k )+

B2
k
′
s2k+1

)
. The leader’s pFS strategy is obtained by substituting u1∗k = E1

kxk+F
1
k in (44) and equating

the coefficients of xk on both sides, as the relation has to hold true for an arbitrary xk. The pFS
strategies of the players are solved as

E1
k =−Υ1

kB
1
k
′(
S2
k+1

′
B2

kΥ
2
k
′
R12

k Υ2
kB

2
k
′
S2
k+1 + (I −B2

kΥ
2
kB

2
k
′
S2
k+1)

′S1
k+1(I −B2

kΥ
2
kB

2
k
′
S2
k+1)

)
Ak, (45a)

F 1
k =−Υ1

kB
1
k
′(
(I −B2

kΥ
2
kB

2
k
′
S2
k+1)

′s1k+1 +
(
S2
k+1

′
B2

kΥ
2
k
′
R12

k Υ2
kB

2
k
′

− (I −B2
kΥ

2
kB

2
k
′
S2
k+1)

′S1
k+1B

2
kΥ

2
kB

2
k
′)
s2k+1

)
, (45b)

E2
k =−Υ2

kB
2′
k S

2
k+1(Ak +B1

kE
1
k), (45c)

F 2
k =−Υ2

kB
2′
k (s2k+1 + S2

k+1B
1
kF

1
k ), (45d)

Υ2
k =(R22

k +B2′
k S

2
k+1B

2
k)

−1, (45e)

Υ1
k =

(
R11

k +B1
k
′(
S2
k+1

′
B2

kΥ
2
k
′
R12

k Υ2
kB

2
k
′
S2
k+1 + (I −B2

kΥ
2
kB

2
k
′
S2
k+1)

′S1
k+1(I −B2

kΥ
2
kB

2
k
′
S2
k+1)

)
B1

k

)−1
. (45f)

The above steps are summarized in the following theorem, which characterizes the pFS solution for

the pLQDG.

Theorem 3. Consider the pLQDG described by (40) with parameters {(wτ ,θτ )}Kτ=0, and let Assump-

tion 5 hold. Define Si
k, s

i
k and mi

k such that the following backward recurrence equations are verified

for i ∈ {1, 2}

Si
k = Qi

k +

2∑
j=1

Ej
k

′
Rij

k E
j
k +

(
Ak +

2∑
j=1

Bj
kE

j
k

)′
Si
k+1

(
Ak +

2∑
j=1

Bj
kE

j
k

)
, (46a)
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sik = pik + Li
kwk −M i

k

′
θik +

2∑
j=1

Ej
k

′
Rij

k F
j
k +

(
Ak +

2∑
j=1

Bj
kE

j
k

)′(
sik+1 + Si

k+1

2∑
j=1

Bj
kF

j
k

)
, (46b)

mi
k = mi

k+1 +
1
2

2∑
j=1

F j
k

′
Rij

k F
j
k + 1

2

( 2∑
j=1

Bj
kF

j
k

)′
Si
k+1

( 2∑
j=1

Bj
kF

j
k

)
+
( 2∑
j=1

Bj
kF

j
k

)′
sik+1. (46c)

with terminal conditions Si
K = Qi

K , siK = piK + Li
KwK −M i

K
′
θiK , and mi

K = 0. If the matrices Υ1
k

and Υ2
k defined in (45e) and (45f) are positive definite, then ξi⋆k (xk) = Ei

kxk + F i
k is a pFS solution

for pLQDG where Ei
k and F i

k are given by (45a)–(45d) for i ∈ {1, 2}, k ∈ Kl. The pFS state trajectory

is given by

xk+1 = (Ak +

2∑
i=1

Bi
kE

i
k)xk +

2∑
i=1

Bi
kF

i
k. (47)

Proof. For both leader and follower, under Assumption 5, the backward recursive relations (46) follows

by comparing the coefficients of state in the verification result (23b) of Lemma 2. The positive

definiteness of the matrices Υ2
k for all k ∈ Kl ensures that the optimal response of the follower at

every stage k ∈ Kl is unique. Similarly, positive definiteness of the matrices Υ1
k for all k ∈ Kl results

in a unique parametric Stackelberg solution for leader at every stage k ∈ Kl.

