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Abstract : This paper introduces a new step to the Direct Search Method (DSM) to strengthen its
convergence analysis. By design, this so-called covering step may ensure that for all refined points
of the sequence of incumbent solutions generated by the resulting cDSM (covering DSM ), the set of all
evaluated trial points is dense in a neighborhood of that refined point. We prove that this additional
property guarantees that all refined points are local solutions to the optimization problem. This new
result holds true even for discontinuous objective function, under a mild assumption that we discuss
in details. We also provide a practical construction scheme for the covering step that works at low
additional cost per iteration.

Keywords: Discontinuous optimization, nonsmooth optimization, derivative-free optimization, Direct
Search Method, convergence, local solution

Résumé : Cet article propose une nouvelle étape à ajouter à chaque itération de la Méthode de
Recherche Directe (Direct Search Method (DSM) en anglais) pour renforcer son analyse de convergence.
Cette nouvelle étape, nommée covering step, peut garantir par construction que pour tout point raffiné
de la suite de points générée par cDSM (covering DSM ), un ensemble dense de points est évalué dans un
voisinage de ce point raffiné. Nous prouvons que cette propriété permet de certifier l’optimalité locale
de tous les points raffinés. Ce nouveau résultat est valide pour des fonctions objectif potentiellement
discontinues, sous une hypothèse légère que nous discutons en détails. Nous proposons également un
schéma de construction pratique pour la covering step qui mène à un faible surcoût par itération.

Mots clés : Optimisation discontinue, optimisation non lisse, optimisation sans dérivées, Direct
Search Methods, convergence, solution locale
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1 Introduction
Consider the generic optimization problem

minimize
x ∈ Rn

f(x), (P)

where f : Rn → R ∪ {+∞} is possibly discontinuous and has a nonempty effective domain X ⊆ Rn.
The Direct Search Method (DSM) addresses Problem (P) by generating sequences (xk)k∈N of incumbent
solutions and (δk)k∈N of poll radii, where (xk, δk) ∈ X × R∗

+ for all k ∈ N. The literature about DSM
extracts refining subsequences from (xk, δk)k∈N and studies the properties of their associated refined
points. A subsequence (xk, δk)k∈K∗ , where K∗ ⊆ N is infinite, is said to be refining [3, 4] if all iterations
indexed by k ∈ K∗ fail (that is, xk+1 = xk), (δk)k∈K∗ converges to zero and (xk)k∈K∗ converges to
a limit x∗ named the refined point. It is proved in [18] that, for all sets K∗ ⊆ N indexing a refining
subsequence, the corresponding refined point x∗ satisfies a necessary optimality condition expressed in
term of the Rockafellar derivative [17, 18] of f at x∗, provided that (f(xk))k∈K∗ converges to f(x∗).
Then, our previous work [2] extends [18] to ensure this last requirement under the assumption that all
refining subsequences admit the same refined point. These results are valid for two standard classes of
DSM: the mesh-based method [6, Part 3] and the sufficient decrease-based method [9, Section 7.7].

The main goal of this paper is to strengthen the above convergence analysis, via the addition of
a new step to the DSM to guarantee that all refined points are local minima. First, we introduce the
covering DSM (cDSM), relying on the so-called covering step which aims to ensure that for all refined
points, the set of all evaluated trial points is dense in a neighborhood of that refined point. We refer
to Property 1 for details. Second, we prove that this property implies that, for all K∗ ⊆ N indexing a
refining subsequence with refined point denoted by x∗, either x∗ ∈ X is a local solution to Problem (P),
or x∗ /∈ X is such that (f(xk))k∈K∗ converges to the infimum of f over a neighborhood of x∗. This
result is formalized in Theorem 1. Third, we propose a practical construction scheme for the covering
step to indeed ensure Property 1 by design. This scheme fits in both the mesh-based cDSM and the
sufficient decrease-based cDSM, and the additional cost per iteration it induces is low. Finally, this
paper has an auxiliary goal in proving that our framework is tight and broader than others in the
literature. Our assumptions cannot be relaxed in general, and they are weaker than in former work.

The covering step generalizes the revealing step from [1, 2]. Actually, our initial motivation was
to better study this revealing step. Its goal in [1] is to reveal local discontinuities, but we observe
in [2] that when the DSM generates a unique refined point, the revealing step provides the density
of the trial points in a neighborhood of the refined point. However, [1, 2] fail to deduce the local
optimality of the refined point. Thus, the current work originally aimed to state this property. Yet, we
eventually found that the revealing step admits a generalization providing the density of the set of
trial points around an arbitrary number of refined points. The formalization of this generalization and
the study of its properties constitute the core of the present work. Note that we decided to change the
terminology because, in comparison with the name revealing, we believe that the name covering
better captures what this step actually does.

This paper is organized as follows. Section 2 formalizes the cDSM and states its convergence analysis
in Theorem 1. Section 3 proves Theorem 1. Section 4 provides a construction scheme for the covering
step. Section 5 discusses our assumptions about f . Finally, Section 6 identifies some extensions of our
work. Appendix A contains proofs of auxiliary results used in the paper.

Notation: For all r > 0 and all x ∈ Rn, we denote by Br(x) the open ball of radius r in infinite norm
centered at x, and by Br ≜ Br(0). For all x ∈ Rn and all S ⊆ Rn, we denote by {x}+S ≜ {x+s : s ∈ S}
and f(S) ≜ {f(s) : s ∈ S} and dist(x, S) ≜ inf{∥x − s∥ : s ∈ S}. For all δ ∈ R∗

+ and all S ⊆ R, we
define δS ≜ {δs : s ∈ S}. For all S ⊆ Rn, S is said to be ample if S ⊆ cl(int(S)), or locally thin if
there exists N ⊆ Rn open so that S ∩ N ̸= ∅ = int(S) ∩ N . Note that a set is either ample or locally
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thin (see Proposition 7.a) in Appendix A), and that the definition of an ample set is equivalent to that
of a semi-open set introduced in [15]. We denote by Sn the unit sphere of Rn.

2 Formal covering step and convergence result of cDSM

This section formalizes the cDSM as Algorithm 1 and its convergence analysis in Theorem 1. Theorem 1
is based on Property 1 regarding a dense covering property (DCP) provided by the covering step and
on Assumption 1 regarding the objective function f . The proof of Theorem 1 follows in Section 3.

The cDSM matches the usual DSM in most of its aspects. The only novelty lies in the covering step,
with its parameter r ∈ R∗

+, detailed in Section 4. The other steps and parameters may be designed as
in all mesh-based DSM [6, Part 3] and all sufficient decrease-based DSM [9, Section 7.7].
Algorithm 1 cDSM (covering DSM) solving Problem (P).

