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Abstract : We develop a worst-case evaluation complexity bound for trust-region methods in the
presence of unbounded Hessian approximations. We use the algorithm of Aravkin et al. [3] as a model,
which is designed for nonsmooth regularized problems, but applies to unconstrained smooth problems
as a special case. Our analysis assumes that the growth of the Hessian approximation is controlled by
the number of successful iterations. We show that the best known complexity bound of ϵ−2 deteriorates
to ϵ−2/(1−p), where 0 ≤ p < 1 is a parameter that controls the growth of the Hessian approximation.
The faster the Hessian approximation grows, the more the bound deteriorates. We construct an
objective that satisfies all of our assumptions and for which our complexity bound is attained, which
establishes that our bound is sharp. Numerical experiments conducted in double precision arithmetic
are consistent with the theoretical analysis.

Résumé : Nous présentons une analyse de la borne de complexité dans le pire des cas pour les
méthodes de région de confiance en présence d’approximations du Hessien non bornées. Nous utilisons
l’algorithme de Aravkin et al. [3] comme modèle, qui, bien qu’étant conçu spécifiquement pour les
problèmes non lisses régularisés, s’applique aussi dans le cas particulier des problèmes lisses non con-
traints. Notre analyse fait l’hypothèse que la croissance des approximations des Hessiens est contrôlée
par le nombre d’itérations concluantes. Nous montrons que la borne de complexité bien connue ϵ−2 se
détériore en ϵ−2/(1−p), où 0 ≤ p < 1 est un paramètre contrôlant la croissance des approximations des
Hessiens. Plus les approximations des Hessiens augmentent, et plus la borne se dégrade. Nous con-
struisons une fonction objectif satisfaisant toutes nos hypothèses pour laquelle la borne de complexité
est atteinte, ce qui montre que notre borne est la plus petite possible. Nous présentons des résultats
numériques cohérents avec notre analyse théorique.
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1 Introduction

We consider the nonsmooth regularized problem

minimize
x∈Rn

f(x) + h(x) subject to ℓ ≤ x ≤ u, (1)

where ℓ ∈ (R ∪ {−∞})n, u ∈ (R ∪ {+∞})n with ℓ ≤ u componentwise, f : Rn → R is continuously
differentiable on an open set containing the feasible set [ℓ, u] of (1), and h : Rn → R∪{+∞} is proper
and lower semicontinuous (lsc). A component ℓi = −∞ or ui = +∞ indicates that xi is unbounded
below or above, respectively. Both f and h may be nonconvex. The nonsmooth regularizer h is often
used to identify a local minimizer of f with desirable features, such as sparsity.

Algorithms used to solve (1) are often based on the proximal-gradient method [23, 27]. The
algorithm that we consider here is the trust-region method (TR) of Aravkin et al. [3], which improves
upon the proximal-gradient method by constructing a model of f and a model of h at each iteration
in order to compute a step, in the spirit of traditional trust-region methods [15]. To the best of our
knowledge, it is the only trust-region method for (1) that allows both f and h to be nonconvex, and
that only assumes that h is proper lsc. However, it was developed under the assumption that the
Hessian approximations Bk remain bounded, a common, but sometimes restrictive, assumption. A
worst-case evaluation complexity bound for a stationarity measure to drop below ϵ ∈ (0, 1) of O(ϵ−2)

results, which matches the best possible complexity bound in the smooth case, i.e., when h = 0 [14].

In the present paper, we examine the situation where {Bk} is allowed to grow unbounded. We
impose a bound on the growth of ∥Bk∥ in terms of the number of successful iterations that is slightly
more restrictive than bounds used in smooth optimization to establish global convergence—see below.
Our tighter growth control, however, allows us to formalize a worst-case evaluation complexity bound,
which we then show to be tight. Specifically, we show that the best known complexity bound of
O(ϵ−2) deteriorates to O(ϵ−2/(1−p)), where 0 ≤ p < 1 is a parameter that controls the growth of ∥Bk∥.
To the best of our knowledge, this is the first formal worst-case analysis in the case of potentially
unbounded Bk.

A Julia implementation of TR is available as part of the RegularizedOptimization.jl package [5].
Our findings also apply to Algorithm TRDH of Leconte and Orban [26], which is similar to TR, but
uses diagonal Hessian approximations to compute a step without recourse to a subproblem solver.

Unbounded, or potentially unbounded, Hessians are not uncommon in applications. A prime
example is interior-point methods for bound-constrained optimization. Consider the minimization of
a twice differentiable objective ϕ : Rn → R subject to simple bounds x ≥ 0. Primal interior-point
methods [20] consist in applying Newton’s method to a sequence of log-barrier subproblems whose
objective is ϕ(x) − µ

∑
i log(xi) where µ > 0 is a barrier parameter that is eventually driven to zero.

Such methods maintain x > 0 implicitly but the barrier objective Hessian is ∇2ϕ(x) + µX−2, where
X := diag(x). For any µ > 0, the barrier Hessian is unbounded as any component of x approaches
a bound, which is often where a solution is located. Primal methods have long been superseded by
the better-behaved primal-dual methods—see, e.g., [22] and references therein for an overview of the
extensive literature on the subject—in which the barrier Hessian is replaced with ∇2ϕ(x) + X−1Z,
where Z := diag(z) and z is an approximation of the vector of Lagrange multipliers for x ≥ 0.
Even though the primal-dual Hessian does not grow unbounded as fast as the primal Hessian, it
nevertheless remains unbounded as any component of x approaches a bound. In order to converge,
interior-point methods rely on extra mechanisms that prevent components of x from approaching a
bound too fast unless there are indications that a solution is nearby and µ is close to zero. In spite of
those mechanisms, x must be allowed to approach bounds, and, therefore, the primal and primal-dual
Hessians must be allowed to grow unbounded. Although primal-dual interior-point methods can be
shown to have excellent worst-case complexity bounds in convex optimization [31], no such general
result is known for nonconvex problems.
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Another prime example, often cited in the literature, is when Bk results from a secant approx-
imation [18]. Conn et al. [15, §8.4] suggest that for the BFGS and SR1 approximations, Bk could
potentially grow by at most a constant at each update, though it is not clear whether that bound is
attained. Aravkin et al. [1], Carter [7] and Lotfi et al. [28] present safeguarding strategies that ensure
boundedness of quasi-Newton approximations in order to preserve convergence and O(ϵ−2) worst-case
evaluation complexity properties. This point is developed further in the related research below.

The paper is organized as follows. Section 2 provides the nonsmooth analysis background necessary
to understand the algorithm of Aravkin et al. [3], a description of how models are constructed at each
iteration, and a formal statement of the algorithm. In Section 3, we establish convergence and a
worst-case evaluation complexity bound under the assumption that the growth of the model Hessian is
controlled by a function of the number of successful iterations, i.e., iterations in which a step is accepted.
We show in Section 4 that the worst-case bound is indeed attained, by performing an analysis similar
to that of [14, Theorem 2.2.3]. In Section 5, we construct an explicit function that attains the bound
and validate our findings numerically. We provide concluding comments and perspectives in Section 6.

Related research

We do not provide an extensive review of trust-region approaches for smooth optimization, but refer
the interested reader to [15] for a thorough account, as well as a number of generalizations.

We begin by reviewing milestones in the convergence analysis of trust-region methods with poten-
tially unbounded model Hessians. Powell [34] first showed convergence of a trust-region algorithm for
smooth optimization that allows unbounded Hessian approximations Bk. Specifically, he assumes that
there exist nonnegative α and β such that ∥Bk∥ ≤ α+ β

∑k−1
i=0 ∥sj∥, where sj is the trust-region step

at iteration j. Under that and other standard assumptions, he established that lim inf ∥∇f(xk)∥ = 0.
Powell hints that his motivation lies in Hessian approximations arising from secant updates [18]. To
the best of our knowledge, it is not known whether secant approximations and their limited-memory
counterparts remain bounded. However, Fletcher [21] establishes that the quasi-Newton update that
bears Powell’s name, the Powell symmetric Broyden update, derived in [33], satisfies the bound above.

