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Abstract : Inventory management for slow-moving items is challenging due to their high intermittence
and lumpiness. Recent developments in machine learning and computational statistical techniques
allow us to leverage complex distributions such as zero-inflated distributions to better characterize
the demand functions of slow-moving items. Nevertheless, exploiting such outputs in the decision-
making process remains a challenging task. We present an inventory optimization framework based
on a coupled, constrained Markov decision process (CMDP) that is directly compatible with discrete
demand functions. This approach can leverage complex discrete lead-time demand functions including
empirical and zero-inflated distributions. The objective is to jointly determine inventory policies for
multiple items under multiple target levels, which include common inventory measures such as stockout
levels, fulfillment levels, and expected number of orders. To overcome the dimensionality issue, we
employ a decomposition method based on a dual linear programming formulation of the CMDP and
several computational enhancements. We propose a branch-and-price approach approach to solve the
CMDP model exactly and a column generation heuristic. We provide computational comparisons with
the approach in the literature as well as computational experiments using real-world data sets. The
numerical results show we can solve CMDP efficiently, and its use in conjunction with empirical and
zero-inflated negative binomial distributions outperforms benchmark and traditional approaches. The
proposed framework provides practitioners with an efficient, flexible, and constructive tool to jointly
manage the inventory of multiple items.

Keywords : Multi-item inventory, constrained MDP, column generation
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1 Introduction

Inventory management is a crucial step in the supply chain planning process. In practice, inventory is

typically managed and controlled simultaneously for a large number of items by taking into account

several operational and service constraints imposed across these items. Even though a number of

inventory management approaches have been developed (Axsäter 2015), a relatively small portion of

the literature is devoted to stochastic multi-item inventory planning. In addition, manufacturing and

retail companies regularly face a challenge in managing inventory of slow-moving items which typically

comprise a large number of products and can potentially account for up to 40% of the entire inventory

(McKinsey & Company 2019). Traditional inventory management approaches, which typically rely

on common demand distribution functions such as the Gaussian or Poisson distribution, cannot be

effectively applied in this context due to the irregular demand patterns exhibited by such items,

which include high intermittence and lumpiness. These common assumptions, and the emphasis on

rigorous analytical results, often made solution frameworks impractically relevant and difficult to use

by practitioners (Tiwari and Gavirneni 2007). Even though there are studies that propose analytical

solutions that do not rely on the structure of the demand distribution for a single-item problem

(e.g., Scarf (1960), Veinott (1966), Zipkin (2008)), it is not straightforward to extend such analytical

frameworks to a stochastic multi-item inventory problem where target level constraints can be imposed

on a group of items. In addition, these frameworks do not generally allow for the incorporation of

general and complex cost functions, such as batch costs or step-size inventory costs, which may differ

from those utilized in the aforementioned studies.

In reality, the inventory planner must simultaneously manage a number of products wherein inven-

tory targets or service levels can be imposed on a group of products as a means to achieve inventory

management objectives of the businesses and operations (Kelle 1989, Thonemann et al. 2002, Akçay

et al. 2016). These items may have different demand characteristics, including challenging ones such

as highly intermittent items, slow movers, or items with high demand variation. Even if the planner

creates or selects a proper demand distribution function for each product, finding an optimal set of poli-

cies across multiple products that minimizes the overall inventory management cost while respecting

global targets remains a complex challenge.

This research aims to fill the gap between the researchers and practitioners by proposing an inven-

tory optimization framework that tackles real-world inventory management issues while using tech-

niques that are flexible and can be understood by practitioners. To this end, we propose a stochastic

optimization framework based on a constrained Markov decision process for multi-item inventory

management with group service levels. The resulting approach is generic enough to handle a range

of inventory situations, and it can accommodate various discrete distribution functions to describe

uncertain demand, especially for slow-moving items. This aspect is important because there is a prac-

tical need for an approach that can handle the empirical distribution (Zhang et al. 2014). One way to

resolve this issue is to rely on techniques that do not necessitate specific forms of parametric demand

estimates (e.g., Ehrhardt (1984), Federgruen and Zipkin (1984), Graves and Willems (2000), Downs

et al. (2001), Chu et al. (2005), Wang (2011)).

The contribution of this work is fourfold. First, we present an inventory model to jointly manage

multiple items under uncertain lead-time demand, where the items must respect targets or resource

constraints imposed on inventory states across multiple items. We model the problem as a coupled,

constrained Markov decision process (CMDP) using a mixed-integer programming model (MIP) where

each MDP represents a single-item inventory problem. With the MDP representation, we can directly

account for general discrete lead-time demand functions in the transition function. This model can also

incorporate different cost components such as step-size batch orders, inventory cost, backlogging cost,

or lost sale cost. Second, We present several practical considerations to reduce the dimensionality

of the problem. To solve this problem efficiently, we apply a Dantzig-Wolfe decomposition (Dantzig

and Wolfe 1960, Desaulniers et al. 2006) technique to the original coupled CMDP. We decompose

the problem into a master problem and multiple sub-problems, where each sub-problem represents a
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single-item inventory process. A branch-and-price algorithm that incorporates a column generation

procedure in a branch-and-bound procedure is developed to solve this reformulation exactly for small-

to medium-size instances. To solve large-scale instances of the problem, we consider a demand aggre-

gation approach to reduce the number of states. In addition, we propose a column generation heuristic

that incorporates a local search that relies on Monte Carlo sampling to deal with the explosion of the

action-state space. The resulting approach can efficiently solve large-scale instances encountered in

practice. Third, to ensure that the policy can be easily implemented by practitioners, we provide an

algorithm to transform the inventory policy from the MDP model in the form of an (s, S) inventory

management rule. We provide a pseudo-polynomial time algorithm to generate an optimal (s, S) policy

in the subproblem of Dantzig-Wolfe reformulation. The resulting approach directly provides an optimal

(s, S) policy for each item while ensuring that all the policies from all the items in the group collec-

tively respect global targets and constraints. Fourth, to numerically validate the performance and

effectiveness of the proposed CMDP-based approaches, we perform the computational experiments on

datasets from the literature with a large number of products (e.g., up to 1,000 items). To this end, we

employ different discrete demand functions including empirical and zero-inflated demand distribution

functions (Zuur et al. 2009) and compare them with standard inventory management policies which

are based on Gaussian and Poisson distributions. Cross-validation (out-of-sample testing) is performed

to compare the performance and quality of the inventory decisions produced by this approach versus

other approaches found in the literature.

The rest of this paper is organized as follows. Section 2 discusses a literature review on multi-item

inventory problems. Section 3 presents the CMDP formulations multi-item inventory optimization

problems, as well as the dual reformulations; the practical enhancements and dimensionality reduction

approaches are described in Section 4; the computational experiments are presented in Section 5;

finally, the conclusion is provided in Section 6.

2 Literature review

A majority of multi-item stochastic inventory optimization focuses on the case of base stock policy,

where unit costs associated with inventory, order, and shortage can be incorporated. Table 1 sum-

marizes the relevant literature in this research area. A stochastic multi-item inventory model, with

warehouse capacity, was first considered in Veinott Jr (1965) for the problem with a periodic review

system with dynamic demand under a base stock policy where the action space (order quantities)

across products can be bounded. In this framework, only the unit holding cost, unit ordering cost,

and unit shortage can be considered. The authors established the conditions for which the base stock

policy is optimal when there is zero lead time (delivery lag) or positive, but single, delivery lead time

across all items. Ignall and Veinott Jr (1969) extended the results of Veinott Jr (1965) and showed

the conditions where a myopic policy is optimal. Beyer et al. (2001) builds upon the framework of

Ignall and Veinott Jr (1969) and uses dynamic programming to show that when demands are inde-

pendent and the cost functions are separable, the modified base stock policy is optimal. Choi et al.

(2005) considered the same problem as in Ignall and Veinott Jr (1969) except for the case of unequal

replenishment intervals (zero lead times) and proposed a heuristic to solve it. In addition to the fact

that the papers above deal with a base stock policy and single warehouse constraint, they typically

assume that the lead time is zero or that the lead time for all the items is equal. For the case with

delivery lead time, Downs et al. (2001) considered the multi-item with stationary discrete demand

estimates, base stock policy, and lost sales under multiple linear resource constraints, and proposed

a linear programming (LP) model to solve the problem. More recently, Akçay et al. (2016) proposed

an optimization framework to deal with the multi-item inventory system to determine the base stock

policies that satisfy the joint service level imposed on the joint demand distribution function whereas

the objective of this problem is to minimize the inventory investment cost.

In the context of production-inventory systems where the production resource is limited, Feder-

gruen and Zipkin (1986) considered a single-item problem with an infinite horizon, with zero lead
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time, where the objective was to minimize average cost over the long run. DeCroix and Arreola-Risa

(1998) extended this framework to multiple items with single source production capacity and proposed

a heuristic to solve the problem. Ketzenberg et al. (2006) dealt with a similar problem, as in DeCroix

and Arreola-Risa (1998), but with seasonal demand and then formulated the problem using dynamic

programming. The authors proposed a heuristic to solve it and provided extensive computational

experiments. For the case when a fixed charge can be taken into account, Johnson (1967) consid-

ered a multi-item inventory problem with an infinite horizon where a fixed ordering charge can be

incorporated. This study, however, does not consider resource constraints or capacity.

Table 1: Summary of relevant literature on multi-item inventory models. The cost parameters include unit ordering
cost (o), unit holding cost (h), unit stockout cost (s), and fixed ordering cost (O).

Multi Generic discrete Target Cost Supply Inventory Capacity
-item demand distr. level(s) parameters lead time Policy (hard) const(s).

Veinott Jr (1965) Yes No No o, h, s Yes Base stock Yes
Johnson (1967) Yes No No O, o, h, s Yes (σ, S) & (s, S) No
Ignall and Veinott Jr (1969) Yes No No o, h, s Yes Base stock Yes
Federgruen and Zipkin (1986) No Yes No o, h, s No Base stock Yes
DeCroix and Arreola-Risa (1998) Yes No No o, h, s No Base stock Yes
Beyer et al. (2001) Yes No No o, h, s No Base stock Yes
Downs et al. (2001) Yes Yes No o, h, s Yes Base stock Yes
Choi et al. (2005) Yes No No o, h, b No Base stock Yes
Ketzenberg et al. (2006) No No No o, h, s No Base stock Yes
Akçay et al. (2016) Yes Yes Single# h Yes Base stock No
Our paper Yes Yes Multiple General Yes MDP∗ Yes

# The target level considered in Akçay et al. (2016) is imposed on the joint distribution of multivariate demand functions.
∗ The solution is based on the Markov decision process (MDP) and thus provides a state-solution mapping function that
can be transformed into an inventory policy.

