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l’accès au travail et enquêterons sur votre demande.
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Abstract : We review the development of the concept of effective bandwidth from its origin in the
planning and management of ATM networks. We start with the extension of the telephone network
to multi-rate circuit-switched networks and then to bufferless networks with variable rate traffic. We
also show how the concept can be extended to IP-type networks with buffered queues.

We use two simple traffic models that are amenable to exact computation to show the accuracy
of two definitions of effective bandwidth, one based on a single-queue model and the other on the
Chernoff bound of the distribution of a variable. We use this to illustrate the notion of admission
region and its relation to effective bandwidth. We discuss the accuracy of the two definitions and the
scope of applications.

Keywords : Traffic engineering, effective bandwidth, admission control, queuing

Résumé : Nous reprenons ici le développement du concept de bande passante effective comme
outil pour la planification et la gestion des réseaux ATM à partir de la transformation des réseaux
téléphoniques en réseaux multi-débit et de leur évolution vers des réseaux écoulant du trafic à débit
variable et sans mémoires tampon. Nous montrons ensuite comment ce concept s’applique aux réseaux
IP avec files d’attente.

Nous utilisons deux modèles de trafic homogène permettant un calcul exact de la performance, à
partir desquels nous pouvons évaluer la précision de deux définitions de la bande passante effective:
la première basée sur un modèle de file d’attente mono-traffic et la seconde, sur la borne de Chernoff.
Nous utilisons ces résultats pour illustrer le concept de région d’admission et sa relation à la bande
passante effective. Nous évaluons ainsi la précision des deux définitions et leur domaine d’application.

Mots clés : Gestion du trafic, bande passante effective, région d’admission, files d’attente
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1 Introduction
The notions of effective bandwidth and admission control have recently been put forward [2, 27] to
improve the quality of wireless communications and in other areas. A short survey of simple queuing
models can be found in [25]. Practical applications of the concept can be found in the dynamic man-
agement of spectrum access [3, 22], voice traffic in satellite networks [13], video-on-demand servers [24],
wireless sensor networks [18], reliable communication networks [9], multimedia WLAN networks [16],
call acceptance control for CDMA networks in [4], time slot allocation in OFDM/TDMA systems [26],
allocating resource blocks in LTE networks [1], short packet transmission in IoT networks [17], virtual
network embedding in 5G networks [6], slicing in wireless networks [28], cross-layer resource alloca-
tion [19], joint optimization of small base station power control and service placement [7].

The concept of effective bandwidth was developed in the context of ATM, a technology very different
from IP switching. To understand how different they are, consider first the classical telephone network.

1. The network is designed to carry 64 kb/s voice calls exclusively
2. A call is allocated this bandwidth on all the transmission channels required to connect the call

origin to its destination
3. This bandwidth is allocated to a user for the whole duration of the call irrespective of its actual

use
4. User requests for a circuit are generated randomly and a connection is allocated to a user as long

as there is an available circuit. If there is no circuit available, the call is turned down and said
to be lost

5. The quality of service is the call loss probability

It became obvious in the 1980’s that new services were appearing which needed a large bandwidth but
also had a variable bit rate. The large bandwidth meant that the standard 64 kb/s channel was no
longer suitable and the variation in the bit rate also meant that allocating a fixed bandwidth for the
whole call duration could be very inefficient.

The proposed solution was ATM which could alleviate some of these problems.

1. The network was connection-oriented
2. Data was transported on small 48-byte cells
3. These cells used statistical multiplexing for the transmission, which provided much better effi-

ciency for variable rate services
4. The output buffers were very small so that there was no queuing delay to speak of
5. The network guaranteed that the cell loss probability would be of the order of 10−9 which was

the quality of service constraint
6. Connections could be rejected if the quality of service could not be maintained

Because the theory of effective bandwidth was developed as a tool to analyze and plan ATM networks,
we present in this tutorial the historical development of the theory starting with the extension of
classical telephony to multi-rate circuit switching in Section 2 where we show that our intuition about
the behavior of queues may not be valid in these cases. The first application to the management of
short-term bursts through fast circuit-switching in discussed Section 3 where we introduce the concept
of admission region and a first definition of the effective bandwidth of a source. We also introduce the
concept of the Chernoff bound that has been extensively studied for bufferless systems. We then go on
in Section 4 to buffered queues where the quality of service is measured by the average waiting time
showing how we can define an effective bandwidth in some cases. This is followed by a discussion of
rate control in Section 5 and some examples where the concept of effective bandwidth may not work
very well in Section 6. The tutorial end with a short summary of some important features of the theory
and its limitations.
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Finally, note that it is not clear how it can be applied to the current IP-based network:

1. The IP network is a best-effort network with no quality of service guarantee of any kind
2. Flow control is implemented by the congestion detection mechanism of the TCP protocol but

has no specific measure of quality
3. Some definitions of effective bandwidth are based on the asymptotic behavior of the distribution

of some random variable which does not directly apply to quality measures based on some other
distribution parameters such as the mean or variance.

2 Multi-rate circuit switching
Multi-rate circuit switching is an extension of classical telephone networks that would allow the network
to carry services very different from standard voice calls. It is at the root of the notion of effective
bandwidth and for this reason, we review the basic results for this kind of network.

2.1 Classical telephony

Classical telephone networks were designed to carry voice calls on 64, or in some cases, 32 kb/s channels.
A link connecting two central offices was made up of a number of these channels and each call would
use one of these for the whole time of the call. If no circuit was available when a new call arrived,it
was lost. This system can be modeled as an M/M/N/N queue where

• Calls arrive randomly with an exponential inter-arrival time distribution of parameter λ

• There are N channels available, all identical. These are called servers in queuing terminology.
• A call arriving to the queue will try to use any one of the currently unused servers
• If there is such a server, the call starts service immediately
• All calls have the same exponential service time distribution with parameter µ

• If there is no available server, the call leaves and does not return. There is no call buffering

Under these assumptions, the loss probability P is given by the Erlang B function

P = E(A, N) = AN /N !∑N
i=0 Ai/i!

