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recherche du Québec – Nature et technologies.
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les exigences légales associées à ces droits. Ainsi, les utilisateurs:
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Abstract : Monte Carlo (MC) is widely used for the simulation of discrete time Markov chains.
We consider the case of a d-dimensional continuous state space and we restrict ourselves to chains
where the d components are advanced independently from each other, with d random numbers used
at each step. We simulate N copies of the chain in parallel, and we replace pseudorandom numbers on
Id := (0, 1)d with stratified random points over I2d: for each point, the first d components are used to
select a state and the last d components are used to advance the chain by one step. We use a simple
stratification technique: let p be an integer, then for N = p2d samples, the unit hypercube is dissected
into N hypercubes of measure 1/N and there is one sample in each of them. The strategy outperforms
classical MC if a well-chosen multivariate sort of the states is employed to order the chains at each step.
We prove that the variance of the stratified sampling estimator is bounded by O(N−(1+1/(2d))), while
it is O(N−1) for MC. In numerical experiments, we observe empirical rates that satisfy the bounds.
We also compare with the Array-RQMC method.
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1 Introduction

Markov chains with a large state space can be used to model a variety of real life systems in domains

such as particles physics, telecommunications, queueing theory, mathematical finance, etc. In many

situations, neither analytic solutions are available nor deterministic numerical methods are practicable

because the state space is too large. So Monte Carlo (MC) simulation becomes the standard way to

solve the model.

We consider a discrete time Markov chain, with state space X :=
∏d
i=1 Xi, for some integer d > 0,

where Xi = (ai, bi), with −∞ ≤ ai < bi ≤ +∞, for 1 ≤ i ≤ d. We assume that d-dimensional random

variates are used to advance the chain by one step. So X0 is a d-dimensional random variable (it can

be degenerate over a single state) and the chain evolves according to the recurrence:

Xn+1 = φn+1(Xn, Un+1), n ≥ 0. (1)

Here U1, U2, . . . are i.i.d. uniform random variables over Id, where I := (0, 1), and φ1, φ2, . . . are

measurable functions X × Id → X . Let Pn denote the law of Xn. We want to estimate
∫
X c(x)dPn(x),

for some cost function c, by a mean (
∑
j c(X

n
j ))/N , where {Xn

j : 1 ≤ j ≤ N} are realizations of the

chain at step n (to be defined). The mean must be unbiased and the convergence of the method is

evaluated by Var((
∑
j c(X

n
j ))/N). The MC approach uses pseudorandom numbers as realizations of

uniform random variables over Id. The drawback is that convergence can be slow, with respect to the

number of samples, classically as O(N−1).

Stratified sampling is a technique for increasing efficiency of MC methods: see, e.g., [8, 14]. We

use here the following strategy, called simple stratified sampling (SSS): for a dimension δ, the unit

cube Iδ is partitioned into N = pδ intervals Jκ :=
∏δ
i=1[(ki − 1)/p, ki/p), for κ = (k1, . . . , kδ), where

each integer ki lies between 1 and p; in each Jκ, a point is selected at random. The SSS is analyzed

in [2, 3, 9] for integration of smooth functions: the authors show an improved convergence rate for

the variance (compared to classical MC). SSS for simulating Markov chains has been proposed in [4].

When the state space is one-dimensional, variance reduction was theoretically analyzed in [5], for a

discrete space and in [6] for a continuous state space.

This approach resembles the randomized quasi-Monte Carlo (Array-RQMC) method initiated

in [11, 12]. It has been observed that, in many cases, Array-RQMC reduces the variance [1, 13, 15].

However, an improved convergence rate compared with MC has been proved only for very specific cases,

such as a one-dimensional state space with a stratification approach, for which a rate of O(N−3/2)

was established under certain conditions [11]. For both methods, the N copies of the chain are sorted

at each step before being moved forward; this ensures theoretical and numerical convergence. Array-

RQMC has been observed empirically to perform very well for several applications [1, 11, 12, 15], often

with much better rates than O(N−1) for the variance, but we still have no formal proof for these bet-

ter rates in more than one dimension (a difficulty is to find a multidimensional sort which guarantees

convergence). The aim of the present paper is to offer progress in this direction.

Specifically, we prove a O(N−(1+1/(2d))) variance bound for a SSS method applied to Markov chains

with a d-dimensional state space, under certain conditions. The conditions are restrictive, but they

are satisfied in interesting situations (e.g. the Gaussian random walk). The SSS method examined

here differs slightly from Array-RQMC combined with stratification as defined in [11]. We point out

the difference at the end of Section 2.