Powell [35] refines his earlier analysis by showing global convergence under the weaker assumption
∥Bk∥ ≤ α+ βk. Under the weaker yet assumption

∞∑
k=0

1

1 + max0≤j≤k ∥Bj∥
= ∞, (2)

which is hinted at in the proofs of Powell [35], Toint [39] shows that global convergence is preserved.

When f is convex with uniformly bounded Hessian, Conn et al. [15, §8.4] indicate that the BFGS
update satisfies ∥Bk+1∥ ≤ ∥Bk∥ + β for some β ≥ 0. Therefore, ∥Bk+1∥ ≤ ∥B0∥ + (k + 1)β, and the
assumption of Powell [35], and hence that of Toint [39], are satisfied. The SR1 update with safeguards
satisfies a similar inequality without the convexity assumption.

Carter [7] presents procedures to safeguard Hessian approximations in trust-region algorithms for
smooth problems. The goal of these procedures is to satisfy the uniform predicted decrease condition

φk(xk)− φk(xk+1) ≥ 1
2β1∥∇f(xk)∥min

(
∆k,

∥∇f(xk)∥
β0

)
,

where β0 and β1 > 0. When ∥Bk∥ ≤ β0 for all k, this condition is satisfied, but the author shows that
it can also be satisfied under milder assumptions. Carter’s procedures are used to correct Bk so that
such assumptions hold. Aravkin et al. [3] and Lotfi et al. [28] instead maintain estimates of the largest
and smallest eigenvalues of limited-memory BFGS and SR1 approximations and use them to ensure
updates generate bounded Hessian approximations.
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We now review determinant complexity analyses of trust-region and related methods for smooth
optimization. Cartis et al. [8] show that the steepest descent method and Newton’s method for smooth
problems may converge in as many as O(ϵ−2) iterations, and that the bound is sharp for the steepest
descent method. The analysis assumes that the Hessian remains uniformly bounded. In addition,
they prove that it is possible to construct an example where Newton’s method is arbitrarily slow when
allowing unbounded Hessians.

Our main contribution is to establish that TR, the trust-region algorithm of [3], may converge in
as many as O(ϵ−2/(1−p)) iterations, where p ∈ [0, 1) is a parameter that controls the growth of the
model Hessian—the larger p, the larger the allowed growth. Because ϵ−2/(1−p) → +∞ as p ↗ 1, our
results reinforces that of Cartis et al. [8] and makes it more precise. Our analysis applies to smooth
optimization—indeed, the example that we construct to establish sharpness of the complexity bound
is smooth—but it is general enough to apply to (1).

Cartis et al. [14, Section 2.2] show that the steepest-descent algorithm with backtracking Armijo
linesearch results in an O(ϵ−2) complexity bound, and a function is constructed by polynomial inter-
polation to prove that the bound is sharp, with a technique that is different from that of [8].

The complexity of other methods for smooth optimization was subsequently analyzed using tech-
niques similar to those of [8]. The Adaptive Regularization with Cubics algorithm (ARC, or AR2
because it uses second-order derivatives) [9, 19] minimizes at each iteration the model

φk(xk + s) = f(xk) +∇f(xk)
T s+ 1

2s
TBks+

1
3σk∥s∥

3, (3)

where Bk must remain bounded. It is known to require at most O(ϵ−3/2) iterations to reach ∥∇f(xk)∥
≤ ϵ, and this bound is sharp [9, 32]. Curtis et al. [16] and Martínez and Raydan [30] present modified
trust-region algorithms with bounded model Hessians to solve nonconvex smooth problems that also
have a complexity bound of O(ϵ−3/2).

The analysis of [14, Section 2.2] shows that the steepest-descent algorithm with backtracking Armijo
linesearch technique results in an O(ϵ−2) complexity bound, and a function is constructed by polyno-
mial interpolation to prove that the bound is sharp, with a technique that is different to that of [8].

Cartis et al. [12] show that Algorithm ARp for smooth problems, a generalization of ARC using a
model of order p ≥ 1, requires at most O(ϵ−(p+1)/p) iterations to satisfy ∥∇f(xk)∥ ≤ ϵ, and that the
bound is sharp. They introduce a generalization of the first-order stationarity measure ∥∇f(xk)∥ ≤ ϵ

to q-th order stationarity, where q ∈ N0, and show that at most O(ϵ−(p+1)/(p−q+1)) evaluations of the
objective and the derivatives are required with this measure. They require that the p-th derivative of
f be globally Hölder continuous. For p = 2 and q = 1, we recover the bound of [9].

For smooth nonconvex problems with bounded Hessians, the number of iterations required to
satisfy the conditions on the gradient ∥∇f(xk)∥ ≤ ϵg and on the smallest eigenvalue of the Hessian
λmin(∇

2f(xk)) ≥ −ϵH , where ϵg, ϵH ∈ (0, 1), have also been studied. Cartis et al. [11] show that
their trust-region algorithm needs at most O(max{ϵ−2

g ϵ−1
H , ϵ−3

H }) iterations to satisfy these conditions,
and O(max{ϵ−3/2

g , ϵ−3
H }) iterations for ARC. The latter bound is also obtained for the trust-region

algorithms in [16, 30]. Royer and Wright [38] use a second-order linesearch method to obtain the
bound O(max{ϵ−3

g ϵ3H , ϵ
−3/2
g , ϵ−3

H }).

Aravkin et al. [3] provide an overview of the literature on convergence of methods for nonsmooth
optimization, and we now summarize the review with an eye to trust-region methods. Methods prior
to their work were restricted to special cases. Most were developed for f = 0, i.e., in a purely
nonsmooth context. Yuan [40] considers a nonsmooth term of the form h(c(x)), where c ∈ C1 and
convex. Dennis et al. [17] take f = 0 and assume that h is Lipschitz-continuous. Qi and Sun [36]
relax the assumptions of [17] to h locally Lipschitz-continuous with bounded level sets. Martínez and
Moretti [29] add treatment of equality constraints to the method of Qi and Sun [36]. The only prior
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trust-region method for f ̸= 0 and more general h that we are aware of is that of Kim et al. [25], who
assume that f and h are convex. None of those works provides a complexity analysis.

Finally, we review complexity analyses of trust-region methods for nonsmooth problems. Cartis
et al. [10] describe a first-order trust-region method and a quadratic regularization algorithm to solve
nonsmooth problem of the form

minimize
x∈Rn

f(x) + h(c(x)), (4)

where f and c are continuously differentiable and may be nonconvex, and h is convex but may be
nonsmooth, and is Lipschitz-continuous. Note that (4) is a special case of (1), but the convexity
assumption on h is strong. They show that both algorithms have a complexity bound of O(ϵ−2).
Grapiglia et al. [24] provide a unified convergence theory for smooth optimization that has trust-region
methods as a special case. They also generalize the results of [10] under the same assumptions.

Aravkin et al. [3] describe a proximal trust-region algorithm to solve (1) using bounded model
Hessians. They also present a quadratic regularization variant. They establish that their criticality
measure is smaller than ϵ in at most O(ϵ−2) iterations for both algorithms. Aravkin et al. [1] adapt
these algorithms to solve nonsmooth regularized least-squares problems and obtain the same complexity
bound under the assumption that the residual Jacobian is uniformly bounded. As far as we know, the
complexity analyses of [1, 3] make the weakest assumptions on h so far, that h be lsc.