Our work differs from these papers as our focus is on a more general case of inventory policies

(rather than a base stock policy) where discrete demand functions and a general cost function can be

incorporated in conjunction with target constraints across multiple products. Due to the fact that the

resulting CMDP model is complex and cannot be solved analytically, we employ a mathematical de-

composition approach, i.e., branch-and-cut and column generation heuristic, to tackle this challenging

inventory optimization problem.

Even though unconstrained MDPs can be used to model single-item production and inventory

problems (e.g., Yin et al. (2002), Chang et al. (2013), Cheng and Sethi (1999)) , these models often

suffer from the curse of dimensionality when the state and action space are large. In addition and

more importantly, constrained MDP models (Altman 1999) are usually intractable due to the fact that

specialized and highly efficient algorithms originally developed for an unconstrained MDP cannot be

directly applied (Boutilier and Lu 2016).

In this work, we model a multi-item inventory model as a CMDP where the inventory decisions of

each item are modeled using an undiscounted infinite-horizon MDP. In other words, the constraints

are weakly coupled across multiple items. Each constraint can be imposed on either all the items

(global constraints), on a subset of items in the group, or even on an individual item level (note that

the latter case is the most common case in the inventory management literature (Axsäter 2015)).

The main contributions of this paper are fourfold: First, we introduce a mixed-integer programming

(MIP) formulation based on the CMDP representation for the multi-item inventory planning problem

with multiple target levels; second, since this practical problem is highly complex and the solution of

the original CMDP does not necessarily yield a deterministic (or implementable) policy, we employ a

mathematical decomposition technique to guarantee such implementable policy and to efficiently solve

the problem; third, we present several computational enhancements and dimensionality reduction ap-

proaches to improve its scalability; and finally, fourth, we perform extensive computational experiments

to demonstrate the performance of the proposed approaches, as well as computational comparisons

with the approaches presented in the literature and used in practice using a cross-validation process.
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The computational implications are also discussed. In addition, we discuss how the framework can be

extended when constraints must be imposed directly on the maximum inventory capacity.

3 CMDP-based inventory model and formulation

This section successively presents the considered inventory model, the formulation as a set of coupled

MDPs, and the decomposition for resolution with column generation

3.1 Problem description

In this context, an inventory planner of a firm seeks to determine an inventory policy for each product

in the product (item) set K. To achieve inventory objectives, one or multiple inventory targets or

expected resource constraints must be respected. Each target can be either imposed on an individual

item, a subset of items, or all the items in the set K. The firm must account for uncertain customer

lead-time demand (i.e., customer demand during supplier lead time). In this work, our specific focus

is on the uncertain lead-time demand which is described by a general discrete demand distribution.

As in the case of most literature in inventory management, the lead-time demand is assumed to be

stationary and orders do not cross in time Zipkin (1986). As a result, the inventory policy may be

designed based on the lead-time demand distribution. In this study, we do not make any assumption

on the specific form of parametric distribution, and the lead-time demand follows any distribution

with discrete support. More precisely, such a distribution gives the probability P k(d̃ = d) to observe

a demand vector d ∈ D̃k during the lead times of each of item k, and
∑k

d∈D̃ P k(d̃ = d) = 1. The

objective is to design a multi-item control policy. We do not make any assumption on the form of the

inventory control policy. More specifically, the resulting policy can be implemented using a look-up

policy that gives the quantity qki to order for item k when the inventory position is i. Nevertheless, the

methodology can be adapted to restrict the search to specific policies such as a min-max policy (i.e.,

an order is passed to replenish the stock of item k to level Sk every time the stock level goes below a

reorder point sk), which is usually adopted in practice due to its simplicity. As the lead-time demand

follows a discrete distribution, the set Ik of possible inventory positions for item k is also discrete. In

each period, the inventory policy determines the quantity to order, and these quantities are integers.

The inventory policy is designed to minimize the long-run expected costs, and in this work, we

consider a generic cost function that is a function of the inventory position ik and order quantity qki
associated with each item k. This long-run expected cost is given by:

min
∑
k∈K

∑
i∈Ik

∑
q∈Qk(i)

ckiqP
k(i, q) (1)

where P k(i, q) is the probability to have an inventory position i for item k and to order a quantity

q, and ckiq gives the costs associated with an inventory position i and order quantity q for item k.

Note that P k(i, q) depends on the selected inventory policy. This cost structure is generic enough to

accommodate the cost components commonly encountered in the inventory management literature.

Table 2 gives the component to include in ckiq for the costs commonly encountered in the inventory

management literature.

Note that the cost parameters account for the cost during the lead time for each item. For the

inventory cost associated with inventory level i during the lead time, the value of ckiq can be computed

as follows:

ckiq =
∑
l∈L̃k

P k(l̃ ≥ l)

(
i∑

x=0

P k(d̃l = i− x) c̄kx

)
, (2)

where P k(l̃ > l) is the probability that an actual lead time is greater than or equal to l, L̃k is the

support of the lead-time distribution, and P k(d̃l = d) is the probability that the demand is equal to d

during a leas time of l periods.
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Table 2: Examples of cost component

Description component to add to ckiq

Holding cost hk for each unit in stock per period

{
hk i if i >= 0
0 otherwise

Backlog cost bk per unit delivered late

{
0 if i >= 0
−bk i otherwise

Stockout cost sk
∑D̃k

dk=i+q
sk (dk − i− q) P (dk)

Fixed ordering costs Ok when the quantity to order is larger than 0

{
0 if q = 0
Ok otherwise

Variable unit cost ok per unit ordered ok q

Inventory policies of multiple items are linked by a target or a resource constraint. Such a resource

constraint may represent a service level across the different items, a constraint on the space available

for inventory, a constraint on the production capacity, . . . In this work, we aim to satisfy a set of generic

resource constraints M , and each constraint imposes a bound Rm on the expected consumption of the

resource m ∈ M . Denote by Km the set of items associated with constraint m and by phikmiq the

long-run expected consumption of resource m for inventory quantity i and order quantity q of item k.

The following target level (or expected resource consumption) constraints can be generally defined as:∑
k∈Km

∑
i∈Ik

∑
q∈Qk(i)

ϕkm
iq P k(i, q) ≤ Rm ∀m ∈ M, (3)

where ϕkm
iq is the consumption of resource m with an inventory position i and order quantity q for

item k, and P k(i, q) is the long run probability to have an inventory position i and to place an order

of q units. P k(i, q) depends on the selected inventory policy. For example, a resource constraint to

represent a service level (1−α) on the average probability of no stockout of all the items can be written

as follows

1

K

∑
k∈K

∑
i∈Ik

∑
q∈Qk(i)

P k(d̃ ≤ i)P k(i, q) ≥ (1− α), (4)

where P k(d̃ ≤ i) denotes the probability that the demand during the lead time for item k is lower

than i.

These expected resource consumption constraints (3) can represent a variety of requirements as-

sociated with inventory states and decisions including common target levels used in practice. These

constraints limit the average resource consumption which can be calculated for every combination of

inventory level and ordering quantity. Table 3 provides examples of average resource consumption

constraints that can be applied in an inventory planning environment. The parameter vk denotes the

unit value of the item k, and D̃k is the set of possible lead-time demand for item k. The negative

values in coefficients and the right-hand side of the resource constraints represent a minimum bound

on the expected consumption of the resource.

3.2 Formulation

We present below the formulation of multi-item inventory planning based on an infinite horizon Markov

Decision Process (MDP). An MDP is defined by a set of states, a set of actions, transition matrices

that describe the probability of moving from one state to another, and a reward matrix associating a

reward to each pair of actions and states. We consider an MDP for each item, and these MDPs are

linked by the resource constraint. More specifically, the tuple
〈
Ik, Qk,P k,Ck

〉
defines the MDP for

each item k where P k = (pk(i|j, q)) defines the transition function and Ck = (−ckiq) defines the reward
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Table 3: Notable examples of average resource consumption constraints

Description ϕkm
iq Rm

Minimum no-stockout probability (0 ≤ α ≤ 1) ϕkα
iq = −Pk(d̃ ≤ i) −(1− α)

Minimum fulfillment level (0 ≤ β ≤ 1) ϕkβ
iq = −

∑
d∈D̃k min{d,i}·Pk(d̃=d)∑

d∈D̃k d·Pk(d̃=d)
−(1− β)

Maximum expected number of orders (N) ϕkN
iq =

{
1 ∀q > 0

0 otherwise
N

Maximum expected inventory value (B) ϕkB
iq = i · vk B

(expressed as a negative cost). A policy is a mapping of states (inventory level) of item k to probability

distributions over actions (i.e., the probability of ordering q units for item k given that the inventory

position is i. The policy is deterministic if the same action is chosen for a state and thus there is only

one action (order quantity) with a probability of one for each state. In the case of stochastic policy,

an action is randomized according to the probability distribution over the set of possible actions. The

decision maker aims to minimize the total expected cost of inventory management while ensuring the

actions across all the items (sub MDPs) respect global resource constraints.

Note that for the case of a single-item MDP without resource constraints, the model is aligned with

the one presented in Yin et al. (2002) and Chang et al. (2013) where the states represent the inventory

positions of the items; the actions are ordering quantities; and the transition matrices are defined by

the lead-time demand probability and order action during a lead time. The single-item MDP variant

can be modeled as a linear programming (LP) model (Bello and Riano 2006). We extend such an LP

representation to account for the resource constraint across the different MDPs. More specifically, in

this formulation, the inventory of each item is controlled by an undiscounted infinite-horizon MDP

and the solution from the MDP provides a state-decision mapping function of the ordering decision q

based on the inventory level i.