The remainder is organized as follows. In Section 2, we recall the MC method for simulating

such Markov chains and we present the approach using simple stratified (SS) samples. In Section 3,

we compare the bounds for the variance of the estimator obtained by the MC method and the SSS

strategy. We provide numerical illustrations in Section 4: we compute the empirical variances of the

estimators and compare them with the theoretical bounds previously established. We also compare

with the Array-RQMC method. Conclusions are drawn in Section 5.
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2 Markov chain simulation

Consider a chain with the recurrence given by (1). We suppose that the d components of the chain

are advanced independently from each other:

φn+1(x, u) = (φn+1,1(x1, u1), . . . , φn+1,d(xd, ud)). (2)

This is a strong limitative assumption. There are interesting situations in which this assumption is

satisfied. This is the case of the random walk construction of a standard d-dimensional Brownian

motion at discrete times. It is used for solving physical problems that involve a combination of

convection, reaction and diffusion. Besides, a restricted convergence result may be obtained under a

less limitative hypothesis (see Remark 1). A random walk is also utilized within the Black-Scholes

model in financial engineering: an example is given in Section 4.

We present the usual MC method and the SSS version to simulate the chain. Denote by B+(X )

the set of nonnegative Borel measurable functions defined on X . For every s ∈ B+(X ) we have∫
X
s(x)dPn+1(x) =

∫
X×Id

s ◦ φn+1(x, u)dPn(x)du. (3)

The following notations are used. If m,n are integers, then [m,n] := {m,m+ 1, . . . , n} (if m ≤ n)

and (m,n] := {m + 1,m + 2, . . . , n} (if m < n). Let U be a random variable, then U ∼ U(E) means

that U is uniformly distributed over the set E . For z ∈ X , we denote sz the indicator function of∏d
i=1(ai, zi).

2.1 Classical Monte Carlo

We present how to simulate in parallel instead of the standard MC sequential algorithm to highlight

the difference with the variance reduction techniques described later. We choose an integer N , the

number of independent samples. We suppose that, at step n, {Xn
j : j ∈ [1, N ]} are random variables

(the states) such that, for a family C ⊂ B+(X ) of cost functions,

∀s ∈ C 1

N

∑
j

s(Xn
j ) ≈

∫
X
s(x)dPn(x).

Here, the approximation is assumed to be unbiased and consistent as follows.

E

 1

N

∑
j

s(Xn
j )

 =

∫
X
s(x)dPn(x) and Var

 1

N

∑
j

s(Xn
j )

 = O
(

1

N

)
.

The analysis is first done for cost functions of the form sz (Eqs. (8) and (9)); a result for regular cost

functions is given next (Corollary 1).

We want to find new states at step n+ 1. Following (3), for every s ∈ C:∫
X
s(x)dPn+1(x) ≈

1

N

∑
j

∫
Id
s ◦ φn+1(X

n
j , u)du. (4)

For j ∈ [1, N ], let 1j denote the indicator function of Fj := [(j − 1)/N, j/N). We associate to any

s ∈ B+(X ) the following function of d+ 1 variables:

Ans (u) :=
∑
j

1j(u0)s ◦ φn+1(X
n
j , u), u = (u0, u) ∈ I × Id.

Then, ∫
Id+1

Ans (u)du =
1

N

∑
j

∫
Id
s ◦ φn+1(X

n
j , u)du. (5)
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A numerical quadrature is done for the transition from n to n + 1. Let {Un+1
j : j ∈ [1, N ]} be

independent random variables with Un+1
j ∼ U(Id). We replace the left-hand side of (5) with the

following MC estimate:

X̂n+1
s :=

1

N

∑
j

Ans

(
j − 1

N
,Un+1

j

)
=

1

N

∑
j

s ◦ φn+1(X
n
j , U

n+1
j ).

We generate

Xn+1
j = φn+1(X

n
j , U

n+1
j ),

so that

X̂n+1
s =

1

N

∑
j

s(Xn+1
j )

is chosen as an approximation of
∫
X s(x)dPn+1(x).

2.2 Simple Stratified Sampling

We choose N = p2d, for some integer p > 0. This is a first limitation of the method: its practical use

is restricted to small d’s, because of the exponential growth of the sample size. We suppose that we

have generated a set of random variables {Y nµ : µ = (m1, . . . ,md) ∈ [1, p]d−1 × [1, pd+1]} such that

∀s ∈ C 1

N

∑
µ

s(Y nµ ) ≈
∫
X
s(x)dPn(x).

Here, the Y nµ replace the Xn
j of MC; the indexing will be justified in the proof of Lemma 1. The

approximation is assumed to be unbiased and consistent as for MC. For every s ∈ C,∫
X
s(x)dPn+1(x) ≈

1

N

∑
µ

∫
Id
s ◦ φn+1(Y

n
µ , u)du.

In order to find the new states at step n+1, a numerical quadrature is done. For µ ∈ [1, p]d−1×[1, pd+1],

let 1µ denote the indicator function of

Lµ :=

d−1∏
i=1

[
mi − 1

p
,
mi

p

)
×
[
md − 1

pd+1
,
md

pd+1

)
.

To any s ∈ B+(X ), we associate the function of 2d variables:

Bns (v) :=
∑
µ

1µ(v̇)s ◦ φn+1(Y
n
µ , v̈), v = (v̇, v̈) ∈ Id × Id.

