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version: February 2024

Before citing this technical report, please visit our website (https:
//www.gerad.ca/en/papers/G-2023-62) to update your reference
data, if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grâce
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Abstract : The fine-tuning of Large Language Models (LLMs) has enabled them to recently achieve
milestones in natural language processing applications. The emergence of ever larger LLMs has paved
the way for more efficient fine-tuning methods. Among these, the Low-Rank Adaptation (LoRA)
method keeps most of the weights of the pre-trained LLM frozen while introducing a low-rank decom-
position of the weight matrix, enabling the tuning of only a very small proportion of the network. The
performance on downstream tasks of models fine-tuned with LoRA heavily relies on a set of hyper-
parameters including the rank of the decomposition. In this work, we investigate the choice of these
hyperparameters through two main blackbox optimization (BBO) techniques. We examine the whole
pipeline of performing fine-tuning and validation on a pre-trained LLM as a blackbox and efficiently
explore the space of hyperparameters with the NOMAD algorithm, achieving a boost in performance
and human alignment of the tuned model.

Acknowledgements: This work is supported by the NSERC Alliance grant 544900-19 in collabo-
ration with Huawei-Canada and by the NSERC Alliance-Mitacs Accelerate grant ALLRP 571311-21
(“Optimization of future energy systems”) in collaboration with Hydro-Québec.

The authors want to thank Sébastien Le Digabel and Vahid Partovi Nia for their support and
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1 Introduction

Large-scale Language Models (LLMs) have shown exceptional ability in language understanding and

generation [8, 28, 29, 39]. State-of-the-art models like ChatGPT [25] and GPT-4 [26] have garnered

a great deal of interest from the academic and industrial communities. One of the main challenges of

LLMs is how to control their behavior and make them follow specific instructions given by users [27].

Additional fine-tuning of LLMs on a dataset of instructions is called Instruction-Tuning; this technique

has become ubiquitous due to its efficiency [38]. However, tuning large models demands a large amount

of computer power. To overcome this, a common practice is to use Parameter Efficient Fine Tuning

(PEFT) methods, which modify a limited selection of parameters in a pre-trained LLM while leaving

the rest unchanged [24]. Such methods are quite sensitive to the choice of hyperparameters [18, 34].

In this work we investigate how hyperparameter optimization can better the instruct-tuning results.

Hyperparameters selection by a human in order to tune a model is a tedious task but it can signif-

icantly improve model performance. Bergstra et al. 2011 suggest that hyperparameters optimization

(HPO) forms the outer loop of a learning process. Applying an algorithmic approach to automate the

process in finding better hyperparameters should also bring some efficiency. A grid search algorithm

is a systematic but inefficient approach that tries a finite number of hyperparameters combinations. A

blackbox optimization (BBO) algorithm should be a better choice for solving HPO efficiently within

a fixed computational budget.

In this work we investigated how two BBO solvers implementing different types of algorithms,

namely Mads (a direct search algorithm implemented in NOMAD) and TPE (a Bayesian model-based

optimization algorithm implemented in NNI) behave when used to solve HPO for the Instruction-tuning

of a specific LLM. We found different patterns in hyperparameter selection for these two optimizers, and

assessed their effects on downstream tasks. Overall, we confirmed the necessity of careful HP selection

in Instruction-tuning for performance boosting, both in downstream tasks and human preference.

2 Instruction-tuning Large Language Model

Instruction-tuning has emerged recently as an important training paradigm [27, 30, 35, 36] to better

adapt pre-trained models for human needs and enhance their ability to comprehend and respond to a

diverse range of human requests. Instruction-tuning is an additional training step for LLMs when the

models are fine-tuned on a dataset of instruction and output pairs [12, 20, 22, 32]. It aims to bridge

the gap between the next-word prediction objective of a language model and the users’ objective of

having LLMs follow their instructions across various tasks and domains.

2.1 Parameter-Efficient Fine-Tuning (PEFT)

The success of Instruction-tuning heavily relies on a powerful model with at least several billion pa-

rameters. Tuning of such models is usually difficult due to high computational costs in both time

and memory. To circumvent this bottleneck, researchers developed Parameter-Efficient Fine-Tuning

(PEFT) methods [24]: instead of training all parameters, one freezes the majority of parameters in

pre-trained models and only updates an incremental number of parameters.

There are various PEFT techniques generally falling into two groups: Prompt Tuning [21] when

a few trainable tokens are added to the prompt; and different kinds of Adaptors [14, 16] when extra

trainable layers are inserted between layers of the pre-trained model. In this work, we utilize the Low-

Rank Adaptation (LoRA) [17] method which adds trainable low-rank matrices to every model weights

during training and merges the added parameters to the original pre-trained matrices for inference.

