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Legal deposit – Bibliothèque et Archives nationales du Québec, 2024
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Abstract : We extend the α and β characteristic functions (CFs) to cooperative interval games,
which constitute an interesting class of games to account for uncertainty and vagueness in decision-
making processes. Both characteristic functions are based on a solution of zero-sum interval games
when a coalition is the maximizer player and the anti coalition is the minimizer player. We propose
an algorithm to define the interval values of a cooperative game in the form of α and β CFs and
demonstrate them on an example of a three-person game. Further, we discuss some properties of
cooperative interval games and calculate an interval Shapley value. Numerical examples show that the
cooperative solution depends on the way we construct a CF to define a cooperative interval game.

Keywords: interval uncertainty, noncooperative interval games, cooperative interval games, charac-
teristic function.
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port and hospitality.



Les Cahiers du GERAD G–2024–14 1

1 Introduction

In a normal-form game, real number payoff is associated to each strategy profile. As the name suggests,

the class of interval games assumes that this payoff is instead defined as an interval. One can interpret

the lower and upper values of the interval as pessimistic and optimistic rewards, respectively. Interval

games can be seen as one possible approach to deal with some of the inherent uncertainty and vagueness

in decision-making processes. Other approaches to deal with stochastic outcomes in a cooperative

game are chance-constrained games (Charnes and Granot, 1973), cooperative games in stochastic

characteristic function form (Granot, 1977; Suijs et al., 1999), games with random payoffs (Timmer

et al., 2005), and fuzzy uncertainty in the values of characteristic functions (Mareš and Vlach, 2004;

Nishizaki and Sakawa, 2000).

To the best of our knowledge, the first paper to develop the theory of cooperative interval game is

Branzei et al. (2003), where a bankruptcy problem is considered. The theory was further developed in

a series of papers by Alparslan Gök et al. (2009a,b) and Branzei et al. (2010a,b), with one objective

being the adaptation of classical solution concepts, e.g., the core and the Shapley value, to cooperative

interval games (see also Kimms and Drechsel (2009)). Some extensions of the basic theory followed. For

instance, Weber et al. (2010) consider ellipsoidal uncertainty, which is a generalization of cooperative

interval games because it allows to represent the players mutual dependencies, similarities, and possible

affinities to cooperate. Cooperative interval games have been applied to analyze lot sizing problems

with uncertain demands (Drechsel and Kimms, 2011).

The class of noncooperative interval games, more specifically interval bimatrix games, was intro-

duced in a series of papers by Shashikhin (2004), Collins and Hu (2005), and Hlad́ık (2010). The

two branches have evolved so far in parallel without any connections between the cooperative and

noncooperative outcomes.

Our objective is to establish a link by considering cooperative interval games whose primitive are

noncooperative games given in normal form. The tool for making this connection is the characteristic

function (CF). More specifically, we extend the definition of the classical α and β CFs, which, as all

other CFs, measure the strategic strength of all possible coalitions in a cooperative game. Therefore,

these values rely on a noncooperative, in fact highly antagonistic, mode of play to compute the set of

outcomes (imputations) in a cooperative game. Further, we recall some properties that are of interest

in a noninterval (classical) cooperative game and illustrate, using a three-player example, how one can

check their satisfaction.

The remaining part of the paper is organized as follows. In Section 2, we recall basic definitions and

notions used in cooperative and noncooperative interval games. In Section 3, we define interval α and

β CFs by extending (noninterval) α, β CFs to the interval setting, provide an algorithm to compute

their values. In Section 4, we provide a numerical example and briefly conclude in Section 5.

2 Interval games

In this section, we recall key definitions and some useful results from noncooperative interval games

(NCIGs) mainly from Bhurjee (2016) and Li et al. (2012), and cooperative interval games (CIGs) from

Alparslan Gök et al. (2011). Additionally, we provide relevant basic operations from interval calculus

that are used in NCIGs and CIGs.

