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Abstract : In this work, we improve the efficiency of Unit Commitment (UC) optimization solvers
using a Graph Convolutional Neural Network (GCNN). In power systems, UC is crucial as it entails
making essential decisions regarding the scheduling of power generation units to effectively meet the
demand within a specific period. The complex nature of UC, arising from the binary nature of the prob-
lem and the non-convexity of the power flow constraints, warrants their representation as mixed-integer
second-order cone program (MISOCP). Harnessing the inherent structure of these mixed-integer pro-
grams, we represent them as variable-constraint k-partite graphs. Utilizing a GCNN, we extract valu-
able insights from these graphs, learning effective variable selection policies for the branch and bound
algorithm, thereby accelerating the overall optimization process. Our method ensures the preservation
of solution optimality contrary to end-to-end learning approaches. Our methodology unfolds in two
parts: (1) we construct a k-partite graph from the constraints of the optimization problem (2) we sub-
sequently train our GCNN model on this graph representation via imitation learning, using the strong
branching expert rule as our guide. Our approach stands out by effectively integrating problem-specific
information into the variable selection within the branch and bound process of optimization.

Keywords : Branch and bound method, graph convolutional neural networks, integer programming,
unit commitment
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1 Introduction

Unit Commitment (UC) is a fundamental decision-making process in power systems, involving the

optimal scheduling of power generation units to meet demand over a specified period [32]. It is a com-

plex optimization problem that takes into account numerous factors such as power demand, generation

costs, and operational constraints to ensure cost-effective and reliable power delivery. Solving the UC

problem quickly and accurately is crucial because it directly impacts the operational efficiency of power

systems. Fast, accurate solutions minimizing operational costs, ensure a reliable power supply, and

allow for a rapid response to fluctuations in power demand or unexpected events, thus significantly

enhancing grid stability and performance [29].

In our work, we focus on the UC problem where the goal is to schedule over a time horizon power

generation units to meet power demand at the minimum possible cost. This approach ensures an

optimal balance between meeting operational constraints and achieving economic efficiency.

Building on a methodology proven effective in the linear case [24], we propose learning-accelerated

mixed-integer convex second-order cone programming (MISOCP) and convex quadratic programming

(MICQP) methods. Our approach allows for the inclusion of non-linear constraints and objectives and

leads to a more accurate representation of power systems, thus enhancing the decision-making process.

Our methodology unfolds as follows. First, we construct a k-partite graph from the problem

formulation, where at least one set of nodes corresponds to variables and another set corresponds to

the problems constraints. In a nuanced adaptation of existing methodology [16], we extend the graph

representation by converting the variable order into an edge feature, thereby enriching the structure

of the graph with additional information. This modification provides a more comprehensive view of

the problem, facilitating a more accurate learning process. Then, when considering the power flow

within the UC formulation, we rely on a new representation strategy for second-order cone (SOC)

constraints using a tripartite graph. This tripartite graph structure divides the problem elements into

three interlinked sets: the decision variables, the bilinear components modelling the product of these

variables, and the constraints. Finally, we train a graph convolutional neural network (GCNN) model

on this graph representation via imitation learning, using the strong branching expert rule as our

guide.

Our methodology uniquely synthesizes problem-centric data into variable selection, which differen-

tiate it from conventional heuristics in branch and bound algorithms. Notably in power engineering,

the wealth of data is generated daily due to the repetitive nature of problem-solving [25]. This signifi-

cant and ever-growing trove of data can be employed to improve the resolution speed of these recurring

problems using data-driven solvers like ours.

1.1 Contributions

In this research, we make the following contributions to the field of combinatorial optimization and

machine learning in power systems:

• We develop a novel method that expands upon [16] to accommodate mixed-integer non-linear

optimization problems, particularly MISOCPs and MICQPs. Our strategy incorporates addi-

tional edge features into the graph representation and k-partite graphs, enabling the model to

capture the non-linear characteristics inherent in the problems. This aspect is not covered by

existing methodologies.

• We apply our methodology to UC problems, demonstrating its versatility and effectiveness in

handling complex, real-world issues in power engineering. Our approach consistently accelerates

the computation process. This expedited resolution is particularly evident in formulations with

and without power flow considerations, showcasing the broad scope of our method.

