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The authors are exclusively responsible for the content of their re-
search papers published in the series Les Cahiers du GERAD. Copy-
right and moral rights for the publications are retained by the authors
and the users must commit themselves to recognize and abide the
legal requirements associated with these rights. Thus, users:

• May download and print one copy of any publication from the
public portal for the purpose of private study or research;

• May not further distribute the material or use it for any profit-
making activity or commercial gain;

• May freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.



Les Cahiers du GERAD G–2023–70 ii

Abstract : We show that the two-stage minimum description length (MDL) criterion widely used
to estimate linear change-point (CP) models corresponds to the marginal likelihood of a Bayesian
model with a specific class of prior distributions. This allows results from the frequentist and Bayesian
paradigms to be bridged together. Thanks to this link, one can rely on the consistency of the number
and locations of the estimated CPs and the computational efficiency of frequentist methods, and
obtain a probability of observing a CP at a given time, compute model posterior probabilities, and
select or combine CP methods via Bayesian posteriors. Furthermore, we adapt several CP methods to
take advantage of the MDL probabilistic representation. Based on simulated data, we show that the
adapted CP methods can improve structural break detection compared to state-of-the-art approaches.
Finally, we empirically illustrate the usefulness of combining CP detection methods when dealing with
long time series and forecasting.

Keywords : Change-point, minimum description length, model selection/combination, structural
change
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1 Introduction

Change-point (CP) models are used to account for abrupt changes in an ordered sequence of obser-

vations. When a series contains structural shifts, the data can be modeled as disjoint segments of

different stochastic processes. CP models typically lead to a better understanding of critical events

and consistent estimates of model parameters for each segment and can also improve predictions. Due

to these appealing features, CP models have attracted considerable interest in economics and natu-

ral sciences. The number and locations of the breaks are generally unknown to the researcher and

must be estimated. Many methods are now available to detect CPs both in frequentist and Bayesian

frameworks (see, e.g., Eckley, Fearnhead and Killick, 2011; Bauwens, Koop, Korobilis and Rombouts,

2015).

Frequentist and Bayesian CP approaches have mostly evolved independently in the literature, as

they often explore different aspects of the CP problem. The frequentist approach has mainly focused

on developing asymptotic frameworks for break detection (e.g., Yao and Au, 1989; Liu, Wu and Zidek,

1997; Ciuperca, 2011; Davis, Yau et al., 2013), testing the number and location of breaks (e.g., Bai

and Perron, 1998), and providing efficient algorithms to explore possible segments (e.g., Bai, 1997;

Bai and Perron, 2003; Jackson et al., 2005; Killick et al., 2012; Fryzlewicz, 2014; Yau and Zhao,

2016). Depending on whether a CP detection method explores all possible partitions simultaneously

or sequentially for a subset of segments, CP detection can be classified as global (or exact) or local,

respectively. In contrast, the Bayesian CP literature has mainly focused on developing schemes for

efficiently drawing from the posterior distribution of the CPs (e.g., Carlin, Gelfand and Smith, 1992;

Stephens, 1994; Chib, 1998; Giordani and Kohn, 2008; Maheu and Song, 2018) and on forecasting

future breaks (e.g., Pesaran, Pettenuzzo and Timmermann, 2006; Koop and Potter, 2007). Also, the

criteria used to determine the number of CPs and their locations differ across paradigms. Frequentists

mostly rely on (several variants of) the Schwarz information criterion (SIC; e.g. Yao and Au, 1989;

Liu, Wu and Zidek, 1997; Ciuperca, 2011; Fryzlewicz, 2014), the sum of squared residuals (e.g. Bai,

1997; Bai and Perron, 1998), and the two-stage minimum description length (MDL) criterion (e.g.

Davis, Lee and Rodriguez-Yam, 2006; Davis, Yau et al., 2013; Yau and Zhao, 2016), while Bayesians

typically maximize the marginal likelihood (Chib, 1998; Bernardo, Bayarri, Berger, Dawid, Heckerman,

Smith and West, 2007; Bauwens, Dufays and Rombouts, 2014b; Du, Kao and Kou, 2016). While most

criteria used by frequentists consistently estimate the number and locations of the breaks, this is rarely

investigated in the Bayesian framework. An exception is Du, Kao and Kou (2016), who establishes

the consistency of the marginal likelihood to estimate the total number and location of the CPs for a

piecewise-constant model.

CP model selection and combination have also been intensively studied in frequentist and Bayesian

paradigms (e.g., Chan, Yip and Zhang, 2014; Maheu and Gordon, 2008). Yet, links between the two

statistical frameworks have been overlooked. Our article addresses this gap by showing that the MDL

criterion corresponds to the marginal likelihood of a Bayesian model with a specific class of prior

distributions. Thanks to this link, the marginal likelihood inherits the asymptotic properties of the

MDL criterion, and can further be used to detect CPs, assign posterior probabilities to competing

CP methods, and select or combine CP methods via their posterior probabilities. Moreover, popular

state-of-the-art CP methods can be adapted to the proposed marginal likelihood to improve their

performance.

Similar links have been proposed in the model selection literature, in particular for normal-linear

models. However, none of them tackles the CP detection problem. For example, Smith and Spiegel-

halter (1980) propose deterministic functions linking the (logarithm of the) Bayes factors (ratios of

marginal likelihoods) of normal-linear regression models to the Schwarz or Akaike information criteria,

but their focus is on how the prior specifications impact the Bayes factor. In the same vein, Kass

and Raftery (1995) emphasize that the SIC can be viewed as a rough asymptotic approximation of

the (logarithm of the) Bayes factor that avoids specifying priors. Hansen and Yu (2001) recall that

the MDL criterion is a first-order approximation of the marginal likelihood. They also show that the

marginal likelihood can be understood as an alternative description length criterion, referred to as
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“mixture MDL.” However, these links are mainly asymptotic, the focus is on variable selection, and

they ignore structural change. Our article extends this literature to CP detection for normal-linear

regression models by (i) providing a class of proper priors belonging to the Normal Inverse-Gamma

(NIG) distributions that leads to an exact (and thus finite-sample) equivalence between the marginal

likelihood of the CP model and the MDL criterion, and (ii) allowing the variance of linear models to

vary over time.

The proposed calibration has major implications for frequentist and Bayesian CP approaches.

Researchers typically obtain distinct breakpoints in applied settings when different (state-of-the-art)

local or global CP detection methods are used. Providing a hyperparameter calibration that leads to an

exact link between the marginal likelihood and a frequentist information criterion allows frequentists to

rely on the Bayesian framework, make probabilistic statements about competing models, and combine

or select candidate models via their posterior probabilities. In addition, frequentists can rely on

Bayesian credible intervals for the break locations rather than confidence intervals. The former are

straightforward to compute and have an advantage over the latter as they do not overlap and remain in-

sample. Finally, the stopping rule of several sequential detection methods, such as binary segmentation,

can be adapted to reflect a probabilistic statement between competing models. This feature strongly

improves the performance of sequential methods. The proposed framework also benefits Bayesians. It

provides hyperparameter values that motivate the prior specification of the Bayesian CP model as they

allow the marginal likelihood to inherit asymptotic properties established in the frequentist literature.

Asymptotic properties for the marginal likelihood have been developed in Du, Kao and Kou (2016)

for piecewise-constant models. The proposed link allows us to extend this result to piecewise-linear

Bayesian normal regression models. The consistency of the marginal likelihood directly follows from

the theoretical works of Davis, Lee and Rodriguez-Yam (2006); Davis, Yau et al. (2013). Additionally,

our framework accounts for future breaks in long time series context. It is worth noting that Bayesian

methods that allow for future breaks, such as Pesaran, Pettenuzzo and Timmermann (2006), Koop

and Potter (2007), and Maheu and Song (2018), cannot be applied to long time series due to their

algorithmic complexity.

In practice, global detection methods cannot always be applied due to their computational cost.

Local approaches, such as binary segmentation and its extensions, are feasible alternatives (e.g., Bai,

1997; Fryzlewicz, 2014; Yau and Zhao, 2016; Korkas and Fryzlewiczv, 2017). Our article broadens

the set of existing CP detection methods in three ways: (i) by proposing three local algorithms that

take advantage of the probabilistic representation of the MDL criterion, (ii) by adapting a fast and

deterministic global method following Eckley, Fearnhead and Killick (2011), and (iii) by showing how

to compute credible intervals for the estimated CPs and regression parameters, which account for

both in-sample and out-of-sample breaks as well as model uncertainty. These novel approaches are

contrasted with existing ones using simulated data. They detect and locate breaks with the same or

better accuracy than existing methods. Two applications illustrate the relevance of combining local

CP detection methods when dealing with long time series and forecasting. In the first application, we

estimate a five-factor Fama-French CP model over a long time period by combining local CP methods.