Then, ∫
I2d

Bns (v)dv =
1

N

∑
µ

∫
Id
s ◦ φn+1(Y

n
µ , v̈)dv̈. (6)

The transition from n to n+ 1 has two steps: renumbering the chains and numerical quadrature.

(S1) The chains are relabeled so that if µ = (m1, . . . ,md), µ
′ = (m′

1, . . . ,m
′
d),

m1 = m′
1, . . . ,mi−1 = m′

i−1,mi < m′
i ⇒ Y nµ,i ≤ Y nµ′,i. (7)

This lexicographic ordering (called multivariate batch sort in [13]) was first introduced in a QMC

context and motivated in [10]: it guaranteed theoretical and numerical convergence. Figure 1

depicts the indices µ = (m1,m2) on the locations of the states Y nµ . The states are first grouped in

two batches (horizontally) according to the first coordinate, then each batch is sorted according
to the second coordinate.
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(1,1)

(1,2)

(1,3)

(1,5) 

(1,8)  
(1,7)  

(1,6) 

(1,4) 

(2,4) 

(2,1)

(2,2)

(2,5) 

(2,3) 

(2,6) 

(2,7) 

(2,8) 

Figure 1: Lexicographic ordering of 22×2 states in R2

This is a second limitation of the SSS method: its use requires d orderings of N numbers at each

step.

(S2) For κ = (k1, . . . , k2d) ∈ [1, p]2d, let

Jκ :=

2d∏
i=1

[
ki − 1

p
,
ki
p

)
.

Let {V n+1
κ : κ ∈ [1, p]2d} be independent random variables with V n+1

κ ∼ U(Jκ). The first d-

dimensional projection V̇ n+1
κ of V n+1

κ is used for selecting the state at step n and the second

d-dimensional projection V̈ n+1
κ is used for advancing the chain by one step. That is, we replace

the left-hand side of (6) with the SSS estimate:

Ŷ n+1
s :=

1

N

∑
κ

Bns (V
n+1
κ ) =

1

N

∑
κ

s ◦ φn+1(Y
n
µ(V̇ n+1

κ )
, V̈ n+1
κ ),

where, for u ∈ Id, the index µ(u) ∈ [1, p]d−1 × [1, pd+1] is such that u ∈ Lµ(u). We define

Y n+1
κ = φn+1

(
Y n
µ(V̇ n+1

κ )
, V̈ n+1
κ

)
,

so that

Ŷ n+1
s =

1

N

∑
κ

s(Y n+1
κ )

is chosen as an approximation of
∫
X s(x)dPn+1(x).

It is noticeable that the correspondence κ ∈ [1, p]2d → µ(V̇ n+1
κ ) ∈ [1, p]d−1 × [1, pd+1] between the

stratified samples V n+1
κ and the states Y nµ is not necessarily bijective: the same state may be chosen

more than once or some states may be left out. This diverges from the stratified sampling construction

in the Array-RQMC algorithm [11, 13], subsequently called A-Strat.

3 Theoretical convergence

For classical MC, let {X0
j : j ∈ [1, N ]} be i.i.d. random variables with probability distribution P0.

Then, the following holds for any n ≥ 0.

1. For any s ∈ B+(X ),

E

 1

N

∑
j

s(Xn
j )

 =

∫
X
s(x)dPn(x). (8)



Les Cahiers du GERAD G–2023–68 5

2. For any z ∈ X ,

Var

 1

N

∑
j

sz(X
n
j )

 ≤ 1

4N
. (9)

For SSS, we next show that, at every step, (1) for any s ∈ B+(X ), the estimator of
∫
X s(x)dPn(x)

is unbiased, and (2) for any z ∈ X , the variance of the estimator of
∫
X sz(x)dPn(x) is bounded by

O(N−(1+1/(2d))).

We suppose that P0 has density f0 and we assume the following for any i ∈ [1, d].

A1. For any x ∈ Xi, the mapping u ∈ I → φn+1,i(x, u) ∈ Xi is strictly increasing, bijective; one

defines a function y ∈ Xi → ψn+1,i(x, y) ∈ I which is strictly increasing, bijective, such that

y = φn+1,i(x, u) ⇔ u = ψn+1,i(x, y).

A2. For any x ∈ Xi, the mapping y → ψn+1,i(x, y) is continuously differentiable.

A3. For any y ∈ Xi, the mapping x → ψn+1,i(x, y) is continuously differentiable; there exists a

constant Mn+1,i such that
∫
Xi

|∂ψn+1,i

∂x (x, y)|dx ≤Mn+1,i; in addition limx→biψn+1,i(x, y) = 0.

We define:

Πn+1 :=

d∏
i=1

Mn+1,i and Σn+1 :=

d∑
i=1

Mn+1,i.