• We implement our method for the UC problem in which SOC-relaxed power flow constraints are

integrated and subsequently evaluate its efficacy on standard power grid test cases. To further
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extend its applicability, we adapt our model to MICQPs. We validate this specialized model on

four larger, standard power grid models derived from the French RTE model.

The rest of this paper is organized as follows. In Section 1.2, we review the relevant literature.

In Section 2, we present the UC formulation to be solved via the methodology detailed in Section 3.

Section 4 provides the results of our numerical experiments. Lastly, we conclude in Section 5.

1.2 Related work

We now review the relevant literature. The UC problem presents a critical challenge in power system

operation, involving the optimal scheduling of power generation units to meet the forecasted load

demand at the least possible cost, all while adhering to a variety of operational constraints. In this

study, we focus on two different formulations of the UC problem: one solely accounting for economic

dispatch (ED) and another incorporating power flow (PF) constraints.

The UC problem seeks to minimize the power generation’s operational costs by optimally allocating

the load among the online units. Solved typically using mixed-integer programming (MIP), our first

UC implementation simplifies the problem by excluding network constraints, therefore, by assuming

unrestricted power flow within the grid. This abstraction aids in achieving scalability, allowing effi-

cient management of larger and more complex systems [32]. We refer to this implementation as unit

commitment-economic dispatch (UC-ED).

Building on UC-ED, the unit commitment with power flow (UC-PF) incorporates grid-specific

transmission constraints, such as transmission line limits and bus voltage magnitude bounds, into the

UC problem. These constraints become significantly relevant as total load increases and congestion

emerges as a critical factor. Although this formulation offers a more accurate model of the power

system’s operations, it significantly increases the computational burden due to its non-convexity [7].

This problem is typically solved using a convex relaxation, which offers a higher degree of realism

in comparison to approximations [32] but also brings with it an increased computational burden.

Particularly, our work leverages the SOC relaxation introduced in [9].

Reference [11] presents innovative solutions to the UC problem in large-scale power systems using

decomposition techniques. Specifically, Benders’ decomposition is employed to solve a SOC relaxation

of the UC-PF problem, ensuring power flow feasibility through a sequence of continuous convex opti-

mization problems. Reference [10] proposes a Benders-type decomposition with a dynamically enriched

master problem. They further utilize Kron reductions to compact the description of under-contingency
operating conditions. These decomposition techniques break down the complex UC problem into man-

ageable subproblems, enabling efficient solutions in large-scale systems.

In recent years, the burgeoning field of machine learning (ML) has been leveraged to tackle complex

problems, like the UC. One such approach is outlined by [25] where they demonstrated a simple yet

effective strategy using ML to solve the UC problem. Their work suggests that even naive algorithms,

guided by past UC instances, can provide optimal or near-optimal solutions with significant speedups.

They emphasize that any sophistication in the learning method should correspond to a statistically

significant improvement in the results. Some of these approach known as end-to-end learning approx-

imately the optimal solution of those problems sacrificing the guarantee of optimality that would be

provided by a more conventional optimization method [33]. Over the years, ML has been adopted in

various forms to tackle the UC problem. Notably, an important body of literature focuses on linear

formulations, often yielding only approximate solutions [12, 13]. [35] employed machine learning to

improve MIP solver performance by predicting constraints and solution areas, demonstrating resilience

to data shifts. Reference [27] reformulates the UC problem as a Markov decision process and employs

a multi-step deep reinforcement learning-based algorithm. The method proved more computationally

efficient than traditional optimization methods, achieving similar levels of optimality but with signifi-

cantly shorter computation times. However, the size of the tested instances is significantly smaller than

the standard problems solved in industry. Our work aims to leverage machine learning to accelerate
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the solution process of both UC-PF and UC-ED while maintaining the quality of the solution. We

use ML to enhance the branch and bound process, thereby conserving the efficiency while preserving

the exactness of the solver. We employ a hybrid method that integrates machine learning to reduce

the computation time of classical solvers for UC problems. Specifically, we enhance the variable se-

lection process of the branch and bound algorithm, resulting in more efficient problem-solving. This

guarantees the optimality and accuracy of our solution while enabling faster solving.