The decision variables of this MDP variant represent the probability associated with a state and

action. More specifically, in the case of inventory planning, the value of the decision variable xk
iq is

the probability of carrying an inventory quantity i and ordering quantity q for item k at the decision

epoch. The probability of moving the inventory position of item k from j to i, between subsequent

stages, when applying a reorder action q (which will arrive after the lead time and brings the inventory

quality to i) is defined by the transition probability pk(i|j, q). This transition probability is directly

derived from the lead-time demand probability distribution and the inventory flow conservation, which

can be calculated as follows:

pk(i|j, q) = P k(d̃ = j + q − i) (5)

The calculations of these input parameters are agnostic to the optimization framework presented here

and thus this allows flexibility to account for more complex cases as long as one can determine a

lead-time demand probability for the transition functions. For instance, in the case where the firm

faces yield uncertainty, the transition matrix becomes:

pk(i|j, q) =
∑

κ∈Qk(i)

P k(d̃ = j + κ− i)P k(q̃ = κ|q), (6)

where P k(Q = q̃|q) denotes the probability that the quantity of the good quality product equals q̃

units when a quantity q ≥ q̃ is ordered. Interested readers can refer to Appendix 1 as well as Yin et al.

(2002) for supplementary details on numerical examples of the construction of the transition matrix

from demand distribution for the MDP model.

The LP of the CMDP-based multi-item inventory model can be formulated as:

min
x

∑
k∈K

∑
i∈Ik

∑
q∈Qk(i)

ckiqx
k
iq (7)
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∑
q∈Qk(i)

xk
iq −

∑
j∈Ik

∑
q∈Qk(j)

pk(i | j, q)xk
jq = 0 ∀i ∈ Ik,∀k ∈ K (8)

∑
i∈Ik

∑
q∈Qk(i)

xk
iq = 1 ∀k ∈ K (9)

∑
k∈Km

∑
i∈Ik

∑
q∈Qk(i)

ϕkm
iq xk

iq ≤ Rm ∀m ∈ M (10)

xk
iq ≥ 0 ∀i ∈ Ik,∀q ∈ Qk(i),∀k ∈ K. (11)

The objective function (7) minimizes the expected annual total cost associated with the inventory

decision. Constraints (8) ensure the probability flow conservation between inventory states. These con-

straints map the state space based on the given transition function derived from demand distribution,

inventory state, and replenishment decision. More specifically, the total probability flow associated

with inventory state i is equal to the sum of all the probabilities associated with possible inventory

state i and ordering quantity q which can result in inventory level i after the lead time. Constraints (9)

ensure that the total probability flow of the MDP of each item sums up to 1. Constraints (10) are

target service level and expected resource consumption constraints imposed on groups of items. Fi-

nally, constraints (11) ensure the non-negativity of the xiq decision variables. We further note that

the proposed framework can also be adapted when the MDP of each item corresponds to a different

MDP that can be modeled as an LP using state visitation probability variables x (e.g., discounted

infinite-horizon MDP). In such a case, the constraints associated with variables x must be modified

accordingly to calculate their corresponding state visitation probability Puterman (2014).

Because of constraint (10), there is no guarantee that extreme points of this constrained MDP

model correspond to deterministic policies (Derman and Veinott Jr 1972), which are important to

ensure that the resulting policies are implementable. More specifically, a deterministic policy satisfies

the condition maxq∈Qk(i) x
k
iq =

∑
q∈Qk(i) x

k
iq. In other words, there is only a maximum of one optimal

action q for each state i. To obtain a deterministic policy, the following constraints can be imposed:

vkiq ≥ xk
iq ∀i ∈ Ik,∀q ∈ Qk(i),∀k ∈ K (12)∑

q∈Qk(i)

vkiq = 1 ∀i ∈ Ik,∀k ∈ K (13)

vkiq ∈ {0, 1} ∀i ∈ Ik,∀q ∈ Qk(i),∀k ∈ K (14)

where νkiq is a binary variable stating whether ordering quantity q is selected for inventory position i

of item k or not. As νkiq is binary, the resulting solution yields a deterministic policy. Constraints (12)

link the probability flow xk
iq variables to the νkiq policy variables, and constraints (12) state that only

a single (deterministic) action can be taken at each state.

3.3 Dantzig-Wolfe reformulation

The model (7)–(11) requires a large number of variables including the binary variables which transform

the linear programming model into a mixed-integer linear programming one. To ensure that a solution

can be obtained in a tractable manner, we apply the Dantzig-Wolfe decomposition technique (De-

saulniers et al. 2006) to solve this problem. One can observe that, without the resource constraint (10)

across multiple items, we can decompose and solve the model (8), (9), (11) independently for each

item k ∈ K. Denoted by Zk a set of possible policies defined by the convex hull (8), (9), (11) for a

given item k. For any given solution vector x̄k
π which defines an extreme point πk of the polytope of

this convex hull, the long-run expected cost ckπ of policy πk and the long-run expected consumption

θkmπ of resource m by policy πk can be obtained with the given formulas:

ckπ =
∑
i∈Ik

∑
q∈Q(i)

ckiqx̄
k
iq,π

θmk
π =

∑
i∈Ik

∑
q∈Q(i)

ϕkm
iq x̄k

iq,π ∀m ∈ M.
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Note that, in the case where all the policies can be fully enumerated and included in Zk, finding an

optimal policy under target-level constraints can be done by solving the following master problem (MP):

min
y

∑
k∈K

∑
π∈Zk

ckπy
k
π (15)

∑
k∈Km

∑
π∈Zk

θkmπ ykπ ≤ Rm ∀m ∈ M (16)

∑
π∈Zk

ykπ = 1 ∀k ∈ K (17)

ykπ ∈ {0, 1} ∀k ∈ K,∀π ∈ Zk. (18)

where ykπ is the binary decision variable stating whether policy πk is selected or not. The objective

function (15) minimizes the long-run expected cost, constraints (16) are target level constraints and

constraint (17) ensures that exactly one policy is selected.

3.4 Column generation and branch-and-price procedures

Enumerating the complete set of policies Zk may not be practical and scalable. A column generation

(CG) approach can be employed to iteratively generate a subset of the policy solutions. In this

framework, at each iteration, a linear relaxation of the model (15)–(18), with a restricted set of

policies, is solved to obtain dual variables. Then, the sub-problem, which consists of (19)–(22) with

the modified objective of finding the policy with the least reduced cost, is solved to generate a new

policy. More specifically, the reduced cost of the variable ykπ, corresponding to a policy πk, is given by

the following formula:

ĉkπ = ckπ −
∑
m∈M

λmθkmπ − λ0k

where λm are the dual variables of expected resource consumption constraints (16) and λ0,k is the dual

variable of constraint (17). Therefore, a set of sub-problems SP k, one for each item k ∈ K are solved

to generate new policies.

SP k : min
x

∑
i∈Ik

∑
q∈Qk(i)

((ckiq −
∑
l∈L

λlϕ
kl
iq)x

k
iq)− λ0,k (19)

∑
q∈Qk(i)

xk
iq −

∑
j∈Ik

∑
q∈Qk(j)

pk(i | j, q)xk
jq = 0 ∀i ∈ Ik (20)

∑
i∈Ik

∑
q∈Qk(i)

xk
iq = 1 (21)

xk
iq ≥ 0 ∀i ∈ Ik,∀q ∈ Qk(i). (22)

The model SP k is in fact an LP model of the single-item MDP but with a modified objective (19)

for item k where the dual variables (Lagrangian multipliers) λ are obtained by solving the relaxed MP.

Indeed, one can solve these sub-problems in parallel to speed up the solution process especially when

the number of items in the group is large.

It is possible that the master problem may not be feasible especially in the initial iterations when

the number of variables is small. Therefore, we can solve a modified MP where slack variables to

resource constraints so that such constraints are soft. The objective function of the modified MP

is then to minimize the sum of the slack. This initial step of the CG procedure continues until the

objective value is zero (no slacks) and the generated columns (variables) are used as initial variables

in the CG procedure when solving the LP relaxation of the model (15)–(18).

In this work, we consider two versions of the CG approach, namely, a heuristic and an exact
approach. The heuristic version solves the LP relaxation of the problem to generate the columns.
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Once the columns are generated, the heuristic imposes the integrality constraint to get a feasible (but

not necessarily) optimal solution. To obtain an implementable solution, the master problem with

integrality constraints (18) is solved to determine a valid upper bound, which is an optimal set of

policies based on the restricted set of policies generated so far. An optimality gap can be determined

at each iteration by using the lower bound from (15). The process continues until the sub-problem

does not yield a negative reduced cost and thus no further policies can be generated.

The exact approach embeds the CG approach in a branch-and-bound procedure. This procedure

is known as branch-and-price (B&P). In B&P, the LP relaxation of each branch-and-bound node is

solved using CG. If the solution of the linear program is not integer, then there is at least one state

that has at least two actions (two variables) with a positive probability. In that case, we branch on

such a state by creating two possible branch-and-bound nodes where the associated variable is set to

zero in one branching node, and set to one in the other branching node. Note that to simplify the

implementation, rather than set the variable to one, we set all variables associated with the state to 0.

More precisely, we start by normalizing the actions associated with each state. The normalized

action x̂k
iq is computed as follows:

x̂k
iq =

xk
iq∑

q∈Qk(i) x
k
iq

.

In a deterministic policy, x̂k
iq takes value 0 or 1. We consider the value k⋆, i⋆, q⋆ corresponding to

the value of x̂k⋆

i⋆q⋆ the closest to 0.5 (the most fractional variable), and we create two branches. In

the first branch, we impose xk⋆

i⋆q⋆ = 0 when solving the sub-problem, and we set ykπ = 0 in the master

problem if xk⋆

i⋆q⋆,π > 0. In the second branch, we set xk⋆

i⋆q = 0 for all q ̸= q⋆ in the sub-problems, and

we remove the corresponding policies in the master problem. The solution of the linear relaxation of

the problem in each node provides a lower bound, and we get an upper bound when the solution of

the linear relaxation is an integer. We use this upper bound to prune the nodes whose lower bound is

larger than the upper bound. The approach stops when there are no active branch-and-bound nodes,

or when a time limit is reached.

