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recherche du Québec – Nature et technologies.
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– Bibliothèque et Archives Canada, 2023

The publication of these research reports is made possible thanks
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Legal deposit – Bibliothèque et Archives nationales du Québec, 2023
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Abstract : This study addresses large-scale personnel scheduling problems in the service industry by
combining mathematical programming with data mining techniques to enhance efficiency. The studied
problem aims at efficiently scheduling skilled employees over a one-week planning horizon, minimizing
costs while meeting diverse job demands. In service industries, shift planning is intricately tied to
customer presence, leading to a multitude of potential shifts and to a difficult optimization problem
that cannot be easily solved using a commercial mixed-integer programming solver. Nevertheless, these
problems are categorized as recurrent problems, where distinct instances share common characteristics
and solution structures that differ only in a few parameters over time. Consequently, we propose to use
a data mining technique, namely, the k-nearest neighbors algorithm, to expedite the solution process
while upholding solution quality. In particular, we suggest using schedules of past solutions to reduce
the problem size. Specifically, for an upcoming instance, we identify similar historical instances and
streamline the enumeration of shifts to align with the comparable historical instances’ schedules. This
approach allows us to effectively address the problem using a commercial solver within a reasonable
timeframe while preserving solution quality. Significantly, our methodology offers decision-makers the
flexibility to determine the extent to which they wish to scale down the problem. Our experiments,
conducted on a total of 80 instances with up to 12 jobs and 190 employees, yield an average removal
of 85.5% of decision variables. This resulted in a noteworthy average speedup factor of 15.5, with a
marginal average cost increase of 1.2%.

Keywords : Personnel scheduling, heuristic, k-nearest neighbors
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1 Introduction

The focus of our research is flexible personnel scheduling problems in the service industry, particularly

large retail stores. A personnel scheduling procedure determines the least-cost work schedule for em-

ployees who are required to cover the demand of multiple jobs during a planning horizon, (e.g., Rastgar

et al., 2022). The demand is expressed for each time period and determines how many employees are

needed to fulfill a job according to the presence of customers. Unlike fixed-shift scheduling in other

environments such as manufacturers, hospitality, and healthcare, the service industry requires greater

flexibility due to varying customer arrivals throughout the day. In hospitals, for instance, employ-

ees typically adhere to 8-hour or 12-hour shifts, with predetermined and fixed start times during the

week (e.g., 7 a.m., 3 p.m., and 11 p.m.). In contrast, within the service sector, shifts may start and

end at various times throughout the day, aiming to create cost-effective schedules that require the

fewest possible employees at any given moment. This means that instead of assigning only a few shift

options to employees, such as 3 per day, as seen in nurse scheduling, the variety of potential shifts

must be significantly high. For instance, there could be over 900 possible shifts in a single day if the

scheduling window spans from 7 a.m. to 10 p.m., with shifts starting and ending every quarter of an

hour and lasting anywhere from 4 to 9 hours. Furthermore, the demand for staffing is not defined

on a per-shift basis but rather for each time period, often in 15-minute intervals. This high degree

of flexibility results in an enormous number of potential shift combinations, rendering the scheduling

problem exceptionally complex.

In the context of a retail store, the number and type of employees required to perform various jobs

in the store tend to follow a similar or repetitive pattern over time. For example, many retail stores

experience a consistent pattern of lower customer arrivals on Mondays compared to other days of the

week. On the other hand, Saturdays are typically one of the busiest days for retail stores, as many

people have the weekend off and are more likely to go shopping. This creates a consistent pattern of

high customer demand on Saturdays. In practice, some employees are assigned to similar schedules

most of the time. Therefore, it might be possible to allocate consistent or even fixed shifts to a group

of employees. This would help to reduce the problem size by limiting the number of employees/jobs to

be scheduled. In light of these insights, we were motivated to initiate a study exploring the utilization

of historical scheduling data for future planning horizons.

The field of personnel scheduling research encompasses a range of research methodologies, incor-

porating distinct analytical approaches coupled with solution or evaluation techniques. Among them,

methods based on mixed-integer linear programming (MILP) stand out as the most prevalent ap-

proaches in the scientific literature (see, e.g., Özder et al., 2020; Van den Bergh et al., 2013). In this

paper, we focus on a personnel scheduling problem variant that can be formulated as a set-covering

model with explicitly defined shift variables. First introduced by Dantzig (1954), these models use bi-

nary variables to represent potential shifts, allowing for a more efficient representation of the scheduling

problem. When using commercial solvers to solve these problems, they struggle to handle the intrica-

cies of flexible personnel scheduling in the service industry due to the large number of potential shifts

originating from the dynamic nature of demand. Heuristics can, therefore, be useful to reduce the

model size, such as the proposed approach to fix the schedules of a group of employees.

In this study, we contribute to accelerating the solution of flexible personnel scheduling problems

by using data mining methods in a pre-processing step to extract information from previously solved

problem instances and use this information to reduce the problem size. We identify similar instances

in historical data while identifying outliers. Consequently, we streamline the enumeration of shifts

for upcoming instances to align with the schedules of comparable historical instances. While the

integration of data mining and knowledge extraction in optimization is promising, ensuring the quality

and relevance of mined data, as well as managing the computational complexity of knowledge extraction

and utilization, are challenging. Therefore, we implement essential data pre-processing methods and

utilize the simple yet effective k-Nearest Neighbors (kNN) algorithm to find similar data points. The

proposed data mining-driven optimization algorithms are tested on a series of artificially generated
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instances from a set of eight real-world instances provided by our industrial partner UKG, which

commercializes personnel scheduling optimization software.

The remainder of this paper is structured as follows. Section 2 includes a literature review of the

solution methodologies for personnel scheduling problems focusing on artificial intelligence techniques.

In Section 3, the problem under study is defined, and the MILP model employed in the optimization

phase is introduced. The methodology and approach considered in this study are outlined in Section 4.

Section 5 presents the experimental results. Finally, Section 6 concludes with a brief summary and

discusses potential extensions.

2 Related works

Addressing personnel scheduling problems often requires navigating complex, high-dimensional search

spaces, where traditional methods may prove insufficient to find optimal solutions. To overcome this

scalability issue, a wide range of mathematical and learning-based optimization algorithms as well

as metaheuristics have been developed as highlighted by Van den Bergh et al. (2013). For example,

decomposition methods have been developed for large-scale personnel scheduling problems (see, e.g.,

Attia et al., 2019; Rekik et al., 2004; Restrepo et al., 2018). Nevertheless, when dealing with practical

personnel scheduling issues, numerous constraints related to shift feasibility and various complex cost

structures pose challenges. Consequently, designing pricing problems for generating shifts dynamically

within a column generation algorithm becomes a challenging task in such problems.

In recent years, the mathematical optimization community has been increasingly interested in

using artificial intelligence techniques to improve MILP solver performance. Bengio et al. (2021)

provides a survey of the contribution of machine learning (ML) to combinatorial optimization problems.

