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Abstract : Cellular solids are structures which have applications in mechanical engineering to make
lightweight structures and heat exchangers, in biomedical engineering to make tissue scaffolds, and
in chemical engineering to make catalysts. A subset of these, triply periodic minimal surface–like
cellular solids, are seeing growing adoption with recent advances in additive manufacturing. Here we
present a program, Cesogen, which interprets a novel domain-specific language (DSL) for specifying
signed distance functions (SDFs) to generate cellular solid meshes, and which is designed to be paired
with blackbox optimizers in order to spur more efficient research into cellular solids. It converts
input meshes to SDFs before transforming and combining them with operations such as translation,
scaling and intersection, which allows Cesogen to robustly generate hierarchical cellular solids. Finally,
Cesogen contours the combined SDF via marching cubes to produce a resulting mesh which is suitable
as input to a physics simulator.

Keywords : Cellular solids, triply periodic minimal surfaces, signed distance functions, additive
manufacturing, blackbox optimization
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Nomenclature

Abbreviations

API application programming interface
CLI command-line interface
DSL domain-specific language
GUI graphical user interface
SDF signed distance function
TPMS triply periodic minimal surface
TPSf triply periodic surface
TPcS triply periodic eccentric surface
TPnS triply periodic endoskeleton
TPxS triply periodic exoskeleton

Symbols

d distance; d : Rn × Rn → R
fΩ SDF of Ω; fΩ : Rn → R
f̃Ω approximate SDF of Ω; f̃Ω : Rn → R
R set of real numbers

R≥0 set of non-negative real numbers
x point; x ∈ Rn

x, y, z coordinates of point; x, y, z ∈ R
ξ isovalue; ξ ∈ R
π circle constant
τ full circle constant (2π)
Ω feasible set or geometric object

∂Ω boundary of Ω

1 Introduction

Cellular solids are porous structures, sometimes periodic, sometimes stochastic, composed of cells made

up of solid struts, plates and surfaces [13]. They can be classified into honeycombs, foams, and lattice

structures, the last of which consists of strut-based and triply periodic minimal surface (TPMS)–like

cellular solids.

Strut-based cellular solids have applications in many fields, including for thermal insulation, pack-

aging, and lightweight structures [13]. Advances in additive manufacturing [40] have prompted more

research into TPMS-like cellular solids because they could be manufactured more easily. TPMS-like

cellular solids are now used in many applications, including mechanical (for energy and impact absorp-

tion, lightweight structures), thermal (as heat exchangers), biological (for tissue engineering scaffolds),

and chemical (as batteries, catalysts, water-absorbing films) [9]. Sandwich panels are an example of

lightweighting, where the inside is composed of a cellular solid to reduce the weight of the part while

maintaining its structural integrity. The advantage of using cellular solids for heat transfer is that

they have a high surface area, much higher than a solid block of equivalent dimensions. In biological

applications, e.g., bone implants, TPMS-like cellular solids are preferred to strut-based cellular solids

because the former are more similar to structures found in the body, and cells attach to them more

easily.

Many aspects of cellular solids warrant and need more investigation, including their use in heat and

mass transfer, and graded, heterogeneous and multiscale cellular solids [9]. Mathematical optimization

of cellular solids, and cellular solids in general, is one aspect for which there is a dearth in the literature.

This article presents the cellular solid generator Cesogen; it is a program that can take a definition

of a cellular solid, e.g., its name and properties, or the signed distance function (SDF) defining it, and

generate a mesh suitable for simulation and manufacturing.

Cellular solid generators are a critical element in any study of cellular solids. Their features include

a combination of:
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• a user interface, be it command-line or graphical;

• an extensive library of cellular solids, including graded, heterogeneous and multiscale cellular

solids;

• the ability to fill arbitrary geometries with a cellular solid;

• configurable contouring algorithms; and

• performance (ideally the generation time should be negligible compared to the simulation time).