We explore the evolution of model parameters over time while accounting for both method and break

uncertainty. The large set of detected breakpoints allows us to accurately infer the break process

and to provide credible intervals for model parameters when future breakpoints occur. In the second

application, we forecast the monthly U.S. inflation and demonstrate that accounting for breaks and

method uncertainty leads to significant improvements in the predictive performance of the model in

terms of root mean square forecast errors and mean absolute forecast errors. In particular, allowing

for an out-of-sample break leads to better predictions over longer time horizons.

The article is organized as follows. In Section 2, we present the methodology. Section 3 introduces

adapted local and global CP detection methods that build upon the probabilistic representation of

the MDL criterion. We test how the adapted methods collectively perform in a simulation exercise

in Section 4. Section 5 proposes a full Bayesian model providing posterior distributions that account

for break uncertainty and model uncertainty. Section 6 develops the two applications, and Section 7

concludes.
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2 Change-point framework

2.1 Model

Consider the following linear regression model with no structural breaks:

yt = β0 + β1xt,1 + . . .+ βK−1xt,K−1 + σϵt = x′
tβ + σϵt , t = 1, . . . , T , (1)

where yt is the observed dependent variable, xt = (1, xt,1, . . . , xt,K−1)
′ is a (K × 1) vector including

a constant and K − 1 covariates, β = (β0, β1, . . . , βK−1)
′ and σ > 0 are unknown parameters, and

ϵt ∼ iidN (0, 1).1 In applied settings, it is often unreasonable to assume that β and σ are time-

invariant, especially for long time series. A more flexible linear specification allowing for m ≥ 0 breaks

(m+ 1 regimes) in the model parameters is:

yt = x′
tβi + σiϵt , for τi−1 < t ≤ τi , i = 1, . . . ,m+ 1 , (2)

where τi denotes the i-th CP location on the [0, T ] time segment, and βi and σi are the model parame-

ters holding for the period starting after time τi−1 and ending at time τi, with τi−1 < τi. The boundary

conventions τ0 = 0 and τm+1 = T are used. To simplify notation, the vectors of observations belonging

to segment i are denoted by yi = y(τi−1+1):τi
= (yτi−1+1, . . . , yτi)

′ for the dependent variable and

Xi = [xτi−1+1 xτi−1+2 · · · xτi
]′ for the covariates. Specification (2) encompasses stationary piecewise-

linear autoregressive processes of order qi (i.e., CP-AR(qi)). We collect the CPs located on the ]0, T [

interval in vector τ = (τ1, . . . , τm)′ and gather the segment parameters in Θ = {θ1, . . . ,θm+1}, where
θi = (βi, σ

2
i ). The number of CPs, dim(τ ) = m, is typically restricted by a fixed upper bound M ≤ T .

We further assume that X′
iXi is nonsingular for all considered segments. The purpose of a CP method

is to estimate the number of CPs m, break locations τ , and regression parameters Θ.

2.2 Marginal likelihood

Given the wide variety of CP methods available, model selection and model averaging are of particular

interest in our setup. Model selection deals with model uncertainty by selecting one model from a set

of P candidate models {M1, . . . ,MP } based on some selection criterion (e.g., AIC, SIC, MDL). Model

averaging deals with model uncertainty by combining several models from a set of candidate models

based on a weighting scheme. In Bayesian statistics, dealing with model uncertainty is straightforward

in theory: Model selection and model averaging can be achieved by using model posterior probabili-

ties. To compute these probabilities, the marginal likelihood function under each model needs to be

evaluated. In general, this step is not trivial. However, in some specific cases, analytical expressions

exist. For instance, in the context of normal-linear regression with no structural change, the marginal

likelihood exhibits a closed-form expression for NIG priors (see, e.g., Fernandez, Ley and Steel, 2001).

This closed form extends to piecewise-linear models conditional on the CPs (see, e.g., Du, Kao and

Kou (2016) and Proposition 1 below). Without loss of generality and for the sake of simplicity, we

drop the conditioning on Xi in what follows. Consider first the general expression of the marginal

likelihood for the set of m+ 1 independent regimes associated with vector τ :

f(y1:T |τ ) =
m+1∏
i=1

f(yi|τ ) , (3)

where f(yi|τ ) is the density of observing the data over the period ]τi−1, τi], and where the model

parameters Θ have been integrated out.2 Proposition 1 recalls a well-known result in Bayesian statistics

1
While restrictive, several recent theoretical and empirical CP frameworks rely on the normality assumption (see, e.g.,

Rigaill, Lebarbier and Robin (2012); Maheu and Song (2014, 2018); Smith, Bulkley and Leslie (2020) in the Bayesian
paradigm and Safikhani and Shojaie (2020) in the frequentist paradigm).

2
When the segments are not independent, (3) can be replaced with f(y1:T |τ ) =

∏m+1
i=1 f(y(τi−1+1):τi

|τ ,y1:τi−1
),

where y1:0 = {∅}.
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and shows the prior distributions as well as the analytical expression of the marginal likelihood, which

are used throughout the article.

Proposition 1. Consider the piecewise-linear regression model and the following NIG priors:

βi|σ
2
i , τ ∼ N

(
βi, σ

2
i giM

−1
i

)
,

σ2
i |τ ∼ IG

(νi
2
,
si
2

)
,

(4)

for i = 1, . . . ,m + 1, where βi ∈ RK , Mi ∈ RK×K is a definite positive matrix, vi > 0 and si > 0

are the hyperparameters holding in segment i. The marginal likelihood of the observations belonging to

segment i is then given by:

fβi(yi|τ ) = (2π)−
ni
2

(
|M̄−1

i |
|giM

−1
i |

) 1
2
Γ( ν̄i

2 )

Γ(νi

2 )

( si2 )
νi
2

( s̄i2 )
ν̄i
2

, (5)

where ν̄i = ni+νi, s̄i = si+si+β′
ig

−1
i Miβi+β̂

′
iX

′
iXiβ̂i−β̄

′
iM̄iβ̄i, β̄i = [g−1

i Mi+X′
iXi]

−1(g−1
i Miβi+

X′
iXiβ̂i

)
and in which β̂i and si denote the ordinary least-squares (OLS) estimates of βi and the related

sum of squared residuals computed for segment i, respectively.

Proof. See the online Appendix, Section I.A.

Marginal likelihood fβi(yi|τ ) in (5) depends on hyperparameters βi, Mi, vi, and si, that we treat

as constants (see, e.g.., Du, Kao and Kou, 2016). We further propose to set the constants so that

fβi(yi|τ ) reduces to the MDL criterion, which is commonly used in the frequentist CP literature

to estimate piecewise-linear regression models (see Section 2.3). With well-justified presets at hand,

fβi(yi|τ ) can be used to compute model posterior probabilities and make probabilistic statements

about competing models.

To illustrate the latter point, consider the set of P vectors {τ 1, . . . , τP } and let prior f(τ p) be

uniform. Then, the posterior probability of τ p (p = 1, . . . , P ) is given by:

f(τ p|y1:T ) =
f(y1:T |τ

p)∑P
j=1 f(y1:T |τ

j)
. (6)

By using (3) and (5) in (6), the latter expression becomes feasible. Thus, we can use these model
posterior probabilities for, say, selecting the candidate vector of CPs that exhibits the greatest pos-

terior probability (i.e., maxp∈{1,P} f(τ
p|y1:T )) for the given data, or for combining CP methods and

averaging posterior quantities of interest by weighting these posterior quantities by the corresponding

model posterior probabilities (see Section 5). For instance, model uncertainty can be accounted for

in the estimates of, say, parameter θt (t = 1, . . . , T ), by mixing the parameter posterior densities as

follows:

f(θt|y1:T ) =

P∑
p=1

f(θt|y1:T , τ
p)f(τ p|y1:T ) =

P∑
p=1

f(θt|y(τ
p
kp−1+1):τ

p
kp

)f(τ p|y1:T ) , (7)

where t ∈ ]τpkp−1, τ
p
kp
] and index kp denotes the kth segment of the pth model (kp = 0, . . . ,mp + 1).