ML methodologies prove effective in addressing extensive continuous and combinatorial problems by

acquiring and leveraging problem structures (see, e.g., Shi et al., 2023), predicting optimal solutions

through the analysis of data extracted from previously solved instances (see, e.g., Xavier et al., 2020;

Lodi et al., 2020), reducing problem sizes (see, e.g., Xu et al., 2016; Rastgar et al., 2022), and enhancing

the performance of established optimization algorithms (see, e.g., Xavier et al., 2020; Gasse et al., 2019;

Lodi and Zarpellon, 2017; Morabit et al., 2021; Tang et al., 2020).

Data mining and knowledge extraction offer the potential to enhance optimization techniques by

leveraging historical data, patterns, and insights. Researchers have applied data mining techniques,

such as clustering and classification to discover patterns and relationships within the input data of an

optimization problem, leading to more efficient search strategies and improved decision-making. How-

ever, the use of data mining and knowledge extraction in personnel scheduling problems, specifically

in the context of the retail industry, is limited.

Li et al. (2012) introduce a pattern recognition-based approach for solving assignment problems

focusing on nurse scheduling and educational timetabling. The nurse rostering problem is a staff

assignment problem involving the allocation of shifts to nurses while considering various constraints.

A timetabling problem in education can be described as the process of assigning events such as exams

into a limited number of periods under certain constraints. In these problems, some constraints are

mandatory due to resource limitations and legal regulations, while others are preferences used for

assessing schedule quality. Calculating objective values for highly constrained problems can be costly,

and feasible solution spaces are limited. The research aims to predict solution quality without the

need for actual objective value calculations, making the heuristic search process more efficient. This

is achieved through the application of neural networks to expedite the evaluation of solutions using

pattern recognition.

Guastalla et al. (2022) propose a decision support system for healthcare organizations that com-

bines optimization and process mining approaches. The system utilizes event logs from the information

system to simulate work schedules, considering operative constraints, personal preferences, and regu-
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lations. The authors emphasize the importance of recognizing patterns in realized rostering plans as a

means to understand personnel needs and habits.

The methodologies presented by Guastalla et al. (2022) and Li et al. (2012) are designed to address

complexities arising from numerous and complex constraints rather than focusing on flexibility in shift

enumeration. These challenges emerge particularly in scenarios where staff preferences play a crucial

role, yet the available working shifts are constrained to a few fixed-shift schedules.

To address scalability concerns in personnel scheduling problems, driven by a large number of

variables, Rastgar et al. (2022) introduce a deep learning-based approach. This approach predicts and

eliminates variables unlikely to contribute to an optimal solution. The method predicts the start and

end times of shifts, using these predictions to exclude shift variables associated with shifts that are

not likely to be selected in the optimal solution of a MILP model. Notably, this method restricts the

enumeration of potential shifts to those starting and ending at the predicted times. This approach

could be adapted to environments where repeating historical schedules is desirable. The key distinction

with our work lies in the fact that the method proposed below does not treat new instances as entirely

distinct scenarios. Instead of predicting future shifts, the goal is to identify similar shifts within

historical data.

3 The flexible personnel scheduling problem in retail

In this section, first, the description of the studied flexible personnel scheduling problem is provided

(Section 3.1). Following that, Section 3.2 introduces the notation utilized in the formulated mathe-

matical model, which is subsequently detailed in Section 3.3.

3.1 Problem statement

This study revisits a problem previously addressed by Hassani et al. (2023) and Rastgar et al. (2022).

This problem encompasses several variants, including the consideration of multiple jobs, the use of

flexible shifts, and a one-week scheduling horizon, in addition to requiring employees to have at least

nO days off per week. It is assumed that shifts are mono-jobs, i.e., employees are assigned to the same

job throughout the shift, but an employee can be assigned to different jobs in different shifts as long as

they are qualified for those jobs. It is common practice to adopt mono-job shifts as a way to simplify

operational processes, especially in personnel management, and eliminate the need for short breaks

when changing tasks. Although our simplified approach makes our approach clearer, we recognize that

multi-job scenarios may require more complex decision-making processes in the future.

We do not incorporate breaks into our problem formulation, reflecting real-world scenarios in the

retail industry in which breaks are imposed instantly by immediate work demands. The forecasted

demand is normally adjusted during certain intervals to compensate for the breaks added during oper-

ations. By introducing new decision criteria and considering break placement regulatory constraints,

our proposed heuristic can be adapted where this no-break assumption does not hold.

We follow the set-covering model used by Hassani et al. (2023) and Rastgar et al. (2022) to formulate

the corresponding flexible personnel scheduling problem with side constraints as follows: there is a set

of jobs denoted by J , and a set of skilled employees denoted by E, who are assigned to work on these

jobs. Only a subset of employees Ej is qualified to perform job j ∈ J . There is a set of mono-job

shifts S, where a shift s ∈ S is defined by a pair of valid start and end times as and bs (for example,

within a quarter hour) yielding a valid duration gs (for instance 4 to 9 hours).

The planning horizon is partitioned into a set P consisting of non-overlapping periods, typically

lasting 15 minutes each. Projected demands, denoted as djp for each job j ∈ J during period p ∈ P , are

forecasted based on expected sales or transactions two or three weeks prior to the planning horizon.

The planning horizon H = {1, 2, . . . , 7} is further segmented into seven days. Due to variations in job

demands, such as differing start times, the set of potential shifts Sj for a job j ∈ J may vary. Moreover,
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adhering to real-world scenarios, we assume no isolated demand spans less than the minimum shift

duration. Thus, a shift is considered a candidate for a job if it covers periods with non-zero demand

for that job, ensuring feasibility. Employee assignments to a subset of shifts Se are contingent on their

skills and availability throughout the planning horizon.

The scheduling problem seeks to allocate employees to shifts and jobs, ensuring the number of

assigned employees matches the job’s demand at each period while respecting specific working rules.

These rules include 1) enforcing a minimum rest time of nR periods between two consecutive shifts

for an employee and 2) requiring a minimum number of days off, denoted as nO, for each employee.

However, constraints related to employee qualifications and time availability may pose challenges in

adequately covering all demands. Consequently, shifts with elevated costs can be scheduled anony-

mously and later assigned to temporary workers to meet demand. Furthermore, due to the minimum

shift duration requirement, there might be periods without demand that require coverage, or more em-

ployees might be assigned than demanded for a specific period, resulting in over-coverings. A penalty is

imposed on Over-covered periods because employees are considered unproductive during over-covering

time periods. To ensure an equitable distribution of over-coverings across periods, a non-decreasing

step-wise function is used to calculate the over-covering penalty.

The objective function includes labor costs. The remuneration of the employees is based on their

hours worked but it is not employee-dependent like in practice (otherwise, senior employees would work

less than junior ones which are usually paid at a lesser rate). The employees are divided into different

levels based on the hours they work, and each level has a different hourly rate. As an illustration,

consider a scenario where every 8 hours of work corresponds to a payment level. In this case, an

employee working for 20 hours would receive compensation at three levels. Specifically, they would be

paid cE1 per period for the initial 8 hours, cE2 per period (where cE2 > cE1 ) for the subsequent 8 hours,

and cE3 per period (where cE3 > cE2 ) for the remaining 4 hours. This step-wise structure is considered

to favor a balanced distribution of the work hours between the employees.