5.1 FSN solution as a linear complementarity problem

In this subsection, we demonstrate that for CLQDG the elements of the set Q, as defined in (38), can

be obtained as a solutions of a large-scale linear complementarity problem. To this end, we introduce

some notation. Denote pk := col(p1k, p
2
k), sk := col(s1k, s

2
k), Bk := row(B1

k, B
2
k), Ek := col(E1

k, E
2
k),

Fk := col(F 1
k , F

2
k ), Lk := col(L1

k L
2
k), Mk :=M1

k ⊕M2
k , and the gain matrices Gk+1 and Hk+1 as

[Gk+1]11 :=−Υ1
kB

1
k
′
(I −B2

kΥ
2
kB

2
k
′
S2
k+1)

′,

[Gk+1]21 :=−Υ2
kB

2
k
′
S2
k+1B

1
k[Gk+1]11

[Gk+1]12 :=−Υ1
kB

1
k
′(
S2
k+1

′
B2

kΥ
2
k
′
R12

k Υ2
kB

2
k
′ − (I −B2

kΥ
2
kB

2
k
′
S2
k+1)

′S1
k+1B

2
kΥ

2
kB

2
k
′)
,

[Gk+1]22 :=−Υ2
kB

2
k
′
(I + S2

k+1B
1
k[Gk+1]12),

[Hk+1]ii :=
(
Ei′

k R
ii
k + (Ak + BkEk)

′
Si
k+1B

i
k

)
[Gk+1]ii(Ak + BkEk)

′

+
(
Ej′

k R
ij
k + (Ak + BkEk)

′Si
k+1B

j
k

)
[Gk+1]ji, i, j ∈ {1, 2}, i ̸= j,

[Hk+1]ij :=
(
Ei′

k R
ii
k + (Ak + BkEk)

′
Si
k+1B

i
k

)
[Gk+1]ij +

(
Ej′

k R
ij
k + (Ak + BkEk)

′Si
k+1B

j
k

)
[Gk+1]jj ,

i, j ∈ {1, 2}, i ̸= j.

Using the above notations, (45b)–(45d) and (46b) can be written in vector form as

Fk = Gk+1sk+1, (48)

sk = pk +
[
Lk −M′

k

]
[w′

k θ′k]
′ +Hk+1sk+1, (49)

with the terminal condition given by sK = pK +
[
LK −M′

K

]
[w′

K θ′K ]′. Next, (49) can be solved as

sk =

K∑
τ=k

φ(k, τ)
(
pτ +

[
Lτ −M′

τ

]
[w′

τ θ′τ ]
′
)
, (50)

where the associated state transition matrices φ(k, τ) are given by φ(k, τ) = I for τ = k, and φ(k, τ) =

Hk+1Hk+2 · · ·Hτ for τ > k. Using (48) in (47), the pFS state variable evolves according the forward
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linear difference equation: xk+1 = Ākxk + B̄ksk+1, with Āk := Ak + BkEk and B̄k := BkGk+1. The

solution of this linear forward difference equation for k ∈ Kr is given by

xk = ϕ(0, k)x0 +

k−1∑
ρ=0

ϕ(ρ+ 1, k)B̄ρsρ+1, (51)

where the associated state transition matrices ϕ(ρ, k) are defined as ϕ(ρ, k) = I for ρ = k, and

ϕ(ρ, k) = Āk−1Āk−2 · · · Āρ for ρ < k. Using (50) in (51), the pFS state trajectory for k ∈ Kr is given

as follows

xk = ϕ(0, k)x0 +

K∑
τ=1

(min (k,τ)∑
ρ=1

ϕ(ρ, k)B̄ρ−1φ(ρ, τ)
)(
pτ + [Lτ −M′

τ ][w
′
τ θ′τ ]

′). (52)

Aggregating the variables in (52) by pK := col(pk)
K
k=1, xK := col(xk)

K
k=1, wK := col(wk)

K
k=1 and

θK := col(θk)
K
k=1, the pFS state trajectory xk, k ∈ Kr is written compactly as

xK = Φ0x0 +Φ1pK +Φ2wK +Φ3θK, (53)

where for all k, τ ∈ Kr the matrices appearing on the right-hand side of (53) are given by [Φ0]k :=

ϕ(0, k), [Φ1]kτ :=
∑min(k,τ)

ρ=1 ϕ(ρ, k)B̄ρ−1φ(ρ, τ), [Φ2]kτ :=
∑min(k,τ)

ρ=1 ϕ(ρ, k)B̄ρ−1φ(ρ, τ)Lτ , [Φ3]kτ :=

−
∑min (k,τ)