Cesogen is not the first of its kind; there exist many cellular solid generators, whether freely available

and open source, freely available and closed source, or commercial and proprietary. The freely available

generators, from earliest to latest publication date of the supporting article, are:

• ScaffoldStructures [8], the first such software to get published, written in Python;

• MSLattice [1], written in MATLAB and can generate graded cellular solids;

• MiniSurf [15, 16], written in MATLAB;

• Scaffolder [17], written in C++ and Python, with a CLI (command-line interface), and can fill

arbitrary solids;

• TPMS Designer [18, 19], written in MATLAB and can translate, scale and rotate cellular solids;

• FLatt Pack [25], written in MATLAB, has an extensive library of cellular solids, can fill arbitrary

solids and generate graded cellular solids;

• ASLI [30], written in C++, with a CLI, and can fill arbitrary solids and generate graded and

heterogeneous cellular solids;

• MaSMaker [39], written in MATLAB and can fill arbitrary solids;

• Lattice Karak [34], written in MATLAB and can generate graded, heterogeneous and hierarchical

cellular solids; and

• MD-TPMS [22], written in MATLAB and can generate graded cellular solids.

Commercial cellular solid generators are usually a smaller part of a more general design tool, and

include Iamsamang and Naiyanetr [17], Raju and Onkar [34]: Optistruct (Altair), Netfabb and Within

(Autodesk), Sulis (Gen3D), 3-Matic (Materialise), nTop (nTopology) [26], Creo Parametric (PTC),

Grasshopper (Rhino 3D), and Simpleware (Synopsys). Freely available cellular solid generators forming

a smaller part of a more general design tool include the Add Mesh Extra Objects plugin for Blender,

and K3DSurf [34].

The particularity of Cesogen is that it is specifically adapted to computer-guided optimization.

The primary features an optimization-focused generator needs in order to be usable are the ability to

generate cellular solids and a way to operate it from the optimizer, e.g., a CLI.

The contribution of this article is to introduce and present Cesogen, a tool for generating cellular

solids that researchers can use in their studies of these materials.

This article begins by presenting the theory required to understand the operation of Cesogen —

starting with a description of SDFs and cellular solids — and continues by presenting the user interface

of Cesogen and some details of how it works. Finally, it presents some examples of Cesogen in use and

ends with a conclusion.

2 Theory

Two theoretical concepts are required to explain the functioning of Cesogen: SDFs and cellular solids.
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2.1 Signed distance functions

In a metric space (Rn, d), the SDF f corresponding to an object Ω ⊆ Rn is

f(x) =

{
−d(x, ∂Ω) if x ∈ Ω

d(x, ∂Ω) if x ∈ Rn \ Ω
(1)

where ∂Ω is the boundary of Ω and

d(x, ∂Ω) := inf
y∈∂Ω

d(x, y). (2)

In other words, f is a function taking negative values within Ω, positive values without, and the value

zero on its boundary.

The convention of negative for inside and positive for outside is not universal; it is adopted by some

authors [23], but others use the opposite convention [5, 29].

SDFs of basic objects are generally derived mathematically [32]. The SDFs of geometric objects

represented as meshes are brute forced by calculating the shortest distance from x to the polygons in

the mesh, possibly sped up with spatial query structures such as a bounding volume hierarchy. The sign

of the distance can be resolved in many ways, one of which is described by Bærentzen and Aanæs [3].

The mathematical transformations morphological dilation and erosion, and taking the shell, are

particularly useful when combining SDFSs:

• Dilation by offset ξ ∈ R≥0:

f ′(x) = f(x)− ξ (3)

• Erosion by offset ξ ∈ R≥0:

f ′(x) = f(x) + ξ (4)

• Shell of thickness 2ξ ∈ R≥0:

f ′(x) = |f(x)| − ξ (5)

The usual mathematical transformations translation, scaling and rotation are also applicable:

• Translation by offset β ∈ R3:

f ′(x) = f(x− β) (6)

• Scaling by factor α ∈ {R \ 0}4:
f ′(x) = α0f(x

′) (7)

where α0 = min{|α1|, |α2|, |α3|} and x′
i = xi/αi for i ∈ {1, 2, 3}

• Rotation by angle θ ∈ R around axis v ∈ R3:

f ′(x) = f
(
(A+B)x

)
(8)

where Aij = vivj(1− cos θ) and

B =

 cos θ −v3 sin θ v2 sin θ
v3 sin θ cos θ −v1 sin θ
−v2 sin θ v1 sin θ cos θ


SDFs are practical for the relative simplicity with which they can be combined to form new shapes.

The basic implementation of set-theoretic operations for SDFs is the following [29] though they are

merely approximations, hence the tilde:

• Union:

f̃Ω∪Λ = min(fΩ, fΛ) (9)
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• Intersection:

f̃Ω∩Λ = max(fΩ, fΛ) (10)

• Difference:

f̃Ω\Λ = f̃Ω∩(Rn\Λ) (11)

Note that the implementations of union and intersection are swapped if the SDF sign convention is

inverted. Unfortunately, these operations do not always result in a proper SDF; they may result in a

signed distance bound, where the boundary is correct but the inner and outer values are not [33].