Denote by I(R) the set of all closed intervals in R, by I(R+) the set of all closed intervals in R+,

and by In(R+) the set of all n-dimensional vectors with components in I(R+). Let I, J ∈ I(R) with
I =

[
I, I

]
, J =

[
J, J

]
, |I| = I − I, and let β be a strictly positive scalar. We define the following

operations on intervals I, J ∈ I(R+):

Addition: I + J =
[
I + J, I + J

]
;
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Multiplication by a positive scalar: βI =
[
βI, βI

]
;

Substraction: I − J =
[
I − J, I − J

]
is defined, only if |I| ≥ |J |;

Multiplication: I · J = [I · J, I · J ];
Division: I

J = [ IJ ,
I
J
] is defined, only if I · J ≤ J · I and J, J ̸= 0.

For any two intervals I = [I, Ī] and J = [J, J̄ ], we say that I is weakly better than J and denote

it by I ≽ J , if and only if I ≥ J and Ī ≥ J̄ . If I ≽ J , then for each x ∈ J there exists y ∈ I such

that x ≤ y, and for each y ∈ I there exists x ∈ J such that x ≤ y. We say that I is better than J and

denote it by I ≻ J , if and only if I ≽ J and I ̸= J . We use the notation I ≼ J to say that I is weakly

less than J , which is defined if and only if I ≤ J and Ī ≤ J̄ , and I ≺ J for I less than J , which is

defined if and only if I ≼ J and I ̸= J .

2.1 Noncooperative interval games

A n-player non-zero-sum interval game in normal form is defined by

G = {N,X1, . . . , Xn, ui, . . . , un}, (1)

where N = {1, . . . , n} is the set of players, Xi the finite set of strategies of Player i ∈ N , and

ui :
∏

i∈N Xi → I(R) her payoff function.

In particular, a two-player noncooperative interval game, usually called interval bimatrix game,

is represented by two matrices (Ã, B̃), where each entry is a pair of intervals (ãij , b̃ij), i = 1, . . . ,m,

j = 1, . . . , ℓ. The entries ãij = [aijL, aijR] and b̃ij = [bijL, bijR] are the payoffs (or utilities) of players

1 and 2, respectively, when they choose their ith and jth pure strategies, respectively.

The set of mixed strategies X̄i of Player i ∈ N is defined by

X̄i =

ξi = (
ξ1i , . . . , ξ

|Xi|
i

)
∈ R|Xi| :

|Xi|∑
j=1

ξji = 1, ξji ≥ 0, ∀j = 1, . . . , |Xi|

 ,

where ξji is the probability that Player i chooses strategy xji ∈ Xi. We denote by ξi(xj) the probability

of Player i choosing strategy xj when using a mixed strategy ξi. The expected payoff of Player i in an

interval game with mixed set of strategies is defined as follows:

Hi(ξ1, . . . , ξn) =
∑

x1∈X1

. . .
∑

xn∈Xn

ui(x1, . . . , xn)ξ1(x1) · . . . · ξn(xn),

where ui(x1, . . . , xn) is an interval or an element of I(R) for any (ξ1, . . . , ξn) ∈ X̄1 × . . .× X̄n.

Remark 1. In the paper, we consider n-player NCIGs where the payoff function of any player takes

values in the cone I(R) endowed with the partial order ≽.

2.2 Cooperative interval games

Denote by S a coalition, that is, a subset of the set of players N . We recall that a characteristic

function v (·) is defined by v : 2N → R, v (∅) = 0. Von Neumann and Morgenstern (1944) interpreted

the value v(S) as the sum of the gains that coalition S ⊆ N can guarantee its members. In cooperative

games without externalities, i.e., when the payoff of coalition S is independent of the actions of the

players in N\S, the value v(S) is obtained by optimizing the (possibly weighted) sum of the coalition

members’ payoffs. In games with externalities, the outcome of S depends on the behavior of the players

in N\S, which leads to different approaches to computing the values of v. The reader is referred to

Parilina et al. (2022) for a brief survey on cooperative games, characteristic functions, and solution

concepts in noninterval games in the meaning of classical games.
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A cooperative interval game in coalitional form is a pair < N,w >, where N = {1, 2, . . . , n} is the

set of players, and w : 2N → I(R) is the characteristic function such that w(∅) = [0, 0] (Alparslan Gök

et al., 2009b). For each coalition S ⊆ N , the value w(S) is given by the interval [w(S), w(S)], where

w(S), w(S) are the lower and upper bounds of w(S), respectively. We denote the length game by

< N, |w| >, where |w| (S) = w(S)− w(S) for any S ∈ 2N . Note that w = w + |w|.