The performance of LoRA-tuned models is very sensitive to the rank selection [34], hence the rank

needs to be carefully picked for each dataset: too large rank could result in more overfitting on small

datasets, yet a small rank may fail to capture the diversity of complicated instructions. Another
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important hyperparameter for LoRA is a scaling factor (LoRA-α), which determines the scaling of

low rank blocks that are added to the frozen parameters. We perform hyperparameters optimization

(HPO) to select the optimal combination of these and some other LoRA hyperparameters to improve

the performance of the tuned model.

3 Hyperparameters optimization

In this work, the aim of hyperparameters optimization (HPO) is to obtain a fine-tuned model with

the best performance measure. NOMAD and NNI-TPE are considered for solving this HPO problem.

3.1 The Mads algorithm and NOMAD

NOMAD1 [5] is a software package for solving blackbox optimization (BBO) problems [3] in which

there is no analytical expressions for objective and constraint functions. The optimization problems

have the following general form

min
x∈X⊆Rn

{f(x) : c(x) ≤ 0} , (1)

where f : X ⊆ Rn → R ∪ {∞} and c : X ⊆ Rn → (R ∪ {∞})m are the given functions. The function

properties are not known and their evaluations are typically obtained after a computer program exe-

cution, with provided inputs and observed outputs. In addition, a blackbox function evaluation may

take a significant amount of time and may fail to return valid outputs. A HPO problem can be framed

as a BBO problem where the objective function is linked to a performance measure of a model and

the hyperparameters are the variables x.

NOMAD implements the mesh adaptive direct search (Mads) algorithm [1]. Mads is supported by

a rigorous hierarchical convergence analysis based on various degrees of smoothness of the functions

defining the problem. The Mads algorithm iterates search and poll steps to generate trial points on

a mesh discretizing the space of variables. The search step generates trial points disseminated more

globally in the space of variables. The poll step generates trial points around the current best solutions

following rigid rules to ensure convergence to points satisfying some necessary optimality conditions.

The mesh size may be adapted at each iteration. In addition, the mesh properties support by con-

struction real variables, binary variables and granular variables [4]. The mesh adaptation combined

with the poll and search steps allows to explore more globally early during the optimization and more

locally when the mesh is refined. This is one advantage of the Mads algorithm .

The Mads algorithm can handle general inequality constraints using the progressive barrier [2]

approach to exploit the measure of constraint violation. NOMAD includes BBO algorithms other than

Mads. In particular, DMulti-Mads [7] solves multiobjective optimization problems seeking detailed

Pareto fronts. Hence, NOMAD is suited to solve HPO problems with or without inequality constraints

or that can have multiple objectives.

3.2 Neural Network Intelligence (NNI) toolkit

Microsoft Neural Network Intelligence2 (NNI) is an open-source toolkit to automate machine learning

techniques such as hyperparameters optimization, model pruning, quantization, neural architecture

search (NAS) and feature engineering. Among the tuning algorithms available in NNI we have selected

the Tree-structured Parzen Estimator [6] (TPE) which is a Bayesian model-based optimization method.

Bayesian optimization methods are appropriate to balance exploration and exploitation of the variable

space with a limited evaluation budget.

TPE performs a series of optimization on a model of the objective function f that is cheaper to

evaluate (inner loop). A Gaussian Process (GP) is used to build the model and the inner loop aims

1Available at https://www.gerad.ca/nomad and https://github.com/bbopt/nomad.
2Software available at https://github.com/microsoft/nni

https://www.gerad.ca/nomad
https://github.com/bbopt/nomad
https://github.com/microsoft/nni
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to maximize the expect improvement (EI) of f . As new trial points are evaluated new models are fit

based on the overall observation history. This process of sequential model-based optimizations [19]

(SMBO) can be repeated until the evaluation budget is used. TPE is best suited for single objective

HPO without inequality constraints.

4 Experimental setup

4.1 Instruction-tuning settings

Backbone Model LLaMA is a family of open-sourced large language models including models ranging

from 7B to 65B parameters [33]. As our experiments aim at investigating the behavior of BBO

algorithms, we conduct them with the 7 billions parameter version of LLaMA 2.3 The fine-tuning

of LLaMA 2 is done via the LoRA method. The method has some specific hyperparameters that we

explore with BBO (see Section BBO Settings below for details).