Baraldi and Kouri [4] also describe a proximal trust-region algorithm for convex h. In addition,
they allow the use of inexact objective and gradient evaluations. As Toint [39] in the smooth case,
they assume that

∞∑
k=0

1

1 + max0≤j≤k ωj

= ∞, (5)

where
ωk = sup

{
2

∥s∥2
|φk(xk + s)− φk(xk)−∇φk(xk)

T s| | 0 < ∥s∥ ≤ ∆k

}
,

and φk is a smooth model of f about xk. In particular, if φk is a second-order Taylor approximation at
xk with Hessian approximation Bk, ωk = sup

{
sTBks/∥s∥

2 | 0 < ∥s∥ ≤ ∆k

}
, so that (5) is reminiscent

of (2). If ωk is bounded independently of k, which is the case for bounded Hessian approximations,
they show that their algorithm enjoys a complexity bound of O(ϵ−2).

Cartis et al. [13] present a similar concept of high-order approximate minimizers to that of [12] for
nonsmooth problems such as (4) where f , c are smooth, and h is nonsmooth but Lipschitz-continuous.
They present an algorithm of adaptive regularization of order p, and derive several bounds depending
on the properties of (4) and of the order of the desired approximate minimizer. In particular, for q = 1

and convex h, their complexity bound is O(ϵ−(p+1)/p), and they show that it is sharp.

To the best of our knowledge, previous literature does not provide a complexity analysis in the case
of potentially unbounded model Hessians.

Notation. B denotes the unit ball at the origin in a certain norm dictated by the context, ∆B is the
ball of radius ∆ > 0 centered at the origin, and x+∆B is the ball of radius ∆ > 0 centered at x ∈ Rn.
For A ⊆ R

n, the indicator of A is χ(· | A) : Rn → R ∪ {+∞} defined as χ(x | A) = 0 if x ∈ A and
+∞ otherwise. If A ̸= ∅, χ(· | A) is proper. If A is closed, χ(· | A) is lsc. For a finite set A ⊂ N, we
denote |A| its cardinality. If f1 and f2 are two positive functions of ϵ > 0, we say that f1(ϵ) = O(f2(ϵ))

if there exists a constant C > 0 such that f1(ϵ) ≤ Cf2(ϵ) for all ϵ > 0 sufficiently small.
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2 Context

2.1 Background

We recall relevant concepts of variational analysis—see, e.g., [37].

Consider ϕ : Rn → R and x̄ ∈ Rn with ϕ(x̄) < ∞. The Fréchet subdifferential of ϕ at x̄ is the
closed convex set ∂̂ϕ(x̄) of v ∈ Rn such that

lim inf
x→x̄
x ̸=x̄

ϕ(x)− ϕ(x̄)− vT (x− x̄)

∥x− x̄∥
≥ 0.

The limiting subdifferential of ϕ at x̄ is the closed, but not necessarily convex, set ∂ϕ(x̄) of v ∈ Rn

for which there exist {xk} → x̄ and {vk} → v such that {ϕ(xk)} → ϕ(x̄) and vk ∈ ∂̂ϕ(xk) for all k.
∂̂ϕ(x̄) ⊂ ∂ϕ(x̄) always holds.

We say that x̄ is stationary for the problem of minimizing ϕ if 0 ∈ ∂ϕ(x̄).

The horizon subdifferential of ϕ at x̄ is the closed, but not necessarily convex, cone ∂∞ϕ(x̄) of
v ∈ Rn for which there exist {xk} → x̄, {vk} and {λk} ↓ 0 such that {ϕ(xk)} → ϕ(x̄), vk ∈ ∂̂ϕ(xk) for
all k, and {λkvk} → v.

If C ⊆ Rn and x̄ ∈ C, the closed convex cone N̂C(x̄) := ∂̂χ(x̄ | C) is the regular normal cone to C
at x̄. The closed cone NC(x̄) := ∂χ(x̄ | C) = ∂∞χ(x̄ | C) is the normal cone to C at x̄. N̂C(x̄) ⊆ NC(x̄)

always holds, and is an equality if C is convex.

ϕ is proper if ϕ(x) > −∞ for all x, and ϕ(x) < ∞ for at least one x. ϕ is lower semicontinuous
(lsc) at x̄ if lim infx→x̄ ϕ(x) = ϕ(x̄).

Let ϕ : Rn → R be proper lsc, and C ⊆ R
n be closed. We say that the constraint qualification is

satisfied at x̄ ∈ C for the constrained problem

minimize
x∈Rn

ϕ(x) subject to x ∈ C (6)

if
∂∞ϕ(x̄) ∩NC(x̄) = {0}. (7)

If x̄ solves (6) and (7) is satisfied at x̄, [37, Theorem 8.15] yields

0 ∈ ∂(ϕ+ χ(· | C))(x̄) = ∂ϕ(x̄) +NC(x̄).

In the case of (1), this first-order necessary condition for optimality reads

0 ∈ ∇f(x̄) + ∂h(x̄) +N[ℓ,u](x̄)

thanks to [37, Exercise 8.8c].

The proximal operator associated with a proper lsc function ϕ is

prox
νϕ

(q) := argmin
x

1
2ν

−1∥x− q∥22 + ϕ(x), (8)

where ν > 0 is a preset steplength.

If ϕ is prox-bounded and ν > 0 is sufficiently small, proxνϕ(q) is a nonempty and closed set. It
may contain multiple elements.

The proximal gradient method [23, 27] for (1) is a generalization of the gradient method that takes
the nonsmooth term into account. It generates iterates {sj} according to

sj+1 ∈ prox
νh

(sj − ν∇f(sj)). (9)
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2.2 Models and trust-region algorithm

At x ∈ Rn where h is finite, we define models

φ(s;x) ≈ f(x+ s) (10a)
ψ(s;x) ≈ h(x+ s) (10b)
m(s;x) := φ(s;x) + ψ(s;x), (10c)

Our assumptions on (10) are the same as those of Aravkin et al. [3]:
Model Assumption 2.1. For any x ∈ Rn, φ(·;x) ∈ C1, and satisfies φ(0;x) = f(x) and ∇φ(0;x) =

∇f(x). For any x ∈ Rn where h is finite, ψ is proper lsc, and satisfies ψ(0;x) = h(x) and ∂ψ(0) =

∂h(x).

The following result states that if s = 0 minimizes (10c) and (7) is satisfied, x must be stationary.
Proposition 1 (26, Proposition 1). Let C ⊂ R

n be nonempty and compact, and let Model Assump-
tion 2.1 be satisfied. Let (1) satisfy the constraint qualification (7) at x ∈ C. Assume 0 ∈ argmins

m(s;x) + χ(x + s | C), and let the latter subproblem satisfy the constraint qualification (7) at s = 0.
Then x is first-order stationary for (1).

A useful model is based on the second-order Taylor expansion

φ(s;x,B) := f(x) +∇f(x)T s+ 1
2s

TBs, (11a)
m(s;x,B) := φ(s;x,B) + ψ(s;x), (11b)

where B = BT ∈ Rn×n.

Each iteration is divided into two parts. In the first part, Aravkin et al. [2] define the following
model based on a first-order Taylor expansion to compute a Cauchy point

φcp(s;x) := f(x) +∇f(x)T s, (12a)

m(s;x, ν) := φcp(s;x) +
1
2ν

−1∥s∥2 + ψ(s;x), (12b)

where νk > 0 and “cp” stands for “Cauchy point.” We compute a first step

sk,1 ∈ argmin
s

m(s;xk, νk) + χ(xk + s | [ℓ, u] ∩ (xk +∆kB)), (13)

for an appropriate value of νk > 0.