Denote by IGN the family of all cooperative interval games with the player set N . Note that if

all the values are degenerate intervals, i.e., w(S) = w(S) = w (S), then we have a classical coopera-

tive game with scalar characteristic function values. This implies that classical cooperative games is

embedded in the class of CIGs.

Now, we recall some properties of CIGs (see Alparslan Gök et al. (2009b)):

• For any w1, w2 ∈ IGN , we say that w1 ≼ w2 if w1(S) ≼ w2(S) for any S ⊆ N .

• For any w1, w2 ∈ IGN , and λ ∈ R+, we define interval cooperative games < N,w1 + w2 > and

< N,λw > by introducing corresponding characteristic functions (w1 +w2)(S) = w1(S)+w2(S)

and (λw)(S) = λw(S) for any coalition S ⊆ N . So, we say that IGN endowed with ≼ is a

partially ordered set and has a cone structure with respect to addition and multiplication by a

nonnegative scalar.

• A game < N,w > is supermodular if

w(S) + w(T ) ≼ w(S ∪ T ) + w(S ∩ T ), ∀S, T ⊆ N. (2)

From formula (2) it follows that a game < N,w > is supermodular if and only if its border

games < N,w > and < N,w > are convex.

• A game w ∈ IGN is called convex if < N,w > is supermodular and its length game < N, |w|>
is also supermodular.

• A game < N,w > is called size monotonic if the length game is monotonic, i.e., |w|(S) ≤ |w|(T )
for all S, T ∈ 2N with S ⊂ T . The class of size monotonic interval games on set N is denoted by

SMIGN .

The interval marginal operators and the interval Shapley value were defined on SMIGN in Al-

parslan Gök et al. (2009b) as follows.

Denote by Π(N) the set of permutations σ : N → N on N . The interval marginal operator

mσ : SMIGN → I(R)N corresponding to σ, associates with each w ∈ SMIGN the interval marginal

vector mσ(w) with respect to σ defined by mσ
i (w) = w (Pσ(i) ∪ {i})−w (Pσ(i)) for each i ∈ N , where

Pσ(i) :=
{
r ∈ N | σ−1(r) < σ−1(i)

}
, and σ−1(i) denotes the entrance number of player i.

The interval Shapley value Φ : SMIGN → In(R) is then defined by

Φ(w) :=
1

n!

∑
σ∈Π(N)

mσ(w), for each w ∈ SMIGN .

3 Defining interval α and β characteristic functions

In this section, we first provide definitions of α and β characteristic functions (CFs) in a noninterval

setting. Then, we introduce the definitions of α and β CFs for an interval setting.

3.1 α and β CFs for noninterval games

Consider a noninterval game in normal form defined in (1).

Definition 1. The α characteristic function (α CF) is given by

να(S) = max
xS

min
xN\S

∑
s∈S

us(xS , xN\S),

where xS is a strategy of coalition S and xN\S is a strategy of coalition N \ S.
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The α CF was introduced in Von Neumann and Morgenstern (1944). The value να(S) represents

the maximum payoff that coalition S can guarantee for itself irrespective of the strategies used by the

left-out players, that is, the players in N \ S. In this concept, coalition S moves first, choosing a joint

strategy xS that maximizes its payoff, before the joint strategy xN\S of the players in N \S is chosen.

Definition 2. The β characteristic function is given by

νβ(S) = min
xN\S

max
xS

∑
s∈S

us(xS , xN\S)

The value νβ(S) is the maximum payoff that coalition S cannot be prevented from getting by

players in N \S. In this case, the players in coalition S choose their joint strategy xS after the left-out

players in N \ S have chosen their joint strategy xN\S . For more details about α and β characteristic

functions, see Aumann and Peleg (1960).