Initialization:
set a covering radius r ∈ R∗

+ and the trial points history as V0 ≜ ∅;
set the incumbent solution and poll radius as (x0, δ0) ∈ X × R∗

+, and set δ0 ≜ δ0;
set M : R∗

+ → 2Rn and ρ : R∗
+ → R+ and Λ ⊂ ]0, 1[ and Υ ⊂ [1, +∞[ according to one of

• the mesh-based DSM : M(ν) ≜ min{ν, ν2

δ0 }MZp for all ν ∈ R∗
+, where p > n and M ∈ Rn×p positively

spans Rn, and ρ(·) ≜ 0, and Λ ⊆ {τℓ : ℓ ∈ J1, mK} and Υ ⊆ {τℓ : ℓ ∈ J−m, 0K} where τ ∈ Q ∩ ]0, 1[
and m ∈ N∗;

• the sufficient decrease-based DSM : M(·) ≜ Rn, and ρ increasing with 0 < ρ(ν) ∈ o(ν) as ν ↘ 0, and Λ ⊆
[λ, λ] and Υ ⊆ [υ, υ] where 0 < λ ≤ λ < 1 ≤ υ ≤ υ < +∞.

For k ∈ N do:
search step:

set Dk
S ⊆ M(δk) finite; if T k

S ≜ {xk} + Dk
S is nonempty, then set tk

S ∈ argmin f(T k
S );

if also f(tk
S ) < f(xk) − ρ(δk), then set tk ≜ tk

S and T k
C = T k

P ≜ ∅ and go to the update step;
covering step:

set Dk
C ⊆ M(δk) ∩ cl(Br) finite; if T k

C ≜ {xk} + Dk
C is nonempty, then set tk

C ∈ argmin f(T k
C );

if also f(tk
C ) < f(xk) − ρ(δk), then set tk ≜ tk

C and T k
P ≜ ∅ and go to the update step;

poll step:
set Dk

P ⊆ M(δk) ∩ cl(Bδk ) a positive basis of Rn; set T k
P ≜ {xk} + Dk

P ; set tk
P ∈ argmin f(T k

P );
if f(tk

P ) < f(xk) − ρ(δk), then set tk ≜ tk
P , otherwise set tk ≜ xk;

update step:
set Vk+1 ≜ Vk ∪ T k, where T k ≜ T k

S ∪ T k
C ∪ T k

P ; set xk+1 ≜ tk;
set δk+1 as δk+1 ∈ δkΥ if tk ̸= xk and δk+1 ∈ δkΛ otherwise; set δk+1 ≜ minℓ≤k+1 δk.

A carefully constructed covering step ensures that all executions of the cDSM satisfy the next
Property 1. A practical construction scheme to indeed meet this property is stated in Section 4.3.
Property 1 (dense covering property provided by the covering step). The covering step ensures that
the trial points history V ≜ ∪k∈NVk generated by Algorithm 1 satisfies, for all refined points x∗,

Br(x∗) ⊆ cl (V) . (DCP)

Theorem 1 also requires the following assumptions about f . Assumptions 1.a) and 1.b) match
usual assumptions used in the literature, while the unusual Assumption 1.c) is discussed in Section 5.
Assumption 1 (on the objective function f). The objective function f in Problem (P) is such that

a) f is bounded below and has bounded sublevel sets;
b) the restriction f|X : X → R is lower semicontinuous;
c) X admits a partition X = ⊔N

i=1Xi (where N ∈ N∗ ∪ {+∞}) such that, for all i ∈ J1, NK, Xi is an
ample continuity set of f (that is, Xi is ample and the restriction f|Xi

: Xi → R is continuous).
Theorem 1. Under Assumption 1, Algorithm 1 generates at least one refining subsequence and, if
Property 1 holds, then for all K∗ ⊆ N indexing a refining subsequence, the refined point x∗ satisfies

lim
k∈K∗

f(xk) =
{

min f(Br(x∗)) = f(x∗) if x∗ ∈ X,
inf f(Br(x∗)) if x∗ /∈ X.
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Before proving Theorem 1 in Section 3, several comments are in order. First, the covering step
fits in the framework of the search step. Yet, to the best of our knowledge, no DSM from the literature
ensures Property 1, except instances of the cDSM relying on the scheme for the covering step we
propose in Section 4. Second, when Assumption 1 holds, Property 1 ensures that all refined points are
local solutions to Problem (P), in a generalized sense enclosing the case where some refined points lie
outside the effective domain X. Last, in practice the cDSM likely generates exactly one refined point
which moreover lies in X. This point is therefore a local solution to Problem (P) in the usual sense.

3 Proof of Theorem 1
Preliminary results. The covering step is a specific search step, thus Algorithm 1 inherits all the
properties of the usual DSM. Hence, the next Proposition 1 holds. It is stated as [6, Theorem 8.1] for
the mesh-based DSM and as [9, Corollary 7.2] for the sufficient decrease-based DSM.
Proposition 1. Under Assumption 1.a), Algorithm 1 generates at least one refining subsequence.

The rest of this section relies on the following unusual topological concepts. A set S ⊆ Rn is said
to be ample if S ⊆ cl(int(S)), and a set S1 ⊆ Rn is said to have a dense intersection with another
set S2 ⊆ Rn if S2 ⊆ cl(S1 ∩ S2). We leave some related properties to Proposition 7 in Appendix A.

The next Lemma 1 highlights what Property 1 provides. It leads to Proposition 2, which settles
the ground for the proof of Theorem 1.
Lemma 1. Under Assumption 1.c), if Algorithm 1 satisfies Property 1, then for all refined points x∗,
all i ∈ J1, NK and all x ∈ Br(x∗) ∩ Xi, the set V \ {x} has a dense intersection with Br(x∗) ∩ Xi.

Proof. Let x∗ be a refined point generated by Algorithm 1 satisfying Property 1 and let i ∈ J1, NK.
Then V has a dense intersection with Br(x∗), via Property 1 and Proposition 7.c) applied to S1 ≜ V
and S2 ≜ cl(V) and S3 ≜ Br(x∗). Also, Xi is ample by Assumption 1.c) so Br(x∗) ∩ Xi is an ample
subset of Br(x∗) by Proposition 7.b). It follows that V has a dense intersection with Br(x∗) ∩ Xi,
from Proposition 7.c) applied to S1 ≜ V, S2 ≜ Br(x∗) and S3 ≜ Br(x∗) ∩ Xi. The claim follows from
Proposition 7.d) applied to S1 ≜ V and S2 ≜ Br(x∗) ∩ Xi.