For initialization, we would like to start with a better convergence rate than MC. We assume that

we can define a set {Y 0
µ : µ = (m1, . . . ,md) ∈ [1, p]d−1 × [1, pd+1]} of independent random variables

with the following properties (which are used in proofs by induction in Proposition 1).

P1. For any s ∈ B+(X ),

E

[
1

N

∑
µ

s(Y 0
µ )

]
=

∫
X
s(x)dP0(x). (10)

P2. There exists some β0 > 0 such that, for every z ∈ X ,

Var

(
1

N

∑
µ

sz(Y
0
µ )

)
≤ β0
N1+1/2d

. (11)

If the density f0 of P0 is such that f0(x) =
∏d
i=1 f0,i(xi), this may be obtained by the in-

version method. Let F0,i be the cumulative distribution function (cdf) associated with f0,i. For

λ = (ℓ1, . . . , ℓd) ∈ [1, p2]d, denote

Kλ :=

d∏
i=1

[
ℓi − 1

p2
,
ℓi
p2

)
.

Let {Vλ : λ ∈ [1, p2]d} be independent random variables with Vλ ∼ U(Kλ). We take

Y 0
λ :=

(
F−1
0,1 (Vλ,1), . . . , F

−1
0,d (Vλ,d)

)
.

Then (10) is satisfied (after re-indexing) and there exists β0 ≤ d/4 such that for any z ∈ X ,

Var

(
1

N

∑
λ

sz(Y
0
λ )

)
≤ β0
N1+1/d

.

After, the analysis has two stages: (1) a variance bound for step n to n + 1, conditional on the

states at step n, and (2) a bound of the unconditional variance (over several steps). We first focus

on one step and we assume that {ynµ : µ ∈ [1, p]d−1 × [1, pd+1]} are given vectors with a numbering

satisfying (7). Let

Ŷn+1
s :=

1

N

∑
κ

∑
µ

1µ(V̇
n+1
κ )s ◦ φn+1(y

n
µ , V̈

n+1
κ ).
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Lemma 1. For the SSS method, we have:

1. For any s ∈ B+(X ),

E[Ŷn+1
s ] =

1

N

∑
µ

∫
Id
s ◦ φn+1(y

n
µ , u)du.

2. For any z ∈ X ,

Var(Ŷn+1
sz ) ≤ d(Σn+1 + 2)

4N1+1/2d
.

Proof.

1. Straightforward.

2. The transition from n to n+1 is described by a numerical quadrature of a function Bns ; if s = sz,

then Bns = Bnsz is the indicator function of the following set:

Enz :=
⋃
µ

Lµ ×
d∏
i=1

[
0, ψn+1,i(y

n
µ,i, zi)

)
.

The variable Bnsz (V
n+1
κ ) is a Bernoulli random variable, with expectation en+1

z,κ = Nλ2d(Enz ∩Jκ).
Hence, Var(Bnsz (V

n+1
κ )) ≤ 1/4 and Var(Bnsz (V

n+1
κ )) = 0 if Jκ ⊂ Enz or if Jκ ∩ Enz = ∅. The only

κ′s that contribute to the variance of Ŷn+1
sz are those for which Jκ intersects the boundary of Enz .

Therefore,

Var(Ŷn+1
sz ) ≤ 1

4N2

∣∣{κ ∈ [1, p]2d : Jκ ̸⊂ Enz and Jκ ∩ Enz ̸= ∅}
∣∣ ,

where |N | denotes the cardinality of a (finite) set N . We have:

• if Jκ ̸⊂ Enz , then

∃i ∈ [1, d] kd+i > p min
md∈((kd−1)pd,kdpd]

ψn+1,i(y
n
(k1,...,kd−1,md),i

, zi),

• if Jκ ∩ Enz ̸= ∅, then

∀i ∈ [1, d] kd+i < p max
md∈((kd−1)pd,kdpd]

ψn+1,i(y
n
(k1,...,kd−1,md),i

, zi) + 1.

Hence,

Var(Ŷn+1
sz ) ≤ pd

4N2

(∑
κ̇

d∑
i=1

(
max

md∈((kd−1)pd,kdpd]
ψn+1,i(y

n
(k1,...,kd−1,md),i

, zi)

− min
md∈((kd−1)pd,kdpd]

ψn+1,i(y
n
(k1,...,kd−1,md),i

, zi)

)
+ 2dpd−1

)
.