4 Computational and practical enhancements

In this section, we discuss several enhancements to improve the scalability: a pseudo-polynomial

time algorithm to solve the sub-problem when the policy is restricted to a min-max rule, a local

search policy generation that can solve large-scale instances, and dimensionality reduction through

state aggregation. Enhancements to deal with practical issues are also presented: an extension to the

problem with capacity constraints on the maximum resource utilization, and the complex distributions

(zero-inflated demand distributions) used for irregular demand in practice.

4.1 Pseudo-polynomial algorithm for (s, S) inventory policy generation

Inventory control systems in practice are typically designed to take standard inventory policy pa-

rameters as input. For instance, the (s, S) inventory policy is commonly used in real-life inventory

fulfillment systems. Such (s, S) policies can be readily used by companies to control their inventory

fulfillment process. In this section, we propose an algorithm to solve the sub-problem when the policy

must take the form of an (s, S) inventory control rule. The rest of this section first explains how to

build the Markov Decision Process associated with the post-decision state of a given (sk, Sk) policy

for item k, before presenting an efficient computation of the long-run expected cost of the resulting

MDP. Formally, the ordering quantity π(sk,Sk)(i) for item k associated with inventory level i based on

min-max inventory policy (sk, Sk) can be defined as follows:

π(sk,Sk)(i) =

{
0 if i > sk

Sk − i otherwise
(23)
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In other words, the ordering quantity equals zero if the inventory level i > sk, and equals Sk − i

otherwise.

To transform the min-max policy (sk, Sk) into a solution vector xk of the original CMDP model

given in Section 3.2, we determine the probability wk
j′ that item k is in a prior post-decision state j′

(i.e., j′ = j+q∗ where j is the prior state and q∗ is the quantity decision made in the prior state). More

specifically, wk
j is the probability of having inventory position (inventory on-hand plus the in-transit

order) j′ right after a prior order q∗ has been placed. These post-decision states are linked with the

original variables as follows:

xk
iq =

{∑Sk

j′=sk P
k(d̃ = j′ − i)wk

j′ if q = π(sk,Sk)(i)

0 otherwise,
(24)

where P̃ k(i′|j) is the probability to move to state i′ from post decision state j. The transition matrix

P̃ k(i|j) is derived directly from the transition probability used in the inventory model. The policy

gives the quantity q to order for each inventory level i, and an action-state that does not respect the

policy has a probability of 0. As there is a single quantity per inventory level, Equation 24 computes

the probability of reaching state i from the post-decision state j′.

Given a (sk, Sk) policy, we can define a Markov process for the post-decision states. As the policy

orders up to Sk when the inventory level is below sk, there are no post-decision states for inventory

levels below sk due to the fact that an order must be placed in a prior state and this immediately

brought the inventory position j′ to Sk. The probability of j′ > Sk is also zero because the demand

is non-negative and the probability is strictly positive. The transition probability P̂ k(i′|j′) from post-

decision state j′ to post-decision state i′ can be computed as follows:

P̂ k(i′|j′) =
∑

i∈Ik|i+π
(sk,Sk)

(i)=i′

P k(d̃ = j′ − i). (25)

Proposition 1. The probability wk
j of being in post-decision state j can be computed as follows wk

j =

Kk
j w

k
S, where Kk

S = 1 and Kk
j =

∑
i∈j+1...Sk

P̂k(j|i)
1−P̂k(j|j)

Ki, and wk
S = 1∑

i∈{sk...Sk} Kk
i

.

(Note that Proposition 1 is not valid when P̂ k(j|j) = 1.0 which corresponds to the case of zero

demand with a probability of 1.0, but this case is not relevant in our context).

Proof. The (sk, Sk) policy orders up to Sk when the inventory position is below sk. Therefore, if the

post-decision MDP is in an inventory position j, it can transition to an inventory position k ≤ j if

the demand is positive and the order quantity is 0, or it transitions to inventory position Sk. In other

words, as we assume the demand is positive, the post-decision MDP can only transition to an inventory

position i strictly lower than Sk from an inventory position j larger than i (P̂ k(i|j) = 0 ∀j < i < Sk).

Therefore, the long run average probabilities satisfy:

wk
i =

∑
j∈{i,...,Sk}

P̂ k(i|j)wk
j ∀i ∈ sk, . . . , Sk − 1

As a result, the probability wk
i to be in post-decision state i can be expressed recursively as a

function of wk
S . For state Sk − 1,

wk
S−1 = P̂ k(Sk − 1|Sk − 1)wk

Sk−1 + P̂ k(Sk − 1|Sk)wk
S . (26)

Thus,

wk
S−1 =

P̂ k(Sk − 1|Sk)

1− P̂ k(Sk − 1|Sk − 1)
wk

S . (27)
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More generally, if states j + 1 to Sk − 1 are expressed as a function of wk
S (wk

i = Kk
i w

k
S ∀i ∈

{j + 1, . . . , Sk − 1}):

wk
j =

∑
i∈{j,...,Sk}

P̂ k(j|i)wk
i (28)

= P̂ k(j|j)wk
j +

∑
i∈{j+1,...,Sk}

P̂ k(j|i)Kk
i w

k
S (29)

=
∑

i∈{j+1,...,Sk}

P̂ k(j|i)
1− P̂ k(j|j)

Kk
i w

k
S (30)

Finally, as
∑

i∈{sk,...,Sk} w
k
i = 1,

∑
i∈{sk,...,Sk} K

k
j w

k
S = 1, and

wk
S =

1∑
i∈{s,...,S} K

k
j

Remark 1. The value of wk
j−s is the same for all (sk, Sk) policies with the same length (Sk − sk).

Remark 2. The cost of an (sk, Sk) policy can be directly computed based on the post-decision state

probability.

∑
i∈Ik

ckiπk
(s,S)

(i)x
k
iπ(s,S)(i)

=
∑
i∈Ik

ckiπ(s,S)(i)

Sk∑
j=sk

P k(d̃ = j − i)wk
j

=

Sk∑
j=sk

∑
i∈Ik

ckiπ(s,S)(i)
P k(d̃ = j − i)

wk
j

Remark 3. In the special case where the costs do not depend on the quantity (ckiq = cki ), it is optimal

to set wk
j⋆ = 1 for the state j⋆ that minimizes

∑
i∈Ik cki P

k(d̃ = j⋆ − i). The resulting policy is a base

stock (sk = Sk).

Algorithm 1 give the pseudo code to compute the optimal values of sk and Sk based on proposition 1.

Algorithm 1 A pseudo-polynomial time algorithm to determine an optimal (sk, Sk)

Kk
1 = 1

for l ∈ 1 . . . |Ik| do
Compute the value of Kk

|Ik|−l
for a police of length l

Kk
|Ik|−l

=

|Ik|∑
i=|Ik|−l+1

P̂k(|Ik| − l|i)
1− P̂k(|Ik| − l||Ik| − l)

Kk
i

Compute the value of the value of wk
S with V k

K = V k
K +Kk

Sk−l
and wk

S = 1
V k
K

for sk ∈ 0 . . . |Ik| − l do
Compute the cost of the polity (sk, sk + l)

C =

sk+l∑
j=sk

|Ik|∑
i=1

ckiπsS(i)P̃
k(i|j)

Kk
j w

k
S

.
If C is lower than the current best policy, record the policy (sk, sk + l).

end for
end for

Remark 4. Algorithm 1 runs in pseudo-polynomial time O
(
(maxk∈K |Ik|)3

)
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4.2 Fast policy generation using local search

Solving the sub-problem (19)–(22) with a commercial solver for one slow-moving item can be relatively

fast, but when we need to generate policies for thousands of items of for fast movers, we quickly reach

the limits of memory and processing time. Similarly, Algorithm 1 is not practical for large values

of |Ik|. To increase the scalability of the general approach, a local search heuristic is proposed to

solve (19)–(22) within the column generation procedure.

The local search explores the space of (sk, Sk) policies by changing the values of sk and Sk pa-

rameters to quickly generate a set of good policies for item k. To ensure that the generated policies

will potentially improve the global objective across multiple items, the policies generated through the

local search procedure are evaluated using a Markov chain with the same reward and transition func-

tions used in the MDP for SP k (which makes use of the dual information obtained from the MP

to guide the search) but the actions (replenishment quantities) are fixed based on the (sk, Sk) policy

determined during the local search procedure. To avoid scalability issues during the evaluation of a

policy, it can also be evaluated using Monte Sampling where a large number of sample paths (1000 in

our experiments) are generated and the policy is evaluated on these paths. The first periods in each

path (the first 10% in our experiment) are initialized in to let the chain reach its equilibrium state.

Then, we can generate and add multiple inventory policies to the master problem at each iteration by

executing this local search procedure and storing a set of multiple policies that are generated during

the local search. Appendix 2 in the online supplement provides the details of the procedure.

4.3 State aggregation using an aggregation factor

Large quantities of inventory states and orders can quickly make a state space too large to be handled

efficiently. Instead of enumerating all possible states, the inventory quantities can be aggregated into

buckets of a predetermined size. This can be achieved by creating a factored demand function, based

on an aggregation factor, instead of explicitly considering the original demand values (Yin et al. 2002),

whereas the subsequent process remains the same. For example, given an aggregation factor τk = 2

for an item k, the original set demand values D̃k = {0, 1, 2, ..., 10} become D̃k = {0τ, 1τ, 2τ, ..., 5τ}.
This aggregation scheme through an aggregation factor can help improve solving time, memory usage,

and solution quality significantly as we demonstrate in the experimental results section.