Proposition 2. Under Assumption 1, if Algorithm 1 satisfies Property 1, then for all refined points x∗,
we have limk∈N f(xk) ≤ f(x) for all x ∈ Br(x∗).

Proof. First, f∗ ≜ limk∈N f(xk) ∈ R exists since (f(xk))k∈N is bounded below by Assumption 1.a)
and decreasing by construction. Second, let x∗ be a refined point generated by Algorithm 1 satisfying
Property 1 and take x ∈ Br(x∗). The result holds if x /∈ X, so assume that x ∈ Xi for some i ∈ J1, NK.
Let (yℓ)ℓ∈N converging to x with yℓ ∈ Br(x∗) ∩ Xi ∩ V \ {x} for all ℓ ∈ N (it exists by Lemma 1).
Let κ(ℓ) ≜ min{k ∈ N : yℓ ∈ T k} for all ℓ ∈ N. Then (κ(ℓ))ℓ∈N diverges to +∞, since T k is finite for
all k ∈ N and every subsequence of (yℓ)ℓ∈N takes infinitely many values (since (yℓ)ℓ∈N converges to x

with yℓ ̸= x for all ℓ ∈ N). Also, for all ℓ ∈ N we have f(tκ(ℓ)) ≥ f(xκ(ℓ)) − ρ(δκ(ℓ)) if iteration κ(ℓ)
fails and f(tκ(ℓ)) = f(xκ(ℓ)+1) otherwise, and f(yℓ) ≥ f(tκ(ℓ)) by construction. Hence, for all ℓ ∈ N we
have f(yℓ) + ρ(δκ(ℓ)) ≥ f(xκ(ℓ)+1). The result follows by taking ℓ → +∞, since (f(yℓ))ℓ∈N converges
to f(x) by continuity of f|Xi

and (f(xκ(ℓ)+1))ℓ∈N converges to f∗ and (ρ(δκ(ℓ)))ℓ∈N converges to 0.

Proof of Theorem 1. Consider that Assumption 1 is satisfied. Proposition 1 states that at least one
refining subsequence is generated. Assume that Property 1 holds. Let K∗ ⊆ N indexing a refining
subsequence, x∗ denoting its refined point, and let f∗ ≜ limk∈K∗ f(xk) = limk∈N f(xk). Let us show
that f∗ = inf f(Br(x∗)). We have f∗ ≥ inf f(Br(x∗)) since xk ∈ Br(x∗) for all k ∈ K∗ large enough,
and f∗ ≤ inf f(Br(x∗)) is proved by contradiction: if f∗ > inf f(Br(x∗)), then there exists x♯ ∈ Br(x∗)
such that f∗ > f(x♯), but then f∗ > f(x♯) ≥ f∗ by Proposition 2. Note that this already concludes
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the proof of the case where x∗ /∈ X. Now assume that x∗ ∈ X. Then f∗ ≥ f(x∗) by Assumption 1.b)
and f∗ ≤ f(x∗) by Proposition 2, so f(x∗) = f∗ = inf f(Br(x∗)) = min f(Br(x∗)).

4 Discussion on the covering step and Property 1
This section discusses the novel algorithmic aspect of the cDSM, that is, the covering step with
Property 1 it ensures a posteriori (that is, after the execution of cDSM). Section 4.1 highlights the
differences between the covering step and the revealing step it is inspired from. Section 4.2 provides
a sufficient condition about a construction scheme for the covering step to guarantee a priori (that is,
prior to the execution of cDSM) that an execution of the cDSM will satisfy Property 1. It is presumably
easier to check this condition a priori than to verify a posteriori that Property 1 holds. Section 4.3
provides a tractable construction scheme for the covering step which checks this sufficient condition.

4.1 The revealing step from prior work may not provide Property 1 a posteriori

As stated in Section 1, the covering step is inspired from the revealing step in a DSM that we
hereafter call the revealing DSM (rDSM) [2, Algorithm 1]. Nevertheless, we show in this section that
the rDSM may fail to ensure Property 1 when more than one refined point is generated.

Expressed in our notation, the revealing step in [2] relies on a sequence (Dℓ)ℓ∈N with Dℓ ⊂ cl(Br)
finite for all ℓ ∈ N and such that Br ⊆ cl(∪ℓ∈NDℓ). For all k ∈ N, Dk

C is the rounding of Dℓ(k)

onto M(δk), where ℓ(k) denotes the number of iterations indices u < k such that δu+1 < δu. Thus,
the revealing step ensures that

Br ⊆ cl
(

∪
k∈N

Dk
C

)
when the rDSM generates at least one refining subsequence, which is certified a priori by Proposition 1.
Nevertheless, this property states only the dense intersection of the trial directions history with Br.
Property 1 follows when the rDSM generates exactly one refined point [2, Lemma 2]. However, this
fails when more than one refined point exist. The following example illustrates this observation.
Example 1. Consider the objective function f : R2 → R defined as f(x) ≜ ∥x∥∞ for all x ∈ R2 and the
algorithmic parameters r ≜ 1, x0 ≜ −31 where 1 ≜ (1, 1), δ0 ≜ 1, M(ν) ≜ min{ν, ν2}Z2 and ρ(ν) ≜ 0
for all ν ∈ R∗

+, Λ ≜ { 1
2 } and Υ ≜ {1}. Define the poll step as Dk

P ≜ {(±δk, 0), (0, ±δk)} for all k ∈ N.
Define the revealing step such that the sequence (Dℓ)ℓ∈N satisfies

∀q ∈ N, D4q ⊂ R+ × R+, D4q+1 ⊂ R− × R+, D4q+2 ⊂ R− × R−, D4q+3 ⊂ R+ × R−.

Define the search step at each iteration k ∈ N so that T k
S ≜ ∅ if k /∈ 3N, and so that T 3q

S ≜ {t3q
S } for

all k = 3q ∈ 3N, where
t3q
S ≜ (−1)q (

1 + 2−q
)
1.

This instance of rDSM has a predictable behavior. Using induction, one can show that

∀q ∈ N,


x3q = (−1)q−1 (

1 + 2−(q−1))1, δ3q = 4−q, D3q
C = D2q, search success,

x3q+1 = (−1)q (1 + 2−q)1, δ3q+1 = 4−q, D3q+1
C = D2q, iteration fails,

x3q+2 = (−1)q (1 + 2−q)1, δ3q+2 = 1
2 4−q, D3q+2

C = D2q+1, iteration fails.

Thus, there are two refined point, x∗
+ = 1 and x∗

− = −1, and none is a local minimizer of f . However,
this does not contradict Theorem 1 because Property 1 is not satisfied. Indeed, we have

cl(V) ∩ ]−1, 1[ 2 = ∅ while Br(x∗
+) = ]1−r, 1+r[ 2 and Br(x∗

−) = ]−1−r, −1+r[ 2, ∀r ∈ R∗
+.