In the notation of [2], let

ξcp(∆k;xk, νk) := f(xk) + h(xk)− φcp(sk,1;xk)− ψ(sk,1;xk), (14)

denote the optimal model decrease for (12). The following proposition indicates that ξcp(∆;x, ν) can
be used to determine whether x is first-order stationary for (1).
Proposition 2 (3, Proposition 3.3 and 2). Let Model Assumption 2.1 be satisfied, ∆ > 0, and ν > 0.
In addition, let (1) satisfy the constraint qualification at x and (12) satisfy the constraint qualification
at 0. Then, ξcp(∆;x, ν) = 0 ⇐⇒ 0 is a solution of (13) =⇒ x is first-order stationary for (1).

In the second part of iteration k, we construct mk(s;xk, Bk) := φ(s;xk, Bk) + ψ(s;xk) ≈ f(xk +

s) + h(xk + s), and compute an approximate solution of

minimize
s

mk(s;xk) subject to ∥s∥ ≤ ∆k, (15)

using sk,1 as starting point.
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Algorithm 2.1 Nonsmooth trust-region algorithm with potentially unbounded Hessian.

1: Choose constants

0 < η1 ≤ η2 < 1, 0 < 1/γ3 ≤ γ1 ≤ γ2 < 1 < γ3 ≤ γ4, ∆max > ∆0, α > 0, and β ≥ 1.

2: Choose a stopping tolerance ϵ > 0.
3: Choose x0 ∈ Rn where h is finite, ∆0 > 0, compute f(x0) + h(x0).
4: for k = 0, 1, . . . do
5: Choose

0 < νk ≤
α∆k

1 + ∥Bk∥(1 + α∆k)
=

1

α
−1

∆
−1
k + ∥Bk∥(1 + α

−1
∆

−1
k )

.

6: Define mk(s;xk, νk) as in (12) and compute sk,1 as in (13).

7: If ν−1/2
k ξcp(∆k;xk, νk)

1/2 ≤ ϵ, terminate and claim that xk is approximately stationary.
8: Define mk(s;xk, Bk) as in (11) according to Model Assumption 2.1 and compute a solution sk of (15) with ∆k

replaced by min(∆k, β∥sk,1∥).
9: Compute the ratio

ρk :=
f(xk) + h(xk)− (f(xk + sk) + h(xk + sk))

mk(0;xk, Bk)−mk(sk;xk, Bk)
. (16)

10: If ρk ≥ η1, set xk+1 = xk + sk. Otherwise, set xk+1 = xk.
11: Update the trust-region radius according to

∆̄k+1 ∈

 [γ3∆k, γ4∆k] if ρk ≥ η2, (very successful iteration)
[γ2∆k, ∆k] if η1 ≤ ρk < η2, (successful iteration)
[γ1∆k, γ2∆k] if ρk < η1, (unsuccessful iteration)

and ∆k+1 = min(∆̄k+1, ∆max)

We focus on the trust-region (TR) algorithm formally stated as Algorithm 2.1. It consists of the
algorithm of Aravkin et al. [3] with a modified maximum allowable stepsize νk.

In Algorithm 2.1, sk,1 is used to check for stationarity, and to set the trust-region radius for the
computation of the search direction sk.

Let us now briefly turn our attention to unconstrained smooth problems. In this case, the following
lemma gives a global minimizer of (12) and (11).
Lemma 1. We consider the special case of (1) where h = 0, ℓi = −∞ and ui = +∞ for i = 1, . . . , n.
Let B = BT ∈ Rn×n be positive definite and ψ = 0. Then for any x ∈ Rn,

argmin
s

m(s;x,B) = argmin
s

φ(s;x,B) = {−B−1∇f(x)}. (17)

In particular, if B = ν−1I with ν > 0,

argmin
s

m(s;x, ν) = argmin
s

φcp(s;x) +
1
2ν

−1∥s∥2 = {sk,1} = {−ν∇f(x)}. (18)

Proof. The objective of (17) is convex because B is positive definite. Its global minimizer satisfies the
first-order necessary condition ∇f(x) +Bs = 0, i.e., s = −B−1∇f(x). With B = ν−1I, the first-order
necessary condition is s = −ν∇f(x).

The following proposition draws a parallel between ξcp(∆k;xk, νk) and ∥∇f(xk)∥ for smooth prob-
lems when the trust-region constraint is inactive, as is expected to occur when close to a stationary
point.
Proposition 3. We consider the special case of (1) where h = 0, ℓi = −∞ and ui = +∞ for i =
1, . . . , n. If ∥sk,1∥ < ∆k, then ξcp(∆k;xk, νk) = νk∥∇f(xk)∥

2.

Proof. If the trust-region constraint is inactive, Lemma 1 indicates that sk,1 = −νk∇f(xk). Thus, (14)
yields ξcp(∆k;xk, νk) = −∇f(xk)

T sk,1 = νk∥∇f(xk)∥
2.
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3 Convergence and complexity with potentially unbounded Hes-
sian

From this section onwards, we consider the model defined in (11), and we aim to establish convergence
and worst-case complexity results for Algorithm 2.1 in the presence of potentially unbounded Hessian
approximations Bk.

The following two assumptions are essential. Assumption 1 is [3, Step Assumption 3.8b], whereas
Assumption 2 is a relaxed version of [3, Step Assumption 3.8a] that takes into account potentially
unbounded Hessian approximations. Indeed, assuming, for simplicity, that ∇2f(xk) exists, a second-
order Taylor expansion of f about xk yields

f(xk + sk)− φ(sk;xk, Bk) =
1
2s

T
k (∇

2f(xk)−Bk)sk + o(∥sk∥
2),

which is not necessarily O(∥sk∥
2) if {Bk} is unbounded.

Assumption 1. There exists κmdc ∈ (0, 1) such that

m(0;xk, Bk)−m(sk;xk, Bk) ≥ κmdcξcp(∆k;xk, νk). (19)

Assumption 2. There exists κubd > 0 such that

|(f + h)(xk + sk)−m(sk;xk, Bk)| ≤ κubd(1 + ∥Bk∥)∥sk∥
2
2. (20)

Leconte and Orban [26, Proposition 2] and Aravkin et al. [2] already indicate that Assumption 1
holds for TRDH and TR. We now justify that it also holds for Algorithm 2.1 with potentially un-
bounded Hessian approximations.
Proposition 4. If Model Assumption 2.1 is satisfied, there exists κmdc ∈ (0, 1) such that Assumption 1
holds.

Proof. We proceed similarly as in [26, Proposition 2]. The definition of sk implies that

m(sk;xk, Bk) ≤ m(sk,1;xk, Bk) = φcp(sk,1;xk) +
1
2s

T
k,1Bksk,1 + ψ(sk,1;xk).

As
sTk,1Bksk,1 ≤ |sTk,1Bksk| ≤ ∥sk,1∥∥Bksk,1∥ ≤ ∥Bk∥∥sk,1∥

2,

where we used Cauchy-Schwarz in the second inequality and the consistency of the ℓ2-norm for matrices
in the third inequality,

m(sk;xk, Bk) ≤ φcp(sk,1;xk) +
1
2∥Bk∥∥sk,1∥

2 + ψ(sk,1;xk),

which leads to
m(0;xk, Bk)−m(sk;xk, Bk) ≥ ξcp(∆k;xk, νk)− 1

2∥Bk∥∥sk,1∥
2.

To satisfy Assumption 1, it is sufficient to show that there exists κmdc ∈ (0, 1) such that

ξcp(∆k;xk, νk)− 1
2∥Bk∥∥sk,1∥

2 ≥ κmdcξcp(∆k;xk, νk),

i.e.,
(1− κmdc)ξcp(∆k;xk, νk) ≥ 1

2∥Bk∥∥sk,1∥
2.