4.4 Demand distribution considerations for irregular items

Finding a distribution matching the demand history of irregular items such as slow movers can be

difficult (Dolgui and Pashkevich 2008). Poisson distribution, which is commonly assumed, cannot ade-

quately capture the demand patterns in the case when the intermittent demand is also very lumpy (i.e.,

the positive demand can be arbitrarily large). In such cases, an empirical distribution or zero-inflated

distribution (e.g., Zuur et al. (2009), Chapados (2014)) can be effectively used to better represent the

demand distribution. Figure 1 shows a typical slow-mover product demand probability versus four of

the most frequently used demand distribution functions, namely: Gaussian, Poisson, negative binomial,

and zero-inflated negative binomial. The Gaussian distribution misrepresents the demand distribution

and clearly misses all demand quantities above 10. The Poisson distribution handles the probability

of zero demand, but cannot capture high-demand quantities. The negative binomial distribution bet-

ter captures high-demand quantities compared to the Poisson distribution, but it underestimates the

high probability of zero demand and still underestimates the positive demand quantities. Finally, the

zero-inflated negative binomial distribution spreads out the probability mass more appropriately on

all possible demand quantities, while sufficiently capturing the zero demand probability. This shows

the difficulty in matching such demand patterns with typical statistical distributions. Even though

a more general form (i.e., zero-inflated distributions) can be used to better represent the demand for

irregular items, traditional inventory management approaches that rely on specific functional forms
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cannot be directly applied whereas our CMDP-based model, which takes a generic discrete lead-time

demand distribution function as inputs, can be efficiently leveraged.

Figure 1: The empirical distribution based on the historical demand of an item compared to four distributions fitted to its
historical demand. The probability axis is in the log scale
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As described above, selecting the right demand function estimate and inventory management tech-

nique for each product is already a very challenging task for an inventory planner. For the items

with irregular demand that do not exhibit the demand distributions that resemble any of the standard

distributions (in particular the Poisson and Gaussian distributions), the companies can choose to use

an empirical distribution or zero-inflated distributions (Zuur et al. 2009) to describe the demand dis-

tributions for these items. The choice of empirical distribution comes from the fact that it is easily

understood by decision-makers and planners. In terms of data management, however, it can be more

practical to use parametric discrete distributions (which include complex ones such as zero-inflated

distributions) since the firm needs to maintain only the parameters of the distribution rather than

keeping all the values describing the empirical distribution (i.e., the probability associated with each

possible demand value). In addition, parametric discrete distributions can also help reduce over-fitting

caused by the empirical distributions generated from a limited amount of historical data (Long et al.

2023).

One particular zero-inflated distribution that we use in our experiments is the zero-inflated negative

binomial distribution (ZINB) which has been effectively used to generate probabilistic demand func-

tions for slow-moving demand (Chapados 2014). This distribution represents the demand probability

in the following parametric form:

d̃ ∼ zδ0 + (1− z)NB(r, p) (31)

where z is the probability that the demand is zero and δ0 represents unit probability mass at zero.

NB(r, p) represents a negative binomial distribution with its corresponding parameters r and p. The

distribution is, in fact, a mixture distribution where the probability of zero demand equals z and

the probability of positive demand, which corresponds to NB(r, p), equals (1 − z). To determine the
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parameters z, r, and p for the ZINB, we use the approximate inference technique presented in Chapados

(2014) that minimizes the log-likelihood of the approximation of parameters z, r and p from the

observed demand data. Note that this demand function can be also approximated by other applicable

algorithms such as the expectation propagation (EP) and Markov chain Monte Carlo (MCMC) (e.g.,

see Minka (2001)).

The lead-time demand distribution P k(d̃ = x) may be computed based on the lead-time distribution

P k(l̃ = l) and the demand per period distribution P k(d̃l = d), as follows:

P k(d̃ = x) =

L∑
l=1

P k(l̃ = l)P k(d̃l = x), (32)

where P k(d̃l = x) denotes the probability that the cumulative demand of l consecutive period is equal

to x. P k(d̃l = x) can be computed from the per-period demand distribution as follows:

P k(d̃l = x) =
∑

x1≤x2≤...≤xl−1≤x

P (d̃1 = x1)P (d̃1 = x2 − x1)P (d̃1 = x3 − x2) . . . P (d̃1 = x− xl−1), (33)

where x1, x2, . . ., xl−1 may be seen as the cumulative demand. However, such computation is com-

putationally intensive, and the estimation of P (dl = x) with bootstrap (moving block sampling) is

more efficient. More precisely, we randomly sample 10, 000 sets of l demand values from the historic

demand, and the sum of the demand corresponds to a possible value of the demand during l periods.

This sample is directly used as input to the probabilistic forecasting method.

This process is performed as a pre-processing step to create the input for the optimization model

presented in this paper. Therefore, the computational performance of the approximation algorithm

does not have an impact on the computing time of our CMDP model.

4.5 Extension of the model to restrict the maximum resource consumption

Constraints (3) restrict the expected resource utilization, but they can also deal indirectly with the

capacity constraints on the maximum resource utilization (e.g., inventory or space capacity). One

practical way to deal with these types of capacity constraints is to consider a resource constraint

violation probability and use the constraint derived from Hoeffding’s inequality (Hoeffding 1963) by

adapting the approach presented in de Nijs et al. (2017).

Denote by Xkm and Ukm the resource utilization and the upper limit on the use resource m of

item k, respectively. Let Cm denote the capacity for resource m and κm denote the upper bound

on the probability of capacity constraint violation of resource m. ϕkm
iq still represents the resource

consumption when the inventory position i for item k and an order of quantity q is placed. For

instance, to model a maximum inventory level ϕkm
iq = ivk, where vk is the volume of a unit of item k.

Proposition 2. The constraint guaranteeing that the probability of violating the limit Cm will not exceed

κm, i.e, P
(∑

k∈K Xkm > Cm
)
≤ κm is given by:

∑
k∈K

∑
ik∈Ik

∑
qk∈Qk(i)

ϕkm
iq P k(i, q)) ≤ Cm −

√
ln(κm) · (

∑
k∈K(Ukm)2)

−2
(34)

Proof of proposition 1.

P

(∑
k∈K

Xkm > Cm

)
= P

(∑
k∈K

Xkm − E(Xkm) > Cm − E(Xkm)

)
(35)
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with E(Xkm) =
∑

k∈K

∑
ik∈Ik

∑
qk∈Qk(i) ϕ

km
iq P k(i, q)). Based on Hoeffding’s inequality, the probabil-

ity to exceed the capacity is bounded by:

P

(∑
k∈K

Xkm > Cm

)
≤ exp(

−2(Cm −
∑

k∈K

∑
ik∈Ik

∑
qk∈Qk(i) ϕ

km
iq P k(i, q)))2∑

k∈K(Ukm)2
). (36)

Therefore, the long-run probability to exceed the capacity is lower than κl if

κm ≥ exp(
−2(Cm −

∑
k∈K

∑
ik∈I

∑
qk∈Qk(i) ϕ

km
iq P k(i, q)))2∑

k∈K(Ukm)2
) (37)

Rearranging the terms lead to the above formula.

This form of constraint, however, might be too conservative (i.e., the true probability is much lower

than the desired value κm). de Nijs et al. (2017) propose a dynamic update approach by replacing

the value Cm in constraints (34) with a more relaxed limit C
m ≥ Cm. First, the problem is solved

to optimality with Cm and a simulation is run to evaluate the true probability of constraint violation

and to determine the value, denoted by Ĉm, where the probability of constraint violation equals the

desired value κm based on the empirical estimate of the distribution. Then a value of C
m

within the

range Cm ≤ C
m

< Ĉm is chosen for constraints (34) used in the next iteration. The process continues

until the probability of constraint violation based on the empirical estimate is sufficiently close to the

desired value κm. Since constraints (34) are always relaxed in the subsequent iterations, this approach

guarantees that all solutions generated during the process are feasible and the algorithm can terminate

early if necessary.

5 Numerical experiments

We perform extensive numerical experiments to demonstrate the benefits of the proposed approach

which can be used with generic discrete lead-time demand functions to determine inventory policies

for multiple items under multiple inventory targets. Section 5.1 presents the cross-validation process

that evaluates the quality of different inventory policies, and Section 5.2 details the generation of the

datasets based on the literature. Section 5.3 evaluates the performance and scalability of the proposed

optimization approaches. Section 5.4 investigates the performance of the approach to estimating

the probability distributions and their impact on the resulting policy. Finally, Section 5.5 compares

our approach with the method proposed in Downs et al. (2001), where the authors define base stock

policies for a multi-item inventory optimization problem with a global constraint. This last section also

investigates the impact of the forms of the inventory policy (i.e, stochastic lookup table, deterministic

lookup table, rule-based) on the inventory management performance.

The models are solved with CPLEX 20.2, and the algorithms are implemented in Julia. The code is

available at https://github.com/Simon-Thevenin/Multi-Item_Inventory_Planning_A_Mathema

tical_Programming_Approach. Each test is run on one core of a processor Intel Xeon Brodwell

EP E5-2630v4 with 10 cores, a frequency of 2.20GHz, and 128GB of RAM memory. We limit the

RAM memory usage per test to 10 GB. In the experiments, we set the maximum inventory level equal

to two times the maximum demand, and we compute Qk(i) in such a way that it respects the inventory

level.

5.1 Cross-validation

To assess the quality of the inventory policies obtained by the optimization approaches, we simulate

their performances on test data that haven’t been used to generate the inputs for the models. In our

https://github.com/Simon-Thevenin/Multi-Item_Inventory_Planning_A_Mathema
tical_Programming_Approach
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experiments, we split the data into two sets based on the temporal order of observations. The set

with the older observations is used to determine (optimize) the policies, and the set with more recent

observations is used for cross-validation. We explain how the data is generated and split temporally

into a training set and a testing (holdout) set in the subsequent sections which present the details of

different datasets used in the experiments.

The execution of the policy depends on its type. The execution of the policy is straightforward for

approaches that result in an (s, S) policy based on its inventory position (Axsäter 2015). When the

solution of the model comprises the probability xk
i,q (which corresponds to an order quantity q to be

made when the inventory position equals i for item k), we create a policy lookup table to store all the

values of x̂k
i,q which represent the probability to order q when the inventory position is i. In the case

of deterministic policy, there is only a single quantity decision q associated with a given state i. Note

that this is a pessimistic simulation: no policy change is allowed during the simulation.

5.2 Datasets

This paper provides methods applicable to a wide range of inventory management situations. In the

experiments, we focus on two types of situations. Instances of type A correspond to the case where a

company seeks a policy that minimizes production and inventory costs to meet a global service level

target. The costs include fixed ordering costs Ok, unit costs ok, and holding costs hk. The minimum

stockout probability for each item is set to 90%, and an average stockout probability over all the items

is set to 95%. The instance set B is similar to the ones used in Downs et al. (2001). In these instances,

the company aims to balance inventory and lost sale costs while respecting a maximum inventory

constraint. We consider a capacity on the inventory level set to 75% of the full capacity, where the full

capacity corresponds to the news vendor level. Table 4 details the distribution used to generate the

cost parameters for both instance types.