SDFs are ultimately useful herein when converted, or contoured, to polygon meshes so that sim-

ulations can be performed on them. Various methods exist for the contouring of SDFs, including

marching cubes [6, 7, 14, 20, 21] (the predecessor of them all), dual marching cubes [27], and more

advanced methods [24]. The methods differ in terms of number of polygons generated, performance,

and kinds of shapes supported, though no research has been done to determine which methods would

be ideal for cellular solids in particular.

2.2 Cellular solids

Gibson and Ashby [13] describe cellular solids as “an interconnected network of solid struts or plates

which form the edges and faces of cells”, classifying them into honeycombs, which are 2D structures

extruded into the third dimension, and foams, which are 3D stochastic structures. Recent literature has

introduced a third class, made more usable thanks to additive manufacturing, called lattice structures,

which could also be stochastic according to the design mechanism [4, 28, 38].

The fundamental parameters of a cellular solid are the cell size and relative density. The cell size,

when discussing cubic cellular solids, is the length of the unit cell’s edges; there exist also orthorhombic

cellular solids, where the edges of the unit cell have different lengths. The relative density, or volume

fraction or solid fraction, of a cellular solid is ρ∗/ρs, where ρ∗ is the cellular solid’s density and ρs the

density of the solid composing the cellular solid [13].

Lattice structures are further divided into two kinds: strut-based and TPMS-like. Strut-based

cellular solids have been studied for longer; TPMS-like cellular solids have grown in use thanks to

additive manufacturing. This article studies only the latter.

The name lattice can lead to an unfortunate confusion when considering that many strut-based lat-

tice structures are named after Bravais lattices from the field of crystallography [43], e.g., body-centered

cubic. However, lattices are not limited to crystallography, and in fact one of the primary definitions

of the word “lattice” is “an open framework made of strips of metal, wood, or similar material over-

lapped or overlaid in a regular, usually crisscrossed pattern” [2]. The terms from crystallography and

mathematics are likely inspired from this definition.

TPMS-like cellular solids are based on the equations of implicit surfaces, and thus are also known

as surface- or equation-based. They include TPMSs and other triply periodic (non-minimal) surfaces.

TPMS-like cellular solids can be approximated by the periodic nodal surfaces of the Fourier series

representing those cellular solids [41, 42].

TPMSs have no convenient exact representation for use in engineering applications, and so they

are normally approximated by the first few terms of their Fourier series [12]. Sample equations are

presented in Section 4.1.

Different isosurfaces of a fundamental TPMS can be obtained by varying the isovalue ξ ∈ R and

eccentricity ϵ ∈ R in the following equations [11]:

• Triply periodic endoskeleton (TPnS):

fΩ(x) ≤ ξ (12)
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• Triply periodic exoskeleton (TPxS):

ξ ≤ fΩ(x) (13)

• Triply periodic surface (TPSf):

−|ξ| ≤ fΩ(x) ≤ |ξ| (14)

• Triply periodic eccentric surface (TPcS):

−|ξ| ≤ fΩ(x)− ϵ ≤ |ξ| (15)

The isovalue and eccentricity control the relative density of the cellular solid, and also the shape

of the walls in the case of TPSfs and TPcSs.

Certain transformations can be applied to cellular solids and TPMSs in particular. Arbitrary

meshes can be filled with cellular solids by computing the SDF of the mesh and intersecting it with the

cellular solid’s SDF. Graded cellular solids are obtained by replacing constant transformations, e.g.,

translation, scaling, rotation, by functions [1, 9]. Heterogeneous cellular solids consist of fusions of

fundamental cellular solids, and can be obtained via a sigmoid function [1]. Multiscale, or hierarchical,

cellular solids are cellular solids within cellular solids [9], and can be obtained by intersecting cellular

solids with different unit cell sizes.

3 Cellular solid generator

The cellular solid generator introduced in this article is called Cesogen, which is a contraction of

“cellular solid generator”. First we provide a summary of Cesogen and its features, then how it may

be used.