The use of machine learning to improve the variable selection in branch and bound algorithms for

solving combinatorial optimization problems is a well-studied research area [6]. One of the common

approaches is to use imitation learning [20], a form of supervised learning that learns to replicate

the decisions of an expert algorithm. For instance, a key challenge in MIP is how to represent these

problems in a way that can be processed by a machine learning algorithm, which led to the distinction

between static and dynamic features [2].

Recent work has evolved these techniques further by introducing graph neural networks (GNN)

to represent MIPs [21]. The GNN formulation of mixed-integer linear programs (MILPs) led to a

more comprehensive representation of problem instances and improved the efficiency of the branch

and bound algorithm. However, the practical speed gains from GNNs were contested, with suggestions

that hybrid architectures might not be more effective on machines equipped only with CPUs [17].

Machine learning approaches for branch and bound can be trained at different levels of specificity,

ranging from instance specific to generalizable across all types of problems. For example, some works

focused on developing models that are specialized for problems belonging to the same family [19, 21],

while others sought to generalize across all types of instances [4, 14, 31].

Training these models requires amount of information, which often need to be artificially generated

due to the limited size of traditional model used for testing optimization problem-solving methods [22,

26]. Collecting the data involves solving numerous instances of the problem and recording the state of

the branch and bound tree along with the selected variable.

Metrics for evaluating the performance of these machine learning approaches can be challenging to

define, as the real objectives, e.g., computation time, the primal-dual gap, and the size of the explored

branch and bound tree are not the same as the ones used to train the machine learning models [21].

Finally, there has been some exploration of reinforcement learning techniques for variable selection.

Although theoretically not limited by the performance of the expert heuristics they seek to imitate,

these methods currently face several challenges. For example, they require training metrics with a

more global view, which is difficult to define, and they are typically slower to train due to the need to

solve the optimization problem multiple times per instance [15, 28, 30].

2 UC Formulation

In this section, we present the UC-ED and UC-PF formulations used in this work. The UC-ED

formulation is inspired by [32] while the power flow formulation is adapted from [9].

We first introduce the following notation.

Sets

N ⊂ N is the set of nodes/buses;
L ⊆ N ×N is the set of transmission lines;

G ⊆ N is the set of generators;
T ⊂ N is the time horizon.
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Parameters

ai, bi, ci ≥ 0 are the cost coefficients for generator i ∈ G;
ri, ri ≥ 0 are ramp-up/down limits for generator i ∈ G;

T i, T i ≥ 0 are minimum up/down times for generator i ∈ G;
vi, vi ≥ 0 are voltage magnitude limits at bus i ∈ N;
S
i
, Si ∈ C are apparent power output limits for generator i ∈ G;
Sd
i,t ∈ C is the apparent power demand at bus i ∈ N at time t ∈ T ;

Yij ∈ C is the admittance of line ij ∈ L;
Sij ≥ 0 is the apparent power limit of line ij ∈ L;
θ∆ij ∈ R is the phase angle difference limit of line ij ∈ L.

Variables

pi,t, qi,t ≥ 0 are active and reactive power outputs for generator i ∈ G at time t ∈ T ;
Sgen
i,t ∈ C is the apparent power output for generator i ∈ G;

Dt, Qt ≥ 0 are total active and reactive power demands at time t ∈ T ;
ξi,t ∈ {0, 1} is the status of generator i ∈ G at time t ∈ T ;

Sij,t ∈ C is the apparent power flow of line ij ∈ L at time t ∈ T ;
Wjj,t,Wij,t ∈ C are elements of the voltage product matrix at time t ∈ T ;

x ∈ R is a slack variable.

Next, we present the MICQP formulation of the UC-ED. We recall that the goal of UC-ED is to

determine the optimal operational schedule of power generation units to meet forecasted electricity

demand while minimizing operational costs. The UC objective is given by:∑
t∈T

∑
g∈G

agp
2
g,t + bgpg,t + CSξg,t,

which we reformulate as a quadratic constraint for the minimization problem to be compatible with

our method: ∑
t∈T

∑
g∈G

agp
2
g,t + bgpg,t + CSξg,t ≤ x. (1)

The problem is subject to the following constraints. The power balance constraint ensures that the

total generation meets the demand at each time period. It is expressed as:∑
g∈G

pg,t = Dt ∀t ∈ T (2)

∑
g∈G

qg,t = Qt ∀t ∈ T . (3)

The output of each unit, when it is online, is constrained by the minimum and maximum generation

limits:

Sgξg,t ≤ Sgen
g,t ≤ Sgξg,t, ∀g ∈ G,∀t ∈ T , (4)

where,
S
gen

g,t = pg,t + ȷqg,t, ∀g ∈ G,∀t ∈ T . (5)

Generators are subject to the minimum up and down time requirements of the units enforced by:

min(T g,|T |)∑
k=t

ξg,k ≥ T g(ξg,t − ξg,t−1), ∀g ∈ G, t ∈ T \ {1} (6)

min(T g,|T |)∑
k=t

(1− ξg,k) ≥ T g(ξg,t−1 − ξg,t), ∀g ∈ G, t ∈ T \ {1}. (7)

Finally, ramping constraints that limit the rate at which power output can increase (ramp-up) or

decrease (ramp-down) between consecutive time periods are considered and provided by.

pg,t − pg,t−1 ≤ rg, ∀g ∈ G, t ∈ T \ {1} (8)
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pg,t−1 − pg,t ≤ rg, ∀g ∈ G, t ∈ T \ {1}. (9)

The variable ξg,t is a binary variable indicating whether unit g is on at time t. The MICQP formulation

of UC-ED is:
min

x,Sgen
g,t ,ξg,t

x

subject to (1)−(9),

ξg,t ∈ {0, 1} ∀g ∈ G ∀t ∈ T .

(10)

Traditionally the UC-ED and the optimal power flow problems arme solved sequentially due to their

computational complexity. However, this sequential approach may not yield the global optimum due

to the interdependencies among these problems. Therefore, integrating power flow constraints into a

unified problem has been a topic of interest in recent years [11].

The UC-PF formulation is designed to optimize the scheduling and dispatch of both real and

reactive power, while taking into account the physical network constraints directly in the UC. The

UC-PF problem can be formulated by adding the following constraints. Let Vi ∈ C be the voltage

phasor of node i and Wij ∈ C be the product of node i’s voltage and the complex conjugate of node j’s.

The following non-convex constraint ensures that the voltage product Wij represents the above

definition, aligning with the power flow equations in the network:

Wij,t = Vi,tV
∗
j,t, ∀i, j ∈ N ,∀t ∈ T . (11)

The voltage magnitude at each node must be kept in an acceptable interval:

(vi)
2 ≤ Wii,t ≤ (vi)

2, ∀i ∈ N ,∀t ∈ T . (12)

In UC-PF, the constraints (2)−(3) are removed and the power balance at each node is ensured by:

Sgen
i,t − Sd

i,t =
∑
ij∈L

Sij,t, ∀i ∈ N ,∀t ∈ T , (13)

where Sgen
i,t and Sd

i,t are the total power generation and demand at node i, respectively. Based on (11),

the power flowing in each line is modelled by:

Sij = (Wii,t −Wij,t)Y
∗
ij,t, ij ∈ L, (14)

where Yij is the admittance of line ij. Line ij’s power flow is limited by its capacity expressed as Sij,t,

yielding the constraint:

|Sij,t|2 ≤
(
Sij

)2
, ∀ij ∈ L,∀t ∈ T . (15)

The phase difference between two adjacent nodes must satisfy the following constraint to be within

the physical limits imposed by the transmission line:

tan
(
−θ∆ij

)
Re(Wij,t) ≤ Im(Wij,t) ≤ tan

(
θ∆ij

)
Re(Wij,t), ∀ij ∈ L,∀t ∈ T . (16)

Lastly, we use the SOC relaxation of [9] to obtain a mixed-integer convex UC-PF formulation and

impose:

|Wij,t|2 ≤ Wii,tWjj,t ∀ij ∈ L,∀t ∈ T , (17)

instead of (11).

Altogether, we obtain the MISOCP formulation of the UC-PF:

min
x,Sgen

g,t ,ξg,t
x

subject to (1), (4)−(9), (12)−(17)

ξg,t ∈ {0, 1} ∀g ∈ G ∀t ∈ T .

(18)
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3 Methodology

We now present our machine learning-accelerated methodology for MISOCP. We then specialized our

approach to MICQP. The non-linearity of MISOCP and MICQP introduces complexities which require

us to extend and modify [16]’s approach for MILP. We introduce additional edge features to account for

the non-linear components in the problem formulations. Through these adaptations, we successfully

apply a GCNN-based approach to solve MISOCPs and MICQPs for UC with and without power flow

constraints, respectively, in reduced time. In what follows, we assume that all constraints have been

rewritten as gk(z) ≤ 0, where gk represents the kth constraint function and z collects all optimization

variables. Our methodology is summarized in Figure ??.