These model selection and model combination approaches are illustrated in Sections 4 and 6. In the

context of forecasting, the h-step-ahead (h ≥ 1) predictive density would similarly account for model

uncertainty through the weighted average:

f(yT+1:T+h|y1:T ) =

P∑
p=1

f(yT+1:T+h|y(τ
p
kp−1+1):τ

p
kp

)f(τ p|y1:T ) . (8)

Section 6 explores forecasting performance accounting for model uncertainty.
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2.3 MDL marginal likelihood

As emphasized earlier, the MDL criterion is widely used to (consistently) estimate piecewise-stationary

autoregressive models (AR; e.g., Davis, Lee and Rodriguez-Yam, 2006; Killick, Fearnhead and Eckley,

2012; Yau and Zhao, 2016; Ng, Pan and Yau, 2022). In this section, we build upon Proposition 1

and set the hyperparameters of the NIG priors so that the marginal likelihood reduces to the MDL

criterion.

For a piecewise-linear model with m breaks, the MDL criterion reads:

MDL(m, τ ) = ln f(y1:T |τ , Θ̂MLE)− ln+(m)− (m+ 1) lnT −
(
K + 1

2

)m+1∑
i=1

lnni , (9)

where f(y1:T |τ , Θ̂MLE) is the conditional likelihood function, Θ̂MLE is the set of model parameters

maximizing the likelihood for the given vector τ , ln+(x) = max {0, ln(x)} for x ≥ 0, and ni = dim(yi).

Proposition 2 formally establishes the link between a class of Bayesian CP models and the MDL

criterion.

Proposition 2. Under the setting in Proposition 1, let the hyperparameters of the NIG priors be given

by:

βi = β̂i , Mi = X′
iXi , gi = fini − 1 , fi =

 ((m+)
1

m+1 )n
1
4
i T

( 1√
ni

+ 1)
1
2

 2
K

exp

(
2

K
∆R4,i

)
, (10)

νi = kini , si = kisi , ki =
1

√
ni

, (11)

for i = 1, . . . ,m+1, where m+ = max {1,m}, ∆R4,i = R4(
ni+νi

2 )−R4(
νi

2 ) with R4(x) =
1

12x −
1

360x
3 +

1

1260x
5 for x > 0. Then, the logarithm of the marginal likelihood conditional on τ is given by:

ln fMDL(y1:T |τ ) =
m+1∑
i=1

ln f β̂i(yi|τ ) = MDL(m, τ ) +O
(
min
i
(ni)

− 7
2

)
, (12)

where mini(ni) denotes the number of observations in the smallest regime.

Proof. See the online Appendix, Section I.B.

Remark 1. The hyperparameters of the inverse-gamma distribution imply that the maximum likelihood

estimator si
ni

lies in a high-density region of the prior as it falls between the mode and the expectation;

see the online Appendix, Section I.C.

Remark 2. The approximation order in (12) can be made arbitrarily small by selecting a high-order

N in the remainder ∆RN,i; see the online Appendix, Section I.B.

In the rest of the article, we refer to the marginal likelihood obtained in Proposition 2 as the MDL

marginal likelihood. Given that Mi = X′
iXi in (10), the priors suggested in Proposition 2 belong to

the class of g-priors (see, e.g., Zellner, 1986; Fernandez, Ley and Steel, 2001).

Besides being simple to use, the calibration proposed in Propositions 2 is of great interest to link

the frequentist and Bayesian statistical paradigms. For example, the NIG-prior distributions used

in the proposition are also used in many Bayesian CP papers to improve the estimation efficiency

(see, e.g., Geweke and Jiang, 2011; Rigaill, Lebarbier and Robin, 2012; Maheu and Song, 2014).

Our calibrations further extend the consistency properties of the MDL criterion to these Bayesian

CP setups. The proposed prior hyperparameters lead to an exact equivalence between the marginal

likelihood and the MDL criterion. Davis, Yau et al. (2013) show that the MDL criterion is a consistent

estimator of the number of CPs, their locations, the order of the linear model, and the parameter values

in each segment for a broad class of piecewise-linear stationary autoregressive processes, which nest
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canonical model (2). These asymptotic properties also apply to the MDL marginal likelihood under the

regularity conditions stated in Davis, Yau et al. (2013) and under the presets given in Proposition 2.

Moreover, by establishing the equivalence between the MDL criterion and the marginal likelihood for

a specific class of priors, we extend the consistent maximum likelihood estimator of Du, Kao and Kou

(2016) from a piecewise-constant to a piecewise-linear multiple regression setup. The consistency of

the MDL marginal likelihood is shown numerically in Table 4 of the simulation section.

3 Revisiting CP methods

In this section, we revisit three popular CP methods (two local ones based on binary segmentation

and the efficient and global method of Bai and Perron (2003)) by adapting them to the MDL marginal

likelihood criterion. In addition, we propose a fourth method that “prunes” the adapted global ap-

proach and reduces its complexity to an order lower than O(T 2). The simulation results reported in

Section 4 demonstrate that the pruning achieves a good compromise between accuracy in CP detection

and computational cost, particularly for long time series.

3.1 Binary and wild binary segmentation

Binary segmentation, denoted by BS or BS(a, b) hereafter, is a generic procedure that sequentially

detects multiple breaks in time series over a finite time segment [a, b] with a < b (see, e.g., Gupta and

Chen, 1996). BS relies on the “cumsum” statistic:

ỹa,b(τ) =

√
b− τ

(b− a+ 1)(τ − a+ 1)

τ∑
t=a

yt −

√
τ − a+ 1

(b− a+ 1)(b− τ)

b∑
t=τ+1

yt , (13)

where a < τ < b. When searching over the entire time span [1, T ], BS(a, b) starts by setting a = 1 and

b = T and then operates as follows:

• for τ ∈ (a, b), compute τ = argmaxτ ỹa,b(τ);

• if ỹa,b(τ) > δT , add τ to the set of CPs. Then, run BS(a, τ) and BS(τ , b).

If none of the CP candidates yield a statistic ỹ1,T (τ) strictly above δT , the algorithm stops, and the

series does not exhibit structural change. Threshold δT is chosen based on theoretical and empirical

considerations. As noted by Fryzlewicz (2014), if the series exhibits similarities across regimes (such

as short regime duration or offsetting jumps at adjacent segments), BS can lead to a test statistic

that is below the threshold. To overcome this weakness, this author proposes an alternative procedure

called “wild binary segmentation” and denoted as WBS or WBS(a, b) hereafter. When applied to the

observations belonging to the entire interval [1, T ], the algorithm starts by setting a = 1 and b = T

and proceeds as follows:

• generate a set of N random intervals {an, bn}
N
n=1 within [a, b].

• for each interval, apply BS(an, bn) and save the maximum value of the statistic

ỹa,b(τ) = maxn∈[1,N ]ỹan,bn
(τn), where τn = argmaxτ ỹan,bn

(τ).

• if ỹa,b(τ) > δT , set τ as a new CP. Then, run WBS(a, τ) and WBS(τ , b).

Both BS and WBS rely on fitting criterion (13). By replacing this criterion with:

ỹMDL
a,b (τ) = ln

fMDL(ya:b|τ = {a− 1, τ, b})
fMDL(ya:b|τ = {a− 1, b})

, (14)

threshold δT can be given a probabilistic justification. That is, when ỹMDL
a,b (τ) > δT = 0, the posterior

probability of a model exhibiting a break at location τ on interval [a, b] is greater than that of its no-

break counterpart. When δT > 3, the probability in favor of a break is greater than 95%. By setting
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δT = 3, we can readily adapt BS and WBS to the Bayesian criterion (14). We call these two modified

CP methods based on the MDL marginal likelihood “BSMDL” and “WBSMDL,” respectively, and

test their performance in the simulation section.3

3.2 Bai and Perron (2003)’s approach

The efficient global algorithm proposed by Bai and Perron (2003) is one of the most popular algorithms

for detecting multiple CPs in linear regression models. For a bounded set of breaks m = 1, . . . ,M ,

this algorithm relies on dynamic programming to determine the CP locations; it minimizes the sum

of squared residuals for each number of breakpoints in the set. The procedure requires at most least-

squares operations of O(T 2), which is far fewer than the brute force approach of O(Tm) for any m > 2.

It further handles minimum regime duration and can readily be used with a specific class of information

criteria.

A CP information criterion can be optimized with this algorithm if it can be decomposed into the

following additive components:

IC(m, τ ,y1:T ) = u(m,T ) +

m+1∑
i=1

v(yi|τi−1, τi) , (15)

where u(m,T ) is a function that only depends on the number of CPs and on the sample size, and

where v(yi|τi−1, τi) is a function that depends on the starting and terminal dates τi−1 and τi. For

instance, Rigaill, Lebarbier and Robin (2012), Maheu and Song (2014) and Du, Kao and Kou (2016)

use different marginal likelihood criteria based on different NIG priors that comply with (15).