3.1 Overview

Cesogen is written in Common Lisp, a programming language featuring a good balance of interactivity

and performance. It is developed first and foremost as a software library, in order that it may be used

interactively from a read-eval-print loop, thus allowing more systematic exploration of cellular solids

than a CLI or GUI (graphical user interface) can provide. Another advantage of being a library is that

the program logic is decoupled from the CLI, which allows third-party applications, including, but not

limited to GUIs, to benefit from a more expressive interface than is possible via a CLI. However, in

order accommodate users of all kinds, including optimizers, Cesogen is also available as a CLI.

In spite of its name, Cesogen functions as a full-fledged SDF processor. Its ability to generate

cellular solids is a byproduct of cellular solids being representable as SDFs. The name remains,

though, because Cesogen is primarily geared towards generating cellular solids. And it is catchy.

Cesogen’s mode of operation can be seen as consisting of three phases (Figure 1). In the first phase,

it converts any meshes provided to their corresponding SDFs. The second phase consists of combining

the SDFs according to the operation requested. This results in a single SDF, which is then contoured

to produce the resulting mesh. In reality, Cesogen proceeds along these phases eagerly, i.e., it converts

meshes and combines them as soon as it can, so the phases are actually interleaved.

Convert meshes Combine SDFs Contour

Figure 1: Phases of Cesogen.

Cesogen accepts as input arbitrary solids represented as meshes. It supports various formats, in-

cluding OBJ, OFF, PLY and STL. It converts these meshes to SDFs by computing an intermediate
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sphere-based bounding volume hierarchy for speeding up proximity queries based on a port of Tri-

angleMeshDistance [10] to Common Lisp. The signs of the computed distances are resolved via the

algorithm described by Bærentzen and Aanæs [3].

Cesogen also boasts an extensive library of cellular solids, currently including all the TPMS-likes

described by Fisher et al. [11] (Table 1). Users may define their own cellular solids by providing

equations directly to Cesogen instead of meshes, or saving the equations in a file which is then provided,

and more TPMS-like and other equations will be added as they are discovered.

In the SDF combination phase, Cesogen supports various operations on the SDFs, including trans-

lation, scaling, rotation, dilation, erosion, shell and the set-theoretic operations complement, union,

intersection and difference (Section 2). It cannot yet create graded or heterogeneous cellular solids,

but it can create multiscale, or hierarchical, cellular solids by intersecting cellular solids of differing

unit cell sizes.

The contouring phase consists of applying marching cubes to the combined SDF to produce the

resulting mesh. The choice of contouring algorithm has an impact on the number of mesh elements

composing it, which in turn has an impact on the running time of the physics solver. Cesogen currently

uses VTK’s [36] implementation of marching cubes, but further algorithms will be added which offer

different tradeoffs.

Performance is important only insofar as the cellular solid generation step takes a negligible amount

of time compared to the rest of the current optimization step. Cesogen has been thus developed with

a focus on performance.

Finally, Cesogen is freely available, open source software licensed under the MIT (more specifically,

the Expat) license [37], a permissive license which allows commercial use with few restrictions. Its

homepage is https://git.sr.ht/~paulapatience/cesogen.

Cesogen is multiplatform; it runs on various flavors of Linux and also FreeBSD, OpenBSD, NetBSD,

macOS and Windows. Precompiled binaries are available for each release on the homepage, but it may

also be built if one has the SBCL [35] compiler. Specific installation instructions are described in the

manual.

3.2 Usage

This section briefly describes the usage of Cesogen. The Cesogen manual goes into more detail.

Cesogen’s CLI is aimed at being comprehensive enough to expose all the functionality that clients,

usually users and optimizers, may require. Optimizers are expected to be provided with a script that

will launch Cesogen with the appropriate command-line arguments. Therefore, the most important

part of Cesogen’s API, for the average client, is its CLI.

Cesogen’s CLI is a mostly stack-based, domain-specific language (DSL) which dispenses with the

need to have nested parentheses on the command-line. Its command-line arguments can be one of four

kinds: command-line options, SDF names, unary SDF operations, and binary SDF operations. The

command-line options are discussed at the end of this section.

SDF names must be either the name of an SDF as recognized by Cesogen, the name of a mesh

file with an extension recognized by Cesogen, or an infix equation containing the variables x, y, z and

some basic mathematical constants and operations, e.g., pi, trigonometric functions. These inputs

are disambiguated in the listed order, i.e., SDF names take precedence over filenames, which take

precedence over equations.