Up to now, the proof is a generalization of the one-dimensional case done in [6]. Henceforth, we

use the lexicographic ordering of the states. As a consequence of (7), there exists a covering of∏d
i=1[ai, bi] with

a1 = wn0,1 ≤ wn1,1 ≤ · · · ≤ wnp,1 = b1,

a2 = wnm1,0,2 ≤ wnm1,1,2 ≤ · · · ≤ wnm1,p,2 = b2 for m1 ∈ [1, p],

. . .

ad = wnm1,...,md−1,0,d
≤ wm1,...,md−1,1,d ≤ · · · ≤ wm1,...,md−1,p,d = bd

for (m1, . . . ,md−1) ∈ [1, p]d−1



Les Cahiers du GERAD G–2023–68 7

such that, if, for κ̇ := (k1, . . . , kd) ∈ [1, p]d we define

Rnκ̇ := [wnk1−1,1, w
n
k1,1]× [wnk1,k2−1,2, w

n
k1,k2,2]× · · · × [wnk1,...,kd−1,kd−1, w

n
k1,...,kd

],

then we have yn(k1,...,kd−1,md)
∈ Rnκ̇ for any md ∈ ((kd − 1)pd, kdp

d]. Hence, there exist points

y̌n,iκ̇ , ŷn,iκ̇ ∈ Rnκ̇ so that

Var(Ŷn+1
sz ) ≤ pd

4N2

(∑
κ̇

d∑
i=1

|ψn+1,i(ŷ
n,i
κ̇,i , zi)− ψn+1,i(y̌

n,i
κ̇,i , zi)|+ 2dpd−1

)

≤ pd

4N2

(
dpd−1

d∑
i=1

Mn+1,i + 2dpd−1

)
,

where the last inequality is obtained by using a modified version of Lemma 4 in [10]. The

conclusion follows.

The proof of the next result uses techniques employed in [11].

Proposition 1. For the SSS method, the following holds.

1. For any s ∈ B+(X ),

E

[
1

N

∑
µ

s(Y nµ )

]
=

∫
X
s(x)dPn(x).

2. For any z ∈ X ,

Var

(
1

N

∑
µ

sz(Y
n
µ )

)
≤ βn
N1+1/2d

, (12)

where βn+1 = Π2
n+1βn + d(Σn+1 + 2)/4.

Proof.

1. We prove the result by induction. It holds for n = 0 from (10). For n ≥ 0,

Dn+1
s :=

∫
X
s(x)dPn+1(x)−

1

N

∑
µ

s(Y n+1
µ ) = Dn

s,1 +Dn
s,2,

where

Dn
s,1 :=

∫
X

∫
Id
s ◦ φn+1(x, u)dudPn(x)−

1

N

∑
µ

∫
Id
s ◦ φn+1(Y

n
µ , u)du,

Dn
s,2 :=

1

N

∑
µ

∫
Id
s ◦ φn+1(Y

n
µ , u)du− 1

N

∑
κ

∑
µ

1µ(V̇
n+1
κ )s ◦ φn+1(Y

n
µ , V̈

n+1
κ ).

By the induction hypothesis, E[Dn
s,1] = 0; by Lemma 1, E[Dn

s,2] = 0. The result follows.

2. We proceed by induction on n. The case n = 0 is given by (11). Let n ≥ 0 be arbitrary.

Since {Y nµ : µ ∈ [1, p]d−1 × [1, pd+1]} and {V n+1
κ : κ ∈ [1, p]2d} are independent, we have

E[Dn
sz,1D

n
sz,2] = 0. Consequently

Var

(
1

N

∑
µ

sz(Y
n+1
µ )

)
= E[(Dn+1

sz )2] = E[(Dn
sz,1)

2] + E[(Dn
sz,2)

2]. (13)

For the first summand, we write∫
X×Id

sz ◦ φn+1(x, u)dudPn(x) =

∫
X

d∏
i=1

ψn+1,i(xi, zi)dPn(x)

= (−1)d
∫
X 2

d∏
i=1

∂ψn+1,i

∂xi
(xi, zi)sx(y)dPn(y)dx



Les Cahiers du GERAD G–2023–68 8

and ∫
Id
sz ◦ φn+1(Y

n
µ , u)du = (−1)d

∫
X

d∏
i=1

∂ψn+1,i

∂xi
(xi, zi)sx(Y

n
µ )dx.

This gives

Dn
sz,1 = (−1)d

∫
X

(
d∏
i=1

∂ψn+1,i

∂xi
(xi, zi)

)(∫
X
sx(y)dPn(y)−

1

N

∑
µ

sx(Y
n
µ )

)
dx

= (−1)d
∫
X

(
d∏
i=1

∂ψn+1,i

∂xi
(xi, zi)

)
Dn
sxdx.

We then have

E[(Dn
sz,1)

2] =

∫
X 2

(
d∏
i=1

∂ψn+1,i

∂xi
(xi, zi)

d∏
i=1

∂ψn+1,i

∂xi
(x′i, zi)

)
E
[
Dn
sxD

n
sx′

]
dxdx′

≤

(
d∏
i=1

Mn+1,i

)2

sup
x∈X

Var

(
1

N

∑
µ

sx(Y
n
µ )

)
.

For the second summand in (13), we have from Lemma 1:

E[(Dn
sz,2)

2] ≤ d(Σn+1 + 2)

4N1+1/2d
.

With (13), the result is established by induction.

This result is a third limitation of the SSS method: there is only a small improvement to the MC

variance bound for large d’s.

The variance of the MC or SSS estimator is bounded for a function of the form sz, with z ∈ X .