3.2 Maxmin and minmax operators in interval matrix games

To compute maxmin and minmax in interval matrix games we need to specify a procedure of interval

ordering, on which maximization and minimization operations are based. Following Li (2011) and

Nayak and Pal (2009), we define the analogs of maxmin and minmax operators for an interval matrix

game given by the matrix with entries that are intervals, that is, Ã = {ãij}i=1,...,m
j=1,...,ℓ

, where ãij =

[aijL, aijR]. We define the mid-point and half-width of interval ã as ã = [aL, aR] as m(ã) = (aL+aR)/2

and h(ã) = (aR − aL)/2, respectively.

Let ã, b̃ ∈ I(R) be two intervals. For any ã, b̃ ∈ I(R) such that m(ã) ≤ m(b̃) and h(ã) + h(b̃) ̸= 0,

an acceptability index to the premise ã ≲ b̃ is defined as follows (see Nayak and Pal (2009)):

ψ(ã ≲ b̃) =
m(b̃)−m(ã)

h(b̃) + h(ã)
,

which is interpreted as “the value judgment or satisfaction degree of the Player that the interval ã is

not superior to the interval b̃” (or b̃ is not inferior to ã) in terms of value. In the interval value case,

“not inferior to” and “not superior to” are analogous to “not less than” and “not greater than” in

the real number set, respectively. We define the ordering of the interval based on acceptability index

ψ(ã ≲ b̃) in the following way. Let operator
∨

correspond to the max operator and
∧

to min operator.

They are defined as follows:

ã
∨
b̃ =



b̃, if ψ(ã ≲ b̃) > 0,

ã, if ψ(ã ≲ b̃) = 0 and

h(ã) < h(b̃) and Player is pessimistic,

b̃, if ψ(ã ≲ b̃) = 0 and

h(ã) < h(b̃) and Player is optimistic,

(3)

ã
∧
b̃ =



b̃, if ψ(b̃ ≲ ã) > 0,

ã, if ψ(b̃ ≲ ã) = 0 and

h(ã) > h(b̃) and Player is pessimistic,

b̃, if ψ(b̃ ≲ ã) = 0 and

h(ã) > h(b̃) and Player is optimistic,

(4)

Following Li (2011) and Nayak and Pal (2009), the strategy profile (k, r) in pure strategies of the

interval matrix game with payoff matrix Ã is defined as a saddle point of the interval matrix game if∨
1≤i≤m

∧
1≤j≤ℓ ãij being an analog of maxmin and

∧
1≤j≤ℓ

∨
1≤i≤m ãij as an analog of minmax exist

and they are equal, i.e.

ãkr =
∨

1≤i≤m

∧
1≤j≤ℓ

ãij =
∧

1≤j≤ℓ

∨
1≤i≤m

ãij .
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In the next section, we use maxmin and minmax for interval matrix games determined as follows:

max
1≤i≤m

min
1≤j≤ℓ

ãij :=
∨

1≤i≤m

∧
1≤j≤ℓ

ãij , (5)

min
1≤j≤ℓ

max
1≤i≤m

ãij :=
∧

1≤j≤ℓ

∨
1≤i≤m

ãij . (6)

3.3 α and β CFs for interval games

We extend the definitions of α and β characteristic functions to interval games defined by (1) and

propose a method for constructing them.

Definition 3. The interval α CF is given by

wα = max
xS∈XS

min
xN\S∈XN\S

∑
s∈S

us(xS , xN\S)

= max
xS∈XS

min
xN\S∈XN\S

∑
s∈S

[us(xS , xN\S), ūs(xS , xN\S)],

where us, ūs are the lower and upper utility values, respectively.

When coalitions S and N \ S select strategies xS and xN\S , their interval payoffs are given by

uS(xS , xN\S) and uN\S(xS , xN\S), respectively.

Definition 4. The interval β CF is given by

wβ = min
xN\S∈XN\S

max
xS∈XS

∑
s∈S

us(xS , xN\S)

= min
xN\S∈XN\S

max
xS∈XS

∑
s∈S

[us(xS , xN\S), ūs(xS , xN\S)].