(1)

where A is called the offered traffic and is given by

A = λ

µ
.

This function has two important properties. It is monotone increasing in A, as seen in Figure 1, and
is also a quasi-convex function of A. It is also monotone decreasing convex in N , as seen in Figure 2.

2.2 Multi-rate loss probability

This simple model could not be used to analyze new services and had to be extended to handle them.
First, even though the application service times distributions are still exponential, their service time
parameters µ can be very different. For a superposition of independent Poisson arrival processed, the
service time distribution is a hyperexponential. We can then make use of the insensitivity property [23]
which states that the stationary distribution of the number of busy servers in the Erlang blocking
system M/G/N/N) depends on the service-time distribution only through its mean so that we can still
use (1) albeit with a modified average service time as described in Section B.

A more radical change had to be made to take into account the fact that new applications needed
very different bandwidths. For this, one has to assume that a customer can use more than a single
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Figure 1: Erlang-B function vs A
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Figure 2: Erlang-B function vs N

server at a time. This has led to the multi-rate circuit-switching model that has been the basis for the
development of the concept of effective bandwidth.

In circuit-switched networks, calls that do not find a free server when they arrive are lost. For this
reason, the quality of service for multi-rate circuit switching is defined also defined as the probability
that an arriving call will be lost. For applications with different bandwidths and service times, the
loss probability can be computed under the following assumptions:

• There are N servers, also called circuits, available
• There are K call classes
• The calls of class k arrive according to a Poisson process with rate λk.
• A call of class k needs bk circuits. This is an a discrete random variable, often a constant.
• The service time τk of a call of class k has a distribution with rational Laplace transform and

mean 1/µk.
• If there are at least bk servers available when a call arrives, it will immediately start using bk

servers.
• The servers need not be contiguous in any way.
• If there are less than bk servers available, the call is rejected and does not return.
• For convenience, we also define the traffic rate Ak = λk/µk.
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2.2.1 Blocking calculation

In the general case of arbitrary bk and µk, one can compute the distribution of busy servers by a simple
relation if one assumes a complete sharing policy, i.e., all servers are available to all calls. Note that
this may not be possible in some systems, e.g., in wireless networks, where a number of sub-channels
can be allocated to a call only if their bandwidths are contiguous, or in systems where servers are
aggregated into blocks.

Let q(j) be the probability that there are j servers busy at some time. We then have [10, 21]
K∑

k=1
Akbkq(j − bk) = jq(j) j = 0 . . . N (2)

q(j) = 0 if j < 0
N∑

j=0
q(j) = 1. (3)

The system (2–3) can easily be solved first by setting q(0) to some convenient value, e.g., q(0) = 1,
solving the recurrence relation and then using (3) to normalize the probabilities. From this, we can
get the class loss probabilities

Pk =
bk−1∑
k=0

q(N − k) k = 1 . . . K (4)

and the total loss probability P given by

P =
∑K

k=1 PkAk∑K
k=1 Ak

. (5)

We now examine the behavior of P (A, N) and Pk(A, N) as functions of the system parameters A
and N . We show that the multi-rate system is very different from the classical Erlang-B system and
that the loss function is not monotone in either one of the two parameters. In certain cases, increasing
the number of servers can actually increase the blocking and increasing some traffic can decrease the
blocking. This behavior is contrary to our intuition of queuing systems and can lead to unexpected
results.

2.2.2 Equivalent Erlang-B model

A simplified solution to the multi-rate blocking problem is to define an equivalent Erlang-B model
that is often used as an approximation to the multi-rate system. In this model, a call of class k that
needs bk circuits is replaced by bk independent calls that need only one circuit each. In that case, the
equivalent traffic is given by Ae =

∑
k bkAk so that the loss probability can be computed (1) by the

Erlang-B function E(Ae, N).

2.2.3 Loss vs N

The behavior of the loss function as a function of N is much more complex than for the simple Erlang-B
function as can be seen from Figures 3 and 4. On these figures, we show P , P1 and P2 as a function
of N . We also show the loss probability found by the equivalent Erlang-B model where the input traffic
is given by A =

∑
k bkAk so that the loss probability can be computed by the Erlang-B function.

The loss functions shown on Figure 3 are monotone decreasing with N , similar to the Erlang-B
function. Note that in this case, the product A1b1 = A2b2 so that the two traffic types put a similar
load on the system. Also, the equivalent model gets more accurate as N gets significantly larger than
the largest b.
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Figure 3: Loss probability, equal loads
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Figure 4: Loss probability, different loads

This is not the case for Figure 4 where the two types have a different load. The most striking
difference is that P is not monotone decreasing with N , as is the case for the Erlang-B model. In fact,
increasing N can actually increase both P and P1. This can be explained as follows. First, note that
this happens first when N = 10 which is the value of b2. For lower values of N , only type 1 traffic,
with a bandwidth of 1, can be present in the queue which behaves like an Erlang-B system. As soon
as N ≥ 10, some type 2 calls may be present when a type 1 call arrives which can cause it to be lost,
hence the increasing probability.