We obtain a bound for a regular cost function c by the same reasoning as in Proposition 6 of [11]. Let

C be the class of functions c ∈ B+(X ) which are d-times continuously differentiable and such that

1. V (d)(c) :=

∫
X

∣∣∣∣ ∂dc

∂x1 · · · ∂xd
(x)

∣∣∣∣ dx < +∞,

2. there exists a permutation π of [1, d] such that for any i ∈ [1, d] and xπ(j) ∈ (aπ(j), bπ(j)), 1 ≤
j ≤ d, j ̸= i,

lim
xπ(i)→bπ(i)

∂d−ic

∂xπ(i+1) · · · ∂xπ(d)
(x) = 0.

Corollary 1. If c ∈ C, then

Var

(
1

N

∑
µ

c(Y nµ )

)
≤ (V (d)(c))2

βn
N1+1/2d

.

Proof. We have

Dn
c :=

∫
X
c(x)dPn(x)−

1

N

∑
µ

c(Y nµ ) = (−1)d
∫
X

∂dc

∂x1 · · · ∂xd
(z)Dn

szdz.

Consequently,

E[(Dn
c )

2]

≤
∫
X 2

∣∣∣∣ ∂dc

∂x1 · · · ∂xd
(z)

∣∣∣∣ · ∣∣∣∣ ∂dc

∂x1 · · · ∂xd
(z′)

∣∣∣∣√E[(Dn
sz )

2]
√
E[(Dn

sz′
)2)]dzdz′,

hence the conclusion.
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Remark 1. The previous results can be extended without difficulty as follows. Let d, d′ be integers

and put d := d + d′. We consider a discrete time Markov chain Xn := (Xn, X
′
n) with state space

X := X × X ′, where X =
∏d
i=1 Xi, X ′ =

∏d
i=d+1 Xi, with Xi = (ai, bi) and −∞ ≤ ai < bi ≤ +∞,

for 1 ≤ i ≤ d. Here X0 (resp. X ′
0) is a d-dimensional (resp. d′-dimensional) random variable and the

chain evolves according to the recurrence:

Xn+1 = φn+1(Xn, Un+1), X
′
n+1 = φ′

n+1(Xn, X
′
n, Un+1), n ≥ 0. (14)

The variables U1, U2, . . . are i.i.d. uniform random variables over Id; the functions φn+1 : X × Id → X
and φ′

n+1 : X × Id → X ′ are measurable. We put φn+1(x, u) := (φn+1(x, u), φ
′
n+1(x, x

′, u)), for

x := (x, x′) ∈ X . We denote Pn the law of Xn. We suppose that φn+1 satisfies (2) and we assume

(A1–A3) for any i ∈ [1, d]. We suppose that P 0 has density f0. For z ∈ X , we denote sz the indicator

function of
∏d
i=1(ai, zi)×X ′.

The SSS scheme is as follows. We choose N = pd+d, for some integer p. For µ = (m1, . . . ,md) ∈
[1, p]d−1 × [1, pd+1], we set: Lµ :=

∏d−1
i=1 [(mi − 1)/p,mi/p) × [(md − 1)/pd+1,md/p

d+1). Then, for

u ∈ Id, the index µ(u) ∈ [1, p]d−1 × [1, pd+1] is such that u ∈ Lµ(u). For initialization, we assume that

we can define a set {Y 0

µ : µ ∈ [1, p]d−1 × [1, pd+1]} of independent random variables with the following

properties.

P1. For any s ∈ B+(X ),

E

[
1

N

∑
µ

s(Y
0

µ)

]
=

∫
X
s(x)dP 0(x).

P2. There exists some β0 > 0 such that, for every z ∈ X ,

Var

(
1

N

∑
µ

sz(Y
0

µ)

)
≤ β0

N1+1/(d+d)
.

We suppose that we have generated a set of random variables {Y nµ : µ ∈ [1, p]d−1 × [1, pd+1]}; the
transition from n to n + 1 acts as follows. The numbering is modified so that (7) is satisfied for

1 ≤ i ≤ d. For κ = (k1, . . . , kd+d) ∈ [1, p]d+d, let Jκ :=
∏d+d
i=1 [(ki − 1)/p, ki/p). Let {V n+1

κ : κ ∈
[1, p]d+d} be independent random variables with V n+1

κ ∼ U(Jκ). For u ∈ Id+d, let u̇ := (u1, . . . , ud)

and ü := (ud+1, . . . , ud+d). We define Y
n+1

κ = φn+1(Y
n

µ(V̇ n+1
κ ), V̈

n+1
κ ). The following holds, with

βn+1 = Π2
n+1βn + (dΣn+1 + 2d)/4.

1. For any s ∈ B+(X ),

E

[
1

N

∑
µ

s(Y
n

µ)

]
=

∫
X
s(x)dPn(x).