The model being proposed in Section 3.3 is said to be explicit because it requires listing all possible

shifts, which can be very numerous due to the shifts’ flexible start time, end time, and duration. To

illustrate, if shifts can begin at any 15-minute interval and last anywhere between 3 to 8 hours in

15-minute increments and if the demand of a job for a day spans from 06:00 to 22:00, we get a total

of around 1100 possible shifts for this job and day.

3.2 Notation

Tables 1 to ?? in this section present the notation used for sets, subsets, parameters, and decision

variables in the mathematical model.

Table 1: Sets and subsets

Set Description

S Set of enumerated shifts
P Set of time periods in the planning horizon
E Set of employees
J Set of jobs
H Set of total days in the planning horizon
Sj Subset of shifts that are candidates for job j ∈ J
Sp Subset of shifts that cover period p ∈ P
Sh Subset of shifts that start on day h ∈ H
Se Subset of shifts that can be assigned to employee e ∈ E
Ej Subset of employees that are qualified for job j ∈ J
Je Subset of jobs that employee e ∈ E is qualified for

Ej
p Subset of employees that are qualified for job j and available at period p

F Set of steps for the over-covering penalty step-wise function
Q Set of steps for the employee remuneration step-wise function
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Table 2: Parameters

Parameter Description

djp Number of employees needed for job j ∈ J at time period p ∈ P
as,bs Starting and ending periods of shift s ∈ S
gs Length (in number of periods) of shift s ∈ S
nO
e Minimum number of days off for employee e/inE

nR Minimum rest periods between two consecutive shifts
cAs Cost of an anonymous shift s ∈ S per period
cEq Employee remuneration per period on step q ∈ Q
mq Maximum number of periods on step q ∈ Q
cVk Cost per over-covering on step k ∈ K
mf Maximum number of over-coverings on step f ∈ F

Table 3: Decision variables

Variable Description

zs,e,j Binary variable equal to 1 if shift s ∈ Sj ∩ Se is assigned to employee e ∈ E for job j ∈ J
us,j Number of anonymous shifts s ∈ S assigned for job j ∈ J
vp,j,f Number of over-coverings for job j ∈ J at period p ∈ P and on step f ∈ F
we,q Number of periods worked by employee e ∈ E on step q ∈ Q
oe,h Binary variable equal to 1 if employee e ∈ E is off on day h ∈ H

3.3 Mathematical model

The mathematical model for the flexible personnel scheduling problem in this research is formulated

similarly to the work of Rastgar et al. (2022) as the following integer program:

min
∑
j∈J

∑
s∈Sj

cAs us,j +
∑
e∈E

∑
q∈Q

cEq we,q +
∑
j∈J

∑
p∈P

∑
k∈K

cVk vp,j,f (1a)

s.t.
∑

s∈Sp∩Sj

us,j +
∑
e∈Ej

p

∑
s∈Se∩Sp∩Sj

zs,e,j −
∑
f∈F

vp,j,f = djp ∀p ∈ P, j ∈ J (1b)

∑
j∈Je

∑
s∈Se∩Sj∩Sh

zs,e,j + oe,h = 1 ∀e ∈ E, h ∈ H (1c)

∑
j∈Je

∑
s∈Se∩Sj

gszs,e,j −
∑
q∈Q

we,q = 0 ∀e ∈ E (1d)

∑
h∈H

oe,h ≥ nO
e ∀e ∈ E (1e)∑

j∈Je

∑
s∈Se∩Sj∩Sh+1

aszs,e,j +Moe,h+1

−
∑
j∈Je

∑
s∈Se∩Sj∩Sh

(bs + 1 + nR)zs,e,j ≥ 0 ∀e ∈ E, h ∈ H \ {7} (1f)

zs,e,j ∈ {0, 1} ∀j ∈ J, e ∈ Ej , s ∈ Sj ∩ Se

(1g)

us,j ≥ 0, integer ∀j ∈ J, s ∈ Sj (1h)

vp,j,f ∈ [0,mf ] ∀p ∈ P, j ∈ J, f ∈ F (1i)

we,q ∈ [0,mq] ∀e ∈ E, q ∈ Q (1j)

oe,h ∈ {0, 1} ∀e ∈ E, h ∈ H (1k)

The objective function (1a) is designed to minimize the total costs encompassing personnel and anony-

mous shift costs, as well as over-covering penalties. Constraints (1b) guarantee that job demands at

each period are met through personalized or anonymous shifts, facilitating the computation for over-

coverings. Constraints (1c) mandate that each employee is assigned either to a shift or a day off during
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the planning horizon. Each employee’s working hours in each time step q ∈ Q are computed through

constraints (1d). Additionally, each employee e is granted a minimum of nO
e days off, as stipulated by

constraints (1e). The big-M constraints (1f) mandate a minimum rest time of nR periods between two

consecutive shifts assigned to the same employee on subsequent days, with M = maxs∈S{bs + 1 + nR}.
Lastly, constraints (1g)–(1k) identify the variables’ acceptable domains.

4 Methodology

Our research involves an in-depth analysis of historical data related to job demand patterns and previ-

ously assigned schedules. The primary objective is to find recurrent patterns within the historical data

that bear similarity to the new problem we aim to solve. This enables us to restrict the enumeration

of potential shifts, focusing on solutions derived from similar historical instances.

In this section, we start by presenting an instance and its features to be considered for similarity

analysis (Section 4.1). Next, we explain how we measure the similarity of the data points (Section 4.2).

In Section 4.3, we describe the utilization of the kNN algorithm to find similar instances and outliers.

Lastly, we describe the optimization heuristic pipeline (Section 4.4).

4.1 Instance representation

As detailed in Section 3, in order to address the personnel scheduling problem, the input data includes

the demand for each job, as well as the number of available and skilled employees for each time period

within a day. For a one-week planning horizon, there are 672 distinct 15-minute time periods in P (7

days × 24 hours/day × 4 periods/hour = 672 periods). In Figure 1, we illustrate the demand curves

of two different jobs, each with distinct patterns. Job 1 exhibits a steady demand pattern, possibly

reflecting the need for consistent supervision in a specific section, requiring one employee per day.

Conversely, Job 2 displays a more dynamic pattern with spikes, particularly on Saturdays, indicating

a higher demand for employees on these occasions. However, a recurrent pattern in demand curves is

evident across weekdays. In more extensive scenarios with multiple jobs, this similarity extends not

only within a single job but also between different job curves.

For the similarity analysis elaborated in the following section, we assume that we have access to

historical problem instances and their solutions for a set N of previous weeks and we construct a

historical dataset D composed of the demand curves for each job over the course of each day of the

history. Thus, the total number of historical data points is equal to |J | × |H| × |N |. Each data point

i = (j, h, n) ∈ D corresponds to a particular job j and day h of a week n characterized by a set of

features, namely, the demands of job j on day h in week n. To elaborate, let p̃(h) represent the index of

the first period in day h which is divided into L time periods. The features of a data point i = (j, h, n)

are given by a vector

X(i) =
(
djp̃(h), d

j
p̃(h)+1, . . . , d

j
p̃(h)+L−1

)
,

specifying the demand for job j during each time period of day h in week n.