3.1 K-partite graph representation

Given the complex, relational nature of MIPs, we represent them using a graph. In such a representa-

tion, variables and constraints can be modelled as nodes in a graph, with edges connecting variables

and constraints, creating a k-partite graph. The advantage of this representation is that it captures

the inherent structure of the MIP, while being flexible and scalable to problems of different sizes and

complexity.

3.2 MISOCP

A tripartite graph, as the name suggests, involves three disjoint sets of nodes with edges connecting

nodes from different sets. The benefit of utilizing a tripartite graph lies in its capability to handle the

more complex structure of SOC constraints. We note that in this work, we express all SOC constraints

in their equivalent hyperbolic form.

For the graph representation of MISOCPs, the three sets of nodes in our tripartite graph are defined

as: (1) variables, (2) bilinear terms representing the multiplicative relationships between variables, and

(3) the constraints. The edges in this graph indicate the relationships between these three node sets.

An edge is drawn between two variables and a bilinear node if and only if the variables are multiplied

together in the SOC constraint. The degree of the variable is indicated on this edge. Simultaneously,

an edge is drawn between a bilinear node and a constraint node if the latter belongs to that particular

constraint. The weight of the variable pair involved in the multiplication operation is encoded on this

edge. Figure 1 depicts a tripartite graph for constraints (1) and (17).

We remark that variables not involved in multiplicative operations are linked alone to a bilinear

node. This approach aids to preserve the simplicity of the graph embedding while accurately reflecting

the structure of the MISOCPs.

3.3 MICQP

A simplification of this model can be made when representing MICQPs, reducing the graph to a

bipartite graph.

In a bipartite graph, nodes are divided into two disjoint sets, and edges can only connect nodes

from different sets. To represent MICQPs, we define the two sets of nodes as variables and constraints,

respectively. An edge is drawn between a variable node and a constraint node if and only if the variable

appears in the constraint. In this way, the graph structure captures the incidence relation between

variables and constraints of the MICQP. The order of a given variable is given as a feature for the

same edge as its weights in this representation. Figure 2 provides an example of the bipartite graph

for constraints (1) evaluated at t = |T | and (6) at t = |T | − 1.

These graphical representations not only captures the structure of the optimization problem but

also provide a rich source of information that a GCNN can leverage to learn effective branch and bound

variable selection policies.



Les Cahiers du GERAD G–2024–08 7

x

Variables

pg,t

ξg,t

Wij

Wii

Wjj

Bilinearity Constraints Ci

C1

C17

[2]

[1]

[1]

[2]

[1]

[1]

[1]

[ag]

[bg]

[cg]

[1]

[−1]

[-1]

Figure 1: Tripartite graph representation of constraints (1) and (17)

3.4 Graph Convolutional Neural Networks

GCNNs are a variant of CNNs designed to process graph-structured data. By applying transformation

functions to the local neighbourhoods of nodes, GCNNs are capable of focusing on local graph struc-

tures and of propagating information across the graph, enabling the effective handling of irregular and

dynamic structures frequent in graph data [34].

GCNNs have been successfully used for various tasks on graph-structured data, such as node

classification, link prediction, and graph classification. GCNNs have also demonstrated significant

promise in addressing MILPs effectively. In the context of our work, we utilize GCNNs to process the

tripartite graph representations of MISOCPs or the bipartite graph representations of MICQPs and

learn effective variable selection policies for the branch and bound algorithm.

The central component of our methodology is the GCNN, which is trained to process the k-partite

graph representation of each MIP. The GCNN functions by utilizing the structured data in the form

of the k-partite graph and extracts valuable information that is inherent in the graph topology.