We adapt this global method by replacing the sum of squared residuals with the MDL marginal

likelihood. Given m CPs, MDL criterion (9) verifies (15). Indeed, as Eckley, Fearnhead and Killick

(2011) point out, no heuristic algorithms such as the genetic ones proposed in Davis, Lee and Rodriguez-

Yam (2006) or Li and Lund (2012) are necessary for finding the segments that maximize the MDL

criterion. We call this global CP method “GMDL” and explore its performance in the simulation

section. When multiple m values are explored, one can readily use posterior probabilities (6) to assess

the most likely number of breaks.

Global segmentation based on efficient algorithms of order O(T 2) can be computationally demand-

ing for long time series. This has motivated researchers to develop local alternatives that exhibit less

complexity than O(T 2). Below, we propose a pruned global method of complexity O(T ). As shown

in Bai and Perron (2003), the total number of possible segments in their approach is at most T (T+1)
2 .

Figure 1 illustrates this statement for a sample of size T = 10 with a minimal duration of one time

period before a potential break occurs.

To reduce the complexity of this global method, we only need to decrease the number of considered

segments in Figure 1 by a function proportional to T . In the spirit of WBS, we can evaluate αT

randomly-selected segments, where α is a fixed constant.

Alternatively, following the LRSM method of Yau and Zhao (2016), we first estimate a set of

potential CPs, J ∗ = {τ∗1 , . . . , τ
∗
m

∗}, with a local method and then find the best subset of CPs via a

global method, such that: (
m∗∗,J ∗∗) = argmaxm≤m

∗
,J ⊆ J ∗MDL(m,J ) . (16)

This two-step approach is now standard in the literature (see Chan, Yip and Zhang, 2014; Fryzlewicz,

2014). We replace the MDL criterion of the scanning window proposed in the original LRSM approach

3
Note that this adaptation is proposed for the BS algorithm in the context of CP Poisson processes by Young Yang

and Kuo (2001). In that case, however, the threshold δT is set to 0, and the prior for τ is a noninformative (uniform)
distribution.
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Terminal date

1 2 3 4 5 6 7 8 9 10

S
ta
rt
in
g
d
a
te

1 O O X X X X X X X X
2 O O X X X X X X X
3 O O X X X X X X
4 O O X X X X X
5 O O X X X X
6 O O X X X
7 O O X X
8 O O X
9 O O
10 O

Figure 1: Global method—number of possible segments. The vertical number indicates the initial date of a segment and the
horizontal number indicates the ending date. We set the sample size T = 10 with a minimum regime duration of one observation
(since the start) and an unspecified number of breaks m. For instance, in the first row, possible segments are 1 to 3, 1 to 4,
..., 1 to 10, where the initial and in-between-break dates of the possible segments are denoted by O, and the ending dates are
denoted by Xs. In the fourth row, possible segments are 4 to 6, 4 to 7,..., 4 to 10. Setting a fixed value for m would imply
further restrictions (or O terms); see Bai and Perron (2003, Figure 1).

with criterion (14) and compute J ∗ as follows:

J ∗ =

{
l ∈ {h, h+ 1, . . . , T − h} : ỹMDL

1,T (l) = max
t∈(l−h,l+h)

ỹMDL
1,T (t)

}
, (17)

where h is the closest integer to lnT and t ∈ (l − h, l + h) is the scanning window centered on l and

browsing the entire [1, T ] segment. Since radius h is a function of T , the complexity of the method

is at most O
(
( T
lnT )

2
)
. While this improvement with respect to O

(
T 2
)

seems small, the number

of segments is drastically reduced in applied settings. For instance, for each simulated series of the

six DGPs considered in the simulation section, the number of potential breaks never exceeds 8% of

the sample size. Figure 2 illustrates the pruned version of the global method for a sample size of ten

observations and potential locally estimated break at periods J ∗ = {4, 8}. We call this pruned version

of the GMDL method “PGMDL” and test its performance in the simulation section.

Terminal date

1 2 3 4 5 6 7 8 9 10

S
ta
rt
in
g
d
a
te

1 O O O X O O O X O X
2 O O X O O O X O X
3 O O O O O X O X
4 O O O O X O X
5 O O O X O X
6 O O X O X
7 O O O X
8 O O X
9 O O
10 O

Figure 2: Pruned global method—number of possible segments. The vertical number indicates the initial date of a segment
and the horizontal number indicates the ending date. We set the sample size to T = 10 with a possible set of locally estimated
breaks at periods J ∗

= {4, 8}, and a maximal number of breaks set to M = m
∗

= 2. For instance, in the first row, possible
segments are 1 to 4, 1 to 8 and 1 to 10, where the initial and in-between-break dates of the possible segments are denoted by
O while the terminal dates are denoted by Xs. In the fourth row, possible segments are 4 to 8 and 4 to 10.

4 Simulation study

We assess the performance of the CP methods proposed in Section 3 in a simulation study. The goal

is to: (i) compare the performance of the adapted CP methods proposed in Section 3 with existing

ones, (ii) illustrate how we can capture the uncertainty related to the choice of a CP method and the
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number of breaks for inference, and (iii) show the computational gain of combining local methods for

detecting breakpoints in long time series. The following CP methods are considered:

1. BS: Binary segmentation, a local procedure implemented in the R package wbsts (Korkas and

Fryzlewiczv, 2017; Korkas and Fryzlewicz, 2020). We use function wbs.lsw(...,M=1) for de-

tecting the breakpoints, keeping the default values for all other function arguments.

2. WBS: Wild binary segmentation, a local procedure presented in Korkas and Fryzlewiczv (2017)

and also implemented in the R package wbsts. Again, function wbs.lsw(...,M=0) is used,

keeping the default values for all other function arguments.

3. LRSM: The likelihood ratio scan method, a local procedure proposed by Yau and Zhao (2016) and

available at http://wileyonlinelibrary.com/journal/rss-datasets. We set the window size

to h = max{50, 2 log(T )2}, the maximum AR order to 10, the minimum distance between two

CPs to 50, and the minimum distance between the relative position of two CPs to 1%.

4. BSMDL: The binary segmentation procedure based on break detection criterion (14). Thresh-

old δT is set to 3.

5. WBSMDL: The wild binary segmentation procedure based on break detection criterion (14).

Again, threshold δT is set to 3.

6. PGMDL: The pruned global MDL method based on (17). We use Bai and Perron (2003)’s

algorithm to optimize the MDL criterion given the set of potential breakpoints obtained with

scan statistics (17). This is also a local method. The maximum number of breaks and the

minimum regime duration are set to 50 and 10K, respectively.

7. GMDL: The global MDL method as described under (15). This corresponds to Bai and Perron

(2003)’s approach applied to the MDL criterion for a given number m of breaks. The upper

bound of m and the minimum regime duration are set to 50 and 10K, respectively.

8. SEL: This selection scheme chooses the method among local methods 1–6 that delivers the highest

posterior probability according to (6).

The simulated data considered are the first six stationary AR linear processes of Yau and Zhao

(2016, sec. 4), which are reproduced in Table 1. All DGPs are of autoregressive order up to two.

DGP A is a stationary AR(1) model with no structural change. DGPs B and C are two standard

piecewise-stationary AR processes with two breaks in the conditional mean occurring far from the

start and end periods, and with constant variance. DGP D is a single-CP model with an early break

(after 50 observations) in mean and constant variance. The last two DGPs, E and F, are strongly

persistent stationary piecewise-linear AR processes with changing means and variances, for which

structural change is typically more difficult to detect: the near-unit-root AR parameter of DGP E is

constant across segments, while the autocorrelation function of DGP F does not change much across

segments.

Table 1: Data generating processes.

DGP: yt = β0 + β1yt−1 + β2yt−2 + ϵt where ϵt ∼ iidN (0, σ
2
)

DGP #
breaks

Break
location

β0 β1 β2 σ
2 Description

A 0 {–} {0} {–0.7} {0} {1} Stationary AR(1), no break
B 2 {514,768} {0,0,0} {0.9,1.69,1.32} {0,–0.81,–0.81} {1,1,1} Piecewise-stationary AR(2), two breaks
C 2 {400,612} {0,0,0} {0.4,-0.6,0.5} {0,0,0} {1,1,1} Piecewise-stationary AR(1), two breaks
D 1 {50} {0,0} {0.75,–0.5} {0,0} {1,1} Piecewise-stationary AR(1), one early break
E 2 {400,750} {0,0,0} {0.999,0.999,0.999} {0,0,0} {1,2.25,1} Piecewise-near-unit-root AR(1), two breaks
F 2 {400,750} {0,0,0} {1.399,0.999,0.699} {–0.4,0,0.3} {1,2.25,1} Piecewise-near-unit-root AR(2), two breaks

NOTE: This table reports the DGPs investigated in Yau and Zhao (2016, sec. 4) and used in the simulation study.