With each data point i = (j, h, n) ∈ D, we also associate a set of shifts Y (i) that were used for job j

on day h in the solution of week n. To be more specific, let z
∗(i)
s,e,j denote the value of the corresponding

zs,e,j variable within the optimal solution of the problem containing sub-instance i. Then, we define

Y (i) = {s ∈ Sj ∩ Sh | ∃ e ∈ Ej such that z
∗(i)
s,e,j = 1}. Figure 2 depicts the optimal schedule of 17

employees assigned to perform the 2 jobs of the example presented in Figure 1. For job 1 and job 2,

the numbers of selected shifts are 21 and 47, respectively. For the data point i associated with job 1

and day 1 in the corresponding week, the set of shifts Y (i) = {(20, 35), (36, 56), (57, 84)}, where the

shifts s are identified by their start and end periods (as, bs).
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Figure 1: Demand curves of 2 example jobs

Figure 2: Employees’ schedule assigned to jobs of example 1

4.2 Similarity measure

To select potential shifts from the history, we need to determine if the demand curve for a job and a

day is similar to one or several that have been seen in the historical dataset D. A methodical way of

quantifying similarity between data points is, thus, required.

Given two data points X(i) and X(j), their shape-based similarity can be determined by comparing

local point distances. The most common distance function for quantitative data is the Euclidean

distance (Aggarwal, 2015). Knowing that X(i) and X(j) are of the same length L, the Euclidean

distance between them is defined as

Dist(X(i), X(j)) =

√√√√ L∑
p=1

(
X

(i)
p −X

(j)
p

)2

(2)

Our dataset presents two noteworthy aspects. Firstly, the data points exhibit varying scales,

particularly between different job categories. The Euclidean distance metric is sensitive to these

scale differences. If one feature possesses a significantly larger scale than another, it can exert a

disproportionate influence on distance calculations, potentially overshadowing its actual importance.

Consequently, we apply data scaling to rectify this issue, ensuring that each feature contributes equally
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to the distance metric. In this regard, we use Min-Max normalization, which scales the data to a specific

range, such as [0, 1].

Secondly, the temporal nature of our data points highlights the significance of variations within

each data point. Notably, any increase or decrease in demand within specific time periods signifies a

crucial role in pattern extraction. For instance, we observe that shifts often start or end at a period

when the demand experiences an incremental or decreasing trend, respectively. To address this issue,

we implement a Wavelet transformation as another step of data preparation (Aggarwal, 2015).

Wavelets are a widely recognized method for breaking down and summarizing time-series data into

a multidimensional representation at various levels of granularity. The Haar wavelet stands out as a

favored choice for this purpose due to its straightforward, intuitive characteristics and ease of appli-

cation (Chan et al., 2003). The Haar wavelet transformation works by successively dividing the time

series into segments and computing the average and difference between adjacent data points within

each segment. This process is repeated iteratively, creating a wavelet decomposition of the time series

into approximation and detail coefficients at multiple scales. These coefficients can then be used for

feature extraction and reveal underlying temporal patterns in the data, which may not be apparent

in the raw time series. Euclidean distance can then be applied to the transformed data, potentially

capturing a more meaningful dissimilarity between data points. Furthermore, by highlighting impor-

tant temporal features, the wavelet transformation can improve the discriminative power of Euclidean

distance. This can be especially valuable when we want to find nearest neighbors based on relevant

temporal patterns rather than raw values.

4.3 K-Nearest Neighbors algorithm

In this section, we present our approach to finding similar instances using the kNN algorithm, which is

a widely used supervised machine learning algorithm for classification and regression tasks (Cover and

Hart, 1967). However, it can also be adapted for similarity search, making it a powerful tool for time

series analysis. The kNN algorithm is a non-parametric and instance-based learning method. Given

a dataset and a new data point i, kNN identifies the k nearest neighbors to i in the dataset based on

a chosen distance metric. Additionally, kNN can identify data points that are significantly dissimilar

from the dataset, effectively detecting outliers. The data scaling and transformation techniques applied

during data pre-processing render the Euclidean distance metric a well-suited choice for utilization in

the kNN algorithm.

Let n̂ ̸∈ N be the index of the upcoming week for which we want to solve a new personnel scheduling

problem. To find the data points in D that are similar to the data points arising from this new problem

instance, we apply the following steps:

1. Test data points: We define the set D̂ of test data points for this instance as explained in

Section 4.1, generating |J | × |H| points from the decomposition of the problem into jobs and

days of the planning horizon. These data points (j, h, n̂) are then transformed and pre-processed

in the same manner as the dataset D.

2. Nearest neighbor search: For each test data point (j, h, n̂) ∈ D̂, we calculate its distance from

all points in D using the chosen distance metric and identify the set K̂j,h of its k nearest data

points.

3. Outlier detection: For each data point, we analyze the distribution of its k nearest neighbors to

determine whether it is an outlier. Intuitively, a data point could be considered an outlier if its

average distance from k nearest neighbors is much larger than the average distance of the other

data points (Wang et al., 2020). More precisely, we compute the average distance of all data

points (j, h, n̂) ∈ D̂ from their k nearest data points in D as follows:

Distavg(j,h,n̂) =
1

k
(

∑
(j′,h′)∈K̂j,h

Dist(X(j,h,n̂), X(j′,h′))) (3)
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4.4 Optimization heuristic

The kNN algorithm provides a set K̂j,h of similar data points for each test data point (j, h, n̂) ∈ D̂.

Then, for each data point (j, h, n̂) that is not detected as an outlier, we can form the set of potential

shifts, denoted by Ŝh,j , for job j and day h. This set is defined as Ŝh,j =
⋃

i∈K̂j,h
Y (i) and collects the

shifts used in the sub-solutions associated with the similar data points. As observed from preliminary

experiments, the restriction of potential shifts to neighbors’ historic shifts for an outlier data point

can substantially degrade solution quality because its demand curve is too different from previous

ones. Therefore, we opt to consider all possible shifts for outlier data points at the expense of more

computational effort.

To solve a new personnel scheduling problem over week n̂, we propose the following optimization

heuristic which is referred to as MILP-kNN:

1. For each pair of job j ∈ J and day h ∈ H that is not detected as an outlier, compute Ŝh,j using

the kNN algorithm;

2. Build the MILP model (1a)–(1k) incorporating all possible shifts in Sj ∩ Sh for all outlier data

points (j, h, n̂) and only the shifts in Ŝh,j ∩ Sj ∩ Sh for the other data points (j, h, n̂) (this

restriction does not apply to the anonymous shifts);

3. Solve the resulting MILP model using a general-purpose MILP solver.

5 Experimental results

The proposed MILP-kNN heuristic is evaluated in different situations by means of computational

experiments. It was programmed in Python 3 with libraries from scikit-learn (Pedregosa et al., 2011)

for data scaling and kNN. Similarly, the code for loading the input data, running the kNN, as well as

creating the MILP models was also written in Python 3. All MILP problems were solved using the

IBM ILOG CPLEX 22.1.1.0 MILP solver on a Linux machine powered by an 8-core (2 threads per

core) Intel(R) Xeon(R) CPU E5-2637 v2 clocked at 3.5 GHz.