2.2.4 Loss vs A

The behavior of the loss as a function of traffic is shown on Figure 5 which is also not monotone. Here
we see that near A1 = 0, increasing A1while keeping A2 constant decreases P1 while P increases but
as A1 gets larger, it will decrease both P1 and P . The explanation can be found from the behavior of
P2 which is seen to increase as A1 increases. At A1 = 0, the only traffic comes from type 2 calls which
require 10 transmission units each. In that case, P2 = E(A2, 1) = 0.5. If we increase A1 slightly, some
type 1 calls may be present when a type 2 call arrives and this call will be lost. Because each type 2
call uses 10 transmission units, preventing one of these calls from entering will leave more room for
other type 1 calls to enter the system, thus reducing P1. As A1 gets larger, this effect becomes more
important and P gets very small around A1 = 5.
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Figure 5: Loss vs traffic, low values

0 10 20 30 40 50
A1

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

 P
ro

ba
bi

lit
y

Loss vs trafic, N = 10, A2 = 1, b = [ 1 10]

P1
P2
P

Figure 6: Loss vs traffic, large values

This is explained by noting that on Figure 6, P2 ≈ 1 when A1 gets larger than about 5. At this
point, virtually all type 2 calls are lost and the system behaves like a single-class M/M/N/N queue.
In that case, the loss probability P = E(5, 10) = 0.018 which is much smaller than the probability for
A1 = 0. As can be seen from Figure 6, from this point on, the system behaves as a single-class system
where P ≈ P1 and P2 ≈ 1.

The range of loss probabilities shown in Figures 5 and 6 is fairly high and would not occur in a real
network operating around a few percent loss. We can see from Figures 7 and 8 that the loss function
is still non-convex when the loss probability is in a more realistic range of a few percent.

The multi-rate model does not allow much control over the queue. The only option is whether to
accept a user or not and this is determined by the condition∑

k

bknk ≤ N (6)

which must be maintained at all times, where nk is the number customers of class k present in the
queue.

The development of the effective bandwidth technique was basically an extension of the multi-rate
circuit-switching model to take into account the variable bit rates of applications and thus improve



Les Cahiers du GERAD G–2023–55 7

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
A1

0.00

0.02

0.04

0.06

0.08

0.10

Lo
ss

 P
ro

ba
bi

lit
y

Loss vs trafic, N = 40, A2 = 1, b = [ 1 10]
P1
P2
P

Figure 7: Loss vs traffic, low range, small traffic
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the efficiency of the network. This was done for bufferless queues and the QoS was defined as the loss
probability. The idea was to find an acceptance rule similar to (6) and then use (5) to compute the
blocking probability.

3 Effective bandwidth for bursty traffic
The work of [8] seems to be the first use of the concept of effective bandwidth to manage session
admission for systems with stochastic buffer requirements. It has also been the model of much of the
theory that was developed in the 1990’s.

3.1 System description

The model assumes that a session of type k produces bursts of traffic during which the source transmits
data at some given fixed rate and is then idle for some random time. There is a number of identical
servers which can be used to transmit the bursts and there is no buffering.

The bursts of a session of type k, k = 1 . . . K are defined by the following parameters as shown on
Figure 9.
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Figure 9: Bursty source

λk The burst arrival process has exponential inter-arrival times with parameter λk.
µk The burst service rate. The time during which the source is transmitting during the burst is 1/µk.

This is an exponential process.
b̂k The rate of the source when it is transmitting a burst.
ρk We also define the traffic of type k as ρk = λk/µk.

In a multi-rate circuit-switched system, a session is allocated a number of servers, corresponding to a
fixed bandwidth bk, for the whole duration of the session. This of course could be used to carry the
bursty traffic using bk = b̂k but would be wasteful since the session is active only a fraction of the time.

We can get a more efficient system if we allocate the circuits only during a burst transmission
instead of allocating it for the whole call duration. Because bursts are much shorter than sessions, we
will be able to re-allocate bandwidth more efficiently among sessions.

3.2 Admission region

Allocating bandwidth to the bursts has a number of consequences. First, there is no longer the notion
of a session bandwidth which is replaced by that of a burst bandwidth. If a session has no bandwidth,
we no longer have a capacity bound for the number of admitted sessions. In principle, we could accept
any number of sessions so that there could be a large number of bursts offered to the system at some
time. Because the bandwidth is allocated to the bursts, it could very well happen that there is not
enough bandwidth available. In that case, some bursts will be dropped which will degrade the quality
of the communication.

Figure 10: Superposition of bursts

Suppose now that at a given time we have a state vector n = [n1, n2, . . . nK ] where nk is the number
of sessions of type k currently present in the system. At that time, the total transmission rate is the
sum of the rates of the active bursts as can be seen from Figure 10. In that figure, the total rate is
b̂1 + b̂2 at t = t1, zero at t = t2 and b̂1 + b̂2 + b̂3 at t = t3. Because the bursts will be lost whenever the
total rate at some instant is larger than the transmission rate of the server, the QoS measure is the
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probability that the total burst rate is larger than the system capacity. The admission rule is then to
admit sessions as long as condition (7) is met:

P {A burst is dropped} ≤ P0

P

{∑
k

nk b̂k > C

}
≤ P0. (7)

We can see that this system is really nothing more than multi-rate circuit-switching described in
Section 2 with bursts replacing circuits. We can then compute the burst loss probability with (2)
where Λk, the total burst arrival rate for this type, is given by Λk = nkλk since the arrival process is
Poisson.

From this, we define the admission region as the set of vectors n such that the admission rule (7) is
met. We can then plot the boundary of the admission region as shown on Figure 11 for K = 2, where
the admission region is the area below the curve.

0 1 2 3 4 5 6 7 8
N1

0

5

10

15

20

25

N2

a = 0.1, 0.5
b = 5, 1
C = 20
P0 = 0.01

Figure 11: Admission region for burst loss constraint

In the present case, the K types are similar: all arrivals are Poisson and all service times are
exponential. The admission rule (7) can thenbe evaluated quickly for any n. This is not always the
case when the sessions types have very different characteristics, e.g., when one source is bursty and
the other has a more regular traffic. In these cases, computing the admission region boundary may be
hard, if not impossible.