Datasets To perform our fine-tuning procedure, we use a mix of two same-structured instruction-

following datasets (see Table 2 in Appendix). First is the 52k-entry dataset used in the Stanford Alpaca

Project [32], that features a large diversity of instructions. Second is Databricks’ Dolly dataset [12]

containing 15k entries. We build a 54k-sized training set and a 13k-sized validation set, both containing

70% of data from the Alpaca dataset and 30% from Dolly, ensuring an identical distribution.

Training Details The fine-tuning procedure minimizes the training loss by adapting LoRA trainable

parameters. Once fine-tuned the validation loss of the model is computed. The HuggingFace Tran-

formers API [37] is used for handling the model, its training and validation on datasets. The default

AdamW optimizer [23] is selected for training with a batch size fixed to 4. This pipeline is run on four

NVIDIA-A100 GPUs with 80 GB memory.

4.2 BBO Settings

In addition to LoRA rank, LoRA scaling α and dropout rate, we also seek to optimize the learning

rate that impacts the reduction of training loss (see Table 3 in Appendix).

For the problem at hand, we can consider different types of performance measure. The model

training procedure indirectly seeks a fine-tuned model with low validation loss. But, the validation

datasets are relatively small and a model may not generalize well. Hence, other performance measures

on various instruction-following benchmarks are necessary to assess models’ downstream capability

but it would be very time-consuming if done during optimization.

Moreover, considering multiple measures could require to use a multiobjective BBO formulation

which demands a larger evaluation budget to obtain a refined Pareto front. In this work, to control

the HPO computation time we chose a fixed and relatively small evaluation budget. Also, we decided

to test if the validation loss computed at the last epoch can be used as the BBO single objective

function. For validation on downstream tasks, we need to perform post-optimization assessments on

several candidates.

5 Experimental results

5.1 First optimization round

A first optimization using NOMAD was conducted to validate several a priori choices. We started with

a budget of 50 evaluations with 3 epochs. The validation loss is computed at each epoch. The duration

3https://huggingface.co/meta-llama/Llama-2-7b-hf

https://huggingface.co/meta-llama/Llama-2-7b-hf
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Figure 1: Objective value history. First NOMAD optimization with 50 evaluations and a 3 epochs fine-tuning.

of a single evaluation is around 2 hours and 15 minutes. It took less than 5 days to complete this

optimization.

As expected, hyperparameter selection affects the fine-tuning training process. The smallest vali-

dation losses are obtained for evaluation points featuring the highest reduction in training losses. The

best evaluation happens to be the last one. In addition, from the optimization history (see Figure 1)

we can expect further reduction of the validation loss given an increased evaluation budget. From

the intermediate fine-tuning training steps (not shown here) we realize that on most evaluation points

there is no significant change in validation loss between epoch 2 and epoch 3. Also, we observe that

most of the best evaluation points have a LoRA rank value of 128, which is the upper bound for this

variable.

5.2 Second optimization round

For the next step, NOMAD and NNI-TPE were used for HPO on 100 evaluations with 2 epochs.

We also decided to increase the LoRA rank upper bound to 512 in order to explore how it impacts

model fine-tuning; in particular the capability to capture the diversity of instructions with the possible

overfitting drawback.

The evaluation points obtained during the first round were given in a cache file to jump-start

NOMAD in the second round. These points were used during Mads search steps to construct quadratic

models of the objective function and propose new promising trial points.

NOMAD results Figure 2a shows the hyperparameters combinations assessed by NOMAD during this

experiment and the validation loss yielded by the corresponding fine-tuned models. It makes clear that

a learning rate around 10−3.5 and a scaling parameter α around 60 yield the best results. Among the

10 best evaluations points, 5 have LoRA rank r = 512 (including the best one), 4 have r = 256 and

1 has r = 128. The trend observed in first round linking large rank and lower validation loss is again

observed. NOMAD has obtained efficient hyperparameters combinations in high-rank regions and has

put the emphasis on exploitation through refining the other hyperparameters. By activating optional

exploration methods in the search step, NOMAD may have produced more trial points in low-rank

regions. Moreover, feeding the algorithm with a cache file from the first round may have introduced a

bias in the search step in favor of these high-rank regions.

NNI-TPE results Compared with the hyperparameters values tested by NOMAD, NNI-TPE (see

Figure 2b) shows more variety confirming its explorative capability. It also obtains evaluation points

with lower validation losses compared to the best of NOMAD. Among the 10 best evaluations points

of NNI-TPE, only 2 have a LoRA rank higher than 32, the best one having rank 8. This result shows

that increasing LoRA rank is not the only way to obtain a lower validation loss, rather that low rank

can perform well provided that other hyperparameters are chosen adequately.
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Figure 2: Parallel plots showing hyperparameters values and validation losses. Darker lines indicate lower validation losses.
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5.3 Evaluation of candidate best models

Validation of the best candidate models was performed on downstream instruction-following tasks.