In this section, we start by describing how we generated a dataset for our experiments (Section 5.1)

before explaining how we can tune the value of k for MILP-kNN (Section 5.2). Then, we report in

Section 5.3 the results obtained by MILP-kNN.

5.1 Data generation

For testing our methodology, we only had access to a few real-life instances with almost no historical

data. The size of these instances was also limited (less than 8 jobs and 90 employees). In this context,

we have decided to create 8 datasets inspired from the demand curves of these real-life scenarios1. For

each dataset, we generate randomly a large number of instances with the same number of jobs and

employees (see Table 4). For each dataset, the instances differ by the demand curves of the jobs but

the skills and availability of the employees remain the same to memic a stability of the operations in

a retail store.

Table 4: Number of jobs and employees in the datasets

Dataset 1 2 3 4 5 6 7 8

Jobs 5 6 7 8 8 9 10 12
Employees 85 95 128 95 119 133 165 190

Let us summarize the process of creating the instances for one dataset. In order to construct the

demand curves, we consider the following general assumptions:

1All problem instances will be made available if the paper is published.
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• Each job’s working hours are distributed continuously throughout the day.

• Each demand curve exhibits a bell-shaped pattern similar to Figure 1.

• The number of customers visiting the store increases on weekends, leading to a noticeable rise in

the demand curve, especially during peak hours.

• Some jobs require a constant or minimally fluctuating number of employees throughout the

working hours.

• The demand of each job at each period follows a normal distribution.

The generation process starts by creating one initial instance. For this instance, we randomly select

a number of jobs between 5 and 15. Then, for each job, we select randomly from the real-life scenarios

a job curve that provides for each time period the expected demand of a random Poisson variable.

Next, we draw from these random variables the demand to consider at the corresponding period for the

corresponding job. Once the demand curves are established, we proceed to add employees recursively

to ensure that an adequate number of qualified employees are available in accordance with the demand

for each job during each time period. The contract types of employees are randomly assigned as either

full-time or part-time. The availability of part-time employees is determined randomly, with their

working days selected from a uniform distribution ranging from 2 to 4 days.

Once we have one initial instance for each dataset, we run a Monte Carlo simulation, as proposed by

Porto et al. (2020), to generate 55 additional historical instances for each dataset. This simulation only

perturbs the demand curves using a coefficient of variation of 1%. Out of the 56 historical instances

generated for each dataset, 6 are also used for validation and parameter tuning in Section 5.2. For

each generated instance, we construct the corresponding MILP model (1a)–(1k) incorporating all shift

variables zs,e,j (called the z-variables hereafter), and solve it using a general-purpose MILP solver. As

detailed in Section 4.1, we decompose each historical instance and its solution per job and day to define

data points X(i) in D and their sets of selected shifts Y (i). Finally, we further generate 10 additional

test instances for evaluation purposes. For these instances, we also record their data points X(i), but

they are not added to D.

5.2 Tuning parameter k

The k parameter in kNN represents the number of nearest neighbors to consider for each data point.

Its value has a substantial impact on the speedup that we can obtain and on the solution quality.

Indeed, a larger k entails the inclusion of more historical shift variables (Ŝh,j =
⋃

i∈Kj,h
Y (i)) and is

anticipated to yield more robust solutions at the cost of larger computational times. To illustrate this,

we performed the following experiments on the 6 validation instances for the first two datasets. First,

we solved these instances with an Exact algorithm that solves the MILP model (1a)–(1k), incorporating

all possible shifts and a relative gap tolerance of 0.01%. Then, we solve these instances once again

with the MILP-kNN heuristic (considering only the other 50 historical instances) and different values

of k ranging from 1 (representing the nearest neighbor) to kmax = |J |×7×50 (encompassing all shifts

selected in the historical instances if there are no outliers). For each validation instance and value of

k, we record the problem size reduction, the computational time, and the error which is the deviation

between the solution cost and that obtained by the Exact method.

Figure 3 illustrates the results obtained for Dataset 1 on the left and Dataset 2 on the right.

In all sub-figures, the x-axis indicates the value of k, ranging from 1 to kmax. Sub-figures 3a and 3b

demonstrate the impact of varying the value of k on the problem size, with the percentage of removed z-

variables reported on the y-axis. Smaller values of k involve fewer decision variables, and the percentage

of removed variables decreases by increasing the value of k, as anticipated.

Sub-figures 3c and 3d illustrate the impact of varying the value of k in the MILP-kNN algorithm

on the computational time. The y-axis depicts the corresponding time in seconds, with each point

providing the average computational time over the validation instances. As k increases, the plots show
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(a) (b) (c)

(d) (e) (f)

Figure 3: Impact of k on problem size, computational time, and solution quality

how this time is influenced, offering insights into the impact of parameter k. Note that the average

computational times of the Exact algorithm for the two instance sets are 4276 and 5470 seconds,

respectively.

Finally, Sub-figures 3e and 3f indicate the quality of the solutions produced by MILP-kNN by

displaying the error in percentage on the y-axis. Notably, when k = 1, a large error occurs, whereas

increasing the value of k results in a decreased error, eventually converging towards zero. In fact, it

seems that, for each dataset, a small error can be achieved with a relatively small value of k that yields

a substantial speedup. Similar results have been observed for the other datasets.

Assuming that each dataset corresponds to a different retail store with different variability from one

week to another, we propose to adjust the value of k for each dataset using their validation instances.

To do so, we apply a dichotomic search method on each validation instance that we denote with index

v. This method works as follows. Let ev(k
′) be the error obtained by MILP-kNN for instance v when

k = k′ and let τ be an acceptable error (τ = 1% for our tests). As we observed in our tests, we assume

that ev(1) > τ and ev(k
v
max) ≤ τ , where kvmax = |J | × 7 × 50 is the maximal k value to consider for

instance v. The algorithm starts by setting the search interval [k, k] = [1, kvmax] and iteratively halves

it until k = k + 1, ensuring that ev(k) > τ and ev(k) ≤ τ throughout the search. Each iteration

proceeds as follows:

1. Set k =
⌈
(k−k)

2

⌉
.

2. If ev(k) > τ , then set k = k; otherwise set k = k.

When k = k + 1, the algorithm stops and we define the optimal value of k for instance v as k∗v = k.

When all optimal values k∗v have been computed for the validation instances of a dataset, we set

k = maxv k
∗
v when applying MILP-kNN for the test instances associated with this dataset.
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Figure 4 shows the search space in the interval (1, 166] for one validation instance of Dataset 2 with

6 jobs and 95 employees. In this interval, we explored 8 values of k until we found the smallest value

of k producing an error of at most 1%. In this case, k∗v = 25 and MILP-kNN requires 1176 seconds to

yield a solution with an error of 0.94%.