For this reason, the notion of effective bandwidth was introduced to deal with these cases. In
general, an effective bandwidth bk is a parameter assigned to a particular class k of sessions with the
following conditions. First, it can be computed on the parameters of type k only and does not depend
on the parameters of the other types. This is much simpler that computing the actual admission region
where each point depends on all the parameters of all the other types. The second point is that we
want to use it as a linear admission region of the form

K∑
k=1

bknn ≤ C ′

where C ′ is a quantity that can be computed from the system parameters and the type.

3.3 Effective bandwidth for bursty sessions

The concept of effective bandwidth was introduced as a way of replacing the complex non-linear
admission boundary from (7) by a linear boundary similar to the one used for multi-rate circuit-
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switching (6). A set of feasible effective bandwidths is defined as a set of values bk such that any
vector n inside a linear admission region of the form∑

k

nkbk ≤ C (8)

meets the condition on the burst level given by (7).

We can define an effective bandwidth in a number of ways. An obvious choice is to use the burst
rate so that

bk = b̂k

which is simply the multi-rate model. Another possibility is to use the average rate of the session
which yields

bk = b̂k
ts
k

ta
k

= b̂k
λk

µk
(9)

so that the ratio bl/b̂k will always be between 0 and 1. This means that defining the effective bandwidth
as the mean value will allow more sessions in the system than using the peak value since the sessions
require fewer ressources in the first case than in the second. The down point is that there is no
guarantee that the QoS constraint (7) will be met since the definition (9) does not involve P0.

We can try to take the QoS into account using the following argument. Assume that a single type
k is offered to the system. The maximum number of bursts n∗

k that can be present in the system is
given by

n∗
k =

⌊
C

b̂k

⌋
.

The value of n∗
k can then be used as the number of servers in a M/M/N/N queue and we can compute

nk, the maximum number of customers that can be admitted, as the solution of the equation

E (nkAk, n∗
k) = P0. (10)

If we can admit nk bursts, we can consider that each burst needs C/nk units of bandwidth, which
gives us the effective bandwidth

bk = C

nk
(11)

which is simply the two intercepts with the axes of the admission curve of Figure 11. In the following,
we will call these the end-point effective bandwidths.

We can see on Figure 12 the effective bandwidth of a given session type produced by the average
and end-point definitions as a function of the load ρ of a session. For the end-point definition, we show
the curve for two values of the burst loss probability P0 while there is a single curve for the average
definition since it does not involve P0. We can see that the end-point values are always larger than
the average and increase with a more stringent burst loss constraint.

Clearly, a particular definition of the effective bandwidth will result in a different linear admission
region. We can see this on Figure 13 where we show the admission regions for the average, peak and
end-point definitions along with the real admission region. It is clear that the average value yields an
infeasible effective bandwidth since there is a large number of points above the real value. Similarly,
the definition based on the peak value is feasible but very conservative and is leaving out a number
of feasible configurations. The reason of course is that neither definition takes into account the burst
level QoS constraint. We can see that we can get a much better approximation of the real region when
we do take this into account in the definition of the end-point effective bandwidth. For this reason, we
will consider in the following only definitions such as (11) that take the burst QoS into account.

We can see on Figure 14 a detailed view of the admission regions produced by the end-point effective
bandwidth and the real region. In this case, the end-point effective bandwidth is feasible.
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Unfortunately, this is not always the case, as can be seen from Figure 15 with a different set of
values where the end-point curve can lie above the real one. For larger values of n1, the end-point
effective bandwidth will admit too many connections and the burst QoS constraint will not be met.
This is a generic problem with the end-point effective bandwidth which is guaranteed to be feasible
only at the end points. There is no guarantee elsewhere in the domain, which can be a problem if this
is implemented since it can lead to the admmission of sessions which will produce a burst loss larger
than the required QoS.

Figure 15: Effective bandwidth: Infeasible end point

3.4 Effective bandwidth based on the Chernoff bound

The problem of dealing with infeasible regions has been the subject of much work right from the work
of [8]. The standard approach has been to use the Chernoff bound to produce a feasible region. This
has been summarized in [11] from which this discussion is taken.

The Chernoff bound of a distribution is defined as follows. If X is a random variable, its distribution
can be bounded by

P {X ≥ a} ≤ E
{

es(X−a)
}

(12)

≤ e−saE
{

esX
}

for any s ≥ 0 and where E
{

es(X−a)} is the moment-generating function of X. This is often called the
large deviation bound since it gets exponentially better as a gets larger. The parameter s is sometimes
called the space parameter in the literature.

Note that we need only the moment-generating function of X in order to compute the bound. In
the following, we will denote this function as GX(s). We can then use the following property. Let
X1, X2 . . . XK be independent variables and define X =

∑
k Xk. Using (29), we have

GX(s) =
K∏

k=1
GXk

(s).

We then have the bound

P {X ≥ a} ≤ e−saGX(s)

≤ e−sa
∏

k

E
{

esXk
}

≤ e−sa
∏

k

GXk
(s) (13)
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where we have used the fact that the Xk are independent to get the last inequality. We can get a
linear relationship if we define the logarithmic moment-generating function, denoted by MX(s), as

MX(s) = log Gx(s) = log E
{

esX
}

. (14)

From (13), we get

log P {X ≥ a} ≤ log e−sa
K∏

k=1
E
{

esXk
}

≤
∑

k

MXk
(s) − as. (15)

We can now use these results to define an effective bandwidth for the system described in Sec. 3
where we have K different types of sessions, each with parameters ak, bk, and nk sessions of type k

active at some time t. Define the random variable Xk,i as the rate of session i of type k. The total
rate offered to the server is then

X =
K∑

k=1

nk∑
i=1

Xk,i.

The system is in a blocking state if X ≥ C at that time so that the loss probability is the probability
that X ≥ C. Using (15), we have

log P {X ≥ C} ≤
∑

k

∑
i

MXk,i
− sC

≤
∑

k

nkMXk
(s) − sC (16)

where we have used the fact that all the sessions of type k are iid and thus have the same M(s). Recall
also that the bound is valid for any s ≥ 0 so that we may want to use the best possible bound given
by

log P {X ≥ C} ≤ inf
s≥0

∑
k

nkMXk
(s) − sC. (17)

Denote the best value of s by s∗. Note that this value depends on the vector n from (16).