We perform 1000 replications of the above DGPs and consider two metrics to evaluate the perfor-

mance of the CP methods: (i) the proportion of replications for which a method identifies the true

http://wileyonlinelibrary.com/journal/rss-datasets
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number of breaks, and (ii) the “exact frequency” defined as the proportion of replications for which

a method achieves both the correctly estimated number of breaks and the absolute distance between

each pair of true and estimated break locations within 50 (see Yau and Zhao, 2016, sec. 4.2).

The performance of the eight CP methods for the six DGPs and samples of size T = 1024 is

reported in Table 2. Overall, the methods are reliable, both in detecting the true number of breaks (in

bold) and their locations: 87.5% of the reported experiments (42 out of 48) detect the true number

of breaks more than 70% of the time, and 79.2% of them (38 out of 48) achieve that same level of

accuracy in terms of exact frequency. BS and WBS clearly exhibit the worst overall performance. Note,

however, that all local methods except BS and WBS detect the CPs assuming the true lag orders of the

autoregressive processes.4 Given the latter, the results for BS and WBS are reasonably good and rather

remarkable in the context of the near-unit-root processes E and F. In particular, BS and WBS beat the

local methods LRSM and PGMDL in detecting and locating the breaks of process E.5 As well-known,

structural breaks happening at the beginning or end of the sample are typically more difficult to detect

with standard CP methods (see, e.g., Horváth, Miller and Rice, 2020). In our simulation results, the

adapted global and local methods accurately detect and locate DGP D’s early break. In particular,

the performance of the SEL approach stresses the potential benefits of combining the local methods

to detect early or late breakpoints. Note also that the local methods based on the MDL marginal

likelihood compare favorably with other existing state-of-the-art methods (see, e.g., Yau and Zhao,

2016, Table 3). Notice that WBSMDL outperforms all methods investigated in Table 2 (including the

global method GMDL) for both performance metrics in all investigated DGPs. As expected, the global

GMDL method is very reliable. For this particular Monte Carlo exercise, the SEL method performs

equally well as the GMDL method.

Table 3 shows the average posterior probabilities of each CP method for 1000 replications of the

DGPs. Considering the local CP methods first (left panel), we notice that the percentage of candidate

CP methods with at least two posterior probabilities above the threshold of 10% —mixture metric

“# mix”— is higher than 90% for each DGP. This indicates that no single local method strongly

dominates the others in terms of posterior probabilities. Each local method captures relevant features

of the simulated data. For instance, focusing on DGP A, BSMDL, WBDMDL, LRSM, and PGMDL

are almost all equally valid methods in terms of posterior probabilities, and BS and WBS also display

relatively large values for that metric. While model averaging over the potential number of breaks

has already been investigated (see, e.g., Maheu and Gordon, 2008), we will advocate for averaging

across local methods to reduce the computational cost, improve CP detection, and account for model

uncertainty. Recall from Table 2 that the SEL method appears to be an estimation strategy as accurate

as Bay and Perron’s global method. Table 4 will further show that the computational gains with respect

to the global method can be significant for long time series.

Regarding the global method, the right panel of Table 3 reports the average posterior probabil-

ities for a set of possible number of breaks. As expected, the highest average posterior probability

corresponds to GMDL running with the true number of breaks (in bold). The average posterior prob-

abilities are much more favorable to the true model when multiple values for m are explored with a

single global method than when multiple local methods are used. DGPs E and F display somewhat

more diffuse posterior probabilities.

To underscore the usefulness of combining local CP methods in long time series, we simulate 100

series with DGP B, varying in size from T = 210 = 1024 to T = 214 = 16,384 by assuming breaks at

dates τ1 = 0.5T and τ2 = 0.75T . Table 4 summarizes the simulation results.

4
Recall that all methods based on the MDL marginal likelihood require OLS estimates —the β̂is defined in (10)

and in Proposition 2— for all relevant segments as an input. For example, criterion (14) used to compute BSMDL and
WBSMDL makes use of the true lag orders of the DGPs in these OLS estimates. In comparison, the CPs obtained via
BS or WBS rely on criterion (13), which does not require any particular DGP.

5
Note that our LRSM simulation results are more favorable for DGP E and F than those reported in Yau and Zhao

(2016, sec. 4). These authors rely on Yule-Walker instead of maximum likelihood estimators and omit the term ln
+
(m)

so that the optimal partitioning algorithm of Jackson et al. (2005) can be used.
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Table 2: Results of the simulation study—performance of the CP methods.

# of detected breaks # of detected breaks

DGP Exact m=0 m=1 m=2 m≥3 Exact m=0 m=1 m=2 m≥3

BS method WBS method

A 48.3 48.3 20.8 19.8 11.1 78.8 78.8 16.8 3.9 0.5
B 33 0 14.1 51.6 34.3 27.5 0 29.1 53.6 17.3
C 83.8 0 0.1 88.6 11.3 84.7 0.4 0 92.3 7.3
D 58.8 12.9 66 13.6 7.5 69.7 21.2 73.7 4.9 0.2
E 66.9 0.3 3.9 90.6 5.2 73.6 5 1.1 89.9 4
F 61.8 0.2 10.4 82.2 7.2 73.3 0 5.8 89.3 4.9

BSMDL method WBSMDL method

A 100 100 0 0 0 100 100 0 0 0
B 98.5 0 0 100 0 99.7 0 0 100 0
C 99.7 0 0 100 0 100 0 0 100 0
D 71.2 2.9 97.1 0 0 100 0 100 0 0
E 69.6 7.3 4.2 86.5 2 84.6 3.4 1.8 93.4 1.4
F 79.2 0 3.6 94.9 1.5 92.5 0 1.3 97.1 1.6

LRSM method PGMDL method

A 100 100 0 0 0 95.3 95.3 3.9 0.8 0
B 99.4 0 0 99.9 0.1 95.1 0 0 95.5 4.5
C 96 0.4 0 96.4 3.2 95.4 0 0 95.5 4.5
D 99.8 0 99.8 0.2 0 95.2 0 95.2 3.8 1
E 55.4 32.3 3.4 62.8 1.5 42.5 0.1 0.6 48.2 51.1
F 91.6 0 2.5 96.2 1.3 70.3 0 0.3 73.7 26

GMDL method SEL method

A 100 100 0 0 0 100 100 0 0 0
B 99.7 0 0 100 0 99.7 0 0 100 0
C 100 0 0 100 0 99.8 0 0 100 0
D 99.9 0 99.9 0.1 0 99.9 0 99.9 0.1 0
E 81.7 2.5 1.1 89.8 6.6 82.7 2.9 1.8 92.1 3.2
F 90.1 0 0.7 94.4 4.9 92.9 0 1.1 96.9 2

NOTE: This table reports the results of the simulation study for the eight CP methods (six local,
one global, and one selection method) for the DGPs of Table 1. All simulated series are of size
T = 1024. Each series has been generated 1,000 times. For each run, the SEL method picks the
local CP method with the highest posterior probability of the six local methods. The “m = ·”
columns report the proportion of total replications for which a method estimates m breaks. Bold
values highlight the true number of breaks in the corresponding DGP. The “Exact” column reports
the proportion of total replications for which a method infers the true number of breaks and achieves
an absolute distance between each pair of true and estimated break within 50.

Table 3: Results of the simulation study—model posterior probabilities.

Local methods GMDL method

DGP # mix BS WBS BSMDL WBSMDL LRSM PGMDL # mix m=0 m=1 m=2 m≥3

A 100 8.2 14.4 19.6 19.6 19.6 18.5 0.2 99.8 0.2 0.0 0.0
B 98.7 0.2 0.3 16.1 7.7 38.2 37.5 1.0 0.0 0.0 99.6 0.4
C 96.1 2.1 2.4 17.9 7.8 27.7 42.1 1.7 0.0 0.0 99.2 0.8
D 98.6 0.7 0.3 0.0 13.3 44.6 41.1 1.1 0.0 99.5 0.5 0.0
E 93.5 3.8 6.1 14.6 23.8 30.1 21.6 29.2 2.8 2.0 84.1 11.1
F 94.8 1.6 1.8 8.7 13.4 43.9 30.6 13.3 0.0 1.0 91.6 7.5

NOTE: This table reports two metrics related to the model posterior probabilities of six local methods and the global
one for the 1000 replications of the DGPs from Table 1. The “BS”, ..., “PGMDL”, and “m = ·” columns show the
average posterior probabilities for each DGP. Bold values for the GMDL method highlight the true number of breaks in the
corresponding DGP. “# mix” designates the percentage of candidate CP methods with at least two posterior probabilities
above the threshold of 10% for each DGP.