In the context of the tripartite graph representation, the GCNN use three distinct convolution

passes: from variables to bilinear terms, from the bilinear terms to constraints, and finally from

constraints back to bilinear terms. This differs from the bipartite representation for which the GCNN

applies two distinct convolution passes: one moving from variables to constraints, and another from

constraints to variables.
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x

Variables

pg,|T |

ξg,|T |

ξg,|T |−1

ξg,|T |−2

Constraints Ci

C1

C5

[−1,1]

[−T g,1]

[−1,1]

[T g − 1,1]

[ag,2]

[bg,1]

[cg,1]

Figure 2: Bipartite graph representation of constraints (1) for t = |T | and (6) for t = |T | − 1

3.5 Expert strategy

A multitude of branching strategies have been proposed, each possessing its unique set of attributes

and potential drawbacks [23].

Strong branching excels in the exploration of fewer nodes, albeit at a high computational cost per

node, making it an ideal candidate for imitation learning [5]. To circumvent its time-intensive nature,

we employ a GCNN to speed up node evaluations, effectively offsetting the primary drawback of strong

branching. However, the property of exploring fewer nodes, while nearly universal in linear problems,

doesn’t always hold true for non-linear ones as suggested by [5]’s results. Thus, we found it necessary

to empirically validate the performance of strong branching in the context of UC instances to ensure

its suitability for our approach.

In the case of UC, Tables 1 and 2 underscore the utility of full-strong branching as a robust

branching strategy. As such, we chose full-strong branching as the primary algorithm to imitate in

our approach, yielding considerable performance gains. Yet, it is essential to bear in mind the need

for problem-specific empirical evaluations. When navigating non-linear problems, varying problem

characteristics might warrant the adoption of alternative algorithms for achieving optimal performance.

3.6 Strong branching

We now turn our focus towards the strong branching method, highlighting its implementation and

subsequent benefits and challenges within our framework. Proposed by [3], strong branching computes,

at each node in the branch and bound tree, the optimal solution of the convex relaxation for all

possible branchings on a set of candidate variables, and then selects the variable that yield the greatest
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Table 1: Comparison of branching strategies for the MISOCP UC-PF (RTS-96 test case)

Branching Strategy Average Time (s) Average Node Count

relpscost 47.06 45094.1
vanillafullstrong 377.4 11179.2

inference 75.5 69109.1
pscost 44.7 30644.6
mostinf 223.8 186968.3
leastinf 37.4 25768.0

allfullstrong 642.5 4660.3
cloud 89.1 7256.8

Table 2: Comparison of branching strategies for the MICQP UD-ED (RTS-96 test case)

Branching Strategy Average Time (s) Average Node Count

relpscost 2.57 2477.8
vanillafullstrong 17.29 567.3

inference 2.23 2936.3
pscost 1.48 1695.4
mostinf 10.73 9990.2
leastinf 1.36 1154.6

allfullstrong 26.63 235.9
cloud 5.39 358.2

improvement in the dual bound. This implies that strong branching has the ability to perfectly predict

the immediate impact of branching decisions, allowing for more efficient exploration of the search space.

Despite its apparent advantage, strong branching is computationally expensive, especially when

the number of candidate variables is large like in the UC problem. It necessitates solving several

convex relaxation of the problem at each node in the tree, each corresponding to a potential branching

decision. The algorithm is particularly time-consuming when full-strong branching is used, i.e., when

the relaxation is evaluated for every single variable.

3.7 Data collection strategy

We utilize the data collection mechanism introduced by [16]. Relying solely on strong branching in

the data collection can be the source of various problems. Specifically, using only strong branching

could result in a lack of variety in the explored states and can, as a result, introduce correlation

between data points. This potential bias in the learning process would contravene the assumption that

observations should be independent and identically distributed (i.i.d.) [8]. By diversifying the data

collection process, we aim to satisfy this assumption and thereby improve the reliability of our results.

We use a strategy combining the advantages of strong branching with another branching technique,

namely pseudocost branching. The process starts by exploring the decision tree using this secondary

branching technique, which typically leads to less optimal but more diverse branching decisions. This

exploration phase enriches the dataset by capturing a wide range of problem states, thus mitigating

the risk of overfitting to a specific pattern of strong branching decisions.

Periodically, the strategy transitions randomly to strong branching. At this stage, the state of the

branch and bound tree and the chosen variable for branching are recorded for each node where strong

branching is applied. This information then serves as the training data for the machine learning model

presented next. The exploration phase generates data that represents a wide range of possible problem

states, enhancing the robustness of the model.
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3.8 Imitation learning

Imitation Learning (IL) is a type of machine learning where an agent learns to perform tasks by

mimicking expert behaviour [20]. This learning method is particularly useful in situations where the

optimal behaviour is difficult to define explicitly, but examples of good behaviour are readily available.