The non-TPMS SDFs supported by Cesogen are currently:

• sphere, the unit sphere centered at the origin;

https://git.sr.ht/~paulapatience/cesogen
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• cylinder, the unit cylinder centered at the origin, oriented along the z axis; and

• box, the unit box, i.e., with a half-width of 1, centered at the origin.

The TPMS-like SDFs supported by Cesogen are many, and documented in the manual. Cesogen

extracts the SDF of any mesh provided on the command-line, and automatically calculates its bounds.

Equations look like ‘x+y+z-1’; point coordinates are represented by x, y, z because it is more convenient

than x1, x2, x3, and there is no possible ambiguity. The bounds of arbitrary equations are assumed

to be infinity.

To generate a sphere, run:

cesogen sphere

When an SDF is specified on the command-line, it is pushed onto a stack of SDFs. This stack is

operated upon by the unary SDF and binary SDF operations. Unary SDF operations pop the SDF

stack once, modify the SDF, and push it back onto the stack. Binary SDF operations pop the stack

twice, combine the SDFs accordingly, and push the result back onto the stack. Unary SDF operations

may also take non-SDF arguments, which are specified separately as pairs of names and values in

the following arguments on the command-line. The terms unary and binary in the context of SDF

operations refer to the number of SDFs taken by the operations.

The unary SDF operations and the arguments they take are:

• complement, none

• dilate, offset ξ ∈ R≥0

• erode, offset ξ ∈ R≥0

• shell, thickness 2ξ ∈ R≥0

• translate, offset β ∈ R3

• scale, factor α ∈ R3

• rotate, angle θ ∈ R, axis v ∈ R3

The components of arguments in R3 are listed in one command-line argument and separated by com-

mas. Numeric arguments may also be equations, though without any point coordinates. To generate

a sphere with radius 2, run:

cesogen sphere scale 2,2,2

Finally, the binary SDF operations are union, intersection and difference. Cesogen’s command-

line always implicitly ends in an n- ary intersection. To generate a unit cylinder with a height of 2:

cesogen cylinder box

A more complex SDF combination is (Figure 2):

cesogen \

mesh1.ply gyroid intersection \

mesh2.ply p-surface intersection \

union

Cesogen detects the bounding box of the resulting mesh automatically. This bounding box must be

finite for Cesogen to be able to produce a result, so when meshing unbounded objects, e.g., a cylinder

or TPMSs, at least one additional SDF must be provided, e.g., sphere, cylinder, box or some mesh.

The usual command-line options all start with the hyphen (‘-’) and are described in the manual

and also by the --help option. Cesogen also supports the @file option, which it replaces with the

contents of the specified file, which should consist of whitespace-separated command-line arguments.
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∩

∩

mesh1.ply gyroid

∩

mesh2.ply p-surface

Figure 2: Tree representation of the operations Cesogen performs when invoked as ‘cesogen mesh1.ply gyroid

intersection mesh2.ply p-surface intersection union’. It evaluates the SDFs in a depth-first, post-order manner.
In fact, the command-line arguments are a flattened version of the tree with the nodes visited in depth-first post-order.

This option acts as an ad hoc configuration file mechanism; users can specify their SDFs, or even

operations on SDFs, in files which they later include via the @file option. It is particularly apt for

specifying custom equations.

The -s option specifies the spacing of the grid used during contouring. It may consist of one or

three components; in the former case, the spacing is the same along all dimensions. The -o option

specifies the output file, overriding the default of out.ply; the output mesh format is detected from

the extension.

The TPMS-like–specific parameters isovalue ξ ∈ R and eccentricity ϵ ∈ R may be reproduced via

dilation, erosion, and shelling. For a TPnS S with equation fS(x) ≤ ξ, run:

cesogen S dilate ξ box

For a TPxS S with equation −fS(x) ≤ −ξ, run:

cesogen S complement erode ξ box

For a TPSf S with equation −|ξ| ≤ fS(x)− ϵ ≤ |ξ|, run:

cesogen S dilate ϵ shell ′2∗abs(ξ)′ box

4 Results and discussion

This section contains a series of examples of the kinds of cellular solids that Cesogen can generate,

and also an evaluation of the performance and limitations of Cesogen.

4.1 Examples of TPMS-like cellular solids

Cesogen supports many TPMS-like cellular solids; they are listed in Table 1, where

Sf(x,y,z) = sin(τ f(x, y, z)) (16)

Cf(x,y,z) = cos(τ f(x, y, z)) (17)

and τ = 2π. Point coordinates are represented by x, y, z rather than xi to conform to Cesogen’s

equation syntax.