Example 1 shows that the revealing step from [2] focuses only on the asymptotic density of the trial
directions, and that this may not translate to the density of the trial points in some neighborhoods of
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the refined points. The original instance of the revealing step provided in [1] differs from whose in [2]
(in [1], the revealing step draws at each iteration a direction in cl(Br) according to the independent
uniform distribution), but it also fails to provide Property 1 when more than one refined point exists.
Accordingly, in Section 4.2 we study schemes for the covering step that focus instead on satisfying
directly the dense intersection of the trial points with a neighborhood of all refined points.

4.2 Sufficient condition to ensure a priori that Property 1 will hold

This section focuses on covering step instances relying only, at each iteration k ∈ N, on the current
couple (xk, δk), and the current history Vk = ∪ℓ<kT ℓ. We prove in Proposition 3 that if the covering
step relies on a covering oracle from Definition 1, then all executions of the cDSM satisfy Property 1.
Definition 1 (covering oracle). Given a covering radius r ∈ R∗

+ and a mesh M : R∗
+ → 2Rn defined

either as in the mesh-based DSM or the sufficient decrease-based DSM, a function O : Rn×R∗
+×2Rn → 2Rn

is said to be a covering oracle if O(y, ν, S) ⊆ M(ν) ∩ cl(Br) for all points y ∈ Rn, all radii ν ∈ R∗
+

and all sets S ⊆ Rn, and if

lim
k∈N

max
d∈M(νk)∩cl(Br)

dist
(
yk + d, Sk

)
= 0

for all sequences (yk, νk, Sk)k∈N of elements of Rn ×R∗
+ ×2Rn such that (yk)k∈N converges and (νk)k∈N

converges to 0 and Sk+1 ⊇ Sk ∪ ({yk} + O(yk, νk, Sk)) for all k ∈ N.
Proposition 3. If Algorithm 1 has its covering step constructed as

∀k ∈ N, Dk
C ≜ O

(
xk, δk, Vk

)
,

where O satisfies Definition 1, then Property 1 holds a posteriori for all executions of Algorithm 1.

Proof. Consider the framework of Proposition 3. Denote by Mr(y, ν) ≜ {y} + (M(ν) ∩ cl(Br)) for
all (y, ν) ∈ Rn × R∗

+. Let K∗ ⊆ N indexing a refining subsequence, with refined point x∗. We state
Property 1 by checking that V ∩ Bε(x) ̸= ∅, for all ε > 0 and all x ∈ Br(x∗). Let ε > 0 and x ∈ Br(x∗).
By construction of the covering step, we have Vk+1 ⊇ Vk ∪ T k

C = Vk ∪ ({xk} + O(xk, δk, Vk)) for
all k ∈ K∗. Then, we may apply the definition of the covering oracle with (xk, δk, Vk)k∈K∗ as the
sequence (yk, νk, Sk)k∈N. This leads to dist(Mr(xk, δk), Vk) < ε

2 for all k ∈ K∗ large enough. By
construction of M(δk), we also have dist(x, Mr(xk, δk)) < ε

2 for all k ∈ K∗ large enough. Then,
let k ∈ K∗ satisfying these two conditions, define y as the rounding of x onto Mr(xk, δk) and c ∈ V
as the rounding of y onto Vk. Thus, ∥x − c∥ ≤ ∥x − y∥ + ∥y − c∥ < ε

2 + ε
2 = ε, so c ∈ Bε(x) ∩ V.

Proposition 3 depends only on the oracle O driving the covering step, so it may be checked a priori.
In contrast, Property 1 must be checked a posteriori, as this requires the whole sequence (xk, δk, Vk)k∈N
to identify the refined points and check (DCP). Thus, checking Proposition 3 prior to executing the
cDSM is presumably a good strategy to ensure that Property 1 will be satisfied. The construction
scheme for the covering step we introduce in Section 4.3 relies on Definition 1 and Proposition 3.

4.3 Construction of a covering step instance usable in practice

In practice, an instance of the covering step must satisfy two criteria. The first is that the resulting
trial points history V must satisfy Property 1. The second is that the number of covering trial points
must be small at each iteration. This section proposes a practical scheme that meets these two criteria.
We follow the guideline from Section 4.2, that is, Dk

C ≜ O(xk, δk, Vk) at each k ∈ N, where O is a
covering oracle from Definition 1. Our scheme designs a tractable expression for O.

The baseline scheme we suggest for the covering step relies on the following oracle:

∀y ∈ Rn, ∀ν ∈ R∗
+, ∀S ⊆ Rn, O(y, ν, S) ≜ argmax

d∈M(ν)∩cl(Br)
dist (y + d, S) . (1)
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Proposition 8 states that Oracle 1 is indeed a covering oracle. Then, a covering step instance relying
on Oracle 1 ensures Property 1, as claimed by Proposition 3. This instance selects Dk

C ≜ O(xk, δk, Vk)
at each k ∈ N as the set of all directions dk

C ∈ M(δk) ∩ cl(Br) such that tk
C ≜ xk + dk

C is the farthest
possible from the set Vk of all past trial points. Moreover, Property 1 remains valid if we actually
compute only one such direction. This computation is costly when k is large, but it may be alleviated.

First, in the mesh-based cDSM, computing Oracle 1 is a combinatorial problem, since M(ν) is a
discrete set for all ν ∈ R∗

+. It may be solved using a distance transform algorithm, such as whose
in [16], which works in a number of operations linear with the cardinality of M(ν)∩cl(Br) and most of
them are feasible in parallel. In the sufficient decrease-based cDSM (where M(ν) ≜ Rn for all ν ∈ R∗

+),
computing Oracle 1 is a continuous and piecewise smooth problem. This problem admits surrogates,
such as O(y, γ, S) ≜ argmaxd∈cl(Br) Σs∈S

−1
∥y+d−s∥ . Also, at each iteration k ∈ N∗ the computation

of Dk
C may start from the point tk−1

C calculated at the preceding iteration.

Second, in practice we may alter Oracle 1 as

∀y ∈ Rn, ∀ν ∈ R∗
+, ∀S ⊆ Rn, O(y, ν, S) ≜ argmax

d∈M(ν)∩cl(Br)
dist (y + d, S ∩ cl(Br)) . (2)

This reduces the number of elements to consider in the computation of the point-set distance, and this
alteration remains a covering oracle (the proof of Proposition 8 admits an adaptation to this oracle).