2. For any z ∈ X ,

Var

(
1

N

∑
µ

sz(Y
n

µ)

)
≤ βn

N1+1/(d+d)
. (15)

4 Numerical experiments

In this section, we compare classical MC, SSS and Array-RQMC approaches for the simulation of

multi-dimensional Markov chains. The Array-RQMC method gives several possibilities for the choices

of QMC point sets, randomization and sorting strategy. The A-Strat version uses stratified samples,

while the A-Sobol version employs Sobol′ sequences. For both schemes, a multivariate batch sort is

done. In dimension d, with N states, an A-method with sorting parameters (α1, . . . , αd) ∈ (0, 1)d
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(satisfying α1+ · · ·+αd = 1) firstly sorts the set of N states by their first coordinate in Nα1 subsets of

size N1−α1 ; then it sorts each subset in Nα2 subsets of size N1−α1−α2 by their second coordinate, etc.

Note that, for a state space of dimension d, the SSS method corresponds to the sorting parameters

α1 = · · · = αd−1 = 1/(2d), αd = (d+1)/(2d). The extension presented in Remark 1 for a state space of

dimension d corresponds to the sorting parameters α1 = · · · = αd−1 = 1/(d+ d), αd = (d+1)/(d+ d).

In the following, A-Strat and A-Sobol are tested with uniform sorting parameters and also with SSS

parameters.

We calculate the empirical variance of the estimators of∫
Rd

s(x)dPn(x) or

∫
Rd

s(x)dPn(x),

for some s or s. We plot this variance as a function of the number N of simulated chains. Assuming

a model KN−γ for the variance, we can estimate the rate γ by linear regression and compare it with

the theoretical bounds. Thereafter, we denote by φ and Φ the probability density function (pdf) and

cdf of the standard normal distribution, respectively.

4.1 Diffusion

We consider the initial value problem for the d-dimensional diffusion equation:

∂f

∂t
(x, t) = ν∆f(x, t), x ∈ Rd, t > 0 and f(x, 0) = f0(x), x ∈ Rd,

with constant diffusivity ν > 0. Here ∆ is the Laplacian. We assume that the initial data satisfies

f0 ≥ 0 and
∫
Rd f0(x)dx = 1. Then, for any t > 0, it holds that

∫
Rd f(x, t)dx = 1. Let G be the

fundamental solution of the heat operator:

G(x, t) :=
1

(4πνt)d/2
e−∥x∥2/4νt, x ∈ Rd, t > 0,

where ∥x∥ denotes the Euclidean norm of x ∈ Rd. Then, for any τ ≥ 0, f(x, t) =
∫
Rd G(x − w, t −

τ)f(w, τ)dw, for x ∈ Rd and t > τ . If ∆t is a time step, we set tn := n∆t and fn(x) := f(x, tn). It

follows that

fn+1(x) =
1

(2ν∆t)d/2

∫
Rd

d∏
i=1

φ

(
xi − wi√
2ν∆t

)
fn(w)dw.

Consequently, for any s ∈ B+(Rd),∫
Rd

s(x)fn+1(x)dx

=

∫
Rd×Id

s(x1 +
√
2ν∆tΦ−1(u1), . . . , xd +

√
2ν∆tΦ−1(ud))fn(x)dxdu.

We define the Markov chain as in (1). Let X0 have pdf f0 and let

Xn+1,i = Xn,i +
√
2ν∆tΦ−1(Un+1,i), 1 ≤ i ≤ d,

where Un+1 ∼ U(Id). This defines a random walk method [7]. Here, Assumption (2) and hypotheses

A1–A3 are satisfied.

As presented, the method is artificial, since we know the exact solution. This algorithm is a part of

fractional step schemes when one considers problems involving a combination of convection, reaction

and diffusion. In this experiment, we take ν = 1 and define f0 as the indicator function of the interval

[−1/2, 1/2]d. We choose ∆t = 0.001 and T = 0.01. We compute the empirical variance (with M = 100

replications) of the estimate of
∫
[0,1)d

f(x, T )dx. Here, s is the indicator function of [0, 1)d.
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For d = 2, Figure 2 (left) shows the variance of MC and SSS as a function of N , for N =

44, 54, . . . , 504 (in log10 scales). The calculations are also done with A-Strat and A-Sobol. The sorting

parameters (1/2, 1/2) and (1/4, 3/4) are tested and the results only show a small difference between

them. For both A-methods, the best choice is drawn. For d = 3, the variance of MC and SSS as a

function of N , for N = 36, 46, . . . , 136 (in log10 scales) is shown on Figure 2 (right). The calculations are

also done using A-Strat and A-Sobol, with the sorting parameters (1/3, 1/3, 1/3) and (1/6, 1/6, 4/6),

without a great difference between the results; only the best choices are drawn. The regression estimates

of the convergence rate γ are given in Table 1, for d = 2 (second row) and d = 3 (third row). A-method

refers to uniform sorting parameters and A-method (italicized) to SSS parameters. The rates of the

upper bounds given in Section 3 are indicated in parenthesis. SSS and Array-RQMC produce smaller

variance than classical MC (for the same N). The variances of Array-RQMC are smaller than those of

SSS; nevertheless, the convergence rates of SSS are equal or slightly better than those of Array-RQMC.