A selection of these TPMS-like cellular solids is presented in Figures 3 and 4.
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Table 1: Equations of TPMS-like cellular solids described by [11].

Name SDF equation

Gyroid CxSy + CySz + CzSx

D SxSySz + CxSyCz + CySzCx + CzSxCy

P Cx + Cy + Cz

IWP 2(CxCy + CyCz + CzCx)− (C2x + C2y + C2z)
Neovius 4CxCyCz + 3(Cx + Cy + Cz)
C(Y) −SxSySz + S2xSy + S2ySz + S2zSx − CxCyCz + CxS2y + CyS2z + CzS2x

Lidinoid S2xCySz + S2yCzSx + S2zCxSy − (C2xC2y + C2yC2z + C2zC2x) + 0.3
OCTO 0.6(CxCy + CyCz + CzCx)− 0.4(Cx + Cy + Cz) + 0.25
FRD 8CxCyCz + C2xC2yC2z − (C2xC2y + C2yC2z + C2zC2x)
S C2xSyCz + C2ySzCx + C2zSxCy

P+C(P) 0.3CxCyCz +0.1C2xC2yC2z +0.2(Cx +Cy +Cz)+0.1(C2x +C2y +C2z)+0.05(C3x +C3y +C3z)+
0.1(CxCy + CyCz + CzCx)

Split P 1.1(S2xCySz + S2yCzSx + S2zCxSy)− 0.2(C2xC2y + C2yC2z + C2zC2x)− 0.4(C2x + C2y + C2z)
F CxCyCz

C(D) C3x+yCz − S3x−ySz + Cx+3yCz + Sx−3ySz + Cx−yC3z − Sx+yS3z

G′ S2xCySz + S2yCzSx + S2zCxSy + 0.32
G′

2 5(S2xCySz + S2yCzSx + S2zCxSy) + C2xC2y + C2yC2z + C2zC2x

D′ 0.5(CxCyCz + SxCySz + SyCzSx + SzCxSy)− 0.5(S2xS2y + S2yS2z + S2zS2x)− 0.2
K 0.3(Cx + Cy + Cz + CxCy + CyCz + CzCx)− 0.4(C2x + C2y + C2z) + 0.2
C(S) C2x + C2y + C2z + 2(S2xCyS3z + S2yCzS3x + S2zCxS3y) + 2(S2xC3ySz + S2yC3zSx + S2zC3xSy)
Y SxSySz + CxS2y + CyS2z + CzS2x + CxCyCz + S2xSy + S2ySz + S2zSx

±Y 2CxCyCz + S2xSy + S2ySz + S2zSx

C(±Y ) −2CxCyCz + S2xSy + S2ySz + S2zSx

C(I2 − Y ∗∗) 2(S2xCySz + S2yCzSx + S2zCxSy) + C2xC2y + C2yC2z + C2zC2x

W C2xCy + C2yCz + C2zCx − (CxC2y + CyC2z + CzC2x)

Q∗ (Cx − 2Cy)Cz −
√
3Sz(Cx−y − Cx) + Cx−yCz

C(G) 3(SxCy + SyCz + SzCx) + 2(S3xCy + S3yCz + S3zCx)− 2(SxC3y + SyC3z + SzC3x)
Slotted P −2(CxCy+CyCz+CzCx)−2(C2x+C2y+C2z)+C2xCy+C2yCz+C2zCx−(CxC2y+CyC2z+CzC2x)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: Showcase of various endoskeletal TPMS-likes generated by the command ‘cesogen -s 2/m box S dilate ξ’
with by default m = 60 and ξ = 0.35. (a) Gyroid, (b) D, (c) P, (d) IWP (m = 85), (e) Neovius, (f) C(Y) (m = 85), (g)
Lidinoid (m = 85), (h) OCTO (ξ = 0.1), (i) FRD (m = 95, ξ = 0.55).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Showcase of various shell TPMS-likes generated by the command ‘cesogen -s 2/m box S shell ’2*ξ’’ with
by default m = 60 and ξ = 0.35. (a) Gyroid, (b) D, (c) P, (d) IWP (m = 85), (e) Neovius, (f) C(Y) (m = 85), (g)
Lidinoid (m = 85), (h) OCTO (ξ = 0.1), (i) FRD (m = 95, ξ = 0.55).