In this work, the expert is the strong branching strategy. Our aim is to develop a machine learn-

ing model that can make branching decisions as effectively as strong branching, but with reduced

computational time. The application of IL for MISOCP and MICQP is as follows.

3.9 Data collection

We first generate a dataset of branching decisions using the data generation strategy as described in

Section 3.7. This dataset collects the states of the branch and bound tree at various nodes (features),

and the branching decisions made by the full strong branching strategy at these nodes (labels).

3.10 Model training

Next, we train a GCNN on this dataset. The GCNN architecture is well suited to this task because it

can effectively capture the complex, graph-structured nature of the MISOCP and MICQP UC.

3.11 Policy derivation

After training, the GCNN produces a probability distribution over the candidate branching variables

for each node in the tree. We interpret this distribution as the GCNN’s policy for branching decisions,

with the variable with the highest probability being selected for branching.

3.12 Policy evaluation

We evaluate the effectiveness of our learned policy by comparing its performance to the standard

SCIP solver on a separate test set of UC problem instances. We assess performances in terms of the

computational time.

By employing IL, we aim to devise a method that can generalize the expert behaviour of strong

branching to a wide range of non-linear problem instances, thus reducing the computational burden

of the UC problem and enabling more efficient operations in power systems while remaining exact by

using the method illustrated in ??.

4 Results

We now present the numerical experiments conducted to validate our machine learning-based MISOCP

and MICQP approaches for the UC problem.

4.1 Computational tools

In this research, the computational tools we used are central to our methodology and results. We

leveraged SCIP [1] and Ecole [26], two prominent software in the field of combinatorial optimization

and machine learning.

SCIP is an advanced solver for a range of optimization problems including mixed-integer non-linear

programming. SCIP is open-source and well known for its flexibility and efficiency. This allows us to

adapt it to our problem context with relative ease. It provides a robust base for our exploration of

efficient solutions to the UC problem, and is the backbone of our computations.



Les Cahiers du GERAD G–2024–08 11

Ecole, short for Extensible Combinatorial Optimization Learning Environments, provides an in-

terface between SCIP and our machine learning model, acting as a bridge that connects the combinato-

rial optimization solver with the learning environment. Ecole transforms combinatorial optimization

problems into Markov decision processes, enabling the integration of SCIP with powerful Python-based

machine learning tools. This transformation, while abstract, allows us to employ advanced machine

learning techniques to devise and refine heuristics for branch and bound variable selection tailored to

the UC problem.

The experimental evaluations in this research were conducted on two computing platforms: the in-

frastructure provided by The Digital Research Alliance of Canada, and the server resources at GERAD.

The base instances for our numerical experiments were sourced from the MATPOWER case li-

brary [36] except for RTS-96 which is from [37].

4.2 Numerical experiments

The results of our research illustrate the effectiveness and robustness of our machine learning-based

approach in solving the unit commitment problem across a range of power grid models. We refer to our

approach as GCNN & SCIP hereinafter. We tested our methods on a variety of networks and presents

results averaged over 100 evaluations. Detailed results of these experiments based on computation

speed are summarized in Tables 3 and 4 and illustrated in Figures 3 and 4.

Table 3: Performance of the MISOCP GCNN & SCIP method for UC-PF

Grid Number of SCIP GCNN & SCIP Gain
Generators/Lines Average Time (s) Average Time (s)

RTS-96 99/73 659.5 593.4 10.0%
IEEE-118 54/118 1118.2 939.2 16.0 %
CASE300 69/300 1678.1 1406.2 16.2 %
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Figure 3: Bar chart representation of the performance of the MISOCP method for UC-PF

Table 4: Performance of the MICQP GCNN & SCIP method for UC-ED

Grid Number of SCIP GCNN & SCIP Gain
Generators Average Time (s) Average Time (s)

CASE1888RTE 298 916.4 858.4 6.3%
CASE2848RTE 547 1375.8 1189.6 13.5%
CASE6470RTE 1330 3427.7 2465.8 28.1%
CASE6515RTE 1389 3007.8 2192.0 27.1%

Following the tabular data presented above, we include two graphical representations presented in

Figures 5 and 6. These graphs capture the computational efficiency of each algorithm – Gurobi [18],
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Figure 4: Bar chart representation of the performance of the MICQP method for UC-ED

SCIP, and our proposed GCNN & SCIP – over a collection of 100 UC instances generated randomly

by adding normal random noise to load profiles.