If the interval values of maxmin and minmax in pure strategies coincide, then the interval matrix

game has a saddle point (which is also an interval) and the values of α and β CFs coincide. Otherwise,

the game has no saddle point and these values are different.

When each player i ∈ N chooses the strategies from the set of mixed strategies X̄i, we compute

the lower and upper bounds of the matrix game in the mixed strategies (Li (2011)):

max
xS∈X̄S

min
xN\S∈X̄N\S

∑
s∈S

[us(xS , xN\S), ūs(xS , xN\S)], (7)

min
xN\S∈X̄N\S

max
xS∈X̄S

∑
s∈S

[us(xS , xN\S), ūs(xS , xN\S)]. (8)

Li (2011) proved that

max
xS∈X̄S

min
xN\S∈X̄N\S

∑
s∈S

[us(xS , xN\S), ūs(xS , xN\S)] (9)

≲ min
xN\S∈X̄N\S

max
xS∈X̄S

∑
s∈S

[us(xS , xN\S), ūs(xS , xN\S)].

We give the comments on interval CFs given by Definitions 3 and 4:

1. Inequality (9) holds for interval matrix games, and this result is different from the one obtained

for noninterval matrix games. In the latter case, the maxmin and minmax with mixed strategies

always coincide and are equal to the value of the matrix game. Consequently, the α and β CF

values are equal for noninterval normal-form games played in mixed strategies. This is not the

case for the class of interval games. This is a first important difference between these two classes

of games that is worth highlighting.
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2. We note that both maxmin and minmax (in terms of (5) and (6)) in pure strategies exist since

the set of pure strategies Xi is finite for any player i ∈ N and when for any two intervals ã and

b̃ to be compared the condition that h(ã)+ h(b̃) ̸= 0 holds true. We note that both maxmin and

minmax in mixed strategies exist (see Li (2011)).

3. If the interval matrix game of coalition S against coalition N \ S has a saddle point in pure

strategies, then the value of the game coincides with the values of α and β CF calculated for S.

Otherwise, we can find maxmin and minmax in pure strategies to set the values of α and β CF,

respectively. Another way to define these values is to calculate maxmin and minmax in mixed

strategies by solving corresponding linear programming problems (Li (2011)).

4. The values of CFs depend on how we define max and min operations on intervals. In our paper,

we show how CFs can be constructed based on definitions of maxmin and minmax given by (5)

and (6) using acceptability index. One can differently order intervals using “weakly better”

(denoted by ≽) or “better” (denoted by ≻) approaches described at the end of Section 2. We

do not discuss existence of maxmin and minmax values (in pure or mixed strategies) in interval

matrix games in such a case of ordering. Another approach to compare intervals and to define

the value of a matrix game is a lexicographic method proposed in Li (2011). The discussion of

different approaches on interval ordering is given in Sengupta et al. (2001).

Next, we provide an algorithm to construct the α and β CFs by Definition 3 and 4, respectively.

As we mentioned in Item 2, the maxmin and minmax values in pure strategies exist and we provide

the algorithm where they are found in pure strategies, but the same algorithm can be reformulated for

the class of mixed strategies for which existence of maxmin and minmax is proved in Li (2011). The

procedure of finding maxmin and minmax values in mixed strategies in interval matrix games is also

described in Li (2011).

3.4 Constructing interval characteristic functions

To determine the interval α CF, we implement the following steps:

1. Choose a coalition S ⊆ N .

2. Define a zero-sum interval game with coalition S being the maximizer player and coalition N \S
the minimizer player:

(a) The set of strategies of coalition S is XS =
∏

i∈S Xi, where Xi is the set of pure strategies

of Player i in game (1). The set of strategies of coalition N \ S is XN\S =
∏

i∈N\S Xi.

(b) The payoff function of coalition S is given by

uS(xS , xN\S) = [uS(xS , xN\S), uS(xS , xN\S)],

where xS ∈ XS , xN\S ∈ XN\S , uS(xS , xN\S) =
∑

s∈S us(xS , xN\S), uS(xS , xN\S) =∑
s∈S us(xS , xN\S).