Based on the local methods’ computation time, BS and WBS are the fastest algorithms, followed

by BSMDL, LRSM, WBSMDL, and PGMDL. It takes about 12 min on a standard computer (Intel

Xeon Gold 6252 CPU at 2.1 GHz) for the slowest local algorithm to run for the largest sample size.
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Table 4: Results of the simulation study—long time series.

T Time m=m0 |τ̂1 − τ1| |τ̂2 − τ2| MDL Time m=m0 |τ̂1 − τ1| |τ̂2 − τ2| MDL

BS method WBS method

2
10

0.00 57 11.37 39.40 –1534.43 0.00 63 11.48 70.38 –1584.66

2
11

0.00 34 10.00 51.29 –2982.35 0.00 57 10.23 72.21 –2978.50

2
12

0.01 17 9.82 43.76 –6014.65 0.01 60 11.67 59.07 –6013.11

2
13

0.01 19 14.37 48.42 –11682.57 0.01 57 9.26 44.65 –11664.00

2
14

0.03 11 19.73 26.00 –23395.69 0.03 54 13.22 40.91 –23321.18
BSMDL method WBSMDL method

2
10

0.00 99 6.52 3.33 –1500.85 0.19 95 6.64 3.35 –1500.85

2
11

0.01 100 4.63 2.93 –2967.02 0.49 96 4.50 2.89 –2967.02

2
12

0.02 100 5.57 3.33 –5979.61 1.31 96 5.44 3.41 –5979.61

2
13

0.07 100 5.64 3.45 –11636.49 3.99 98 5.78 3.51 –11633.85

2
14

0.22 100 4.74 4.14 –23308.41 12.17 99 4.74 4.15 –23308.41
LRSM method PGMDL method

2
10

0.01 100 8.26 5.41 –1502.28 0.04 99 5.68 5.20 –1502.94

2
11

0.05 100 9.43 7.79 –2967.51 0.12 100 4.62 3.74 –2968.27

2
12

0.17 100 9.33 7.01 –5986.78 0.49 100 4.92 3.81 –5985.29

2
13

0.64 100 10.08 8.17 –11642.16 2.22 100 5.00 4.46 –11634.74

2
14

2.45 100 10.42 10.89 –23310.94 11.58 100 4.70 5.31 –23309.88

GMDL method SEL method

2
10

0.45 99 5.34 3.66 –1500.85 99 5.97 3.36 –1500.85

2
11

2.12 100 3.96 2.90 –2966.46 100 4.39 3.00 –2967.02

2
12

11.85 100 4.44 3.32 –5978.67 100 5.06 3.27 –5979.61

2
13

Computationally too demanding 100 5.21 3.39 –11633.85

2
14

Computationally too demanding 100 4.16 4.14 –23308.41

NOTE: This table reports results of simulations performed with DGP B for a long time series by setting the relative
locations at periods τ1 = 0.5T and τ2 = 0.75T . The results are based on 100 replications. “Time” is the average
estimation time (in minutes). “m=m0” is the percentage of replications in which the true number of regimes has been
detected. “|τ̂i − τi|” (i = 1, 2) is the average of the absolute value of the difference between the estimated CPs and the
true one. “MDL” is the average estimated MDL value. The computational burden prevented the computation of the

GMDL method on series with more than T = 2
12

= 4096 observations.

Turning to the global method, GMDL’s algorithm takes more than eleven minutes to run for a sample

of size 212 = 4096. For the largest sample sizes considered, GMDL is feasible but too demanding

for the 100 replications required for our simulation study. Regarding the detection rates of the true

number of CPs (Column “m=m0”), all approaches except BS and WBS deliver excellent results, as

expected, given the consistency of the MDL criterion. The adapted methods proposed in Section 3

perform very well: The true breaks are detected in at least 95% of the runs. BS and WBS have the

fastest computation time but also the poorest performance.

When assessing whether the estimation of the breaks is accurate in Columns “|τ̂i − τi|” of Table 4,

BSMDL, WBSMDL, and PGMDL are as reliable as the global method. Indeed, these local methods

deliver the largest average MDL values, very close to the averaged exact MDL scores computed with

the GMDL method (when feasible) and larger MDL scores as compared to the LRSM method (also

based on the MDL criterion). These results naturally extend to the SEL method. Overall, for this

particular DGP, BSMDL is the best method as it produces fast and very accurate results. Of course,

BSMDL did not perform as well for DGP E in Table 2. That is why selecting the local method with

the highest posterior probability is preferable in practice, as the true DGP is unknown.

5 Bayesian CP estimation and forecasting

To quantify the uncertainty of the estimated CPs, we propose a full Bayesian framework that accounts

for information regarding the number and location of the CPs provided by an existing CP method.
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Our approach differs in three ways from the Bayesian frameworks of Rigaill, Lebarbier and Robin

(2012) and Maheu and Song (2014), which also address break uncertainty and use NIG priors. First,

we condition on a given number of breaks while they do not. Second, we can handle a broader class

of priors for the CPs, such as the geometric regime duration (as in Chib, 1998) or more complex

distributions such as Poisson or negative binomial (as in Koop and Potter, 2007; Bauwens, Dufays and

De Backer, 2014a). Third, we can use the estimated CPs to set an informative prior on the breakpoints.

To illustrate the latter two features, we focus on a binomial distribution that is more flexible than a

Poisson distribution due to its two hyperparameters and more informative than a negative binomial

distribution since its variance is smaller than its expectation.

Given a vector τ̂ obtained from a CP method, we assume the following prior distribution:

τ̃i ∼ T B(ri, ei) , (18)

for i = 1, . . . ,m, where T B(ri, ei) denotes a binomial distribution with parameters ri and ei, truncated

on support
(⌈

τ̂i−1+τ̂i
2

⌉
,
⌊
τ̂i+τ̂i+1

2

⌋)
, where ⌈·⌉ and ⌊·⌋ are the ceiling and floor functions, respectively.

The two parameters of the binomial distribution are calibrated such that ri =
⌊
τ̂i+τ̂i+1

2

⌋
and E[τ̃i] = τ̂i.

Defining τ̃ = (τ̃1, . . . , τ̃m)
′
, the Bayesian model is completed as follows:

yt|τ̃ ,βi, σ
2
i ∼ N (x′

tβi, σ
2
i ) , for τ̃i−1 < t ≤ τ̃i ,

βi|τ̃ , σ
2
i ∼ N

(
β̂i, σ

2
i gi(X

′
iXi)

−1
)
,

σ2
i |τ̃ ∼ IG

(νi
2
,
si
2

)
,

for i = 1, . . . ,m + 1, where β̂i is the OLS estimates over segment ]τ̃i−1, τ̃i] with τ̃0 = 0, τ̃m+1 = T ,

νi =
√
ni, si =

si√
ni
, and gi =

(
((m

+
)

1
m+1 )n

1
4
i T

( 1√
ni

+1)
1
2

) 2
K

exp
(

2
K∆R4,i

)
ni − 1 with ni = τ̃i − τ̃i−1.

As shown in Proposition 2, βi and σ2
i can be integrated out. We can thus directly sample from

the posterior distribution of the CPs conditioning on the data. Doing so significantly improves the

efficiency of the sampler, as it rules out dependencies between the CPs and other model parameters.

The posterior distribution of τ̃ is given by:

f(τ̃ |y1:T ) ∝ fMDL(y1:T |τ̃ )
m∏
i=1

fB (τ̃i|ri, ei)1
{⌈

τ̂i−1 + τ̂i
2

⌉
≤ τ̃i ≤

⌊
τ̂i + τ̂i+1

2

⌋}
, (19)

where fB (x|ri, ei) denotes the density function of the binomial distribution with parameters ri and ei,

and 1 {•} is the indicator function. To simulate from this posterior, we use the D-DREAM algorithm

(Bauwens, Dufays and De Backer, 2014a). Once the CPs have been sampled, direct sampling from the

posterior distributions of βi and σ2
i is straightforward (see the online Appendix, Section II).