As ξcp(∆k;xk, νk) ≥ 1
2ν

−1
k ∥sk,1∥

2 by definition of sk,1 and ξcp(∆k;xk, νk), it is also sufficient to show
that there exists κmdc ∈ (0, 1) such that

(1− κmdc)ν
−1
k ≥ ∥Bk∥. (21)
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Finally,

∥Bk∥νk =
1

α−1∆−1
k ∥Bk∥

−1 + 1 + α−1∆−1
k

≤ 1

α−1∆−1
max∥Bk∥

−1 + 1 + α−1∆−1
max

≤ 1

1 + α−1∆−1
max

∈ (0, 1). (22)

We deduce from (22) that (21) holds, which is sufficient to satisfy Assumption 1.

We begin the convergence analysis by showing that there still exists a ∆succ as in [3, Theorem 3.4],
despite our more general Assumption 2.
Theorem 1. Let Model Assumption 2.1, Assumption 1 and Assumption 2 be satisfied and

∆succ :=
κmdc(1− η2)

2κubdαβ
2 > 0.

If (1) satisfies the constraint qualification at xk, (12) satisfies the constraint qualification at 0, xk is
not first-order stationary for (1), and ∆k ≤ ∆succ, then iteration k is very successful and ∆k+1 ≥ ∆k.

Proof. Lemma 2 of [6] guarantees that

ξcp(∆k;xk, νk) ≥ 1
2ν

−1
k ∥sk,1∥

2 ≥ 1
2 (α

−1∆−1
k + ∥Bk∥(1 + α−1∆−1

k ))∥sk,1∥
2

≥ 1
2 (α

−1∆−1
k (1 + ∥Bk∥))∥sk,1∥

2. (23)

If ξcp(∆k;xk, νk) = 0, then sk,1 = 0, and xk is first-order stationary with Proposition 1. If xk is not
first-order stationary, sk,1 ̸= 0 according to Proposition 2. In this case, Assumption 1, Assumption 2,
and (23) lead to

|ρk − 1| =
∣∣∣∣ (f + h)(xk + sk)−m(sk;xk, Bk)

m(0;xk, Bk)−m(sk;xk, Bk)

∣∣∣∣
≤ κubd(1 + ∥Bk∥)∥sk∥

2
2

κmdcξcp(∆k;xk, νk)

≤
κubd(1 + ∥Bk∥)β

2∥sk,1∥
2
2

1
2κmdcα

−1∆−1
k (1 + ∥Bk∥)∥sk,1∥

2

=
2κubdβ

2α∆k

κmdc

.

Thus, ∆k ≤ ∆succ implies ρk ≥ η2 and iteration k is very successful.

We set ∆min := min(∆0, γ1∆succ), and we observe that ∆k ≥ ∆min for all k ∈ N. We use
ν
−1/2
k ξcp(∆k;xk, νk)

1/2 as our criticality measure. Let 0 < ϵ < 1, and

I(ϵ) := {k ∈ N | ν−1/2
k ξcp(∆k;xk; νk)

1/2 > ϵ},
S(ϵ) := {k ∈ I(ϵ) | ρk ≥ η1},
U(ϵ) := {k ∈ I(ϵ) | ρk < η1},

be the set of iterations, successful iterations, and unsuccessful iterations until the criticality measure
drops below ϵ, respectively.

At iteration k of Algorithm 2.1, let σk be the number of successful iterations encountered so far:

σk = |{j = 0, . . . , k | ρj ≥ η1}|, k ∈ N. (24)

We introduce an assumption allowing {Bk} to be unbounded, as long as it is controlled by σk.
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Assumption 3. There are constants µ1 > 0, µ2 > 0 and 0 ≤ p < 1 such that max0≤j≤k ∥Bj∥ ≤
max(µ1, µ2σ

p
k) for all k ∈ N.

Clearly, Assumption 3 allows approximations that grow unbounded, though they must not grow
too fast. It reduces to the bounded case when p = 0. The role of µ1 is only to allow sufficiently large
Bk in the early iterations without being constrained by σp

k. We may now establish a variant of [3,
Lemma 3.6] based on Assumption 3.
Lemma 2. Let Assumption 1 and Assumption 3 be satisfied. Assume that Algorithm 2.1 generates
infinitely many successful iterations, that the step size νk := α∆k/(1 + ∥Bk∥(1 + α∆k)) is selected at
each iteration, and that there exists (f + h)low ∈ R such that (f + h)(xk) ≥ (f + h)low for all k ∈ N.
Let ϵ ∈ (0, 1). If either µ1 ≥ µ2|S(ϵ)|

p, or µ1 < µ2|S(ϵ)|
p < 1/(1 + α∆min), then

|S(ϵ)| ≤ max(µ1(1 + α−1∆−1
min) + α−1∆−1

min, 2α
−1∆−1

min)
(f + h)(x0)− (f + h)low

η1κmdcϵ
2 = O(ϵ−2). (25)

Otherwise,

|S(ϵ)| ≤
(
2µ2(1 + α−1∆−1

min)
(f + h)(x0)− (f + h)low

η1κmdcϵ
2

)1/(1−p)

= O(ϵ−2/(1−p)). (26)

Proof. Let k ∈ S(ϵ). We have

(f + h)(xk)− (f + h)(xk + sk) ≥ η1κmdcξcp(∆k;xk, νk)

≥ η1κmdcνkϵ
2

= η1κmdc

1

α−1∆−1
k + ∥Bk∥(1 + α−1∆−1

k )
ϵ2

≥ η1κmdc

1

α−1∆−1
min + ∥Bk∥(1 + α−1∆−1

min)
ϵ2.

We add together the above inequalities over all k ∈ S(ϵ) and use the assumption that f +h is bounded
below to obtain

(f + h)(x0)− (f + h)low ≥ η1κmdcϵ
2
∑

k∈S(ϵ)

1

α−1∆−1
min + ∥Bk∥(1 + α−1∆−1

min)

≥ η1κmdcϵ
2|S(ϵ)| min

k∈S(ϵ)

1

α−1∆−1
min + ∥Bk∥(1 + α−1∆−1

min)

= η1κmdcϵ
2|S(ϵ)| 1

maxk∈S(ϵ)(α
−1∆−1

min + ∥Bk∥(1 + α−1∆−1
min))

= η1κmdcϵ
2|S(ϵ)| 1

α−1∆−1
min + (maxk∈S(ϵ) ∥Bk∥)(1 + α−1∆−1

min)

≥ η1κmdcϵ
2|S(ϵ)| 1

α−1∆−1
min + (max(µ1, µ2|S(ϵ)|

p))(1 + α−1∆−1
min)

(27)

where we appealed to Assumption 3 in the last step.

Firstly, if µ1 ≥ µ2|S(ϵ)|
p, the denominator of the last inequality can be bounded above by

µ1(1 + α−1∆−1
min) + α−1∆−1

min. Secondly, if µ1 < µ2|S(ϵ)|
p < 1/(1 + α∆min), it can be bounded

above by 2α−1∆−1
min. In both cases, it can be bounded above by the constant max(µ1(1+α−1∆−1

min) +

α−1∆−1
min, 2α

−1∆−1
min), and

(f + h)(x0)− (f + h)low ≥ η1κmdcϵ
2

max(µ1(1 + α−1∆−1
min) + α−1∆−1

min, 2α
−1∆−1

min)
|S(ϵ)|,

which establishes (25).
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The last situation occurs when µ2|S(ϵ)|
p ≥ max(µ1, 1/(1 + α∆min)). In this case, µ2|S(ϵ)|

p ≥ µ1

so that max(µ1, µ2|S(ϵ)|
p) = µ2|S(ϵ)|

p, and µ2|S(ϵ)|
p(1 + α−1∆−1

min) ≥ (1 + α−1∆−1
min)/(1 + α∆min) =

α−1∆−1
min. By adding µ2|S(ϵ)|

p(1 + α−1∆−1
min) to both sides of the latter inequality and taking its

reciprocal, we obtain

1

2µ2|S(ϵ)|
p(1 + α−1∆−1

min)
≤ 1

µ2|S(ϵ)|
p(1 + α−1∆−1

min) + α−1∆−1
min

.