Third, we may also consider the following alteration of Oracle 2. Let α ∈ ]0, 1] and consider

Oα(y, ν, S) ≜

dα ∈ M(ν) ∩ cl(Br) : dist (y + dα, S ∩ cl(Br))
max

d∈M(ν)∩cl(Br)
dist (y + d, S ∩ cl(Br)) ≥ α

 , (3)

for all (y, ν, S) ∈ Rn ×R∗
+ × 2Rn . Oracle 3 remains a covering oracle (the proof of Proposition 8 may

be adapted accordingly). Oracle 3 usually contains numerous elements, but recall that in practice we
do not need to compute more than one. It is presumably easier to compute an element of the set
defined by Oracle 3 than one of the set defined by Oracle 1, especially when α is chosen close to 0. A
simple heuristic approach to localize such an element dα may use a grid search on a grid thin enough,
or some space-filling sequences such as the Halton sequence [12].

Last, let us stress that in practice, we may perform a revealing step such as in [1, 2] instead
of a covering step relying on a covering oracle. Indeed, in practice the revealing step usually
ensures Property 1. Moreover, the computational cost required by the revealing step is almost null.
Nevertheless, despite its more expensive cost, Oracle 1 ensures that the trial points are well spread in a
neighborhood of the current incumbent solution at each iteration. This contrasts with the revealing
step, which offers no such guarantee. In addition, in a blackbox context the cost to compute Oracle 1
may be negligible anyway, since the bottleneck in this context is the cost to evaluate f(x) for all x ∈ X,
and this computation involves no call to the objective function. For comparison, our scheme constructs
a covering step instance evaluating at most 1 point per iteration while the poll step considers at
least n + 1 points per iteration since it relies on a positive basis of Rn.

Let us discuss also the covering radius r. All r ∈ R∗
+ are accepted, but fine-tuning this value

in practice is a problem-dependent concern. Indeed, the smaller r is, the faster the covering step
covers Br(x∗) well, while in contrast, the larger r is, the more likely the cDSM escapes poor local
solutions. Following this observation, two simple choices when no information about Problem (P) is
available are r ≜ δ0

10 or r ≜ δ0. We may also consider a sequence (rk)k∈N instead of a fixed r, provided
that r ≜ infk∈N rk > 0. In that case, replace Br(x∗) by Br(x∗) in Property 1 and Theorem 1. This
alteration of Theorem 1 is proved by a rewording of Section 3 where Br(x∗) is replaced accordingly.
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5 Discussion on Assumption 1.c)
This section discusses our novel assumption describing the continuity sets of f , that is, Assumption 1.c).
In Section 5.1, we prove that Assumption 1.c) is strictly weaker than similar assumptions considered
in former work [1, 2, 18]. In Section 5.2, we show that Assumption 1.c) is tight.

5.1 Comparison of Assumption 1.c) with similar assumptions in prior work

In this section, we compare Assumption 1.c) to similar assumptions considered by former work [1, 2, 18].
Precisely, we show that Assumption 1.c) is strictly weaker than either [1, Assumption 4.4] and [2,
Assumption 1]. The work [18] is not considered since [2] is an extension of it.

First, let us compare Assumption 1.c) to [1, Assumption 4.4], recalled below as Assumption 2. We
prove in Proposition 4 that Assumption 1.c) is strictly weaker than Assumption 2.
Assumption 2 (Assumption 4.4 in [1]). There exists N ∈ N∗ ∪ {+∞} nonintersecting open sets Xi

such that cl(X) = ∪N
i=1cl(Xi) and f|Xi

is continuous for all i ∈ J1, NK and, for all x ∈ X, there
exists j ∈ J1, NK such that x ∈ cl(Xj) and f|Xj∪{x} is continuous.
Proposition 4. Assumption 1.c) is strictly weaker than Assumption 2.

Proof. Suppose that Assumption 2 holds. Denote by (Xi)N
i=1 the family it provides. For all i ∈ J1, NK,

let clf (Xi) ≜ {x ∈ cl(Xi) : f|Xi∪{x} is continuous}. Let I(x) ≜ min{i ∈ J1, NK : x ∈ clf (Xi)}
for all x ∈ X. Then let Yi ≜ {x ∈ X : I(x) = i} for every i ∈ J1, NK. Thus (Yi)N

i=1 passes all the
requirements in Assumption 1.c) (see Proposition 9), so Assumption 1.c) is weaker than Assumption 2.
Now, to prove that Assumption 2 is not weaker than Assumption 1.c), consider the case

f :

 X ≜ [−1, 1] \ {0} → R

x 7→ 1
i

if |x| ∈
]

1
i + 1 ,

1
i

]
for some i ∈ N∗.

The continuity sets of f are Xi ≜ [ −1
i , −1

i+1 [ ∪ ] 1
i+1 , 1

i ] for all i ∈ N∗. Assumption 1.c) holds since Xi is
ample for all i ∈ N∗. Nevertheless Assumption 2 does not hold since the continuity sets must be adapted
as Yi ≜ int(Xi) for all i ∈ N∗ to be open, but then cl(X) = [−1, 1] ̸= ∪∞

i=1cl(Yi) = [−1, 1] \ {0}.

Second, let us compare Assumption 1.c) to [2, Assumption 1], reformulated below in Assumption 3.
We prove in Proposition 5 that Assumption 1.c) is strictly weaker than Assumption 3.
Assumption 3 (Global reformulation of Assumption 1 in [2]). The set X admits a partition X = ⊔N

i=1Xi

(where N ∈ N∗ ∪ {+∞}) such that, for all i ∈ J1, NK, Xi is a continuity set of f with the interior cone
property (that is, Xi satisfies Definition 2 below and f|Xi

: Xi → R is continuous).
Definition 2 (Interior cone property and exterior cone property). A set S ⊆ Rn is said to have the interior
cone property (ICP) if

∀x ∈ ∂S, ∃


U ⊆ Sn nonempty, open in the topology induced by Sn

K ≜ R∗
+U the cone generated by U , Kx ≜ {x} + K

O an open neighborhood of 0 in Rn, Ox ≜ {x} + O
: (Kx ∩ Ox) ⊆ S.

Similarly, S is said to have the exterior cone property (ECP) if (Rn \ S) has the ICP.