Similarly, for coalition N \ S, we have

uN\S(xS , xN\S) = [uN\S(xS , xN\S), uN\S(xS , xN\S)],

where

uN\S(xS , xN\S) =
∑

i∈N\S

ui(xS , xN\S),

uN\S(xS , xN\S) =
∑

i∈N\S

ui(xS , xN\S).

Hence, a zero-sum interval game is defined as follows:

ΓS =
{
{S,N \ S}, {XS , XN\S}, {uS , uN\S}

}
.
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3. Find a maxmin value in zero-sum interval game ΓS . The procedure of finding maxmin value

is described in Section 3.2. It consists in determining the gain floor of the maximizer player

(coalition S) and the loss ceiling of the minimizer player (coalition N\S) when choosing strategies

xS ∈ XS and xN\S ∈ XN\S , respectively. That is, we have

v̂∗ = max
xS∈XS

min
xN\S∈XN\S

uS(xS , xN\S),

which corresponds to coalition S’s gain-floor, and

ω̂∗ = min
xN\S∈XN\S

max
xS∈XS

uS(xS , xN\S),

which is the loss ceiling of coalition N \ S. Obviously, both quantities are intervals.

Set the value of α characteristic function for coalition S as the maxmin value:

wα(S) = max
xS∈XS

min
xN\S∈XN\S

uS(xS , xN\S).

4. Repeat steps 1-3 for all coalitions S ⊆ N .

The algorithm can also be used for computing the interval β CF by changing a maxmin value in

Step 3 by a minmax value.

Next, we give the following result.

Proposition 1. Both interval α and interval β CFs, defined in Section 3.3, always exist. Moreover,

wα(N) = wβ(N), and for any S ⊂ N , we have wα(S) ≲ wβ(S).

Proof. The existence of interval α and β CFs follows from the existence of maxmin and minmax values

in interval zero-sum games, which is proved in Li (2011).

Now, we prove that for any S ⊂ N , wα(S) ≲ wβ(S). For any coalition S and any strategy xS ∈ X̄S ,

we have

min
xN\S

{∑
i∈S

ui(xS , xN\S)

}
≲

∑
i∈S

ui(xS , xN\S).

Similarly, for any coalition N \ S and strategy xN\S , it holds that

max
xS

{∑
i∈S

ui(xS , xN\S)

}
≳

∑
i∈S

ui(xS , xN\S).

Thus, for any coalitions S and N \ S, we obtain

min
xN\S

{∑
i∈S

ui(xS , xN\S)

}
≲ max

xS

{∑
i∈S

ui(xS , xN\S)

}
.

Therefore,

min
xN\S

{∑
i∈S

ui(xS , xN\S)

}
≲ min

xN\S
max
xS

{∑
i∈S

ui(xS , xN\S)

}
,

and finally, we have

max
xS

min
xN\S

{∑
i∈S

ui(xS , xN\S)

}
≲ min

xN\S
max
xS

{∑
i∈S

ui(xS , xN\S)

}
,

that is,

wα(S) ≲ wβ(S).

For S = N , we have

wα(N) = max
xN

min
∅

∑
i∈N

ui(xN ) = min
∅

max
xN

∑
i∈N

ui(xN ) = wβ(N).
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Proposition 1 states that for any interval game α CF assigns smaller or equal value to any coalition S

in comparison with β CF. This result also holds true for noninterval games.

4 An example

To illustrate the construction of interval α and β CFs given by a game < N,wj >, j ∈ {α, β}, we
provide an example with three players. Each player has two strategies, that is, X = {x1, x2} for

Player 1, Y = {y1, y2} for Player 2, and Z = {z1, z2} for Player 3.