The above combines with (27) to yield

(f + h)(x0)− (f + h)low ≥ η1κmdcϵ
2

2µ2(1 + α−1∆−1
min)

|S(ϵ)|1−p,

which establishes (26).

According to Lemma 2, there are two regimes. In the first, ϵ is large enough that |S(ϵ)|p is small, and
we recover the worst-case iteration complexity of the bounded Hessian scenario. In the second regime,
ϵ is small enough that the number of successful iterations is significant and impacts the complexity
bound. For instance, in this regime, we obtain a complexity bound of O(ϵ−5/2) for p = 1

5 and O(ϵ−3)

for p = 1
3 . In other words, the faster the growth of ∥Bk∥, the worse the deterioration of the complexity

bound.

A bound on the number of unsuccessful iteration is obtained using the technique of Cartis et al.
[14].
Proposition 5 (3, Lemma 3.7). Under the assumptions of Lemma 2,

|U(ϵ)| ≤ logγ2
(∆min/∆0) + |S(ϵ)| | logγ2

(γ4)|. (28)

Proof. The proof is a minor modification of that of [3, Lemma 3.7]. We provide it for completeness.
Let kϵ be the smallest integer satisfying ν−1/2

k ξcp(∆k;xk, νk)
1/2 ≤ ϵ. The update rule of ∆k in Line 11

indicates that
∆min ≤ ∆kϵ−1 ≤ min(∆0γ

|U(ϵ)|
2 γ

|S(ϵ)|
4 , ∆max) ≤ ∆0γ

|U(ϵ)|
2 γ

|S(ϵ)|
4 .

As 0 < γ2 < 1, we take the logarithm of the above inequalities to obtain

|U(ϵ)| log(γ2) + |S(ϵ)| log(γ4) ≥ log(∆min/∆0),

which leads to (28).

Thus, under Assumption 3, Lemma 2 and Proposition 5 show that lim inf ν
−1/2
k ξcp(∆k;xk, νk)

1/2

= 0.

4 Sharpness of the complexity bound

In this section, we show that the bound of Lemma 2 is attained using the techniques of Cartis et al.
[14, Theorem 2.2.3]. To this end, for 0 < ϵ ≤ 1/2, we explicitly construct kϵ = ⌊ϵ−2/(1−p)⌋ iterates
of Algorithm 2.1 with n = 1 and h = 0, so that ν−1/2

k ξcp(∆k;xk, νk)
1/2 > ϵ for k = 0, . . . , kϵ − 1,

and ν
−1/2
kϵ

ξ(∆kϵ
;xkϵ

, νkϵ
)1/2 = ϵ. Then, we invoke [14, Theorem A.9.2] to establish that there exists

f : R → R in (1) that interpolates our iterates and satisfies our assumptions. The following result is
a special case of [14, Theorem A.9.2].
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Proposition 6 (Hermite interpolation with function and gradient evaluations). Let kϵ be a positive integer,
{fk}, {gk} and {xk} be sequences of numbers given for k ∈ {0, . . . , kϵ}. Assume that for k ∈ {0, . . . , kϵ},
sk = xk+1 − xk > 0, and that for all k ∈ {0, . . . , kϵ − 1},

|fk+1 − (fk + gksk)| ≤ κfs
2
k, (29a)

|gk+1 − gk| ≤ κfsk, (29b)

for some constant κf ≥ 0. Then, there exists f : R→ R continuously differentiable such that

f(xk) = fk and f ′(xk) = gk.

In addition, if
|fk| ≤ κf , |gk| ≤ κf and sk ≤ κf ,

then |f | and |f ′| are bounded by a constant depending only on κf .

Proof. The result is a special case of [14, Theorem A.9.2] with p = 1.

In the following, we use

0 < ϵ ≤ 1/2, (30a)
0 ≤ p < 1, (30b)

kϵ = ⌊ϵ−2/(1−p)⌋, (30c)
α > 0, (30d)

β ≥ 2α−1 + 1, (30e)

and for all k ∈ {0, . . . , kϵ}, we define the sequences

wk := (kϵ − k)/kϵ, (31a)
gk := −ϵ(1 + wk). (31b)

In addition, using the initial values

∆0 := 1, (32a)
B0 := 1, (32b)
s0 := −g0, (32c)
x0 := 0, (32d)

f0 := 8ϵ2 +
4

1− p
, (32e)

we define, for all k ∈ {1, . . . , kϵ},

Bk := kp, (33a)
xk := xk−1 + sk−1, (33b)
fk := fk−1 + gk−1sk−1, (33c)

and for all k ∈ {0, . . . , kϵ},

sk := −B−1
k gk > 0, (34a)

νk :=
1

α−1∆−1
k + |Bk|(1 + α−1∆−1

k )
. (34b)
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Sequences (31), (33) and (34) may seem obscure without looking at [14, Theorem 2.2.3]. However,
they will make more sense in Theorem 2 below. In particular, we aim to have iterates satisfying the
assumptions of Proposition 6, along with ν

−1/2
k ξcp(∆k;xk, νk)

1/2 = |gk| > ϵ for k ∈ {0, . . . , kϵ − 1},
and |gkϵ

| = ϵ.

First, Lemma 3 establishes bounds on fk.
Lemma 3. Using the parameters in (30) and the sequences defined in (31), (33), and (34), the following
properties hold for the sequence {fk}:

1. for all k ∈ {1, . . . , kϵ},
fk < fk−1, (35)

2. for all k ∈ {0, . . . , kϵ},

0 ≤ f0 − fk ≤ 4ϵ2
(
2 +

k(1−p)

1− p

)
≤ 8ϵ2 +

4

1− p
, (36)

3. for all k ∈ {0, . . . , kϵ},
fk ≥ 0. (37)

Proof. First, we notice that for all k ∈ {0, . . . , kϵ}, gk < 0 and sk > 0. By combining these observations
and the definition of fk, we deduce that fk < fk−1 for all k ∈ {0, . . . , kϵ}, and in particular

f0 − fk ≥ 0.

Inequalities (36) hold for k = 0 and for k = 1 because f0 − f1 = −g0s0 = 4ϵ2. For all k ∈ {2, . . . , kϵ},

f0 − fk = −
k−1∑
i=0

gisi

= −g0s0 +
k−1∑
i=1

g2i i
−p

= 4ϵ2 +

k−1∑
i=1

ϵ2(1 + wi)
2i−p

= ϵ2
(
4 +

k−1∑
i=1

(1 + wi)
2i−p

)
.

Now,

k−1∑
i=1

(1 + wi)
2i−p ≤

k−1∑
i=1

4i−p because 1 + wi ≤ 2

≤ 4

(
1 +

k−1∑
i=2

i−p

)

≤ 4

(
1 +

k−1∑
i=2

∫ i

i−1

t−pdt

)
because i−p =

∫ i

i−1

i−pdt ≤
∫ i

i−1

t−pdt

≤ 4

(
1 +

∫ k−1

1

t−pdt

)

≤ 4

(
1 +

∫ k

1

t−pdt

)
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= 4

(
1 +

k1−p − 1

1− p

)

≤ 4

(
1 +

k1−p

1− p

)
.

This results in

f0 − fk ≤ 4ϵ2 + 4ϵ2
(
1 +

k1−p

1− p

)
= 8ϵ2 + 4

ϵ2k1−p

1− p
. (38)

Finally, since k ≤ kϵ = ⌊ϵ−2/(1−p)⌋ ≤ ϵ−2/(1−p), we have, for all k ≤ kϵ,

ϵ2k(1−p) ≤ 1. (39)

We combine (38) and (39) to obtain (36). The value of f0 and (36) then allows us to establish (37).