Suppose now that the QoS requirement is the total loss probability P0. We want

log P {X ≥ C} ≤ log P0.

Using (17), this condition can be met if

log P {X ≥ C} ≤
∑

k

nkMXk
(s∗) − s∗C ≤ log P0.

The right-hand side inequality holds if∑
k

nkMXk
(s∗) ≤ s∗C + log P0

∑
k

nk
MXk

(s∗)
s∗ ≤ C + log P0

s∗ . (18)

This defines a linear admission region with an effective bandwidth bk defined as

bk = Mk(s∗)
s∗ (19)
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and a reduced capacity
C ′ = C + log P0

s∗ .

The linear admission region is the set of vectors n such that

K∑
k=1

α∗
knk ≤ C ′.

This definition of the best effective bandwidth requires a one-dimensional minimization due to (17)
which may require a numerical solution unless the form of M is simple enough to solve for the minimum
analytically. Also, this depends on the vector n so that it must be re-computed at each point which is
not practical.

One may use a simpler approach using the fact that the admission region defined by (16) is feasible
for any s ≥ 0. One can then pick an arbitrary value for s and use this to compute the region. The
question is then how sensitive is the effective bandwidth defined in this way to different values of s.

Note that the right-hand side of (18) can be negative for sufficiently small s since log P0 ≤ 0. There
is a lower value for s such that there is a solution given by

C + log P0

s
> 0

s ≥ − log P0

C
.

One advantage of the Chernoff bound is that is is always feasible. Another strong point is that the
effective bandwidth computed from (19) can be done independently for each type k, which is much
simpler than computig the actual boundary.

3.5 Chernoff bound for bursty sources

We now give an example of the Chernoff bound for the case of bursty sources described in Section 3.
For this, we consider the arrival process of a given stream. We assume that the customers are offered
to an infinite number of servers and we are interested in the occupation of this server. First, define
Y (t) the number of customers present in the server at time t. This is a random variable with a Poisson
distribution where the stationary distribution of customers present in the infinite system is given by

pn = An

n! e−A

A = λ

µ

where λ is the arrival rate and µ the service rate. From this, we get the moment generating function
and its log

GY (s) = eA(es−1)

MY (s) = A(es − 1).

Because each customer uses b units, we are really interested in the number of units in use as opposed
to simply the number of customers. For this, we define the random variable

X = bY

and we get
MX(s) = A(ebs − 1).
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If we have nk sessions of type k, we define Xk as the total number of units used by these sessions and
get

MXk
(s) = nkAk(ebks − 1).

Next ,define Xk,i as the rate of session i of type k. The total number of units used by all types is then

MX(s) =
K∑

k=1
nkAk(ebks − 1) (20)

where X is the total number of units in use in the infinite group. This is also the total amount of
traffic offered to the finite group at some instant and if this exceeds the number of servers, there will
be some losses.

We can see on Figure 16 the effective bandwidth for each of the two classes computed from the
Chernoff bound as a function of s. This is also compared with the corresponding end-point values.
We can see that the value of the Chernoff effective bandwidth can depend quite strongly on the value
of s.

Figure 16: Effective bandwidth from Chernoff bound

If we don’t want to compute the optimal bound at each point, as in (17), we need to pick some
value of s, which raises the question of how tight the bound will be. Because the strong dependence
on s, we examine the sensitivity of admission region as a function of s in Figure 17. One conclusion is
that there is no uniformly best value for s. For large n1, s = 0.4 is best while s = 0.7 is best at low
n1 and s = 0.5 is the best choice for intermediate values. The other conclusion is that in this case,
the bound is very conservative, much more than the end-point effective bandwidth. This is due to the
fact that the loss probability constraint P 0 is fairly large while the Chernoff bound is more accurate
for the tail distribution of loss probability.

3.6 Other measures of QoS

The shape of the admission region depends in general on all the parameters of the system. As an
example, consider the case where we now have separate loss constraints Pk for each flow k. This could
be used for instance to provide better service to one of the two flows. We have

Ak = [5, 1]
b = [1, 5]

C = 100
Pk = [0.01, 0.1]
P0 = 0.01
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Figure 17: Admission region vs s for the Chernoff bound

We can see from Figure 18 that the admission region with separate loss constraints is somewhat larger
than when we use the same constraint for all flows.
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Figure 18: Admission region, per-flow vs total loss constraint

4 Effective bandwidth for buffered systems
The theory of effective bandwidth was developed at a time where ATM was the switching technology
put forward by the telephone operators. These networks were supposed to operate with a very low cell
loss probability which was well approximated by bufferless systems.

This is of course no longer the case with IP networks where a more realistic model for a network
link is a single-server queue with a buffer, generally assumed to be infinite. We now give an example
to show how the effective bandwith concept can be used in that context.

4.1 Superposition of Poisson processes

Consider now the case of many different Poisson traffic sources. The arrival rate of source i is λi and
the service rate is µi with an arbitrary distribution. The sources are multiplexed on a single server
with an infinite buffer. Given that the individual arrival processes are Poisson, their superposition is
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also a Poisson process with a total arrival rate λ =
∑

i λi [29]. This can be modelled as an M/G/1/∞
queue and we can then use the Pollaczek-Khintchine theorem to compute the average waiting W and
sojourn T times [15] as shown in Section C.

4.2 Heterogeneous M/H/1 sources

We now consider the case where the service times are exponentially distributed. When a packet arrives
to the server, the probability pi that the packet is of type i is given by

pi = λi

λ
.

The distribution of service times is thus an hyper-exponential with parameters µi, pi and the server is
an M/H/1 queue. We can then compute the values of the average service time S and the coefficient of
variation Cb using the results of Section B and use the values of Section C to get the average time T .