We represent players’ utilities by matrices, where Player 1 chooses a row, Player 2 a column, and

Player 3 a matrix:

Player 3: z1
y1 y2

x1 ([1, 2], [6, 8], [1, 3]) ([3, 5], [0, 1], [4, 6])

x2 ([4, 6], [8, 9], [2, 5]) ([7, 10], [4, 5], [2, 4])

Player 3: z2
y1 y2

x1 ([0, 2], [1, 3], [2, 4]) ([5, 7], [3, 5], [0, 3])

x2 ([3, 6], [4, 6], [5, 6]) ([7, 9], [6, 8], [0, 2])

Step 1. We start with coalition S = {1}, therefore Players 2 and 3 form a coalition {2, 3} that

plays against Player 1. While we are calculating the value of w({1}), we can also calculate the value

w({2, 3}). So, we consider the similar steps for both S = {1} and S = {2, 3}.

Step 2. The sets of strategies of coalition {1} is X{1} = {x1, x2} and of coalition {2, 3} is X{2,3} =

{(y1, z1), (y2, z1), (y1, z2), (y2, z2)}. We can write two corresponding zero-sum interval games:

Coalition {2, 3}
(y1, z1) (y2, z1) (y1, z2) (y2, z2)

x1 [1, 2] [3, 5] [0, 2] [5, 7]
Coalition {1}

x2 [4, 6] [7, 10] [3, 6] [7, 9]

Coalition {1}
x1 x2

(y1, z1) [7, 11] [10, 14]
Coalition {2, 3} (y2, z1) [4, 7] [6, 9]

(y1, z2) [3, 7] [9, 12]
(y2, z2) [3, 8] [6, 10]

Step 3. We find maxmin/minmax values in zero-sum interval game Γ{1}:

max
x{1}

min
x{2,3}

u1(x{1}, x{2,3}) = [3, 6],

min
x{2,3}

max
x{1}

u1(x{1}, x{2,3}) = [3, 6].

Therefore, we set the values of α and β CFs for coalition S = {1} as follows:

wα({1}) = wβ({1}) = [3, 6].

We make similar calculations for coalition {2, 3} and find maxmin/minmax values in Γ{2,3}:

max
x{2,3}

min
x{1}

∑
i∈{2,3}

ui(x{1}, x{2,3}) = [7, 11],

min
x{1}

max
x{2,3}

∑
i∈{2,3}

ui(x{1}, x{2,3}) = [7, 11],
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and set the values of α and β CFs for coalition S = {2, 3} as follows:

wα({2, 3}) = wβ({2, 3}) = [7, 11].

We proceed by considering other coalitions {2} and {1, 3}, {3} and {1, 2} in a similar way. For the

grand coalition {1, 2, 3}, the value of α and β CFs are defined as follows:

wα({1, 2, 3}) = wβ({1, 2, 3}) = max
x∈X,y∈Y,z∈Z

∑
i∈N

ui(x, y, z)

= max{[8, 13], . . . , [14, 20], [13, 19]} = [14, 20].

The values of α and β CFs are given in Table 1.

Table 1: The values of α and β CFs

S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

wα [3,6] [1,3] [1,3] [11,15] [7,11] [7,11] [14,20]
wβ [3,6] [3,5] [2,4] [12,15] [8,12] [7,11] [14,20]

We notice that the values of α and β CFs are different for coalitions {2}, {3}, {1, 2}, and {1, 3},
which highlights that the choice of a CF is in itself an issue in a cooperative game.

Remark 2. We can easily notice that if use the ordering like ≽ such that for any two intervals I = [I, Ī]

and J = [J, J̄ ], I ≽ J if and only if I ≥ J and Ī ≥ J̄ , then the maxmin (α CF) and minmax (β CF)

values exist and they are equal to the values given in Table 1.

Based on the above results, we can make the following observations:

• Both interval wα and wβ are not superadditive. Indeed, it is easy to verify that |wα|({1, 3}) = 4 ≱
5 = (|wα|({1}) + |wα|({3})) and |wβ |({N}) = 6 ≱ 7 = (|wα|({2, 3}) + |wα|({1})). Recalling that

α CF for noninterval games is superadditive, we conclude that this result cannot be transposed

to interval games.

• Both games < N,wi >, i ∈ {α, β} are size monotonic, i.e., |wi|(S) ≤ |wi|(T ) for all S, T ∈ 2N

with S ⊂ T .