Assumption 3 differs from [2, Assumption 1] in three aspects. Let us stress those and argue that
they do not spoil the assumption. First, Assumption 3 is a global statement, while [2, Assumption 1]
states a local property but for each x ∈ X. Second, [2, Assumption 1] requires Lipschitz-continuity
of f on each continuity set, while Assumption 3 calls for continuity only. Indeed [2] requires Lipschitz-
continuity only to evaluate some generalized derivatives. We do not consider those in the current work,
so we weaken the assumption accordingly. Third, [2, Assumption 1] requires an exterior cone property
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for X \ Xi for all i ∈ J1, NK, while Assumption 3 demands an interior cone property for Xi. Moreover
the exterior cone property required in [2, Assumption 1] is [18, Definition 4.1], which differs from
Definition 2. However, these two approaches are equivalent (see Proposition 10). Hence, Assumption 3
and [2, Assumption 1] differ only in the nature of the continuity of f on each continuity set.
Proposition 5. Assumption 1.c) is strictly weaker than Assumption 3.

Proof. For all S ⊆ Rn, if S has the ICP, then S is ample, but the reciprocal implication may fail (see
Proposition 11). The result follows directly.

5.2 Tightness of Assumption 1.c)

In this section, we show that Assumption 1.c) is tight, in the sense that the conclusion of Theorem 1
may not hold if Assumption 1.c) is not satisfied. Relaxing it as a local property is possible, but then
the convergence analysis relies on some information accessible only a posteriori (after the optimization
process ends). Hence our framework cannot be broadened using only information available a priori.
Proposition 6. If Assumption 1.c) does not hold, then the conclusion of Theorem 1 may not hold.

Proof. Let us develop a counterexample. Let n = 2 and f : R2 → R be defined by

∀x ∈ X ≜ R2, f(x) ≜
{

|x1 − 1| + |x2| − 1, if x ∈ X1 ≜ (R− × R) ∪ (R∗
+ × {0}),

|x1| + |x2|, if x ∈ X2 ≜ X \ X1.

Assumptions 1.a) and 1.b) hold, but Assumption 1.c) does not since X1 is locally thin and thus not
ample. Consider an instance of Algorithm 1 such that (Dk

S ∪ Dk
C ∪ Dk

P ) ∩ (R∗
+ × {0}) = ∅ for all k ∈ N

and satisfying Property 1 and starting from the origin. This instance remains at the origin, since it
evaluates only points in cl(int(X1)) ∪ X2 = R2 \ (R∗

+ × {0}) and the origin is the global minimizer of
the restriction of f to cl(int(X1)) ∪ X2. In that situation, the origin is a refined point lying in X but
is not a local minimizer of f , which contradicts the conclusion of Theorem 1.

Assumption 1.c) allows a broad class of discontinuous functions, as it only rejects discontinuous
functions for which at least one of the continuity sets is locally thin. It is possible to relax it as a local
assumption holding only near some refined points and to adapt Theorem 1 accordingly. We leave this
theorem as Assertion 1, although its proof is similar to whose provided in Section 3. Nevertheless,
Assertion 1 is only usable a posteriori, since it is impossible to determine the refined points a priori.
Assertion 1. Under Assumptions 1.a) and 1.b), Algorithm 1 generates at least one refining subsequence
and, if Property 1 holds, then for all K∗ ⊆ N indexing a refining subsequence, with refined point x∗,

a) if Xi is ample for all i ∈ J1, NK, then limk∈K∗ f(xk) = inf f(Br(x∗));
b) if moreover x∗ ∈ Xi for some i ∈ J1, NK, then limk∈K∗ f(xk) = min f(Br(x∗)) = f(x∗);

where we denote by (Xi)N
i=0 a partition of Br(x∗), for some N ∈ N∗ ∪{+∞}, such that X0 ≜ Br(x∗)\X

and Xi is a continuity set of f for all i ∈ J1, NK.

6 General comments and main extensions for future work
Theorem 1 is stronger than most results from the literature about DSM in two aspects. First, Theorem 1
ensures the local optimality of all refined points, while usual results claim only some necessary local
optimality conditions. Second, Theorem 1 holds for all refining subsequence. In contrast, the literature
usually consider only refining subsequences such that the set of associated refined directions is dense
in the unit sphere, and no ways to identify such a refining subsequence are provided.

Assumption 1.b), the assumption that f is lower semicontinuous, may be relaxed. The proof of
Theorem 1 highlights that if only Assumption 1.b) fails, the equality limk∈K∗ f(xk) = inf f(Br(x∗))
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holds for all K∗ ⊆ N indexing a refining subsequence, with refined point denoted by x∗. Nevertheless,
assuming the lower semicontinuity of f at x∗ recovers inf f(Br(x∗)) = min f(Br(x∗)) = f(x∗).

The cDSM currently requires some structure on X to select x0 ∈ X. Following the terminology
in [14], this is manageable when Problem (P) is the extreme barrier reformulation of a constrained
problem with quantifiable constraints. Some two-phase algorithms exist [6, Algorithm 12.1], where the
first phase minimizes the constraints violation function [10] to identify a feasible point.

Only the covering step matters to establish Theorem 1, in the sense that a variant of Algorithm 1
performing only the covering step and the update step, and with either ρ(ν) ≜ 0 and M(ν) ≜ Rn

for all ν ∈ R∗
+, still generates a refining subsequence and thus satisfies Theorem 1. This shares

similarity with derivative-free line search algorithms [8, 11]. Similarly, all algorithms generating a
refining subsequence may satisfy Theorem 1, when enhanced with the covering step. Then, future
work may add a covering step into such algorithms. For example, Bayesian-based methods, model-
based methods, and most methods listed in the survey [13]. This also includes algorithms handling
constraints via advanced techniques, such as the progressive barrier [5] which iteratively reduces the
infeasibility of the incumbent solution.

Nevertheless, the search and poll steps are important in practice. The search step allows for
global exploration, and the poll step usually contributes to many successful iterations. In contrast, the
current purpose of the covering step is to ensure the asymptotic Property 1, so a poor instance may
be inefficient in finite time. Our scheme for the covering step discussed in Section 4.3 ensures that
the trial points are well spread in a neighborhood of the current incumbent solution at each iteration.
Yet, it is only a baseline, so additional investigations and careful implementations may identify more
efficient schemes. A future work may verify these suppositions and quantify the relevance of each
step during the entire optimization process. We may also study how well the cDSM performs when
Assumption 1.c) holds but its stronger variant Assumption 3 does not. Presumably, the interior cone
property provided by Assumption 3 is important for practical efficiency.

With an involved construction scheme, the covering step may help to capture and exploit the
local shape of f and to evaluate some neighbors of the current incumbent in potential areas missed by
the poll step. In this aspect, a promising covering oracle may derive from model-based techniques [6,
Part 4], or from an expected improvement [19]. Indeed, they aim to identify some points that are
relevant candidates (see also [7]) or that may help to gather the local structure of f .