For SSS, the regression estimates of the rate γ somehow overtake the rates of the theoretical upper

bounds.
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Figure 2: Random walk for diffusion: empirical variance of 100 estimations of
∫
[0,1)d f(x, T )dx as a function of N for MC,

SSS, A-Strat and A-Sobol in dimension d = 2 (left) and d = 3 (right) (log10-log10 scale)

4.2 An asian option

In the Black-Scholes model, under the risk-neutral measure, the asset price St at time t is given by:

St = S0 exp((r−σ2/2)t+σBt), where r is the risk-free interest rate, σ the volatility parameter and B
is a standard Brownian motion. Let T be the maturity date and 0 < t1 < · · · < tq = T be observation

times. If K is a strike price, we want to estimate the value of the call option:

CO = e−rTE

[(
1

q

q∑
n=1

Stn −K

)
+

]
.

We refer to [8] for further details. If ∆tn+1 := tn+1 − tn, we have Stn+1 = Stn exp((r − σ2/2)∆tn+1 +

σ(Btn+1
−Btn)), for 0 ≤ n < q. By setting X0 := S0, X

′
0 := 1 and Xn := Stn , X

′
n := (1/n)

∑n
m=1 Stm ,

for n ≥ 1, this may be written as in (14):

Xn+1 = Xne
(r−σ2/2)∆tn+1+σ

√
∆tn+1Φ

−1(Un+1),

X ′
n+1 =

1

n+ 1

(
Xne

(r−σ2/2)∆tn+1+σ
√

∆tn+1Φ
−1(Un+1) + nX ′

n

)
,

where Un+1 ∼ U(I). Here, the state space is (0,+∞); d = d′ = 1 and hypotheses A1–A3 are satisfied.

In this example, we choose S0 = 100, r = Ln(1.09), σ = 0.2, K = 90, T = 240/365, ∆t = 1/365,

q = 60 and tn = T − (q − n)∆t for n ∈ [1, q]. We compare the variances of the MC, SSS, A-Strat and

A-Sobol estimates of CO: we replicate the calculation independently 100 times and we compute the

sample variance.
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Figure 3 shows the variance of MC and SSS as a function of N (in log10 scales), for N =

103, 153, . . . , 1003. For the calculations done with A-Strat and A-Sobol, the sorting parameters

(1/2, 1/2) and (1/3, 2/3) are tested. While the differences between the A-Strat versions are small,

this is not the case for the A-Sobol versions. The regression estimates of the convergence rate γ are

given in Table 1 (fourth row). SSS and Array-RQMC result in smaller variance than classical MC (for

the same N). Here, A-Sobol with uniform sorting parameters outperforms the other schemes. With

a similar convergence rate, A-Strat gives smaller variance than SSS. In Section 3 we have established

for SSS a O(N−4/3) upper bound for the variance of the estimator with a cost function of the form

sz, for z > 0: see (15). But we did not prove a bound for the variance of a SSS estimator of CO.
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log N
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SSS
A-Strat(1/2,1/2)
A-Strat(1/3,2/3)
A-Sobol(1/2,1/2)
A-Sobol(1/3,2/3)

Figure 3: Asian call option: empirical variance of 100 estimates of CO as a function of N for MC, SSS, A-Strat and
A-Sobol (log10-log10 scale)

Table 1: Estimation of the convergence rate γ of the sample variance: comparison of classical MC, SSS, A-Strat and
A-Sobol approaches. Italicized names correspond to SSS sorting parameters. The rates of the upper bounds are indicated
in parenthesis.

Experiment MC SSS A-Strat A-Strat A-Sobol A-Sobol

Diffusion 2D 1.00 (1.00) 1.34 (1.25) 1.19 1.24 1.36 1.28
Diffusion 3D 0.97 (1.00) 1.25 (1.17) 1.10 1.12 1.21 1.16
Asian option 0.99 (1.00) 1.37 1.38 1.39 1.95 1.72

5 Conclusion

We consider Markov chain models with a (d + d′)-dimensional continuous state space. We assume

that the first d components of the chain are advanced independently from each others and that only

d random variates are used to advance by one step. We analyze two approaches for the simulation:

classical MC and a method using SS samples. Upper bounds on the variance of an estimator for a

cost function which only depends on the first d variables are proved. When N copies of the chain are

simulated, the order is O(N−1) for MC and our upper bound is O(N−1+1/(2d+d′)) for the stratified

strategy. In our numerical experiments, the SSS variance decreased a bit faster than the bound. The

Array-RQMC method gave a lower variance, but we unfortunately have no proof (so far) of the better

convergence rate for that method. Interesting topics for further research include the extension of our

analysis to more general cost functions and to other stratified approaches, and proving the better

convergence rates for Array-RQMC in more than one dimension.
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