Indeed, we have

α CF β CF

|wα|({1}) = 3 < 4 = |wα|({1, 2}) |wβ |({1}) = 3 = 3 = |wβ |({1, 2})
|wα|({1}) = 3 < 4 = |wα|({1, 3}) |wβ |({1}) = 3 < 4 = |wβ |({1, 3})
|wα|({2}) = 2 = 2 = |wα|({1, 2}) |wβ |({2}) = 2 < 4 = |wβ |({2, 3})
|wα|({2}) = 2 < 4 = |wα|({2, 3}) |wβ |({2}) = 2 = 2 = |wβ |({1, 2})
|wα|({3}) = 2 < 4 = |wα|({1, 3}) |wβ |({3}) = 2 < 4 = |wβ |({1, 3})
|wα|({3}) = 2 < 4 = |wα|({2, 3}) |wβ |({3}) = 2 < 4 = |wβ |({2, 3})
|wα|({1, 2}) = 4 < 6 = |wα|({1, 2, 3}) |wβ |({1, 2}) = 3 < 6 = |wβ |({1, 2, 3})
|wα|({1, 3}) = 3 < 6 = |wα|({1, 2, 3}) |wβ |({1, 3}) = 3 < 6 = |wβ |({1, 2, 3})
|wα|({2, 3}) = 4 < 6 = |wα|({1, 2, 3}) |wβ |({2, 3}) = 4 < 6 = |wβ |({1, 2, 3})

• Both interval wα and wβ are not supermodular because wi(S)+wi(T ) ≼ wi(S ∪T )+wi(S ∩T ),
∀S, T ∈ 2N does not hold. It is easily seen that for S = {1, 2} and T = {2, 3} that

wα({1, 2}) + wα({2, 3}) = [18, 26] ≽ [15, 23] = wα({N}) + wα({2}).

Similarly, for S = {1, 2} and T = {1, 3} we have

wβ({1, 2}) + wβ({1, 3}) = [20, 27] ≽ [17, 26] = wβ({N}) + wβ({1}).
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• Both interval wα and wβ are nonconvex because their length games < N,
∣∣wi

∣∣ >, i ∈ {α, β} are

not supermodular. Indeed, we have

|wα|({1}) + |wα|({2}) = 5 ≰ 4 = |wα|({1, 2}),
|wβ |({1}) + |wβ |({2}) = 5 ≰ 3 = |wβ |({1, 2}).

Let us now compute the interval Shapley value for α and β CFs using the following formulas:

Φi(w
j) =

∑
S:i/∈S

|S|!(n− 1− |S|)!
n!

(wj(S ∪ {i})− wj(S)), i = 1, 2, 3,

where j ∈ {α, β}.

We obtain

w
Φ

Φ1 Φ2 Φ3

wα
[
36
6
, 50

6

] [
30
6
, 41

6

] [
18
6
, 29

6

]
wβ

[
35
6
, 48

6

] [
32
6
, 42

6

] [
17
6
, 30

6

]
We clearly see that the CFs do not yield the same Shapley values. Here, Player 1 prefers the α CF

and Player 2 prefers the β CF, while Player 3 cannot prefer one of the interval values with ordering

≼ (the intervals
[
18
6 ,

29
6

]
and

[
17
6 ,

30
6

]
are incomparable with ≼). If we consider the interval ordering

defined by (3) and (4), then again Player 1 prefers the α CF, Player 2 — β CF, while Player 3 prefers

α CF if she is pessimistic and β CF if she is optimistic.

5 Concluding remarks

In this paper, we introduce interval α and β characteristic functions. In particular, our analysis shows

that these different approaches yield different values for interval games and consequently different

cooperative interval solutions. A simple three-person game example highlights the difference between

the interval Shapley values calculated with α and β CFs. We find that both games < N,wα > and

< N,wβ > may be nonconvex. The similarity with noninterval games is that for any interval game, the

α approach to constructing CF values assigns a smaller or equal values to any coalition S in comparison

with the β approach.

Two extensions are worth considering. First, attempt to define an algorithm that allows to compute

all imputations in the core of an interval game with discrete strategy sets. Second, determining

characteristic function values when the strategy sets are continuous and the payoff functions are defined

by utility functions.
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