Figure 4: Search for the value of k for one validation instance in Dataset 2

5.3 Performance of MILP-kNN heuristic

The performance of the proposed MILP-kNN heuristic is evaluated in this section on 80 test problems

(10 per dataset). Beside comparing MILP-kNN against the Exact algorithm, we compare it to the

MILP-UNet* heuristic proposed by Rastgar et al. (2022). Like MILP-kNN, MILP-UNet* applies a

pre-processing procedure to reduce the size of the MILP model (1a)–(1k). This pre-processing differs

from the one that we propose in several aspects. First, it predicts the likelihood that each period

corresponds to a shift starting or ending time period and uses those predictions to reduce the set of

shifts to consider in the model. Second, it relies on a deep-learning methodology called a U-shaped

encoder-decoder convolutional neural network to make those predictions. Third, in addition to job

demands, it considers as features the employee information and the optimal solution of the linear

relaxation of model (1a)–(1k). In the MILP-UNet* heuristic, a parameter α defines a threshold on

the precision and recall metrics of the predictor on the validation instances. If one of those metrics

for a given time period is less than α, the predictor is deemed unreliable for this period which is

then considered as a valid starting and ending period. Therefore, a lower α value stands for a more

aggressive decision-making and leads to more variable removals.

To construct a robust training dataset for MILP-UNet*, we utilized all 8 historical datasets, com-

prising 448 instances decomposed by jobs and days. The deep neural network of MILP-UNet* is

trained once, a process taking approximately 30 minutes, and is then used to make predictions for all

test instances. Unlike MILP-UNet*, the datasets are not combined in MILP-kNN and the algorithm is

executed independently for each dataset. Since the training for MILP-UNet* is performed offline and

the times required to make predictions in MILP-UNet* and to run kNN in MILP-kNN are negligible,

we compare these algorithms based only on the computational time of the MILP solver. For both

MILP-UNet* and MILP-kNN, the relative gap tolerance of the MILP solver is set to 1%. A time limit

of 20,000 seconds is also imposed for the Exact, MILP-UNet*, and MILP-kNN algorithms.

The results of our experiments are summarized in Tables 5 to 7 reflecting the average over 10 test

problem instances for each dataset. Tables 8 to 15 in Appendix A report detailed results.
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Table 5 reports statistics on the size of the MILP model (1a)–(1k) solved by the three algorithms

(Exact, MILP-UNet*, and MILP-kNN). For the Exact algorithm which solves the MILP model with

all variables, this table reports the total numbers of constraints, of z-variables, and of the other

variables for each dataset. Then, for MILP-kNN and MILP-UNet*, it indicates in the column z-

Removed the percentage of the z-variables that were removed from the full model by the proposed

pre-processing as well as the value of the corresponding parameter k or α used for each dataset. Recall

that these parameter values were adjusted per dataset using the validation instances (see Section 5.2

for parameter k).

From the results in Table 5, we make the following observations. As expected, the problem size

increases with the number of jobs and employees (i.e., with the dataset id). Notably, the number of

z-variables constitutes a very large proportion of all variables (over 90%) which emphasizes the key

characteristic of our approach that targets the z-variables for problem size reduction. MILP-kNN

significantly reduces the number of z-variables in each dataset, with removal percentages ranging from

77.7% to 96.8%. This highlights the effectiveness of the MILP-kNN method in simplifying the MILP

model. While MILP-UNet* generally removes fewer z-variables than MILP-kNN, it still achieves

substantial reductions with removal percentages ranging from 66.5% to 89.3%. On average, MILP-

kNN and MILP-UNet* remove 85.5% and 78.6% of z-variables, respectively, showing a consistent and

significant reduction across these datasets.

Table 5: MILP model size

Dataset
Exact MILP-kNN MILP-UNet*

Constraints z-Variables Other Variables k z-Removed (%) α (%) z-Removed (%)

1 8,420 1,127,934 65,426 57 77.7 85 72.3
2 9,964 1,253,580 79,841 28 82.8 85 66.5
3 11,964 1,747,850 92,345 70 82.6 85 84.6
4 12,652 1,289,998 103,476 22 80.8 80 71.6
5 13,132 1,669,661 105,010 59 86.7 80 78.0
6 14,756 1,924,712 117,999 27 79.1 70 78.3
7 16,740 2,323,550 131,375 5 94.8 60 88.3
8 19,928 2,622,678 157,546 3 96.8 60 89.3

Avg. 85.5 78.6

Table 6 focuses on the solution quality obtained by the two heuristics on the test instances. For

each heuristic and dataset, it presents the average error, measured as the difference between the costs

of the solutions computed by the heuristic and the Exact algorithm, over 10 test instances, as well as

its standard deviation, and its minimum and maximum values (all expressed in percentage). The best

results are highlighted in bold. Note that a negative error means that the heuristic found a better

solution than the Exact algorithm for at least one test instance. This is possible when the Exact

algorithm reached the time limit and did not find an optimal solution.

Table 6: Error (in %)

Dataset
Average Standard deviation Minimum Maximum

MILP-kNN MILP-UNet* MILP-kNN MILP-UNet* MILP-kNN MILP-UNet* MILP-kNN MILP-UNet*

1 1.3 2.5 0.2 1.2 0.9 0.6 1.6 4.6
2 1.3 1.2 0.2 0.7 0.8 0.5 1.8 4.5
3 1.2 1.7 0.1 1.4 -0.1 -0.2 1.2 8.6
4 1.1 1.6 0.3 0.4 0.4 0.8 1.9 2.4
5 1.3 1.0 0.2 0.4 0.9 0.3 1.5 2.4
6 1.2 1.9 0.2 0.4 0.9 1.2 1.7 3.0
7 0.9 -1.5 0.4 0.6 -0.2 -2.7 1.6 -0.5
8 1.4 -3.0 0.5 0.4 0.4 -3.6 2.8 -2.2

Avg. 1.2 0.7 0.3 0.7
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Table 7: Computational time (in seconds)

Dataset Exact
Average Standard deviation Minimum Maximum

MILP-kNNMILP-UNet* MILP-kNNMILP-UNet* MILP-kNNMILP-UNet* MILP-kNNMILP-UNet*

1 1,867 214 272 39 113 141 171 319 817
2 4,197 267 498 48 171 150 230 408 941
3 17,641 1,221 865 7 414 1221 367 1,234 1,982
4 1,858 228 238 50 50 143 162 319 380
5 4,429 133 342 25 57 90 105 198 333
6 6,675 473 342 99 58 327 150 709 478
7 20,000 922 2,830 376 1,472 352 1,070 2,038 6,521
8 20,000 1,503 2,347 598 1,258 303 654 2,660 6,743

Avg. 9,584 620 967 155 449

On average, MILP-UNet* yields a lower error (0.7%) compared to MILP-kNN (1.2%). This indi-

cates that MILP-UNet* performs better on average across the datasets, but we observe that most of

the difference is due to the very good performance of MILP-UNet* on the two largest Datasets 7 and 8.