One advantage of the Bayesian paradigm is the flexibility of the prior structure. In a CP framework,

hierarchical priors have been introduced in Pesaran, Pettenuzzo and Timmermann (2006) to learn the

in-sample break process and generate informed future breaks and parameters. We show below how to

adapt our framework to account for one future break.6 We use the following prior distributions:

τ̃m+1|τ̃ ∼ Λ ≡ T + G(rm+1) ,

βm+2|β̂1:m+1 ∼ N

(
1

m+ 1

m+1∑
i=1

β̂i,Σβm+2

)
,

σ2
m+2|σ

2
1:m+1 ∼ IG

(
T

2
,

1
m+1

∑m+1
i=1 si

2

)
,

(20)

6
The framework is easily extended to any number of future breaks, but it makes notations cumbersome.
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where G(rm+1) denotes a geometric distribution with break probability rm+1 = m
T and Σβm+2

stands

for a diagonal matrix with the empirical variance of the OLS estimates as diagonal elements.7 Note

that the deterministic transformation Λ implies that the breakpoint occurs beyond the sample size.

The out-of-sample prior specification in (20) is similar to the one proposed in Pesaran, Pettenuzzo and

Timmermann (2006). Since the information set includes all available data, this prior can be easily

adapted to account for specific features such as negative correlations between parameters over consec-

utive segments (see, e.g., Pástor and Stambaugh, 2001) or persistence found in the OLS estimates.

6 Empirical applications

In this section, we propose two applications to show the practical relevance of our CP framework. The

first application illustrates the computational advantage of using local CP methods when dealing with

a very long time series. It stresses the ability of the MDL marginal likelihood to estimate and combine

multiple CP models, accounting for break and parameter uncertainty. The second application is a

forecasting exercise on the U.S. Consumer Price Index (CPI). It illustrates how combining local or

global methods and incorporating an out-of-sample break can improve forecasting.

6.1 Combination of local CP methods in Fama-French factor models

We revisit the application in Horváth, Miller and Rice (2020) that seeks to detect structural changes in

the parameters of the Fama-French five-factor model (Fama and French, 2015) applied to a portfolio of

U.S. banking sector stocks. Our application considers a longer time horizon, namely daily returns over

a period ranging from July 1st, 1963 to December 30th, 2022. The sample size of 14,979 observations

is substantial. The five-factor model takes the following form :

Rt −RF,t = a+ bMKT(RMKT,t −RF,t) + bSMBRSMB,t

+ bHMLRHML,t + bRMWRRMW,t + bCMARCMA,t + εt , εt ∼ N (0, σ2) ,
(21)

where Rt is the return of the bank portfolio at time t, RF,t is the risk-free rate, RMKT,t is the market

return, RSMB,t is the return on a diversified portfolio of small stocks minus the return on a diversified

portfolio of big stocks; RHML,t is the return of a portfolio of stocks with a high book-to-market (B/M)

ratio minus the return of a portfolio of stocks with a low B/M ratio; RRMW,t is the returns of a

portfolio of stocks with robust profitability minus a portfolio of stocks with weak profitability; and

finally RCMA,t is the return of a portfolio of stocks with conservative investment minus the return of

a portfolio of stocks with aggressive investment.

Five-factor model (21) is expected to exhibit evolving risk exposures over time, and some factors

may not be relevant throughout the entire period. Therefore, to detect the most likely factors that

impact the bank portfolio, we consider the 25 = 32 possible combinations of factors and apply our local

CP methods to each model. This methodology is similar to that used in Meligkotsidou and Vrontos

(2008) and Dufays, Houndetoungan and Coën (2022), which also exploit different sets of explanatory

variables in a CP framework to infer hedge fund investment strategies.

For each of the 32 models, we apply 11 local CP methods. Specifically, we use the BSMDL and

WBSMDL methods (both with five thresholds given by 0, 1, . . . , 4) and the PGMDL method. The

(wild) binary segmentation methods do not require specifying a maximum number of CPs, while we

set this maximum to 99 for the PGMDL method. The estimation time of the local CP methods is at

most 3 min (for the PGMDL) on a standard computer. Once the 32× 11 = 352 models are estimated,

we compare their MDL marginal likelihood and select the most probable model(s). The five most

probable models are reported in Table 5 along with the number of detected breaks, the included risk

7
We assume implicitly that the model has more than two breakpoints since we cannot learn about the break process

with less information.
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factors, the MDL marginal log-likelihoods, and the posterior probabilities. We can see that the bank

portfolio is exposed to all five risk factors since the five best models select this set of factors (FF5) and

their posterior probabilities sum to 100%. The method with the largest posterior probability (91.1%)

identifies 38 CPs, the second-best method captures 39 ones, and so on.

Table 5: Best local CP models.

Ranking

Best 2nd 3rd 4th 5th

Number of CPs 38 39 33 32 43
Set of Factors FF5 FF5 FF5 FF5 FF5
MDL MLL –10,510.90 –10,513.23 –10,518.30 –10,520.32 –10,527.02
Posterior Probability 91.12% 8.81% 0.06% 0.01% 0.00%

NOTE: This table reports the five best local CP models with respect to the MDL marginal log-
likelihood. The top five models (number of CPs and set of factors) are obtained with the local CP
methods over a total of 352 models (32 sets of factors times 11 local methods). FF5 stands for the
five-factor model of Fama and French (2015).

Focusing on the model with the five factors, we apply the Bayesian setup of Section 5 to each of

the CP methods, yielding a mixture posterior that accounts for both break and method uncertainty

in the model parameters. Figure 3 displays the posterior distribution for the model parameters over

the entire time period. Combining the local CP methods with many CPs results in many parameter

shifts. The banking sector is shown to be positively exposed to the market factor (MKT) over the

whole sample, with a level of exposure ranging from 0.5 to 2 and a clear increasing trend in the market

exposure until the mid-90s. The exposure to the other factors is null, positive or negative depending

on the regime. Notice that the 2007–2008 financial crisis that sparked the Great Recession impacted

all risk factors quite heavily, while the COVID-19 pandemic occurring at the end of the sample seems

also to be detected. According to the asset pricing theory (see, e.g., Cochrane, 2005, chap. 12), the

intercept (the so-called “alpha”) of a linear factor model—the five-factor model here—should be zero.

Without CPs, this is what we find at the 1% significance level. Accounting for CPs, we notice many

regimes in the top-left panel of Figure 3 in which this is also the case as the posterior distribution

overlaps the horizontal dashed line at zero. However, we can also identify some periods for which the

alpha is away from zero, for instance, at the beginning of the sample. Explaining occasional persistent

deviations from zero for the intercept is beyond the scope of this illustrative application. Additional

robustness checks showing that the detected CPs are not driven by the volatility dynamics only and

that our choice of priors has no noticeable impact on the posterior of the model parameters can be

found in the online Appendix, Section III.A.

Given the significant number of CPs identified, we can gain insights into the break process and

make inference about model parameters accounting for a possible future break. For example, we can

examine the 38 CPs detected by the most probable model and use prior (20) to infer the bank’s

market exposure following a future break. Doing so yields a 95% credible interval of [0.69; 1.63] for

bMKT. Thus, the banking sector is likely to remain highly exposed to the market in the upcoming

period even in the case in which a structural shift occurs.

To verify the validity of our local CP results, we also estimate the five-factor model with the global

GMDL method with a maximum of 80 regimes. In Table 6, we report the five best models according

to their MDL marginal log-likelihood. The estimation procedure takes approximately two hours to run

and identifies a number of CPs ranging from 33 to 40, with a mode at 36. Focusing on the best GMDL

model and its 36 detected breaks, we find that one out of 36 breaks is at a distance of 230 days, five

breaks are within a distance of 32 days, while all remaining breaks are within a range of nine days or

less to the CPs identified by the local methods. Figure 4 highlights the very goodmatch between the

mixture of local CPs and the GMDL in terms of the posterior probability of CPs over time.
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Figure 3: Mixture of marginal posterior distributions. The plots show the mixture of marginal posteriors of the Fama-French
five-factor model parameters. These posteriors are computed with the full Bayesian setup of Section 5. The mixing weights are
the posterior probabilities of the eleven CP local methods.

Table 6: Best GMDL models.

Ranking

Best 2nd 3rd 4th 5th

Number of CPs 36 37 35 38 34
MDL MLL –10,443.83 –10,444.22 –10,444.74 –10,445.47 –10,446.61
Posterior Probability 41.53% 28.19% 16.73% 8.12% 2.58%

NOTE: This table reports the five best GMDL models with respect to the MDL marginal log-
likelihood for the five-factor model of Fama and French (2015). In the estimation, we set a maxi-
mum number of 80 regimes.