Instruct-Eval4 [10] source codes and datasets are used to automate evaluation and obtain scores on

a series of instruction-following tasks. The benchmarks considered in this work are MMLU [15],

BBH [31], DROP [13] and HumanEval [9] and are of quite different natures.

Table 4a in Appendix shows the scores of the 10 best and 10 worst models (in terms of validation

loss) explored by NOMAD during the second optimization round. In summary, the model ranked first

does not give the best scores. Nevertheless, the 10 best models have very close validation losses. The

10 best models outscore the 10 worst models (including the one with default fine-tuning hyperparam-

eters) and the baseline (without fine-tuning) for MMLU and HumanEval. For the BBH and DROP

benchmarks the trend is not as clear.

Data from the 10 best models (validation loss) explored by NOMAD (Table 4a) and NNI-TPE

(Table 4b) optimizations is summarized in Table 1. The 10 best MMLU, DROP and HumanEval

scores are lower in average for NNI-TPE than what is obtained by NOMAD even though NNI-TPE

obtains the lowest validation loss. When judging by Instruct-Eval performance measures we can

conclude that HPO using validation loss as objective function results in better models. However, lower

validation losses do not necessarily translate into higher benchmark scores. With the current HPO

problem formulation several candidates should be considered before selecting the best model for a

downstream task.

Table 1: Statistics of the 10 best models on downstream instruction-following tasks.

Method min max avg. st. d.

NOMAD
MMLU 45.88 46.7 46.24 0.29
BBH 32.07 32.99 32.50 0.25
DROP 29.67 30.95 30.28 0.45
HumanEval 14.63 18.9 16.94 1.52

NNI-TPE
MMLU 45.49 46.56 46.08 0.31
BBH 32.27 34.43 32.93 0.42
DROP 29.23 30.77 30.03 0.61
HumanEval 14.02 16.46 15.24 0.91

Default HPs
MMLU 43.56
BBH 32.13
DROP 29.02
HumanEval 15.24

Human Preference We also conducted Human evaluation to check whether the generated results are

aligned with human preferences. We sampled 30 questions randomly from the Vicuna [11] human

preference dataset5 and asked Human evaluators to compare the answers generated by two models:

the one tuned with NOMAD as described above and the one with the default hyperparameters for

LoRA. For each question, all evaluators are asked to judge which answer is better without knowing the

source of answer. Figure 3 shows that our HP-tuned model has a clear human preference compared to

the default one by an overall preference score of 5%.

4https://github.com/declare-lab/instruct-eval
5https://github.com/lm-sys/vicuna-blog-eval

https://github.com/declare-lab/instruct-eval
https://github.com/lm-sys/vicuna-blog-eval
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Figure 3: Human evaluation on the Vicuna human preference dataset.

6 Conclusion

Hyperparameters optimization using blackbox optimization algorithms improves the performance of

fine-tuned LLMs on downstream tasks and human evaluation. In particular, the best models are

better than the model with default fine-tuning parameters. Also, for the three out of the four down-

stream tasks, the best candidate models are obtained by NOMAD. NNI-TPE found candidate models

with performance relatively close to those obtained by NOMAD but with clearly lower LoRA ranks

suggesting that different sets of hyperparameters may be optimal. More experiments should be con-

ducted to either identify a single proper set of hyperparameters for LLM fine-tuning or to conclude

that hyperparameters optimization should form the outer loop for every LLM fine-tuning whenever

possible.

The experiments show that validation losses are not perfectly aligned with downstream tasks scores.

As future work we aim to develop an efficient and robust methodology to pickup a single best model.

This can be achieved by guiding the blackbox optimization to consider more criteria into the HPO

problem. Not all BBO algorithms offers enough flexibility to consider inequality constraints and

multiple objectives. NOMAD is a good option to handle such problems.

Appendix

A Datasets

Table 2: Instruction datasets used in this work. We report also the number of data samples and the average length of
prompts (Avg. L), the average length of completion (Avg. C).

Dataset Type # samples Avg. L Avg. C

Alpaca LLM 52,002 27.8 64.6
Dolly Human 15,011 118.1 91.3
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B BBO settings

Table 3 gives the mapping between the variables handled by NOMAD and the hyperparameters for

evaluation. The type of variables, the bounds and initial values for the hyperparameters are also

provided in this table. Contrary to NOMAD, TPE does not require a special mapping between its

variables and the hyperparameters; initial values are not required either.