4.3 Admission control

We can plot the admission region for two connection types where the QoS constraint at the packet level
is the total average delay T ≤ T . A typical result is shown by the red curve of Figure 19. The curve
labeled “Exact” is that of the real admission region based on the M/H/1 queue. The curve labeled
“Eff bw” is for the admission region based on the end-point effective bandwidth computed for each
one of the two flows separately. In these cases, we have a simple M/M/1 queue and n∗

i , the maximum
number of connections of type i that can be admitted is given by

n∗
i =

⌊
1
ρi

si

T

⌋
.

where si is the average service time for type i and ρi = λisi.
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Figure 19: Admission region for two Poisson sources

4.4 Chernoff bound

For bufferless queues, we have seen that then end-point effective bandwidth may not yield a feasible
region and this may be the case here as well. We also know that an effective bandwidth based on the
Chernoff bound guarantees a feasible region for bufferless queues and this might be the solution here
as well.
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This is not quite as simple since the bound applies to the tail of the distribution of a random
variable, as in (12) so that we cannot use the bound directly if the QoS measure is the average of some
random variable, as in (37).

We can still use the Chernoff bound if we choose some maximum value T ∗ for the packet delay and
a probability P0 and define the admission region through the constraint

P {T ≥ T ∗} ≤ P0. (21)

For a suitable choice of the parameters T ∗ and P0, we can hope that the average value of T will be
sufficiently close to some required value T .

Using the Chernoff bound on (21), we get

P {T ≥ T ∗} ≤ E
{

et(T −T ∗)
}

(22)

≤ e−tT ∗
E
{

etT
}

≤ e−tT ∗
GT (t)

where GT (t) is the moment-generating function of T . We can then guarantee that the constraint (21)
is met if we impose the condition

e−tT ∗
GT (t) ≤ P0

GT (t) ≤ etT ∗
P0. (23)

From the results of Section C, we know that

GT (t) = t(1 − ρ)
t + λ − λGS(t)GS(t) (24)

where GS(t) is the moment-generating function of the service time S. Replacing (24) in (23)

t(1 − ρ)
t + λ − λGS(t)GS(t) ≤ P0etT ∗

t(1 − ρ)GS(t) ≤ P0etT ∗
(t + λ − λGs(t))

t(1 − ρ)GS(t) + λGS(t)P0etT ∗
≤ (t + λ)P0etT ∗

GS(t) ≤ (t + λ)P0etT ∗

t(1 − ρ) + λP0etT ∗ . (25)

To simplify notation define

H(t) = (t + λ)P0etT ∗

t(1 − ρ) + λP0etT ∗

which is a function of t with all the other parameters known from the definition of the sources and
QoS. We rewrite (25) as a function of H and take the logarithm on both sides to get

log (GS(t)) = MS(t) ≤ log (H(t)) (26)

For bufferless queues, the feasibility condition (18) neatly separated into two terms, one that
depends on n and the other, on the system parameters. In the present case, the right-hand term also
depends on n through λ. We don’t have a direct definition of an effective bandwidth but (26) can
be seen as the definition of an acceptance region that is guaranteed to be feasible. The advantage of
using (26) instead of (21) is that the right-hand term depends only on n and the system parameters
and that the left-hand term requires the calculation of GSi

(t) separately for each class i.
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If Gs(t) is a hyperexponential variable, we can use the result of (30) and (36) to get

N∑
i=1

niMSi
(t) ≤ log (H(t)) (27)

from which we get the effective bandwidth

bi(t) = MSi
(t) = µi

µi − pit
.

This expression also imposes the condition that

t < min
i

{
µi

pi

}
.

We can get a more intuitive value for the effective bandwidth if we assume that packets of class i

have an exponential lenght with parameter Li and the server, a capacity C. The average service time
Si = Li/C is a scaled exponential as well and we can rewrite

bi(t) = C

[
1

1 − piSit

]
which shows that the effective bandwidth of class i is a fraction of the total capacity that increases as
the service time of the class

4.5 Equivalent model

We can also examine the admission region produced by a simplified model. In the case where we have
many Poisson sources all with the same service rate, we can replace these sources by a single Poisson
one with an arrival rate that is the sum of the rates of the original sources. When the service rates
are different, we could make the same approximation and represent the aggregate stream by a Poisson
process with parameters

λ = λ1 + λ2

S = λ1

λ
µ1 + λ2

λ
µ2

where the service rate is the average rate defined in (33). This yields a M/M/1 queue and we can
see the corresponding admission region on Figure 20. The admission region for the equivalent model
is completely different from the actual region and that the model will accept far too many type 2
connections.

5 Rate control
The theory of effective bandwidth was developed as an admission control technique for sessions. It
can also be viewed as a technique for controlling the rate of sessions already in place. This is possible
for sessions that do not need a fixed bit rate, e.g., video streaming where the only requirement is that
the playback buffer should not become empty. In case of congestion, one could reduce the rate of the
sender for a short time determined by the capacity of the playback buffer.

In this section, we assume that there is a given number of sessions of a given type present in the
queue and that this will not change over the interval of time over which we want to control the rate.
A “session” could be a single user or the aggregation of a number of similar users.
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Figure 20: Admission region for the equivalent model

5.1 Bursty sources

The multi-rate loss model of Section 3 can be viewed as a technique for controlling the rates of sessions
already in place. Suppose we have a given number of sources K where each source k can adjust its
rate Ak. There is a set S of A vectors such that P (A, b, N) ≤ P for A ∈ S. This is called the feasible
region for the system. As long as the sources rates A remain in S, we are guaranteed that the loss
probability will be less than P . The queue management is thus to force the source to remain feasible,
which is called rate control.