6.2 Forecasting the U.S. consumer price index

For the second illustration, we use our CP methods to forecast the monthly U.S. CPI. We consider the

series yt = 1200× CPIt−CPIt−1

CPIt
, where CPIt denotes the CPI in month t. The series ranges from January

1947 to August 2022 and includes a total of 908 monthly observations. Following Groen, Paap and

Ravazzolo (2013) and Check and Piger (2021) who find that short-lag CP-AR specifications are most

appropriate to capture the dynamics of U.S. inflation in- and out-of-sample, we explore autoregressive

specifications of order one and two with and without breaks and apply local and global CP detection

methods. The interested reader can find the in-sample parameter dynamics of the CPI series for the

CP-AR(2) estimation in the online Appendix, Section III.B. In this section, we focus on the out-of-
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Figure 4: Change-point probability over time. The figure displays the CP probability over time obtained with the GMDL (in
black) and the mixture of local CP methods (in gray).

sample forecasting exercise. We use an expanding window scheme for the model estimation, starting

with 10% of the observations. Overall, we have 817 out-of-sample observations. We use the same 11

local CP methods used in the previous section. In addition, we apply the global GMDL method with

a maximum of ten regimes. All models are then estimated using the Bayesian framework of Section 5

to generate forecasts at monthly horizons h ∈ {1, 3, 6, 12}.8

The root mean square forecast error (RMSFE) and mean absolute forecast error (MAFE) are

reported in Table 7 for the various models and forecasting horizons. In gray, we highlight the specifi-

cations that belong to the superior set of models at the 95% confidence level for a given loss function

and forecasting horizon (Hansen, Lunde and Nason, 2011). Overall, for both metrics, we notice im-

provements when we use local or global combination methods, in particular when we incorporate a

future break in the modeling and consider forecasting over longer time horizons. Performance compar-

isons between higher-order AR specifications and the lower ones are reported in the online Appendix,

Section III.B. Overall, the former ones do not beat the shorter AR specifications in terms of RMSFE

and MAFE across forecasting horizons.

7 Conclusion

Many methods are available for detecting structural breaks and estimating the corresponding model

parameters in each regime in linear regression models where the number and locations of the breaks

are unknown. These methods mainly differ in the statistical framework under which they are devel-

oped (i.e., Bayesian or frequentist), the fitting criterion used to adjust the data, and the algorithm’s

complexity used to optimize the fitting criterion. Even the most reliable global detection methods can

8
To do so, for each period and each method, we simulate from the posterior predictive distribution and average over

the draws to predict the next h observations. We generate 5000 MCMC draws (with a burn-in of 2000 draws). Afterward,
we combine the predictions from the local or global methods using the posterior model probabilities computed from the
MDL marginal log-likelihood.
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Table 7: Forecasting results.

RMSFE for horizon h = MAFE for horizon h =

Model 1 3 6 12 1 3 6 12

AR(1) 3.00 3.60 3.77 3.83 2.16 2.56 2.67 2.72
CP-AR(1) - Local 2.96 3.28 3.41 3.59 2.08 2.32 2.42 2.59
CP-AR(1) - Local - Future Break 2.95 3.28 3.40 3.57 2.08 2.32 2.41 2.57
CP-AR(1) - Global 2.95 3.24 3.40 3.57 2.07 2.30 2.40 2.54
CP-AR(1) - Global - Future Break 2.95 3.24 3.39 3.54 2.07 2.29 2.39 2.52

AR(2) 2.98 3.45 3.65 3.81 2.12 2.45 2.57 2.70
CP-AR(2) - Local 2.91 3.29 3.41 3.58 2.05 2.32 2.41 2.58
CP-AR(2) - Local - Future Break 2.91 3.28 3.40 3.56 2.06 2.32 2.41 2.56
CP-AR(2) - Global 2.94 3.29 3.40 3.58 2.07 2.31 2.40 2.57
CP-AR(2) - Global - Future Break 2.94 3.28 3.38 3.53 2.07 2.31 2.38 2.53

NOTE: This table reports the root mean square forecast error (RMSFE) and mean absolute fore-
casting error (MAFE) for the various model specifications and forecasting horizons. We highlight
in gray the specifications belonging to the set of superior models at the 95% confidence level for a
given loss function and forecasting horizon (Hansen, Lunde and Nason, 2011). We use the function
mcsTest implemented in the R package rugarch (Ghalanos, 2022). The forecasting exercise is con-
ducted over 817 out-of-sample observations.

deliver quite different numbers and locations of CPs when applied to real-world data. Moreover, these

methods are computationally demanding for large samples.

This article addresses both issues by focusing on normal-linear regression models. We propose a

Bayesian framework that allows researchers to account for model and break uncertainty and obtain

accurate and reliable estimates for large datasets at a low computational cost. Our methodology relies

on a marginal likelihood that exactly corresponds to the MDL criterion widely used in the frequentist

literature for CP detection in linear regression. We establish that a class of hyperparameters for the

NIG prior distribution achieves such an equivalence. We further propose one global and three local

CP methods that build on the probabilistic interpretation of the MDL criterion and on recent CP

algorithms proposed in the literature. We also explore a full Bayesian model that delivers credible

intervals for the CPs and other quantities of interest. Extensive experiments based on simulated data

demonstrate the excellent performance of the proposed approaches to detect CPs relative to other

state-of-the-art methods. Finally, we provide empirical illustrations that show the practical relevance

of our approach when dealing with long time series and forecasting.

Future research could consider developing this framework for normal multivariate piecewise-linear

regressions. For instance, Smith (2022) uses a Normal Inverse-Wishart prior distribution to obtain a

closed-form expression of the marginal likelihood given the breakpoints. We could extend his framework

by calibrating those prior hyperparameters to match a consistent information criterion and using the

efficient breakpoint sampler proposed in this article.

Supplementary materials

The online Appendix contains the proofs of the propositions and remarks, the posteriors of the Bayesian

estimation in Section 5, and additional analyses on the two empirical illustrations.
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Pástor, L., Stambaugh, R.F., 2001. The equity premium and structural breaks. Journal of Finance 56, 1207–
1239.

Pesaran, M.H., Pettenuzzo, D., Timmermann, A., 2006. Forecasting time series subject to multiple structural
breaks. Review of Economic Studies 73, 1057–1084.

Rigaill, G., Lebarbier, E., Robin, S., 2012. Exact posterior distributions and model selection criteria for
multiple change-point detection problems. Statistics and Computing 22, 917–929.

Safikhani, A., Shojaie, A., 2020. Joint structural break detection and parameter estimation in high-dimensional
non-stationary VAR models. Journal of the American Statistical Association 117, 1–26.

Smith, A.F., Spiegelhalter, D.J., 1980. Bayes factors and choice criteria for linear models. Journal of the Royal
Statistical Society B 42, 213–220.

Smith, S.C., 2022. Structural breaks in grouped heterogeneity. Forthcoming in the Journal of Business &
Economic Statistics.

Smith, S.C., Bulkley, G., Leslie, D.S., 2020. Equity premium forecasts with an unknown number of structural
breaks. Journal of Financial Econometrics 18, 59–94.

Stephens, D.A., 1994. Bayesian retrospective multiple-changepoint identification. Applied Statistics 1, 159–178.

Yao, Y.C., Au, S.T., 1989. Least-squares estimation of a step function. Sankhya: The Indian Journal of
Statistics 51, 370–381.

Yau, C.Y., Zhao, Z., 2016. Inference for multiple change points in time series via likelihood ratio scan statistics.
Journal of the Royal Statistical Society B 78, 895–916.

Young Yang, T., Kuo, L., 2001. Bayesian binary segmentation procedure for a Poisson process with multiple
changepoints. Journal of Computational and Graphical Statistics 10, 772–785.

Zellner, A., 1986. On assessing prior distributions and Bayesian regression analysis with g-prior distributions,
in: Goel, P., Zellner, A. (Eds.), Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de
Finetti. Elsevier Science, New York, pp. 233–243.


	Introduction
	Change-point framework
	Model
	Marginal likelihood
	MDL marginal likelihood

	Revisiting CP methods
	Binary and wild binary segmentation
	*BaiPerron2003's approach

	Simulation study
	Bayesian CP estimation and forecasting
	Empirical applications
	Combination of local CP methods in Fama-French factor models
	Forecasting the U.S. consumer price index

	Conclusion