Now, Lemma 4 establishes a bound for |gk+1 − gk|.
Lemma 4. Using the parameters in (30) and the sequences defined in (31), (32) and (34), we have
that, for all k ∈ {0, . . . , kϵ},

|gk+1 − gk| ≤ sk. (40)

Proof. For k ∈ {0, . . . , kϵ − 1},

|gk+1 − gk| = | − ϵ(1 + wk+1) + ϵ(1 + wk)| = ϵ/kϵ. (41)

Since p < 1 and k < kϵ, we have kp/kϵ ≤ 1 ≤ 1 + wk. We multiply the latter inequality by ϵk−p to
obtain ϵ/kϵ ≤ k−pϵ(1 + wk), which leads to |gk+1 − gk| ≤ sk using (41).

The following result uses Lemma 3 and Lemma 4 to apply Proposition 6.
Proposition 7. Using the parameters in (30) and the sequences defined in (31), (32) and (34), there
exists f : R→ R differentiable such that

f(xk) = fk, f ′(xk) = gk. (42)

Proof. We can see that sk > 0 and, by definition of fk,

|fk+1 − (fk + gksk)| = 0.

Lemma 4 shows that
|gk+1 − gk| ≤ sk.

Using Lemma 3, we know that for all k ∈ {0, . . . , kϵ}, fk ≥ 0, and since {fk} is decreasing, we have

|fk| ≤ f0.

In addition,
|gk| ≤ 2ϵ ≤ 1 and sk ≤ |gk| ≤ 1.

The result follows from Proposition 6.

For the following lemma, we define the sequence {sk,1} such that for all k ∈ {0, . . . , kϵ},

sk,1 := −νkgk. (43)
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Lemma 5. Using the parameters in (30) and the sequences defined in (31), (32) and (34), we establish
that, for all k ∈ {0, . . . , kϵ},

|sk| ≤ min(∆k, β|sk,1|). (44)

Proof. On the one hand, we have

|sk| = ϵ
(1 + wk)

Bk

≤ 2ϵ ≤ 1 ≤ ∆k. (45)

On the other hand, since B−1
k ≤ 1 and ∆k ≥ 1,

2α−1 + 1 ≥ α−1∆−1
k (B−1

k + 1) + 1,

so that

1 ≤ 2α−1 + 1

α−1∆−1
k (B−1

k + 1) + 1
≤ β

α−1∆−1
k (B−1

k + 1) + 1
.

We multiply the above inequality by B−1
k to obtain

B−1
k ≤ βB−1

k

α−1∆−1
k (B−1

k + 1) + 1
=

β

α−1∆−1
k +Bk(1 + α−1∆−1

k )
= βν−1

k ,

and, by multiplying by |gk|, we deduce that

|sk| = B−1
k |gk| ≤ βν−1

k |gk| = β|sk,1|. (46)

We combine (45) and (46) to obtain (44).

The following theorem finally establishes the main result of this section.
Theorem 2 (Slow convergence of Algorithm 2.1). Algorithm 2.1 applied to (1) with model mk satis-
fying Model Assumption 2.1, Assumption 1, Assumption 2 and using Hessian approximations {Bk}
satisfying Assumption 3 may require as many as O(ϵ−2/(1−p)) iterations to produce an iterate xkϵ

such
that

ν
−1/2
kϵ

ξcp(∆kϵ
;xkϵ

, νkϵ
)1/2 ≤ ϵ. (47)

Proof. The proof consists in constructing f : R → R by interpolation, as in [14, Theorem 2.2.3].
Let n = 1, h = 0, ℓ = −∞, u = +∞. We use the parameters in (30) and the sequences defined
in (31), (32) and (34). We invoke Proposition 7 to obtain f : R→ R differentiable and bounded such
that f(xk) = fk and f ′(xk) = gk. Our goal is to show that {xk}, {sk}, {fk} and {gk} satisfy all our
assumptions and are generated by Algorithm 2.1 applied to f with x0 = 0 and with the special value
of {Bk} in (32b) and (33a).

We proceed by choosing 0 ≤ k ≤ kϵ such that ∆k ≥ 1, which holds at least for k = 0, and
going through the steps of Algorithm 2.1 at iteration k to check that it generates the iterates defined
in (31), (32) and (34).

In Line 5, νk in (34b) is as large as allowed.

In Line 6, Lemma 1 indicates that sk,1 in (43) is a global minimizer of (12b) with ψ = 0. As
1 + wk ≤ 2 and |Bk| ≥ 1, we observe that

|sk,1| = |νkgk| =
ϵ(1 + wk)

α−1∆−1
k + |Bk|(1 + α−1∆−1

k )
≤ 2ϵ ≤ 1 ≤ ∆k,

which implies that sk,1 is a solution of (13) because the condition |sk,1| ≤ ∆k is already satisfied.
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In Line 8, let mk(·;xk, Bk) be defined as in (11). mk(·;xk, Bk) satisfies Model Assumption 2.1, and
using Lemma 1, we have that sk in (34a) with ψ = 0 and B = Bk is its global minimizer. Lemma 5
shows that

|sk| ≤ min(∆k, β|sk,1|),

which also implies that sk is a solution of (11).

In Line 9, we compute

ρk =
fk − fk+1

m(0;xk, Bk)−m(sk;xk, Bk)

=
fk − fk+1

fk − fk − gksk −Bks
2
k/2

=
fk − fk+1

g2kB
−1
k /2

=
−gksk
g2kB

−1
k /2

=
B−1

k g2k

g2kB
−1
k /2

= 2.

(48)

In Line 10, ρk = 2 implies that xk+1 = xk+sk, and in Line 11, we can set ∆k+1 = min(γ3∆k, ∆max)

≥ ∆k ≥ 1.

Now, either ν−1/2
k ξcp(∆k;xk, νk)

1/2 > ϵ, and we perform the next iteration of Algorithm 2.1, or
ν
−1/2
k ξcp(∆k;xk, νk)

1/2 ≤ ϵ, which stops the algorithm. We have shown that sk,1 is a solution of (13),
thus

ξcp(∆k;xk, νk) = fk − (fk + gksk,1) = −gksk,1 = νkg
2
k, (49)

and
ν
−1/2
k ξcp(∆k;xk, νk)

1/2 = |gk|. (50)

Therefore, for all k ∈ {0, . . . , kϵ − 1}, ν−1/2
k ξcp(∆k;xk, νk)

1/2 > ϵ, and ν
−1/2
kϵ

ξcp(∆kϵ
;xkϵ

, νkϵ
)1/2 = ϵ,

so that Algorithm 2.1 performs exactly kϵ iterations to generate xkϵ
satisfying (47).

To finish the proof, we must verify that Assumption 1, Assumption 2 and Assumption 3 hold.
Assumption 1 is satisfied thanks to Proposition 4. Assumption 2 is satisfied with κubd = 1

2 because

|fk+1 −m(sk;xk, Bk)| = |fk+1 − fk − gksk − 1
2Bks

2
k| = 1

2Bks
2
k ≤ 1

2 (1 +Bk)s
2
k.

Finally, our choice of Bk allows Assumption 3 to be satisfied because all iterations are successful and
σk = k.

5 Numerical verification of the bound

We construct f : R → R satisfying the properties of the function in the proof of Theorem 2. The
construction follows the formula used in the proof of [14, Theorem A.9.2], and we use similar notation.