The feasible region is then the region inside the contours of the loss function for some value of
P , shown as the value on the contour curve. This is defined as the set of values (A1, A2) such that
P (A1, A2, N) ≤ P , e.g., the set of traffic values such that the burst loss probability P is no larger than
some prescribed value P . We show on Figure 21 the contour corresponding to Figure 6. We can see
that it is basically the same plot with scales axes, as expected.
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Figure 21: Contours of P , N = 10

5.2 Buffered queues

We get similar results for buffered queues. We plot on Figure 22 the admission region as a function of
the two traffic rates and we get the same scaled form as Figure 19.
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Figure 22: Feasible region, sojourn time

6 Non-convex boundaries
The calculation of an effective bandwidth using the end-point technique seems quite straightforward.
Consider again the case shown on Figure 14. The sources produce two types of bursty traffic, denoted
as ‘large’ for type 1 and ‘small’ for type 2, as described in Section 3. Here, the QoS constraint is the
total burst loss probability.

To make the figure, we first set N2 = 0 and compute the end point on the N1 axis by increasing the
value of N1 from 0 until the first value N∗

1 such that the QoS constraint is violated. Similarly, we can
compute the end-point N∗

2 for the N2 axis. We then make the assumption that for any value N2 > 0,
all the points N1 > N∗

1 will be infeasible. This rests on the “obvious” assumption that if we cannot
have more than N∗

1 sessions of type 1 when there are no sessions of type 2, adding type 2 sessions
will not improve things. The same argument goes for the N2 axis and we end up with the conclusion
that the only points to be examined lie in the rectangle delimited by the points (0, 0), (N∗

1 , 0), (0, N∗
2 )

and (N∗
1 , N∗

2 ). This also assumes that the boundary and the effective bandwidth will be a monotone
decreasing function of the horizontal axis.
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Figure 23: End points admission region, bursty sources

Unfortunately, this reasoning is incorrect in some cases. Consider the plot of Figure 23 which
was built using the procedure above. Note that the upper curve corresponding to the real admission
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region decreases regularly until N1 = 7. Using the argument above, we never have to compute points
(N1 = 8, N2 > 0) since we “know” that they are infeasible. This is why the last segment of the upper
curve is connected to the point (8, 0) which is not realistic.

The answer to this can be seen from Figure 24 which shows the actual admission region. This plot
is produced by actually computing the QoS for all points in some given large rectangle in the (N1, N2)
plane and showing only the points where the QoS is met. The contour plot as a function of continuous
traffic variables is shown on Figure 25. In other words, the assumption that we need not look beyond
N∗

1 is wrong.
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Figure 24: Actual admission region, bursty sources
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Figure 25: Contour of P for P = 0.01

To explain this, consider again the N1 axis. When N2 = 0, the system can be replaced with an
equivalent queue with 4 servers each representing a group of 20 actual servers. Each customer takes
up one of these blocks so that the equivalent queue behaves like a pure Erlang B system. We can see
from the figure that the QoS is not met whenever N1 > 8 which is the maximum number of type 1
connections that can be admitted. Starting from the point (8, 0), we now move in the N2 direction.
For small values of N2, the queue still does not meet the QoS but if we keep adding small connections,
the system becomes feasible again.
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This may seem counter-intuitive but consider the same system when there are currently 60 busy
servers. If N2 = 0, a customer can only take a block of 20 servers, no less. Suppose now that small
type 1 customers are offered to the queue and that one of these customers takes a server. This means
that during a certain time, no large customer can be admitted but up to 9 small ones can be served.
The trade-off is then between losing some large customers and accepting more small ones. In the
present case, the arrival rate of large customers is relatively small so that we will be missing a small
number of those while the arrival rate of the small customers is much larger, which means that we
will be accepting more of these. Since the QoS is the aggregated call loss probability for both classes,
losing one small call is the same as losing one large one. Given that a large call uses up many more
servers than a small one, it is clear that for some values of the traffic, having small calls block larger
ones will be beneficial, hence the improved QoS. We can see that this is indeed the case from Figure 26
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Figure 26: Loss probability for N1 = 10

where we have plotted P , P1 and P2 as a function of the traffic generated by an increasing number
of type 2 sources for the value N1 = 10. We can readily see that the total loss probability P will fall
below 0.01 over two disjoint regions of A2.

We can see the same kind of region for delay systems. The admission region computed from the N1
axis is shown on Figure 27. We see that the end-point effective bandwidth is at N1 = 16 which leaves
out a significant number of feasible states. The explanation is similar to the case of bursty traffic. We
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Figure 27: Actual admission region, M/H2/1 queue
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have two different streams. Type 2 has a large µ which corresponds to a small packet size, but a large
arrival rate. Type 1 packets are larger but with a smaller arrival rate. If we compute the average
delay for large packets with no small packets present, all measured packets will have a relatively large
holding time so that we cannot accept more than 16 sessions. If small packets are present, they will
contribute many small values in the calculation of the average waiting time thus increasing the number
of large packets that can come in and improve the overall QoS.

7 Further reading
There has been a large amount of work done on effective bandwidth in the context of ATM networks.
A generalization of the bufferless system discussed in Sections 3 and 4 can be found in [12] where
approach is to propose a definition of effective bandwidth that is applicable to systems with and
without buffers. It is based on the amount of work produced by a source in the time interval [0, t]
and is denoted by the random variable X(0, t). If the source has independent increments, the effective
bandwidth is defined as

b(s, t) = 1
st

log E {exp sX(0, t)} .

The work contains many examples on the application of this definition to different sources. The
references also give pointers to the computation of appropriate values of s and t for different situations.
Note however that this is still related to the Chernoff bound and thus would be applicable to cases
where the QoS is defined in terms of the tail of some distribution.

The concept of effective bandwidth has been extended to more complex cases in numerous work. An
early example would be [5] which examines a number of possible definitions for the effective bandwidth
for a number bursty sources and a queue with finite buffer.