The covering step is also compatible with the DiscoMads algorithm [1], which designs the original
revealing step for the purpose to detect discontinuities and repel its incumbent solution from those.
This discontinuities detection is more accurate with the covering step than with the revealing step,
since the latter may fail to detect discontinuities when more than one refined point is eventually
generated. Also, when the covering step relies on Oracle 1, it presumably has better practical
guarantees to efficiently detect discontinuities than both the the original revealing step from [1]
and the adapted revealing step from [2]. Then, for reliability reasons, it may be safer to use the
DiscoMads algorithm with a covering step instead of a revealing step.

We conclude this paper with the next Table 1. It summarizes the conceptual differences between
the usual DSM and our cDSM, and it highlights the aforementioned ideas to extend the cDSM.
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Table 1: Differences between DSM and cDSM, and possible extension of cDSM with new covering step goals.

step
method

DSM cDSM cDSM with involved covering
step design

search Optional. Allows the use of heuristics and globalization strategies.

poll

Required. Converges towards
a refined point satisfying

necessary optimality
conditions.

Optional. But in practice, it performs well in converging
towards a good refined point.

covering Undefined.

Required. Safeguard to
asymptotically ensure that all

refined points are local
solutions, low cost per
iteration, but may be
inefficient in practice.

Required. Asymptotically
ensures that all refined points

are local solutions; also rapidly
collects local information

about the objective function.

Appendix
A Proofs of auxiliary results
Proposition 7. Let S1 ⊆ Rn, S2 ⊆ Rn and S3 ⊆ Rn. Then,

a) S1 is locally thin if and only if it is not ample;
b) if S1 is ample and S2 is open, then S1 ∩ S2 is ample;
c) if S1 has a dense intersection with S2 and S3 is an ample subset of S2, then S1 has a dense

intersection with S3;
d) if S1 has a dense intersection with S2 and S2 is ample, then, for all x ∈ S2, S1 \ {x} has a dense

intersection with S2.

Proof. Let us prove the first statement. Let S1 ⊆ Rn be locally thin and let us prove by contradiction
that it is not ample. Assume that S1 is ample. Define N ⊆ Rn open such that S1∩N ≠ ∅ = int(S1)∩N ,
and take x ∈ S1 ∩ N . Then x ∈ cl(int(S1)) ∩ N and thus there exists ε > 0 such that Bε(x) ⊆ N
and Bε(x)∩ int(S1) ̸= ∅. Hence int(S1)∩N ≠ ∅ which raises a contradiction. Reciprocally, let S1 ⊆ Rn

be not ample. Then N ≜ Rn \ cl(int(S1)) is open, and S1 ∩ N ̸= ∅ = int(S1) ∩ N by construction.
Then S1 is locally thin.

Now let us prove the second statement. Let S1 ⊆ Rn be ample and S2 ⊆ Rn be open, and
let x ∈ S1 ∩S2. We have x ∈ S1 ⊆ cl(int(S1)), so there exists (xk)k∈N converging to x with xk ∈ int(S1)
for all k ∈ N. Since xk → x ∈ S2 with S2 open, it holds that xk ∈ S2 for all k large enough. Finally,
we have xk ∈ int(S1) ∩ S2 = int(S1) ∩ int(S2) = int(S1 ∩ S2) for all k large enough. We deduce
that x ∈ cl(int(S1 ∩ S2)).

Next, let us prove the third statement. Let S1 ⊆ Rn having a dense intersection with S2 ⊆ Rn

and let S3 ⊆ S2 be ample, and let x ∈ S3. We have x ∈ cl(int(S3)) so there exists (xk)k∈N converging
to x with xk ∈ int(S3) ⊆ S2 ⊆ cl(S1 ∩ S2) for all k ∈ N. Then, for all k ∈ N, there exists (xk

ℓ )ℓ∈N
converging to xk with xk

ℓ ∈ S1 ∩ S2 ∩ int(S3) for all ℓ ∈ N. For all k ∈ N, let ℓ(k) ∈ N be such
that ∥xk

ℓ(k) − xk∥ ≤ 2−k. It follows that (xk
ℓ(k))k∈N converges to x and xk

ℓ(k) ∈ S1∩S2∩int(S3) ⊆ S1∩S3
for all k ∈ N. Hence, we get that x ∈ cl(S1 ∩ S3).

Last, let us prove the fourth statement. Let S1 ⊆ Rn and let S2 ⊆ Rn be ample. Assume that S1 has
a dense intersection with S2 and let x ∈ S2. Let y ∈ S2. Then y ∈ cl(int(S2)), so there exists (yk)k∈N
converging to y with y ̸= yk ∈ int(S2) ⊆ S2 for all k ∈ N. Let εk ≜ ∥yk − y∥ > 0 for all k ∈ N.
Then (εk)k∈N converges to 0. Now, remark that by dense intersection of S1 with S2, for all k ∈ N there
exists zk ∈ S1 ∩ S2 ∩ Bεk (yk). Finally, let κ ≜ min{p ∈ N : maxk≥p∥yk − y∥ ≤ 1

2 ∥y − x∥} if y ̸= x
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and κ ≜ 0 if y = x. Hence, for all k ≥ κ we have x /∈ Bεk (yk), and thus zk ∈ S1 ∩ S2 ∩ Bεk (yk) \ {x}.
Since (zk)k∈N converges to y, it follows that y ∈ cl((S1 \ {x}) ∩ S2) as desired.

Proposition 8. The function O defined as Oracle 1 satisfies Definition 1.

Proof. Consider O from Equation (1). The first requirement in Definition 1 is satisfied, since by
construction O(y, ν, S) ⊆ M(ν) ∩ cl(Br) for all y ∈ Rn, all ν ∈ R∗

+ and all S ⊆ Rn. To verify the
second requirement, let y ∈ Rn and let (yk, νk, Sk) ∈ Rn × R∗

+ × 2Rn for all k ∈ N such that (yk)k∈N
converges to y and (νk)k∈N converges to 0 and Sk+1 ⊇ Sk ∪ ({yk} +O(yk, νk, Sk)) for all k ∈ N. Then
define κ ∈ N such that yk ∈ Br(y) for all k ≥ κ. Define also tk ≜ yk + dk ∈ Sk+1 for all k ∈ N,
where dk ∈ O(yk, νk, Sk). Thus, maxd∈M(νk)∩cl(Br) dist(yk + d, Sk) = dist(tk, Sk) ≤ minℓ<k

∥∥tk − tℓ
∥∥

for all k ∈ N∗ by construction of O. Also, by construction (tk)k≥κ lies in the compact set cl(B2r(y)),
and then minℓ<k

∥∥tk − tℓ
∥∥ → 0 as k → +∞. Indeed, assuming that this is not true, there exists ε > 0

and K ⊆ N infinite such that minℓ<k

∥∥tk − tℓ
∥∥ ≥ ε for all k ∈ K, but this contradicts the Bolzano-

Weierstrass theorem applied to (tk)k∈K . Hence the second requirement in Definition 1 also holds.