Default values reported in Table are taken from the HuggingFace PEFT documentation.

Table 3: Mapping NOMAD variables into hyperparameters (right column) and initial values.

Rank Int. r ∈ [1; 8] → 2r+1

Dropout Int. d ∈ [1; 6] → 0 if d = 1
else 106−d

α Int. α ∈ [1; 64] → α
LR Real lr ∈ [−6;−3] → 10lr

Default values r = 2 (Rank=8), d = 5 (Dropout=0.1)
α = 32, lr = −5 (LR=0.00001)

C Second round detailed results

As our goal is a general-purposed model, we are also interested in Pareto optimality. A model is Pareto

optimal if it is not dominated by any other model (among the ones evaluated). Picking-up a model

is easier when the optimization returns a single Pareto optimal solution. Otherwise, Pareto optimal

models have particular trade-offs between the different scores.

Table 4a shows the scores of the 10 best and 10 worst models (in terms of validation loss) explored

by NOMAD during the second optimization round. We can note that no single model dominates all

remaining models in Table 4a. Interestingly, the models ranked 6 and 8 are Pareto optimal, whereas

Table 4: Instruct-Eval scores on the models generated by the two optimizers during the second optimization round. Models
are ranked by increasing validation loss. The 10 best and 10 worst models are displayed. Best score values are in bold. ⋆
indicates Pareto optimality for this subset. † marks the model with default LoRA hyperparameters.

Ranking MMLU BBH DROP HumanEval
(valid. loss)

1 45.94 32.51 29.71 17.07
2 ⋆ 46.00 32.68 30.95 17.68
3 46.18 32.16 30.63 15.85
4 ⋆ 46.70 32.37 30.15 18.29
5 46.42 32.07 30.33 18.29
6 ⋆ 45.98 32.99 29.77 17.68
7 ⋆ 46.46 32.50 30.95 18.90
8 ⋆ 46.57 32.60 29.67 14.63
9 46.28 32.42 30.29 16.46
10 45.88 32.67 30.39 14.63

91 42.48 31.43 28.62 12.20
92 42.47 32.30 28.40 12.80
93 42.44 30.45 28.62 12.80
94 ⋆ 45.98 33.40 30.45 13.41
95 ⋆ 45.09 32.77 30.85 15.24
96 42.32 30.98 29.01 13.41
97 42.64 31.24 27.53 14.02
98 42.88 32.09 28.08 12.80
99 43.45 32.42 30.26 15.24
100 † 43.56 32.13 29.02 15.24

w/o fine-tuning 42.37 31.41 28.66 14.63

(a) NOMAD

Ranking MMLU BBH DROP HumanEval
(valid. loss)

1 ⋆ 46.56 32.41 30.26 14.63
2 ⋆ 46.23 34.43 30.15 14.02
3 ⋆ 46.28 32.86 29.28 16.46
4 ⋆ 46.40 32.27 29.77 15.85
5 ⋆ 45.94 32.83 30.58 14.02
6 ⋆ 45.84 33.49 30.25 16.46
7 46.13 32.3 29.72 14.63
8 ⋆ 46.06 32.9 30.34 15.85
9 ⋆ 45.91 32.78 30.77 15.24
10 45.49 33.03 29.23 15.24

91 43.16 32.02 28.91 14.63
92 43.10 32.38 29.79 15.85
93 43.27 31.54 29.26 14.02
94 43.46 31.55 28.80 14.02
95 43.42 31.65 28.94 14.63
96 42.81 32.05 29.23 14.02
97 43.01 31.45 32.41 14.02
98 ⋆ 42.86 32.00 32.94 14.63
99 ⋆ 46.20 32.04 32.78 15.85
100 46.05 31.24 28.89 14.02

w/o fine-tuning 42.37 31.41 28.66 14.63

(b) NNI-TPE
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they do not achieve the best value for any score. In fact, a model outperforming in one kind of

benchmark score can indicate its overspecialization.

Table 4b shows the scores of the 10 best and 10 worst models (validation loss) explored by NNI-

TPE optimization. For BBH and DROP, when comparing NOMAD and NNI-TPE, similar scores are

obtained. The 10 best MMLU scores and HumanEval scores are lower for NNI-TPE than what is

obtained by NOMAD even though NNI-TPE obtains the lowest validation loss.

D Human evaluation setting

The evaluation is conducted with Google Forms with 30 instructions in that form. The ordering of the

questions and the responses are totally randomized. We found 10 experienced volunteering annotators

who are fluent in English and hold bachelor’s degrees or above.
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