We use again the parameters (30), and the sequences (31)–(34). Define the cubic Hermite inter-
polant

πk(τ) := ck,0 + ck,1τ + ck,2τ
2 + ck,3τ

3, (51)

where, for all k ∈ {0, . . . , kϵ}, ck,0 = fk, ck,1 = gk, and ck,2, ck,3 solve[
s2k s3k
2sk 3s2k

] [
ck,2
ck,3

]
=

[
fk+1 − (fk + gksk)

gk+1 − gk

]
=

[
0

gk+1 − gk

]
. (52)
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We use the additional conditions f−1 = f0, g−1 = 0, fkϵ+1 = fkϵ
, gkϵ+1 = gkϵ

, and x−1 = −s−1,
where s−1 = 1, which allows (29) to hold with κf = 1, because |f0 − (f−1 + g−1s−1)| = 0, and
|g0 − g−1| = |g0| = ϵ(1 + w0) = 2ϵ ≤ 1 = s−1 since ϵ ≤ 1/2. Finally,

f(x) :=


f0 if x ≤ x−1

πk(x− xk) if x ∈ (xk;xk+1] for k ∈ {−1, . . . , kϵ}
fkϵ

if x > xkϵ
+ skϵ

.

(53)

By construction, f is a piecewise polynomial of degree 3. We have πk(0) = fk, π
′
k(0) = gk,

πk(sk) = fk+1 thanks to the definition of f in (33c) and the first line of (52), and π′
k(sk) = gk+1 with

the second line of (52). Thus, f : R→ R is continuously differentiable over (x−1, xkϵ+1).

We minimize f using Algorithm 2.1 as implemented in [5], without nonsmooth regularizer, and with
starting point x0 = 0. Inside TR, we set Bk = kp so that {Bk} grows unbounded and Assumption 3
holds, because ρk = 2 in (48) so that all iterations are very successful. In Line 8, we use the analytical
solution sk = −B−1

k ∇f(xk) of (17) given by Lemma 1 in order to avoid rounding errors occurring in a
subproblem solver for (15). This expression of sk satisfies the trust-region constraint by construction
thanks to Lemma 5. The modified TR implementation is available from https://github.com/
geoffroyleconte/RegularizedOptimization.jl/tree/unbounded.

We set p = 1/10, α = β = 10+16, γ3 = 3, ∆max = 103 and ϵ = 1/10, so that kϵ = 166. We observe
that TR converges in precisely 166 iterations. With ϵ = 1/20, we obtain the convergence of TR in
precisely kϵ = 778 iterations.

In order to make the oscillations of f ′ clearly visible, Figure 2 shows plots of f and f ′ over [0, xkϵ+1]

with ϵ = 1/3. Table 1 shows the theoretical values of ν−1/2
k ξcp(∆k;xk, νk)

1/2 = |gk| according to (50).
TR converges in 11 iterations and produces the logs in Figure 1 that align with these theoretical values.
Note that ρk = 2, as predicted by (48), and therefore, that each iteration is successful.

Table 1: Rounded theoretical values of ν
−1/2
k ξcp(∆k;xk, νk)

1/2 for ϵ = 1/3.

k 0 1 2 3 4 5 6 7 8 9 10 11

ν
−1/2
k ξcp(∆k;xk, νk)

1/2
0.67 0.64 0.61 0.58 0.55 0.52 0.48 0.45 0.42 0.39 0.36 0.33

� �
outer inner f(x) h(x)

√
ξcp/

√
ν

√
ξ ρ ∆ ∥x∥ ∥s∥ ∥Bk∥

1 1 5.3e+00 0.0e+00 6.7e-01 4.7e-01 2.0e+00 1.0e+00 0.0e+00 6.7e-01 1.0e+00
2 1 4.9e+00 0.0e+00 6.4e-01 4.5e-01 2.0e+00 3.0e+00 6.7e-01 6.4e-01 1.0e+00
3 1 4.5e+00 0.0e+00 6.1e-01 4.1e-01 2.0e+00 9.0e+00 1.3e+00 5.7e-01 1.1e+00
4 1 4.1e+00 0.0e+00 5.8e-01 3.9e-01 2.0e+00 2.7e+01 1.9e+00 5.2e-01 1.1e+00
5 1 3.8e+00 0.0e+00 5.5e-01 3.6e-01 2.0e+00 8.1e+01 2.4e+00 4.7e-01 1.1e+00
6 1 3.6e+00 0.0e+00 5.2e-01 3.4e-01 2.0e+00 2.4e+02 2.9e+00 4.4e-01 1.2e+00
7 1 3.4e+00 0.0e+00 4.8e-01 3.1e-01 2.0e+00 7.3e+02 3.3e+00 4.1e-01 1.2e+00
8 1 3.2e+00 0.0e+00 4.5e-01 2.9e-01 2.0e+00 1.0e+03 3.7e+00 3.7e-01 1.2e+00
9 1 3.0e+00 0.0e+00 4.2e-01 2.7e-01 2.0e+00 1.0e+03 4.1e+00 3.4e-01 1.2e+00
10 1 2.8e+00 0.0e+00 3.9e-01 2.5e-01 2.0e+00 1.0e+03 4.4e+00 3.2e-01 1.2e+00
11 1 2.7e+00 0.0e+00 3.6e-01 2.3e-01 2.0e+00 1.0e+03 4.7e+00 2.9e-01 1.3e+00
12 1 2.6e+00 0.0e+00 3.3e-01 1.0e+03 5.0e+00 2.6e-01 1.3e+00

TR: terminating with
√
ξcp/

√
ν = 0.3333333333333333

"Execution stats: first-order stationary"� �
Figure 1: TR logs with ϵ = 1/3. outer denotes the iteration number, inner is the number of iterations performed by
the subsolver to solve (15) with the model in (11), √ξcp/

√
ν is ν

−1/2
k ξcp(∆k;xk, νk)

1/2, √ξ is the numerator of (16),
∥s∥ is ∥sk∥, and the remaining columns refer unambiguously to data used in Algorithm 2.1.

https://github.com/geoffroyleconte/RegularizedOptimization.jl/tree/unbounded
https://github.com/geoffroyleconte/RegularizedOptimization.jl/tree/unbounded
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Figure 2: Illustration of example (53) with ϵ = 1/3. Top row: values of f (left) and of f
′ (right) for x ∈ [0, xkϵ+1].

Bottom row: iterates xk (left) and steps sk (right) for k ∈ [0, kϵ + 1].

The code to run this experiment is available at https://github.com/geoffroyleconte/
docGL/blob/master/regularized-opt/test-unbounded-hess.jl. By making similar
changes to the algorithm TRDH [26], which can be found at the same URL, we obtain the same
number of iterations.

6 Discussion

We have shown that it is possible to establish convergence and sharp worst-case evaluation complexity
of Algorithm 2.1 in the presence of unbounded Hessian approximations Bk, provided they do not grow
too fast—c.f., Assumption 3. We established that the complexity bound can be attained, and we gave
an example of function for which it was attained, both theoretically and numerically.

When p ≥ 1 in Assumption 3 or the growth of ∥Bk∥ is not governed by the number of successful iter-
ations, it may still be possible to establish convergence in the sense that lim inf ν

−1/2
k ξcp(∆k;xk, νk) = 0

https://github.com/geoffroyleconte/docGL/blob/master/regularized-opt/test-unbounded-hess.jl
https://github.com/geoffroyleconte/docGL/blob/master/regularized-opt/test-unbounded-hess.jl
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as in [15, §8.4.1.2], where the main assumption is that

∞∑
k=0

1

1 + max0≤j≤k ∥Bj∥
= ∞.

However, it is unclear at the time of this writing whether a sharp worst-case evaluation complexity
bound holds for such more general cases.

A possible extension of the present work would be to analyze the worst-case evaluation complexity
of ARp-type methods in the presence of potentially unbounded model Hessians.
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