Proposition 9. Under Assumption 2, consider the family (Xi)N
i=1 it provides. For all i ∈ J1, NK, denote

by clf (Xi) ≜ {x ∈ cl(Xi) : f|Xi∪{x} is continuous}. Define I(x) ≜ min{i ∈ J1, NK : x ∈ clf (Xi)} for
all x ∈ X. Define Yi ≜ {x ∈ X : I(x) = i} for all i ∈ J1, NK. Then, X = ⊔N

i=1Yi and Yi is an ample
continuity set of f for all i ∈ J1, NK.

Proof. Consider the notation from Proposition 9. By design, the sets (Yi)N
i=1 are pairwise disjoint and

their union covers X, so X = ⊔N
i=1Yi. Then we prove that for all i ∈ J1, NK, Yi is ample and f|Yi

is
continuous. Let i ∈ J1, NK. First, the properties of the sets (Xi)N

i=1 and the construction of I lead to

int(Xi) =︷ ︸︸ ︷
Xi open

Xi ⊆︷ ︸︸ ︷
I(Xi)={i}

Yi ⊆︷ ︸︸ ︷
x /∈clf (Xi) =⇒ I(x)̸=i

x∈clf (Xi) =⇒ I(x)≤i

clf (Xi) ⊆︷ ︸︸ ︷
by construction

cl(Xi).

Then, int(Yi) ⊇ int(Xi) and Yi ⊆ cl(int(Xi)) so Yi is ample. Moreover, let x ∈ Yi and let (xk)k∈N
converging to x with xk ∈ Yi for all k ∈ N. For all k ∈ N, f|Xi∪{xk} is continuous so there exists (xk

ℓ )ℓ∈N
converging to xk such that xk

ℓ ∈ Xi for all ℓ ∈ N and (f(xk
ℓ ))ℓ∈N converges to f(xk). Let ℓ(k) ∈ N such

that |f(xk
ℓ(k)) − f(xk)| ≤ 2−k and ∥xk

ℓ(k) − xk∥ ≤ 2−k. Then (xk
ℓ(k))k∈N converges to x and xk

ℓ(k) ∈ Xi

for all k ∈ N, so (f(xk
ℓ(k)))k∈N converges to f(x) by continuity of f|Xi∪{x}. Hence (f(xk))k∈N converges

to f(x). Thus f|Yi
is continuous at x, as desired.

Proposition 10. A set has the interior cone property from Definition 2 if and only if its complement
has the exterior cone property from [18, Definition 4.1] (quoted below).

[18, Definition 4.1] A set S ⊆ Rn is said to have the exterior cone property if at all
points x ∈ ∂S there exists a cone Kx ≜ {x} + R∗

+U (with ∅ ≠ U ⊆ Sn open in induced
topology) emanating from x, a neighborhood Ox of x and an angle θ > 0 such that Ex ⊆ Sc

and Θ(e−x, a−x) ≥ θ for all (e, a) ∈ Ex ×Sx, where Θ(·, ·) computes the unsigned internal
angle between two vectors and Sc ≜ (Rn \ S) and Ex ≜ (Kx ∩ Ox) and Sx ≜ (S ∩ Ox \ {x}).

Proof. Denote by (ICP ) and (ECP ) the interior and exterior cone properties stated in Definition 2,
and by [ECP ] the exterior cone property stated in [2, Definition 4.1]. A set has the (ICP ) if and only
if its complement has the (ECP ), so we only need to prove that the (ECP ) is equivalent to the [ECP ].
Denote by [x, y] ≜ {x + t(y − x) : t ∈ [0, 1]}, for all (x, y) ∈ (Rn)2. Let S ⊆ Rn and Sc ≜ (Rn \ S).

Assume that S has the [ECP ]. For all x ∈ ∂Sc = ∂S, the [ECP ] of S applied to x provides the
cone Kx and the neighborhood Ox such that (Kx ∩ Ox) ⊆ Sc. Then Sc has the (ICP ), so S has
the (ECP ). Thus the [ECP ] implies the (ECP ).
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Assume that S has the (ECP ). Let x ∈ ∂S. The (ECP ) of S applied to x provides ∅ ≠ U ⊊ Sn

open in Sn and K ≜ R∗
+U and the neighborhood O of 0 such that (Kx ∩Ox) ⊆ Sc, where Kx ≜ {x}+K

and Ox ≜ {x}+O. Let θ > 0 small enough so that the open set U ′ ≜ {u ∈ U : Θ(u, v) > θ, ∀v ∈ Sn\U}
is nonempty. Define K′ ≜ R∗

+U ′ and K′
x ≜ {x}+K′ ⊆ Kx and Ex ≜ (K′

x ∩Ox) and Sx ≜ (S ∩Ox \{x}).
Then Ex ⊆ Sc and θ satisfies the requirement in the [ECP ]. Indeed, Ex ⊆ Kx while Sx ∩ Kx = ∅, thus
for all (e, a) ∈ Ex × Sx there exists y ∈ ∂Kx ∩ [e, a] ̸= ∅. Since e and y and a belong to the same line,
we get Θ(e − x, a − x) = Θ(e − x, y − x) + Θ(y − x, a − x) = Θ( e−x

∥e−x∥ , y−x
∥y−x∥ ) + Θ(y − x, a − x) ≥ θ + 0.

The first term is greater than θ since e−x
∥e−x∥ ∈ U ′ while y−x

∥y−x∥ ∈ Sn \ U , and the second term is positive
by definition of Θ. Thus, S has the [ECP ] at x. Hence the (ECP ) implies the [ECP ].

Proposition 11. If S ⊆ Rn has the ICP from Definition 2, then S is ample. The reciprocal is not true.

Proof. Let S ⊆ Rn having the ICP. Let x ∈ S. The ICP provides Kx and Ox satisfying (Kx ∩Ox) ⊆ S
and x ∈ cl(Kx ∩ Ox). Moreover, K is open as the image of R∗

+ × U (an open subset of R∗
+ × Sn) by the

homeomorphism (λ, u) ∈ R∗
+ ×Sn 7→ λu ∈ Rn \{0}. Thus, Kx ∩Ox is also open, so (Kx ∩Ox) ⊆ int(S).

Hence, x ∈ cl(int(S)), which proves the direct implication. To observe that the reciprocal implication
fails, consider n ≜ 2 and S ≜ epi(

√
|·|). Then S is ample but the ICP fails at x = (0, 0) ∈ cl(S).
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