For these datasets, the pre-processing of MILP-UNet* removed on average between 6.5% and 7.5% less

variables than that of MILP-kNN, minimizing the risk of using bad predictions. On the other hand,

MILP-kNN exhibits less variability in the solution quality with a lower average standard deviation

(0.3%) compared to MILP-UNet* (0.7%). This is reflected, in general, with larger average minimum

errors and smaller average maximum errors. In summary, while both MILP-kNN and MILP-UNet*

show competitive performance, MILP-kNN demonstrates more consistent results, particularly in terms

of average standard deviation and maximum errors across different datasets. The choice between the

two methods may depend on other criteria such as the average computational time.

Table 7 is similar to Table 6 but concerns the computational time. For each heuristic, it gives

the average, standard deviation, minimum and maximum computational time in seconds for each

dataset. It also provides in column Exact the average time required by the Exact algorithm that

serves as a reference for comparison. From these results, we observe that MILP-kNN and MILP-

UNet* demonstrate significantly lower average computational times compared to the Exact algorithm,

indicating the efficiency of the heuristics. On average, MILP-kNN has a lower computational time

(620 seconds) compared to MILP-UNet* (967 seconds), which is due to a larger average number of

z-variables removed (see Table 5). This suggests that MILP-kNN tends to be more computationally

efficient on average across the datasets. Furthermore, MILP-kNN exhibits a lower average standard

deviation (155 seconds) compared to MILP-UNet* (449 seconds), indicating more consistency. Given

that the average computation time is also less for MILP-kNN, this heuristic entails, in general, smaller

minimum and maximum computational times. In summary, this table highlights the efficiency of MILP-

kNN and MILP-UNet* in solving test instances within a reasonable computational time. MILP-kNN,

on average, demonstrates a more efficient and stable performance compared to MILP-UNet* which

requires a large training dataset for effective learning, i.e., for training a deep neural network. This

complexity and the lack of adequate training dataset may contribute to potential challenges when

generalizing to diverse datasets as observed in the MILP-UNet*’s maximum error of 8.6% for Dataset 3

(see Table 6).

Overall, MILP-kNN consistently outperforms MILP-UNet* in terms of computational efficiency.

Although MILP-UNet* generally yields better average solution quality, as indicated by lower average

and minimum errors across datasets, MILP-kNN shows more stability with lower standard deviations

and maximum errors. Thus, the choice between MILP-kNN and MILP-UNet* involves a trade-off

between model complexity and performance. MILP-UNet* may compute better solutions but at the

cost of increased computational complexity and the need for a substantial training dataset.
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6 Conclusion

Our research endeavors to address the complex challenges associated with personnel scheduling by

employing a novel methodology that integrates historical data analysis, similarity measures, and mixed

integer linear programming. The in-depth analysis of historical data patterns and the identification of

recurrent trends play a pivotal role in our approach. By leveraging the kNN algorithm, we dynamically

adapt to historical instances, ensuring a focused search space for potential solutions. Our optimization

heuristic, MILP-kNN, efficiently utilizes historical shifts to generate near-optimal personnel schedules.

The experimental results showcase the adaptability and effectiveness of the MILP-kNN heuristic

across various datasets. By systematically exploring the impact of the kNN parameter k, we strike

a balance between solution quality and computational efficiency. The trade-off analysis demonstrates

that, in many instances, a relatively small k can yield solutions with negligible error while significantly

reducing solution times. The simplicity of the kNN approach contributes to the efficiency and stability

of MILP-kNN which relies on a straightforward mechanism for finding similar instances and does not

involve complex training processes.

In the quest for near-optimal personnel schedules, the proposed methodology offers a promising

avenue for organizations seeking efficient and tailored solutions. As personnel scheduling remains a

critical aspect of workforce management, our approach aligns with the evolving landscape of optimiza-

tion techniques and data-driven decision-making. Nevertheless, as future research avenues, we see two

opportunities. First, instead of using a fixed value of the parameter k in the kNN algorithm, it might

be possible to adjust this value for each datapoint depending on the computed average distance of

each point. Second, the proposed method coould be generalized to the case where employees work on

multi-job shifts, i.e., when they can switch from one job to another in the middle of a shift.

A Detailed results

The results of our experiments are comprehensively presented for the test instances in each dataset,

spanning Tables 8 through 15. In the Exact columns, we indicate the number of z-variables and

other variables in the complete MILP model (1a)–(1k). The z-Removed columns offer a comparative

analysis, illustrating the percentage of z-variables removed by MILP-kNN and MILP-UNet*. The

Error columns specify the error (in percentage) in the cost of the solution produced by each heuristic

with respect to that of the Exact method. Finally, the Time columns disclose the computational time,

in seconds, required by the Exact method, MILP-kNN, and MILP-UNet* to solve the given instances.

Bold results are the best ones.

Table 8: Dataset 1: 5 jobs, 85 employees

Inst.
Exact z-Removed (in %) Error (in %) Time (in seconds)

z-Variables Other Variables MILP-kNN MILP-UNet* MILP-kNN MILP-UNet* Exact MILP-kNN MILP-UNet*

1 1,135,697 65,747 75.8 71.1 1.1 1.2 1010 173 174
2 1,133,505 65,668 76.5 72.2 1.6 3.3 741 228 294
3 1,129,170 65,475 77.4 74.1 1.1 4.0 2462 183 171
4 1,120,427 65,076 77.8 72.1 1.4 1.3 1415 177 187
5 1,125,086 65,290 78.0 72.9 1.2 1.2 868 141 184
6 1,123,198 65,222 77.7 73.3 0.9 4.6 927 264 189
7 1,121,226 65,124 78.0 72.4 1.2 1.9 874 319 817
8 1,128,354 65,457 78.8 73.5 1.6 4.0 1008 203 205
9 1,128,083 65,437 78.2 70.8 1.3 0.6 546 223 229
10 1,135,787 65,765 78.3 71.0 1.2 2.7 1597 230 272

Avg. 1,127,934 65,426 77.7 72.3 1.3 2.5 1867 214 272
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Table 9: Dataset 2: 6 jobs, 95 employees

Inst.
Exact z-Removed (in %) Error (in %) Time (in seconds)

z-Variables Other Variables MILP-kNN MILP-UNet* MILP-kNN MILP-UNet* Exact MILP-kNN MILP-UNet*

1 1258007 80187 82.3 65.8 1.5 0.6 2956 210 230
2 1257270 80120 82.5 65.9 1.6 0.8 2372 150 762
3 1255285 79939 82.9 65.8 1.2 0.9 4609 254 527
4 1251144 79558 82.7 66.4 1.2 1.1 5470 273 941
5 1250145 79636 83.2 69.3 1.4 4.5 4581 408 371
6 1251564 79654 83.0 66.8 0.8 1.1 6591 213 431
7 1249268 79515 82.9 66.6 1.0 0.7 1706 291 315
8 1252600 79827 82.9 66.5 1.8 0.9 4142 281 580
9 1253100 79835 83.0 66.8 1.4 0.9 5468 285 538
10 1256527 80136 82.8 65.4 1.3 0.5 3053 306 288

Avg. 1253580 79841 82.8 66.5 1.3 1.2 4197 267 498

Table 10: Dataset 3: 7 jobs, 128 employees

Inst.
Exact z-Removed (in %) Error (in %) Time (in seconds)

z-Variables Other Variables MILP-kNN MILP-UNet* MILP-kNN MILP-UNet* Exact MILP-kNN MILP-UNet*