In both types of instances, we consider two demand profiles, namely, slow mover (SM) and fast

mover (FM). We use the demand generator presented in Petropoulos et al. (2014). To simulate in-

termittent data, three parameters are used: the average inter-demand interval (IDI); the squared

coefficient of variation of positive demands; and the number of observations. The inter-demand inter-

val is based on a Bernoulli distribution with p = 1
IDI , while the positive demands follow a negative

binomial distribution. This dataset was generated using the R code provided in Petropoulos et al.

(2014). The SM (resp. FM) demands are generated using a squared co-variance of 2 (resp. 1.4) and an

inter-demand interval average of 4 resp (1). The average demand is randomly selected in the interval

[10, 50] for FM items, and it is set to 5 for SM items. The number of periods in the historical data set

varies from 36 to 208, and this corresponds to 6 months up to 4 years of historical data. The simulation

data set contains a large number of periods (1000) to reduce the variance in the simulation. Finally,

we assume the lead times follow a uniform discrete distribution with support tildeLk =
[
Lk
min, L

k
max

]
.

We select the values of Lk
min and Lk

max randomly in the interval [5, 20] or [1, 3].

Table 4: Data generation

Parameter Instance A Instance B

Lead times min Lk
min uniform(5,20) uniform(5,20)

Lead times max Lk
max uniform(Lmin,20) uniform(5,20)

Holding cost hk 1 uniform(5,20)
Lost sales ek 0 uniform(10,20)
Unit cost vk uniform(1,10) 0
Fixed cost sk Computed based on the time between order (TBO) from EOQ

formula s = D̄hTBO2

2

0

Time Between Order (TBO) uniform(1,20) -
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5.3 Performance of the CMDP-based method

This section evaluates the numerical performance of the proposed methods. We first investigate the

performance of exact methods that find a deterministic policy. The paper provides three such ap-

proaches: (1) the MILP (7)–(13) (denoted by MILP), (2) the Branch and Price approach (denoted by

BP-LP) presented in Section 3.4 where the sub-problem is an LP, (3) the Branch and Price approach

(denoted by BP-sS) presented in section 4.1 where the solution of the sub-problem takes the form of

an (s, S) policy. We evaluate these methods on instances of set A. As we focus on the computational

efficiency of the method in this section, we only consider the empirical distribution built from 52

periods of historical data. Table 5 reports the computation time (CPU) and the gap with the best

solution (GAP) for the solutions obtained with MILP, BP-LS, and BP-sS. The GAP is computed as

GAP = fM−Best
Best , where Best is the cost of the best solution, and fM is the cost of the solution obtained

with method M . In addition, Table 5 gives the number of action-states of the instance. The number

of action-states is directly related to the size of the model, and it is computed by:∑
k∈K

∑
i∈Ik

|Qk(i)|.

Finally, Table 5 reports the relative integrality gap (Rel. GAP) reported by CPLEX for MILP, and

the number of columns (#Columns) generated by the branch and price approaches.

Table 5: Performance of the solution approach to the deterministic policy model

MILP BP-LP BP-sS

aggreg
#

item
Item
type

Lead
time
range

#
action-state

Best
GAP
(%)

CPU
(s)

Rel
Gap(%)

GAP
(%)

#
Columns

CPU
(s)

GAP
(%)

#
Columns

CPU
(s)

1

10

SM (1, 3) 24,979.7 231.8 0.0 65.4 0.0 0.0 795.0 3606.1 0.1 389.0 1389.6
SM (5, 20) 82,825.8 1806.8 0.0 142.5 0.0 0.0 257.0 3610.1 0.0 19.0 276.1
FM (1, 3) 1,154,718.7 - - - - - - - - - -

100
SM (1, 3) 272,103.9 3069.7 - - - 0.0 51.0 3618.9 0.2 29.0 3630.1
SM (5, 20) 852,517.6 - - - - - - - - - -
FM (1, 3) 25,901,228.2 - - - - - - - - - -

1000

SM (1, 3) 2,914,510.5 - - - - - - - - - -
SM (5, 20) 7,460,006.4 - - - - - - - - - -
FM (1, 3) 114,683,150.0 - - - - - - - - - -

10

10

SM (1, 3) 13,034.5 480.8 0.0 29.2 0.0 0.0 10000.0 3600.0 0.0 1603.0 85.3
SM (5, 20) 5,094.5 2086.6 0.0 19.4 0.0 0.0 142.0 34.7 0.0 15.0 23.4
FM (1, 3) 12,768.2 5466.5 0.0 23.4 0.0 0.0 7.0 28.2 0.0 7.0 28.8

100
SM (1, 3) 280,281.6 5387.2 0.0 3620.5 0.4 1.9 3139.0 3600.3 1.4 7071.0 3600.3
SM (5, 20) 55,283.0 20623.4 0.0 3623.3 0.3 1.2 1492.0 3728.0 0.8 2593.0 3756.8
FM (1, 3) 115,259.7 71439.1 0.1 3702.4 0.3 0.0 106.0 3619.6 0.0 81.0 3601.7

1000

SM (1, 3) 1,289,365.0 59180.3 0.3 3669.6 1.4 2.4 13.0 3741.2 2.2 100.0 3600.3
SM (5, 20) 203.0 184,771.4 42.1 6308.1 42.8 0.5 12.0 3840.8 0.3 72.0 3644.8
FM (1, 3) 455.8 480,235.7 - - - 0.0 3.0 3637.7 0.6 3.0 4028.3

20

10

SM (1, 3) 3,746.6 760.1 0.0 21.4 0.0 0.0 468.0 33.2 3.2 754.0 35.9
SM (5, 20) 2,333.1 2442.6 0.0 20.9 0.0 0.3 5469.0 3601.7 0.1 308.0 34.4
FM (1, 3) 4667.2 5816.4 0.0 28.4 0.0 0.0 1260.0 1145.8 0.0 404.0 178.1

100
SM (1, 3) 76,068.0 8215.4 0.0 3620.9 0.4 3.0 4986.0 3600.6 4.7 10000.0 3600.0
SM (5, 20) 24079.1 24275.7 0.0 3621.1 0.2 1.2 2756.0 3600.6 0.9 6966.0 3600.3
FM (1, 3) 43010.5 74570.5 0.0 3640.0 0.1 0.0 357.0 3606.6 0.0 354.0 3602.5

1000

SM (1, 3) 365,883.0 88,817.8 0.0 3638.9 1.4 5.9 15.5 3650.5 5.9 100.0 3600.1
SM (5, 20) 43,010.5 220,492.3 0.0 3672.1 0.6 2.3 14.5 3780.7 2.2 100.0 3600.1
FM (1, 3) 365,883.0 499,542.8 - - - 0.2 6.5 3842.4 0.0 18.0 3652.2

Average 2.4 2192.6 2.7 0.9 1492.8 3025.1 1.1 1475.5 2360.4

Table 5 shows that the MILP can solve all the instances with up to 100 items and the instances

with 1000 items for the demand type SM when an aggregation factor of at least 10 is applied to reduce

the size of the model. Nevertheless, the MILP model could not find a solution for some instances
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with 1000 because the model is too large, and the branch-and-bound tree could not even fit in the

memory. Branch-and-price approaches perform better than MILP since they can solve all instances

with an aggregation factor of more than 10. However, exact methods (MILP and branch-and-price)

could solve only a few instances without state aggregation (i.e., aggregation factor equals one). For

these instances, the model is so large that even the decomposition methods cannot solve it. Note that

the branch-and-price approach could yield high-quality solutions where the average optimality gap

equals 0.9% and 1.1% for BP-LS and BP-sS, respectively. On the contrary, when MILP does not solve

an instance to optimality, the GAP can still be large. Note also that BP-sS requires fewer iterations

than BP-LS when both approaches converge to an optimal solution. For instance, for the instances

with 10 slow mover items, an aggregation factor of 1, and a lead time range [5, 20], BP-sS converges

in 19 iterations on average versus 257 iterations for BP-LS.

As exact approaches cannot solve instances with a very large action-state space, we investigate the

performance of heuristics methods. These approaches include (1) the column generation (denoted by

CG) approach presented in section 3.4 where the sub-problem is an LP, and the integer master problem

is solved after generating the columns on the version with relaxed integrality, (2) the column generation

approach (denoted by CG-sS) where the sub-problem takes the form of an sS policy as presented in

Section 4.1, and (3) the improvement of CG-sS (denoted by CG-LS) where the sub-problem is solved

with local search and sampling as presented in Section 4.2.

Table 6 reports the GAP and CPU for these methods, as well as the results of MILP for comparison.

The results show that the column generation approaches could find solutions for more instances than

MILP. In addition, the average GAP for CG-LS and CG-sS is similar to the one of MILP, but the

computation time is smaller. Note that CG-LS is able to solve all instances since it relies on sampling

to evaluate a solution, and it does not require generating the entire state space. The GAP of CG-LS is

computed based on the sampling approximation, and it can slightly deviate from the true cost of the

resulting policy. Nevertheless, CG-LS obtains high-quality policies with an average GAP of only 1.1%.

We now investigate the performances of approaches when stochastic (non-deterministic) policies

are employed. These methods include the linear program (LP) (7)–(11), and the column generation

(CG) approaches. Table 7 reports the results in the same format as Table 5. The results show that

for non-deterministic policy, the LP approach outperforms the column generation method since it

obtained the same solution faster. Some instances have such a large number of action-states per item

that the model remains too large even when it is decomposed per item. For other instances, building

and solving the model takes a few seconds (1-10), and CG could not generate the column required to

find a feasible solution within the time limit of one hour.

From these analyses, we derive the following insights into the performance of the methods. Decision

makers seeking a deterministic policy for less than 100 items and with an aggregation factor of 10 or

more should use MILP. Branch-and-price approaches are slower than MILP for these instances where

the state-action space is not large. However, the BP-LP approach is much more efficient when the

inventory management involves more than 1000 items whereas the BP-sS is recommended when the

decision maker requires the policies to take the form of an (s, S) policy. CG-LS is the most appropriate

method for situations when the state-action space is very large (e.g., more than 106 in size). Even

though the CG method does not guarantee to converge to the optimal solution, its optimality gap can

be derived and our numerical experiments demonstrate that the final optimality gap is approximately

only 1%.