Figure 5: Computational Efficiency for the IEEE-118 test case on 100 MISOCP UC problem instances

Figure 6: Computational Efficiency for the CASE1888RTE test case on 100 MICQP UC problem instances

Figures 5 and 6 underscore the potential of our GCNN-based approach in efficiently solving UC

problems in various grid models, demonstrating how it is possible to use our method to improve solvers

like SCIP.
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We note that in all cases, Gurobi, a proprietary solver, outperformed our method. Given that

Gurobi is known to be significantly faster than SCIP, which our approach builds upon due to its

open-source nature, this was not unexpected. Despite this, our performance relative to Gurobi is

encouraging and leads us to conjecture that improvements to Gurobi may be achieved if it were to

implement a methodology similar to ours. By embedding contextual information to the MIP solver

Gurobi may significantly enhance the efficiency and speed of solving complex optimization problems

in power engineering, such as unit commitment, thereby optimizing power generation and reducing

operational costs.

Next, we evaluate the robustness of our approach. We examine its effectiveness on grids with both

additions and removal of lines. Specifically, we modify the grid by adjusting up to 10% of the lines either

by moving their location or omitting them entirely. However, to ensure feasibility of the problem, if

removing a line yield an infeasible problem, the line is re-added, leading to total modifications ranging

between 0 and 10%. The detailed results of these experiments are summarized in Table 5 and Figure 7.

Table 5: Robustness of the GCNN & SCIP method under 10% line modifications

Grid Modification SCIP GCNN & SCIP Gain
Lines Avg Time (s) Avg Time (s)

RTS-96 Moved 1014.1 895.6 11.7%
RTS-96 Cut 912.2 795.4 12.8%

IEEE-118 Moved 1091.1 1027.5 5.8%
IEEE-118 Cut 1042.3 937.0 10.1%
CASE300 Moved 1621.1 1396.5 13.9%
CASE300 Cut 1831.2 1658.1 9.4%
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Figure 7: Bars chart representation of the performance of the MISOCP method for UC-PF after grid modification

We remark that the GCNN we employed is trained solely on the original, unmodified versions of the

grid models, i.e., the original constraints set. The rationale behind these experiments was to simulate

a realistic scenario where our model is confronted to unforeseen variations in the grid structure, akin

to the dynamic and unpredictable conditions that often characterize real-world power systems.

Our work consistently outperformed the traditional solver SCIP under these varied scenarios, thus

establishing robustness to alterations to the grid topology. These results illustrate the generalizability

of our method.

5 Conclusion

Our work presents advancements in machine learning for power system optimization, specifically in

solving the UC problem. Our method extends on the techniques of [16], demonstrating effective applica-

tion to mixed-integer non-linear programs, namely MISOCPs and MICQPs. Our novel representation
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incorporates additional edge features into the graph, capturing non-linear characteristics commonly

overlooked in current methodologies. By employing a k-partite graph representation and a GCNN,

we are able to derive significant insights from these graphs, which in turn facilitates the learning of

effective variable selection policies for the branch and bound algorithm, consequently expediting the

overall optimization process. We apply our method to the unit commitment problem, highlighting its

practical adaptability to complex, real-world problems in power engineering. Our numerical analysis,

performed on seven standard datasets, confirms the robustness and efficiency of our approach. In

various scenarios, our method consistently outperforms the traditional SCIP solver, showing potential

for significant advancements in power system optimization.

Potential future research avenues could revolve around the innovative use of GCNNs and k-partite

graphs to learn other types of heuristics, expanding their current applicability. Additionally, the

introduction of dynamic features, particularly temporal ones, could endow the model with a broader

context, thereby enhancing its predictive accuracy and efficacy. Moreover, exposing the model to more

diverse datasets during the training phase could foster a more robust and versatile model, honing its

capability to generalize across various scenarios and problem types. The exploration of these strategies

has the potential to contribute substantially to the MIP in power systems and beyond. By doing so,

we could foster the development of robust, flexible MIP techniques that remain efficient even as the

problem topology and parameters change over time.
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