ρ=1 ϕ(ρ, k)B̄ρ−1φ(ρ, τ)M
′
τ . Next, the parametric complementarity problem (36) can be written

as the following parametric linear complementarity problem (pLCP):

pLCP(xK) : 0 ≤
[
DK −N̄′

K

NK 0

] [
wK

θK

]
+

[
L̄′K
M̄K

]
xK +

[
dK
rK

]
⊥

[
wK

θK

]
≥ 0, (54)

where DK = ⊕K
k=1Dk, NK = ⊕K

k=1(N
1
k ⊕N2

k ), N̄K = ⊕K
k=1([N

1
k ]1⊕ [N2

k ]2), L̄K = ⊕K
k=1(row([L

1
k]1, [L

2
k]2)),

M̄K = ⊕K
k=1(col(M

1
k ,M

2
k )), dK = col(col([d1k]1, [d

2
k]2))

K
k=1, rK = col(col(r1k, r

2
k))

K
k=1. Using (53) in (54),

we obtain the following single linear complementary problem:

LCP : 0 ≤ MK

[
wK

θK

]
+ qK ⊥

[
wK

θK

]
≥ 0, (55)

where MK :=

[
DK + L̄′KΦ2 −N̄′

K + L̄′KΦ3

NK + M̄KΦ2 M̄KΦ3

]
and qK :=

[
dK + L̄′KΦ1pK + L̄′KΦ0x0
rK + M̄KΦ1pK + M̄KΦ0x0

]
.

Theorem 4. Consider the CLQDG described by (39). Let Assumptions 4 and 5 hold true and the

matrices Υ1
k and Υ2

k defined in (45e) and (45f) are positive definite for all k ∈ Kl. If SOL(pLCP0(x0) ̸=
∅ and SOL(LCP) ̸= ∅, then the FSN strategies of the players in CLQDG are given by

{ψi⋆ ≡ ({(γi⋆k (xk), v
i⋆
k )}k∈Kl

, vi⋆K), i = 1, 2},

where the simultaneous decisions are (v⋆0,µ
⋆
0) = SOL(pLCP(x0)), (v

⋆
K,µ

⋆
K) = SOL(LCP) and the sequen-

tial decisions are γi⋆k (xk) = Ei
kxk + F i

k, i ∈ {1, 2}, where Ei
k and F i

k, i ∈ {1, 2} are given by (45) with

parameters as (v⋆K,µ
⋆
K).

Proof. The proof follows from Proposition 1 and the steps before the theorem.

Remark 15. The LCP (55) may not have a solution, and if it does, there could be one, more than

one, or a continuum of equilibrium solutions. In cases where the LCP has multiple solutions, each of

these solutions will result in FSN strategies where the leader can enforce her sequential decision locally

at each stage. Furthermore, following Remark 13, the leader can order the FSN solutions in terms

of her global cost; see Remark 9. The conditions for the existence and uniqueness of LCP solutions,

along with the numerical methods to obtain them, have been extensively studied in the optimization

literature. For more details on this topic, see [14].



Les Cahiers du GERAD G–2024–16 21

6 Numerical illustration

In this section, we illustrate our results with a numerical example. The setting is the same as in [32],

i.e., two firms compete in the same market in quantities (i.e., à la Cournot) and invest in process R&D

to reduce their unit production costs, and in their production capacity. The difference with [32] is that

here the firms announce sequentially, and not simultaneously, their investments. As in the motivating

example in the introduction, we suppose that player 1 is an international company that acts as leader

in the investment variables and player 2 is a local firm that acts as follower. Denote by vik the quantity

produced (output) by firm i ∈ {1, 2} at time k. The price P (v1k, v
2
k) is given by the following affine

inverse demand:

P (v1k, v
2
k) = Āk − B̄k(v

1
k + v2k), k ∈ K.

We assume that Āk = Āk−1(1 + ϵ) and B̄k = B̄k−1/(1 + ϵ), with ϵ > 0 for all k ∈ Kr, that is, the

demand increases over time. The unit-production cost of each firm is decreasing in its stock of R&D,

Xi
k, whose evolution is described by the following difference equation:

Xi
k+1 = µiXi

k +Ri
k + λiRj

k, i ̸= j, i, j ∈ {1, 2}, (56a)

where Ri
k, denotes the investment in R&D by firm i at time k ∈ Kl. The spillover parameter λi ∈ (0, 1)

represents the part of firm i’s investment in R&D that spills over to its rival. This means that knowledge

by a firm is not fully appropriable by the investor. Let Iik be the investment made by firm i ∈ {1, 2}
to increase its production capacity, Y i

k , whose evolution is given by

Y i
k+1 = δiY i

k + Iik, i ∈ {1, 2}, (56b)

where (1 − δi) represents the depreciation rate. Each firm’s production must be non-negative and is

upper bounded by its production capacity, i.e.,

Y i
k ≥ vik ≥ 0, i ∈ {1, 2}. (57)