5.4 Performance comparisons based on different demand distributions

This section investigates the impact of the lead-time demand distributions on the performance of the

policy. We use the instance of set A where the distribution is learned from historical data of different

sizes (32, 52, 104, 208 periods), and the resulting policy is simulated over a large number (10, 000) of



Les Cahiers du GERAD G–2024–03 19

Table 6: Performance of heuristic approach to the deterministic policy model

MILP CG-LP CG-sS Exact CG-LS

aggreg
#

item
Item
Type

Lead
time
range

#
action-state

Best
GAP
(%)

CPU
(s)

GAP
(%)

CPU
(s)

GAP
(%)

CPU
(s)

GAP
(%)

CPU
(s)

1

10 SM (1, 3) 24979.7 231.8 0.0 65.4 0.1 37.7 0.1 41.8 -2.3 3606.3
SM (5, 20) 82825.8 1806.8 0.0 142.5 0.0 119.0 0.1 146.6 -1.0 3611.2
FM (1, 3) 1154718.7 5130.7 - - - - - - 0.0 3668.5

100 SM (1, 3) 272103.9 3069.7 - - 0.0 1218.5 0.3 2051.9 2.1 3843.8
SM (5, 20) 852517.6 18081.1 - - - - - - 0.0 3818.0
FM (1, 3) 25901228.2 76820.2 - - - - - - 0.0 5601.9

1000 SM (1, 3) 2914510.5 36246.0 - - - - - - 0.0 3780.6
SM (5, 20) 7460006.4 158646.4 - - - - - - 0.0 3787.8
FM (1, 3) 114683150.0 469215.4 - - - - - - 0.0 3678.7

10

10 SM (1, 3) 475.2 480.8 0.0 29.2 4.5 24.0 4.5 22.0 6.7 3600.2
SM (5, 20) 1253.6 2086.6 0.0 19.4 0.9 22.5 0.7 22.4 -1.2 3601.8
FM (1, 3) 13034.5 5466.5 0.0 23.4 0.0 18.0 0.0 28.3 -1.4 3608.1

100 SM (1, 3) 5094.5 5387.2 0.0 3620.5 3.9 32.9 3.8 32.0 6.2 3634.4
SM (5, 20) 12768.2 20623.4 0.0 3623.3 1.5 41.8 1.1 34.9 -0.1 3665.1
FM (1, 3) 280281.6 71439.1 0.1 3702.4 0.0 405.7 0.0 427.3 0.0 3687.7

1000 SM (1, 3) 55283.0 59180.3 0.3 3669.6 2.4 1968.3 2.4 335.2 3.3 3801.4
SM (5, 20) 115259.7 184771.4 42.1 6308.1 0.5 2802.4 0.3 2197.4 0.4 3814.8
FM (1, 3) 1289365.0 480235.7 - - 0.0 4469.6 0.7 4033.2 -1.3 3704.9

20

10 SM (1, 3) 203.0 760.1 0.0 21.4 10.0 23.7 10.0 23.2 10.5 3601.8
SM (5, 20) 455.8 2442.6 0.0 20.9 2.0 23.9 2.0 8.3 -1.3 3600.3
FM (1, 3) 3746.6 5816.4 0.0 28.4 0.0 25.4 0.0 9.6 -1.4 3600.3

100 SM (1, 3) 2333.1 8215.4 0.0 3620.9 7.3 31.5 7.2 28.7 8.8 3606.9
SM (5, 20) 4667.2 24275.7 0.0 3621.1 2.2 34.5 1.8 30.8 -0.3 3641.7
FM (1, 3) 76068.0 74570.5 0.0 3640.0 0.1 149.5 0.1 105.4 -0.3 3788.8

1000 SM (1, 3) 24079.1 88817.8 0.0 3638.9 6.3 1460.6 6.3 181.6 1.5 3649.5
SM (5, 20) 43010.5 220492.3 0.0 3672.1 2.3 1688.7 2.3 276.7 0.4 3647.1
FM (1, 3) 365883.0 499542.8 - - 0.1 3840.7 0.0 2240.9 1.0 3754.0

Average 2.4 2192.6 2.1 878.0 2.1 584.7 1.1 3755.8

demand and lead time samples. We also analyze the impact of the aggregation factor on the cost of

the resulting policy in the simulation.

Figures 2a (resp. 2b) shows the percentage difference between the simulation costs of the policies

associated with the empirical (resp. zero-inflated negative binomial) distribution inferred from different

aggregation factors and history size for fast moving items. For instance, “Emp-26” provide the GAP

when an empirical distribution is built with 26 periods of historical demand. Figures 2c and 2d show

the same results for slow-moving items. The results show that the aggregation factor is a sensitive

parameter when the demand is modeled with an empirical distribution. A small aggregation factor

improves the performance of the solution process, but a too-large aggregation factor could lead to poor

results. However, the aggregation factor has a negative impact when the SM demand is modeled with

a parametric distribution. When demand is modeled with an empirical distribution, the cost of the

policy decreases when the aggregation factor increases until a certain level, and then the cost increases

when the aggregation factor passes this optimal level. The optimal value of the aggregation factor

depends on the type of demand and on the size of the historical data. For instance, for fast movers,

the optimal value of the aggregation factor is 10 with 6 months of history and 2 with 4 years of history.

For slow movers, larger values of the aggregation factor may be used, and it seems that an aggregation

factor of 10 leads to good results for all historic sizes.

When demand is represented using an empirical distribution, the positive impact of the aggregation

factor is due to the reduction of the number of parameters, and the resulting model does not over-fit

the data with a larger bin size. The aggregation factor is less important for slow movers because there

are fewer demand values to infer the distribution (as most demands are 0).
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Table 7: Comparison of the solution approach to the non-deterministic policy model

LP CGLP

aggreg
#

item
Item
Type

Lead
time
range

#
action-state

Best
GAP
(%)

CPU
(s)

GAP
(%)

CPU
(s)

1

10

SM (1, 3) 24979.7 231.8 0.0 21.9 0.0 37.7
SM (5, 20) 82825.8 1806.7 0.0 58.6 0.0 119.0
FM (1, 3) 1154718.7 - - - - -

100
SM (1, 3) 272103.9 3042.1 0.0 130.2 0.0 1218.5
SM (5, 20) 852517.6 - - - - -
FM (1, 3) 25901228.2 - - - - -

1000

SM (1, 3) 2914510.5 - - - - -
SM (5, 20) 7460006.4 - - - - -
FM (1, 3) 114683150.0 - - - - -

10

10

SM (1, 3) 475.2 466.2 0.0 18.5 0.0 24.0
SM (5, 20) 1253.6 2086.4 0.0 18.7 0.0 22.5
FM (1, 3) 13034.5 5466.5 0.0 21.1 0.0 18.0

100
SM (1, 3) 5094.5 5324.1 0.0 19.9 0.0 32.9
SM (5, 20) 12768.2 20559.4 0.0 22.1 0.0 41.8
FM (1, 3) 280281.6 71350.3 0.0 143.4 0.0 405.7

1000

SM (1, 3) 55283.0 58430.2 0.0 64.4 0.0 1968.3
SM (5, 20) 115259.7 182597.0 0.0 127.4 0.0 2802.4
FM (1, 3) 1289365.0 467644.9 0.0 2246.3 0.4 4469.6

20

10

SM (1, 3) 203.0 739.8 0.0 19.7 0.0 23.7
SM (5, 20) 455.8 2435.4 0.0 20.7 0.0 23.9
FM (1, 3) 3746.6 5814.9 0.0 19.9 0.0 25.4

100
SM (1, 3) 2333.1 8044.6 0.0 19.9 0.0 31.5
SM (5, 20) 4667.2 24143.5 0.0 20.7 0.0 34.5
FM (1, 3) 76068.0 74480.9 0.0 39.1 0.0 149.5

1000
SM (1, 3) 24079.1 87135.6 0.0 37.0 0.0 1460.6
SM (5, 20) 43010.5 219141.4 0.0 55.2 0.0 1688.7
FM (1, 3) 365883.0 498574.3 0.0 386.0 0.0 3840.7

Average 0.0 167.2 0.0 878.0

5.5 Computational comparisons with discretization approach for base-stock pol-
icy adapted from Downs et al. (2001)

This section evaluates the performance of various inventory policies. We compare the stochastic policy

obtained by solving model (7)–(11), the deterministic policy obtained from model (7)–(13), and the

reorder point policy obtained from CG with an (s, S) policy. For each of these policies, we consider

the case where the demand distribution function is an empirical distribution (EMP) or a zero-inflated

negative binomial (ZINB), and the cases with no demand aggregation (aggregation factor of 1) or an

aggregation factor of 5. We also compare the approaches proposed in this paper with the approach

proposed in Downs et al. (2001).

We first compare our approach to the model adapted from the framework presented in Downs et al.

(2001) which can be used to optimize the base stock inventory policies (i.e., a single base stock level

S) based on discrete demand functions. The main purpose of this section is to provide computational

insights on the solutions (policies) produced by our approach and the approach adapted Downs et al.

(2001) rather than demonstrating the superiority of one solution approach over the other. Even though

the two approaches were developed to deal with generic discrete demand functions, they differ in several

ways, i.e., (i) the inventory model of Downs et al. (2001) is developed for a base stock policy where

no fixed charge is considered and the resource constraint is imposed only on the base stock level i, (ii)

the cost function used in the original framework of Downs et al. (2001) is calculated based on a single

replay scenario over a long term horizon which is based on the demand in the training set, whereas our

CMDP models rely on a transition function generated from a discrete distribution, and (iii) the model

in Downs et al. (2001) implicitly considers lags in delivery whereas our CMDP model allows a single
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(a) Fast moving items with EMP distribution.
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(b) Fast moving items with ZINB distribution.
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(c) Slow moving items with EMP distribution.
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(d) Slow moving items with ZINB distribution.