4.2 Generating hierarchical cellular solids

One aspect of Cesogen which distinguishes it from the other freely available cellular solid generators

is its ability to robustly generate hierarchical cellular solids (Figure 5).

Cesogen generates hierarchical meshes by combining the constituent SDFs all at once at runtime,

and computing one resulting SDF; hereafter this method is called “direct”. Cellular solid generators

which are unable to combine multiple SDFs are limited to computing one intersection, writing it to

disk, and repeating the process for each additional SDF; hereafter this method is called “sequential”.

The sequential method incurs a performance cost — the writing and reading of each intermediate SDF

— but also sets an upper bound on the number of combinations possible. For instance, Cesogen is

currently unable to generate the hierarchical cellular solid in Figure 5g via the sequential method.

Indeed, the extraction of SDFs from triangle meshes containing narrow triangles, via a proximity

algorithm, is fraught with floating point errors, because computing the distance from a point to a

skewed triangle is numerically unstable. Whereas the direct SDF computation needs to extract a

single SDF, the sequential computation extracts each of the intermediate SDFs. Furthermore, when

the meshes result from a contouring algorithm such as marching cubes without a subsequent smoothing

algorithm, narrow triangles abound.

The rest of this section demonstrates the issue with two examples. The first example is an ex-

pansion of the hierarchical cellular solid example above. The second is a series of roundtrip seri-

alization–deserialization steps, where the serialization consists of writing an SDF to disk and the

deserialization of extracting it via a proximity algorithm. In the ideal case, roundtrip conversions

should be repeatable ad infinitum, but this is not the case in practice.

To aid in the analysis of the results, we measure four kinds of errors: the L2 error of the distance

from the mesh points and cell centers to the reference SDF, and the maximum distance from the points

and cell centers to the reference SDF. These are all relative to the length of the diagonal of the grid.
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(a) Truncated sphere ωB

(b) P surface ωP

(c) D surface ωD

(d) Gyroid ωG

(e) ωB ∩ ωP

(f) ωB ∩ ωP ∩ ωD

(g) ωB ∩ ωP ∩ ωD ∩ ωG

Figure 5: Hierarchical cellular solid consisting of the intersection of (a) a truncated sphere, (b) a P surface, (c) a finer D
surface, and (d) an even finer gyroid. The figures at the left show the original models and those at the right the progressively
intersected cellular solid. The command which generates the final result is ‘cesogen -s 4/130 box scale 4,4,4 sphere

scale 5,5,5 p-surface scale 4,4,4 d-surface scale 3.75,3.75,3.75 gyroid scale 1.25,1.25,1.25’.

The hierarchical experiment’s errors are displayed in Figures 6 and 7. The zeroth and first steps

are the same in the direct and sequential cases since they consist of the same operation. In the second

step, the error for the sequential meshes is greater than that of the direct meshes in all cases. The

third step is missing the sequential results because the generation fails for trying to divide by zero.
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We can also see that there is more error along the edges of the sequential version of ΩB ∩ ΩP ∩ ΩD

(Figure 8).

Figure 6: Direct and sequential hierarchical L2 errors and max distances for the points. Direct errors are represented by
circles, sequential errors by diamonds. L2 errors are represented by filled shapes, max distances by hollow shapes. The
labels are located beside actual points; there is no separate legend.

Figure 7: Direct and sequential hierarchical L2 errors and max distances for the cells. Direct errors are represented by
circles, sequential errors by diamonds. L2 errors are represented by filled shapes, max distances by hollow shapes. The
labels are located beside actual points; there is no separate legend.

The roundtrip experiment’s errors are displayed in Figure 9. The data stops at the 15th roundtrip

because the 16th results in a division by zero. The L2 errors increase monotonously starting from

the second and first roundtrips for points and cells, respectively; the maximum distances decrease

and increase and decrease again throughout the roundtrips. However, the quality of the final mesh is

severely degraded compared to the first (Figure 10).

We conducted the hierarchical experiment with ASLI and obtained similar results, i.e., ASLI crashes

after a few combinations.

The results become even worse when starting with a more complex initial mesh, e.g., the Stanford

bunny rather than a sphere. In some cases, artifacts begin to appear, i.e., triangles appearing outside

of the objects.