1 1755479 92691 82.4 84.1 1.7 1.0 6419 752 785
2 1754165 92624 82.4 85.7 1.2 8.6 20000 867 568
3 1750828 92443 82.5 84.6 1.6 0.9 20000 1193 367
4 1743056 92062 82.5 84.8 -0.1 -0.2 20000 2303 1809
5 1742457 92140 82.9 84.7 2.1 1.4 9999 1084 612
6 1743818 92158 82.7 84.6 1.2 1.7 19994 795 877
7 1740630 92019 82.8 84.5 1.3 0.9 20000 502 457
8 1746367 92331 82.8 84.4 0.8 0.5 20000 2102 729
9 1747081 92339 82.5 84.4 1.7 1.3 20000 1379 1982
10 1753440 92640 82.7 84.2 1.0 0.8 20000 1234 466

Avg. 1747850 92345 82.6 84.6 1.2 1.7 17641 1221 865

Table 11: Dataset 4: 8 jobs, 95 employees

Inst.
Exact z-Removed (in %) Error (in %) Time (in seconds)

z-Variables Other Variables MILP-kNN MILP-UNet* MILP-kNN MILP-UNet* Exact MILP-kNN MILP-UNet*

1 1290300 103491 80.3 71.3 0.4 1.3 1262 251 319
2 1289950 103477 80.7 71.9 1.4 1.2 1515 143 256
3 1290300 103491 81.0 71.9 0.5 2.4 1570 191 223
4 1289936 103477 81.4 71.5 1.9 2.1 1110 189 236
5 1289950 103477 81.3 71.9 1.1 2.3 3026 211 162
6 1289600 103463 80.7 71.5 1.1 1.6 2304 275 213
7 1289936 103477 81.0 71.7 0.8 0.8 1926 317 178
8 1289572 103463 81.0 71.7 1.2 1.4 1756 185 164
9 1289936 103477 80.9 72.0 1.2 1.4 2086 319 246
10 1289600 103463 80.1 71.0 0.9 1.0 2030 197 380

Avg. 1289998 103476 80.8 71.6 1.1 1.6 1858 228 238
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Table 12: Dataset 5: 8 jobs, 119 employees

Inst.
Exact z-Removed (in %) Error (in %) Time (in seconds)

z-Variables Other Variables MILP-kNN MILP-UNet* MILP-kNN MILP-UNet* Exact MILP-kNN MILP-UNet*

1 1678538 105356 86.4 77.6 0.9 0.4 6801 121 109
2 1676636 105289 86.6 77.7 1.5 1.3 3950 116 136
3 1672365 105108 86.5 77.9 1.3 0.3 3099 135 159
4 1663409 104727 86.7 78.3 1.3 0.8 3245 109 105
5 1664266 104805 87.0 78.4 1.2 1.2 9111 90 112
6 1664932 104823 86.6 78.6 1.5 2.4 2330 198 237
7 1661480 104684 86.8 78.2 1.0 0.9 4638 191 121
8 1668465 104996 87.1 78.0 1.5 1.0 7559 115 333
9 1676668 105004 86.5 77.9 1.4 0.6 1315 133 208
10 1668910 105305 86.9 77.5 1.1 0.7 2473 119 114

Avg. 1669661 105010 86.7 78.0 1.3 1.0 4429 133 163

Table 13: Dataset 6: 9 jobs, 133 employees

Inst.
Exact z-Removed (in %) Error (in %) Time (in seconds)

z-Variables Other Variables MILP-kNN MILP-UNet* MILP-kNN MILP-UNet* Exact MILP-kNN MILP-UNet*

1 1924558 117992 79.2 78.0 1.3 1.4 9512 425 434
2 1925538 118025 79.0 78.6 0.9 1.7 4399 401 316
3 1924368 117985 79.1 78.2 1.3 2.0 5608 618 348
4 1924648 117995 79.1 78.3 0.9 2.4 7075 709 351
5 1923710 117962 79.0 77.9 1.5 3.0 11286 426 278
6 1924578 117993 79.2 78.2 0.9 1.2 4919 327 387
7 1925478 118024 79.2 78.1 1.2 1.8 4439 406 345
8 1924314 117982 79.2 78.1 0.9 2.0 3832 360 332
9 1924970 118004 79.1 79.9 1.7 2.0 4556 510 150
10 1925568 118025 78.9 77.7 1.4 1.5 9411 552 478

Avg. 1924712 117999 79.1 78.3 1.2 1.9 6675 473 342

Table 14: Dataset 7: 10 jobs, 165 employees

Inst.
Exact z-Removed (in %) Error (in %) Time (in seconds)

z-Variables Other Variables MILP-kNN MILP-UNet* MILP-kNN MILP-UNet* Exact MILP-kNN MILP-UNet*

1 2327892 131721 94.5 88.3 1.2 -2.2 20000 1161 2726
2 2327279 131654 94.6 88.8 0.2 -2.7 20000 352 6521
3 2325325 131473 94.8 88.7 1.6 -1.3 20000 521 2507
4 2321301 131092 94.9 88.6 1.1 -2.1 20000 455 4227
5 2319815 131170 94.8 88.5 0.9 -0.5 20000 1081 5102
6 2321668 131188 94.7 88.7 -0.2 -1.8 20000 1052 1785
7 2319018 131049 94.8 88.6 1.0 -1.3 20000 2038 1599
8 2322563 131361 94.9 88.4 1.6 -1.8 20000 1155 1222
9 2323179 131369 94.9 88.3 0.5 -0.7 20000 613 1070
10 2326202 131670 94.8 88.3 0.7 -0.8 20000 791 1543

Avg. 2323550 131375 94.8 88.5 0.9 -1.5 20000 922 2830
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Table 15: Dataset 8: 12 jobs, 190 employees

Inst.
Exact z-Removed (in %) Error (in %) Time (in seconds)

z-Variables Other Variables MILP-kNN MILP-UNet* MILP-kNN MILP-UNet* Exact MILP-kNN MILP-UNet*

1 2626969 158254 96.7 89.3 0.5 -3.4 20000 1809 654
2 2626221 158187 96.8 89.4 2.8 -3.4 20000 1022 2507
3 2624212 158006 96.8 89.3 1.1 -3.1 20000 1643 2492
4 2620163 157625 96.9 89.5 1.4 -2.8 20000 1197 1488
5 2619513 157703 96.8 89.4 2.1 -3.0 20000 1421 6743
6 2620746 157721 96.8 89.2 1.6 -2.6 20000 580 1732
7 2618547 157582 96.8 89.3 1.3 -2.2 20000 2660 847
8 2621906 157894 96.8 89.0 1.8 -3.6 20000 1840 2523
9 2622367 157902 96.8 88.8 0.4 -2.2 20000 303 3761
10 2625681 154588 96.8 89.0 1.0 -3.4 20000 2555 721

Avg. 2622678 157546 96.8 89.2 1.4 -3.0 20000 1503 2347
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