Production decisions are taken simultaneously. The production cost of firm i is given by hi(X
i
k, v

i
k) =

(ci−γiXi
k)v

i
k. Here, ci is the initial fixed cost, γi is the positive cost learning parameter that represents

the speed of reduction in the unit cost. The investment costs in R&D and production capacity are given

by gi(R
i
k) = (ai/2)(Ri

k)
2 and fi(I

i
k) = (bi/2)(Iik)

2, respectively, where ai and bi are positive parameters.

At terminal time K, the salvage value is given by Si(X
i
K , Y

i
K) = (αi

X/2)(X
i
K)2 + (αi

Y /2)(Y
i
K)2. Firm

i’s objective is given by

J i =

K−1∑
k=0

βk(fi(R
i
k) + gi(I

i
k)) +

K∑
k=0

βk(hi(X
i
k, v

i
k)− P (v1k, v

2
k)v

i
k) + βKSi(X

i
K , Y

i
K), (58)

where β is the common discount factor. Each firm i ∈ {1, 2} minimizes its objective (58) subject to

the state dynamics (56) and the production capacity constraint (57). Note that the dynamic duopoly

game (56)–(58) fits into the CLQDG (39). For numerical illustration, we assume the following param-

eters: K = 14, Ā0 = 3.5, B̄0 = 0.5, ϵ = 0.015, β = 0.9, λi = 0.1, µi = 0.8, δi = 0.85, γi = 0.2, ai =

1, bi = 1, ci = 0.5, αi
X = −0.2, αi

Y = −0.25, Xi
0 = 5, Y i

0 = 4, i ∈ {1, 2}. We used the freely

available PATH solver (available at https://pages.cs.wisc.edu/ferris/path.html) for solving the

LCP (55).

Figure 3 illustrates the evolution of the stock of knowledge, production capacity and the quantities

produced by both firms under the FSN solution. Figure 3a and 3b in top panel, show the evolution of

production capacity along with the outputs of the foreign firm (leader) and the local firm (follower),

respectively. For the case when the investment made by both firms are also simultaneous (for example

when both are local firms), the corresponding plots for the evolution of production capacity and

the outputs are obtained from feedback-Nash equilibria using the approach in [32] and are shown

https://pages.cs.wisc.edu/ferris/path.html
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in Figure 3c. In all cases, we note that, the outputs are always upper bounded by the production

capacities of the firms. Also, in each case, the constraints are active from time period 4 to 13. Bottom

panel in Figure 3 shows the comparison between the leader, follower and feedback Nash (when the

investment made by both firms are also simultaneous). Even though the initial values of the stock

of knowledge and production capacity of both firm are the same, as time progress, from Figure 3d

and Figure 3e, we observe that, both stocks of knowledge and production capacity, are higher for the

foreign firm (leader) as compared to the local firm (follower). Also, the quantity of goods produced by

the foreign firm are consistently higher as compared to the local firm; see Figure 3f. In all the bottom

plots in Figure 3, we also notice that the feedback-Nash equilibria plots lie in between the leader and

follower plots.
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Figure 3: Evolution of production capacities and production quantities of foreign firm/leader (panel (a)), local firm/follower
(panel (b)) and each firm when all decisions are simultaneous/Nash (panel (c)). Comparison of evolution of stock of
knowledge (panel (d)), production capacities (panel (e)) and production quantity (panel (f)) of foreign firm (leader), local
firm (follower) and each firm when all decisions are simultaneous (Nash).

7 Conclusions

We studied a class of two-player nonzero-sum difference games with coupled inequality constraints,

where players interact sequentially in one type of decision variables and simultaneously in the other type

of decision variables. For this quasi-hierarchical interaction, we defined the feedback Stackelberg-Nash

(FSN) solution and provided a recursive formulation of this solution under separability assumption of

cost function. We showed that the FSN solution of these constrained games can be derived using the

parametric feedback Stackelberg solution of an associated unconstrained parametric game involving

only sequential decision variables, with a specific choice of the parameters, that satisfy some implicit

complementarity conditions. We specialized these results to a linear-quadratic setting involving affine

inequality constraints, and for this special case, we showed that the FSN solution can be obtained

from the solution of a large-scale linear-complementarity problem.



Les Cahiers du GERAD G–2024–16 23

References
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