Figure 2: Relative cost in the simulation of the policy computed for different demand types and different distributions
derived from a history of 32, 52, 104, or 208 weeks and different aggregation factors

replenishment to be made for each item during the supply lead time. As presented in Downs et al.

(2001), we use the scenario that corresponds to the historical demand to calculate the cost parameters

of the model. In addition, since the model of Downs et al. (2001) can only be used to determine base

stock policies, we consider only the inventory holding and stockout costs in this numerical experiment

and the policy determined by the CMDP model takes the form of a base stock policy in this case. The

details of the model adapted from Downs et al. (2001) are described in Appendix 3.

In this section, we consider instances of type B, and we rely on equation (34) to constrain the

maximum inventory level, where we set the upper limit κ on the probability of violating the maximum

inventory constraint to 0.01. The maximum resource consumption per item at an instant is the largest

value of the inventory level i. We present the performance of the approaches, using the cross-validation

technique shown in Section 5.1.

Table 8 reports the cross-validation results in the format (Avg cost, const, 95% const, 90% const),

where Avg is the average cost in the simulation, const is the proportion of the instances where the

maximum inventory is below the limit, 95% const is the proportion of instances where the 95th per-

centile inventory level is below the inventory limit, and 90% const is the proportion of instances where
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the 90th percentile of the inventory level is below the limit. No results are reported for lookup policies

with an aggregation factor of 1 for fast mover because this leads to a too large model to fit in memory.

Table 8: Costs and the percentage of instances where the maximum inventory constraint is satisfied based on different
approaches

Policy Aggregation Factor Distribution Slow Movers Fast Movers

MIP-BS adapted from Downs et al. (2001) n/a n/a (138.52, 1, 1, 1) (3222.43, 1, 1, 1)

Stochastic policy lookup table

1
EMP (148.57, 0.2, 0.4, 1) -
ZINB (134.77, 1, 1, 1) -

5
EMP (144.49, 1, 1, 1) (3842.66, 1, 1, 1)
ZINB (144.21, 1, 1, 1) (2187.67, 1, 1, 1)

Deterministic policy lookup table

1
EMP (149.05, 0.2, 0.6, 0.8) -
ZINB (134.87, 1, 1, 1) -

5
EMP (144.48, 1, 1, 1) (3975.78, 1, 1, 1)
ZINB (144.84, 1, 1, 1) (2197.43, 1, 1, 1)

(s, S)

1
EMP (136.63, 0.4, 0.8, 1) (2335.49, 1, 1, 1)
ZINB (134.77, 0.8, 1, 1) (2220.73, 0.6, 1, 1)

5
EMP (142.91, 1, 1, 1) (2213.82, 1, 1, 1)
ZINB (144, 1, 1, 1) (2208.28, 1, 1, 1)

Table 8 shows that the zero-inflated negative binomial distribution yields better policy than the

empirical distribution. This can be explained by the ability of the ZINB to generalize the data while

Emp overfits by definition. Thus the use of ZINB reduces over-fitting. An issue with the empirical

distribution is missing values. Some value of the distributions are not part of the samples, this lead to

some state with zero probability in the policy, and thus no action is associated with these states. In

the simulation, when a state with no action is encountered, we perform a random action. This leads

to poor results in the simulation.

However, the (sk, Sk) policy is less sensitive to the bad approximation provided by the empirical.

For instance, for the slow mover with an aggregation factor of 1, the cost of the (sk, Sk) policy decrease

from 136.63 to 134.77 when the distribution changes from EMP to ZINB, whereas these cost increase

from 134.77 to 149.05 with a deterministic lookup policy. A possible reason is that the (sk, Sk) policy

is simpler since there are fewer parameters to optimize. As a result, the values of sk and Sk can be

well selected despite poor distributional information, whereas the lookup policy optimizes a complex

policy over the wrong distribution and this could lead to poor results.

The results show that the approach proposed in this paper yields lower average costs than the

approach of Downs et al. (2001). The first reason is that the approach of Downs et al. (2001) imposes

a strict limit on the constraint where the approaches proposed in this paper ensure meeting the

constraint with probability 99%. In addition, the approach of Downs et al. (2001) determines the

inventory policy decisions based on previous historical demand (replay method) and thus the solutions

can potentially overfit the input data and the results based on cross-validation are not very robust

as opposed to the CMDP approaches. Finally, we note that the gap between different methods can

be large for fast-moving items. This is related to the issues of the unseen demand values, which is

exacerbated because there are only 52 observed demand values but there can be a large number of

possible demand values for fast-moving items. We want to further note that the standard MILP or

LP approach is much more computationally demanding in terms of the memory required as opposed

to the local search approach used to solve the subproblem when it is restricted to an (s, S) policy. As

a consequence, the standard approach cannot provide results for fast-moving items without demand

aggregation.

5.6 Computational results on real-world industrial dataset

We also test our CG heuristic using a real-world dataset obtained from an industrial partner. The

details and descriptive statistics on the industrial dataset are presented in Appendix. The experiments
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were performed using the parameters and service targets provided by the industrial partner. In a

standard setting of their inventory optimization tool, it generates (s, S) policies using either Poisson

or Normal distribution which is pre-assigned to each group of items where the batch quantity B to

set the level S = s + B is calculated based on a standard EOQ calculation (Axsäter 2015). This

benchmark approach (based on either Gaussian or Poisson distribution) is indicated by the label Pith .

Based on their current approach, to select the policies that satisfy the predefined target levels, the tool

generates 12 inventory policy choices based on different service levels (percentiles of lead-time demand

distribution) for each item. These policies are then used to create the decision variables for policy

selection. To choose the policies that collectively satisfy the target levels, they solve a set-partitioning

model using a set of policies generated a priori for each item. Based on the service requirements

specified by the partner, only fill rate (FR(%)) is considered as the global target level. In terms of the

CMDP approach, we employed the CG-LS approach using the empirical distribution (Emp) and the

zero-inflated negative binomial distribution (ZINB).

In Table 9, the term CSL(%) indicates the cycle service level or no-stockout probability, where

FR(%) indicates the fulfillment rate. We also report other statistics from the cross-validation including

relative total cost (T.Cost), and relative inventory value (Inv. Val.). Under the column(s) associated

with target(s) used in each dataset, we report the expected values obtained by solving the optimization

models in column Exp, the values obtained by the cross-validation process in column CV and the

absolute difference between Exp and CV in column |Diff |.

Table 9: Cross-validation results on industrial dataset.

FR(%) Cross-Validation Results

Group Approach Policy generation Exp CV |Diff| T.Cost Inv. Val. CSL (%)

B1

CMDP LS(Emp) 95.0 94.4 0.6 1.032 1.077 90.8
CMDP LS(ZINB) 95.0 90.2 4.8 1.000 1.246 94.3
MIP Pith (Normal) 95.0 87.2 7.8 1.137 1.019 91.5
MIP Pith (Poisson) 95.0 83.3 11.7 1.164 1.000 91.1

B2

CMDP LS(Emp) 95.0 94.2 0.8 1.032 1.094 91.5
CMDP LS(ZINB) 95.0 91.4 3.6 1.000 1.314 95.0
MIP Pith (Normal) 95.0 88.0 7.0 1.233 1.017 92.0
MIP Pith (Poisson) 95.0 84.2 10.8 1.265 1.000 91.6

B3

CMDP LS(Emp) 95.0 94.1 0.9 1.026 1.085 92.0
CMDP LS(ZINB) 95.0 90.7 4.3 1.000 1.281 95.2
MIP Pith (Normal) 95.0 87.4 7.6 1.185 1.015 92.3
MIP Pith (Poisson) 95.0 83.9 11.1 1.213 1.000 91.8

B4

CMDP LS(Emp) 95.0 93.7 1.3 1.049 1.093 92.4
CMDP LS(ZINB) 95.0 89.8 5.2 1.000 1.239 95.0
MIP Pith (Normal) 95.0 87.3 7.7 1.188 1.018 92.4
MIP Pith (Poisson) 95.0 84.2 10.8 1.216 1.000 91.9

B5

CMDP LS(Emp) 95.0 93.9 1.1 1.015 1.169 92.5
CMDP LS(ZINB) 95.0 89.8 5.2 1.000 1.245 95.1
MIP Pith (Normal) 95.0 86.6 8.4 1.147 1.031 92.2
MIP Pith (Poisson) 95.0 82.7 12.3 1.185 1.000 91.6

Average

CMDP LS(Emp) 95.0 94.0 1.0 1.031 1.104 91.9
CMDP LS(ZINB) 95.0 90.4 4.6 1.000 1.265 94.9
MIP Pith (Normal) 95.0 87.3 7.7 1.178 1.020 92.1
MIP Pith (Poisson) 95.0 83.7 11.3 1.209 1.000 91.6

Table 9 shows the results based on the cross-validation on this dataset. We can see, for the bench-

mark approaches Pith(Normal) and Pith(Poisson), that such distributions cannot properly represent

the demand distributions of irregular items used in the experiments since the fill rates, based on the

cross-validation results, are significantly different from the expected value, which then satisfies the tar-

get constraint. As we have seen in the first experiment, both CMDP methods perform relatively well.

However, the method CMDP-LS(Emp) is generally better than that of CMDP-LS(ZINB) in terms

of the difference between the expected value (in-sample) and target level based on cross-validation
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as shown in column |Diff | whereas the CMDP-LS(ZINB) approach produces solutions with lowest

expected total costs among these methods.

6 Conclusion

This paper presents a multi-item inventory optimization approach that makes use of the coupled,

constrained Markov decision process (CMDP) to determine inventory policy decisions under multiple

target levels. We presented the models, decomposition framework, as well as computational enhance-

ments. To demonstrate the performance of the approach, the computational comparisons with other

approaches in the literature, including the discretization approach for inventory planning with base

stock policy and generic discrete demand distributions on the synthetic and industrial datasets of

slow-moving products, are provided. The results show that the proposed approaches, in conjunction

with the uses of empirical or zero-inflated distribution, could generally capture the demand profiles of

irregular items such as slow-moving products and determine the inventory policies. These could collec-

tively satisfy multiple target levels and result in smaller gaps between the expected values (in-sample)

and cross-validation results compared to other approaches.
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