The problems inherent to the sequential method can be mitigated by using more robust algorithms

for computing the point to triangle distance, but those incur a performance cost and are thus warranted

only when the initial mesh contains problematic features; for generating hierarchical cellular solids,

the direct method should be preferred.
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(a)

(b)

Figure 8: Colored meshes corresponding to ΩB ∩ΩP ∩ΩD; (a) direct, (b) sequential. The log-scale coloring corresponds
to the distance from the points to the reference SDF.

Figure 9: Roundtrip L2 errors and max distances. Points are represented by circles, cells by triangles. L2 errors are
represented by filled shapes, max distances by hollow shapes.

4.3 Performance and limitations

This section examines the performance of Cesogen — how fast can it generate cellular solids, and how

big can they be — and also some of its limitations.

We ran Cesogen via hyperfine [31] and generated a 2 unit cell by 2 unit cell by 2 unit cell gyroid

with progressively finer contouring grids, i.e., grids of widths 2×2×2 and dimensions iii with i ∈
{ 26, 51, 101, 201, 301, . . . , 801 } on a machine with the following specifications:
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• OS: Chimera Linux x86 64

• Host: 20UH000CUS ThinkPad T14s Gen 1

• Kernel: 6.6.8-0-generic

• CPU: AMD Ryzen 7 PRO 4750U with Radeon Graphics (16) @ 1.700GHz

• Memory: 15220MiB

(a)

(b)

Figure 10: Meshes (a) before the first and (b) after the last successful roundtrips. The log-scale coloring corresponds to
the distance from the points to the reference SDF. The command which generates the initial result is ‘cesogen -s 4/100

box scale 4,4,4 sphere scale 4,4,4 gyroid scale 4,4,4’.

The mesh generated from an 801801801 grid contained 16 million cells and took 7.4min (Figure 11).

Larger meshes than that required more than 16 GiB of memory.

Further limitations of Cesogen include the following:

• The cellular solid generation is not parallelized. However, this can be mitigated in some contexts

by launching several instances of Cesogen as long as enough memory is available.

• Generating hierarchical cellular solids requires a fine contouring grid in order to capture all the

fine features, which increases computation time.

• Cesogen requires an explicit contouring grid be given, unlike ASLI. This means that users of

Cesogen must estimate the dimensions of the grid required to reach mesh convergence.

• The algorithm for computing mesh SDFs is not robust. As demonstrated in the previous section,

it fails for some meshes.
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Figure 11: Mean time taken for Cesogen to generate a 2 unit cell by 2 unit cell by 2 unit cell gyroid with progressively
finer contouring grids, i.e., grids of widths 2×2×2 and dimensions iii with i ∈ { 26, 51, 101, 201, 301, . . . , 801 }. Grid sizes
beyond 801801801 required more memory than what was available on the test machine.

5 Conclusion

Cesogen is a general SDF processor which specializes in generating cellular solids in a manner suitable

for computer-guided optimization. It has an extensive library of TPMS-like cellular solids and can

generate hierarchical cellular solids. Its CLI is flexible enough to cover a wide range of use-cases and

is targeted at any user wanting to study and optimize cellular solids.

Cesogen has some limitations, which include requiring an explicit contouring grid be provided, its

SDF-computation algorithm being sensitive to narrow triangles in the input, and generating hierar-

chical cellular solids requiring a fine grid, which non-negligibly increases computation time.

Cesogen is under active development and its roadmap includes the following features:

• more cellular solids, in particular strut-based cellular solids;

• more contouring algorithms [7, 14], possibly parallel ones;

• a graphical user interface for real-time interactive exploration of cellular solids;

• heuristically saturating maximum distances when computing the SDFs of meshes containing

narrow triangles;

• possibly built-in mesh adaptation, to make reading generated meshes more robust; and

• possibly more robust SDF computation algorithms.

One important future feature is providing a universal interface for cellular solid generation. The

most compelling feature of Cesogen is its DSL for describing SDFs. We believe it can represent any

cellular solid that the other freely available cellular solid generators can produce. The goal is to

make Cesogen a universal cellular solid generator which can hook into any generator which has a CLI

or is exposed as a library, e.g., ASLI, allowing Cesogen to benefit from any advancements to other

cellular solids generators by leveraging them itself. Cesogen would then present a universal interface for

cellular solid generation in order to facilitate the application of mathematical optimization techniques

to cellular solid design.

In addition to continuing the development of Cesogen, further research could be done on determin-

ing which contouring algorithms are best suited for cellular solids.
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