8 Conclusion
The decision whether to accept a session or not in a multi-service network is based on the concept of
the admission region. We have shown a few examples that can easily be computed for two mixes of
services. In the first case, all streams are modeled by a multi-rate burst traffic with Poisson arrivals
and exponential service times offered to a bufferless set of servers. The streams differ only in the values
of the arrival and service rates and the burst bandwidth. The second is a mixture of flows where each
one is modeled by a Poisson arrival process and exponential service time, all of which are offered to a
single server with an infinite buffer. Here too the only differences between the streams are the actual
values of the arrival and service parameter.

The reason why we can compute the admission exactly is because in both cases, the individual
streams are homogeneous, i.e., they have the same distributions. In these cases, the aggregated stream
is relatively simple and the performance function can be computed easily, either by the Kaufman-
Roberts multi-rate model for the burst traffic or by the M/H/1 queue for the Poisson streams.

Things get much more complicated when the streams are not homogeneous. Mixtures of voice and
data streams cannot be analyzed exactly and even approximations are complicated to evaluate. Other
combinations are often intractable and the only way to check feasibility is by simulation.

For this reason, one needs some simple measures of the impact of a new session on the system
performance. For bufferless systems, for instance, the effective bandwidth in effect transforms the
lower-level QoS requirements into a bandwidth requirement which can be evaluated using the Kaufman-
Roberts algorithm. Equivalently, this amounts to a linearization of the boundary of the admission
region from which we can use a simple admission rule. As we have seen, this linearization may not be
feasible everywhere if we use the end-point technique. Using the Chernoff bound guarantees feasibility
but in some cases, the shape of the admission region is nowhere near a linear region so that an effective
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bandwidth technique may leave out significant parts of the region. This would yield a conservative
admission policy which may not be suitable for wireless systems where bandwidth must be used as
efficiently as possible.

To summarize,

1. Effective bandwidth is used to replace by a linear approximation an admission region that is
difficult to evaluate. There are two standard definitions that can always be used

2. End-point effective bandwidth
(a) This may produce infeasible regions
(b) It requires inverting the QoS function to get the maximum load as a function of the system

parameters
(c) The admission region may be very conservative

3. Chernoff-bound effective bandwidth
(a) It is based on a quality of service defined in terms of the tail of the distribution of some

random variable and is not directly usable for other measures such as an average
(b) It always produces a feasible solution
(c) It requires the the computation of the moment-generating function
(d) The effective bandwidth depends on the value of one or more arbitrary parameters of the

moment-generating function that have to be estimated depending on the particular traffic
mix

(e) This admission region may be very conservative
4. The boundary is not generally monotone decreasing and may not even be convex so that a linear

approximation may very well be inaccurate.

In practice, a resonable procedure is

1. Define an effective bandwidth. This may be the end-point, Chernoff or some other definition
more suitable for the problem at hand

2. Choose a suitable set of cases and check by simulation that the values produced by the effective
bandwidth are in fact feasible

There does not seem to be any simple way to check how conservative the effective bandwidth might be
except by doing a large number of simulations in the region outside the effective bandwidth boundary.

A Moment-generating functions
If X is a random variable with probability density function fx, its moment-generating function GX is
defined as

GX(s) = E
{

esX
}

for all s ≥ 0. If we define the linear transformation

Y = a + bX

then
GY (s) = E

{
es(a+bX)

}
= E

{
esaesbX

}
= esaE

{
esbX

}
= esaGX(bs). (28)
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Consider now the set of independent random variables Xi, i = 1 . . . N . If we define

Y =
N∑

i=1
Xi

then

GY (s) = E

{
exp

(
s

N∑
i=1

Xi

)}

= E

{
exp

(
N∑

i=1
sXi

)}

= E

{
N∏

i=1
exp (sXi)

}

=
N∏

i=1
E {exp (sXi)}

=
N∏

i=1
GXi

(s) (29)

where we have used the independence of the Xi in (29). Similarly, if

Y =
N∑

i=1

Ni∑
j=1

Xi,j

where the Xi,j are iid for any given i, we have

GY (s) =
N∏

i=1
GXi

(s)Ni . (30)

B The hyperexponential distribution
The hyperexponential distribution belongs to the class of phase type distributions. In the present case,
at a given instant, the source can be in one of N phases during which the service rate of phase i is
µi with fixed probabiliy pi of being selected at that instant. The probability density function of X is
given by

fX(x) =
N∑

i=1
pifXi

(x) (31)

N∑
i=1

pi = 1

pi ≥ 0. (32)

The average X, the variance var (X) and the coefficient of variation Cb are given by [20]

X =
∑

i

pi

µi
(33)

var (X) = X
2 +

∑
i,j

pipj

(
1
µi

− 1
µj

)2
(34)

Cb =
√

var (X)
X

. (35)
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Using (28) and (29), the moment-generating function is given by

GX(s) =
N∏

i=1
GXi(pis)

=
N∏

i=1

µi

(µi − pis) . (36)

C The M/G/1 queue
We summarize here some useful results for the M/G/1/∞ queue. The Pollaczek-Khintchine for-
mula [15] yields the average sojourn time T

T = S + ρS(1 + C2
b )

2(1 − ρ) (37)

from which we get the average waiting time

W = T − S (38)

where

λ is the arrival rate
S is the average service time
ρ is the average utilization where ρ = λS

Cb is the coefficient of variation of S

The Laplace transform of A∗(T ) is given by [14, Eq. (5.100)]

A∗(t) = t(1 − ρ)
t − λ + λS∗(t)S∗(t)

where λ is the arrival rate, 1/µ is the average service time, ρ = λ/µ and S∗(t) is the Laplace transform
of the service time distribution.

References
[1] Diego Cruz Abrahão, Flávio Henrique Teles Vieira, and Marcus Vińıcius Gonzaga Ferreira. Resource allo-
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