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Abstract : The Network Design Problem with Vulnerability Constraints and Probabilistic Edge
Reliability (NDPVC-PER) is an extension of the NDPVC obtained by additionally considering edge
reliability. We consider the design of a telecommunication network in which every origin-destination
pair is connected by a hop-constrained primal path, and by a hop-constrained backup path when certain
edges in the network fail. The edge failures occur with respect to their reliability, and the network is
designed by considering a minimum reliability level. Therefore, an hop-constrained backup path must
be built by considering all simultaneous edge failures that have a certain probability of realization.
While there exist models to solve the NDPVC without enumerating all edge subsets, edge reliability
cannot be dealt with by applying the techniques applied to the NDPVC. Therefore, we develop models
based on a new concept of resilient length-bounded cuts, and solve the NDPVC-PER without edge set
enumerations. We perform extensive testing of the model to determine the best performing settings,
and demonstrate the computational efficiency of the developed model. Our findings on these instances
show that, in the dataset considered in this study, increasing the reliability level from 90% to 95%
increases the average cost only by 12.4%, while increasing it from 95% to 99% level yields a cost
increase of 93.9%.

Keywords : Network design, vulnerability, survivability, reliability, integer linear programming,
length-bounded cut, resilient length-bounded cut
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1 Introduction

Telecommunication networks are designed to ensure the connectivity of a set of origin-destination (O-

D) pairs. The links on these networks are prone to failures, and therefore the networks are designed

by also ensuring that the connection is maintained when links some fail Wong (2021). The problem

of ensuring connectivity in such networks has been handled from several standpoints. The Survivable

Network Design Problem (SNDP) achieves connectivity by ensuring that, for every O-D pair, there

exists k edge-disjoint paths or k node-disjoint paths, where k is the number of such paths, while

ensuring that the setup cost is minimized. As a result, there exists a backup path when the primal

path connecting an O-D pair fails. In order to ensure a certain level of quality in the network, the paths

connecting the O-D pairs are also restricted to use a maximum number of edges, which is referred to

as the ‘hop bound’. The Hop-Constrained Survivable Network Design Problem (kHSNDP) is similar

to the SNDP and designs a network of minimum cost, but it additionally ensures that every O-D pair

is connected using k edge-disjoint paths that contain at most H edges (Botton et al., 2013).

Note that designing a network with k edge-disjoint paths, implies that the network can maintain

communication between an origin-destination (O-D) pair, even when all arcs on all of the primary

k − 1 paths between the same O-D pair simultaneously fail. However, this approach may be overly

conservative in network design, even when k = 2, and can result in high setup costs. This fundamental

assumption was later relaxed by Gouveia and Leitner (2017), who introduced the Network Design

Problem with Vulnerability Constraints (NDPVC). In the NDPVC, each O-D pair is guaranteed to be

connected by a hop-constrained primal path, and a hop-constrained backup path when k ≥ 2 edges fail

in the network (note that the parameter k is used for counting the failing edges in the NDPVC rather

than the disjoint paths as in the SNDP or the kHSNDP). It is important to note that the NDPVC is

less restrictive than the SNDP, as the backup path can utilize the working part of the primal path.

Consequently, the NDPVC requires both a primal and backup hop bound to represent the quality of

service between O-D pairs, along with an integer k that represents the network’s survivability level.

In the current setting, after having solved the NDPVC, a telecommunication network manager

may claim that the network is resilient to (k − 1)-edge failures. However, the reliability of systems is

typically expressed in terms of probabilities. In this paper, we associate probabilities to edge failures.

Dahl and Stoer (1998) mention associating probabilities to edge failures, but argue that this problem

would be computationally infeasible. In our paper, we develop models and algorithms that are feasible

with today’s modeling power and technology.

Indeed, the connectivity reliability of O-D pairs in a telecommunication network can be influenced

by various factors, which include the quality, age, protection level and installation standards of the

cables, as well as environmental conditions and maintenance frequencies. In particular, higher-quality

cables are designed to better withstand environmental conditions, such as temperature variations,

moisture, and mechanical stress compared with lower-quality cables. Furthermore, improper installa-

tion techniques, such as excessive bending, pulling with excessive force, or inadequate cable protection,

can lead to cable damage and reduced reliability. For real-world implementations, we refer the reader

to Alcoa Fujikura ltd. (2001) for different types of fiber-optical cables affecting reliability, to Roxtec

Cable Seals (2023) for reliable cable seals for telecommunication networks, and to Eland Cables for the

main causes of electrical cable failures. Similarly, Mashad Nemati (2017) present data-driven methods

that utilize historical data in smart distribution grids for reliability evaluation. From this perspective,

we associate probabilities with the edges, representing the likelihood of failures. These probabilities

could be influenced by factors such as the quality of existing networks, historical data from the same

region reflecting environmental conditions, or the quality of newly installed cables as indicated by

manufacturers.

Note that, in the NDPVC, the number of failing edges is an input parameter. However, when

the edge failure probabilities are considered, one or multiple edges may fail simultaneously, and the

network needs to be protected against such failures. Therefore, the k parameter previously considered
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is no longer a parameter but a variable of the problem. One can preprocess a network to enumerate

all the edge sets that lead to a failure probability higher than the resilience level set by the managers,

and we develop a model based on such an enumerative scheme, which is computationally very costly.

In this paper, we also develop a mathematical model that does not require such an enumeration.

1.1 Literature review

The NDPVC problem has a strong connection with the k-edge-survivable network design problem (k-

ESNDP), which involves finding a subset of edges that minimizes the total edge costs while ensuring the

existence of k edge-disjoint paths for each O-D pair. Stoer (1992) studied the polyhedral properties

of this problem for k = 2 and Grötschel et al. (1995) investigated it for general k values. For a

comprehensive understanding of the k-HSNDP, please refer to Kerivin and Mahjoub (2005) and Bendali

et al. (2010). Solutions to the k-ESNDP may result in relatively lengthy paths. To account for the

quality of service in such networks, it is common practice to consider the number of edges on the path,

often referred to as the ‘hop bound’ Balakrishnan and Altinkemer (1992). Hop bounds within spanning

trees have been studied by Gouveia (1996) and Gouveia (1998). Recently, Fortz et al. (2022) compared

the node-based and the arc-based hop-indexed formulations for the Steiner tree problem with hop

constraints. The two-connected network with bounded meshes problem was studied by Fortz et al.

(2000), in which the resulting network contains at least two vertex-disjoint paths between every pair of

vertices, and each edge must belong to at least one cycle whose length is bounded by a given constant.

The authors investigated the use of hop-constrained cycles connecting O-D pairs, which leads to two

disjoint paths. Polyhedral results for two-connected networks with bounded rings are presented in

Fortz and Labbé (2002) and Fortz et al. (2006). The k-HSNDP extends the k-ESNDP by introducing

hop constraints for each O-D pair. Leveraging the layered network flow formulation developed by

Gouveia (1998), Botton et al. (2013) introduced a Benders decomposition algorithm designed for the

k-HSNDP, applicable to various values of k and specific length bounds. More recently, Diarrassouba

and Mahjoub (2023) studied polyhedral properties of the k-ESNDP, and introduced several new classes

of valid inequalities for the previously developed models.

The primary distinction between the k-HSNDP and the NDPVC lies in the way paths are con-

structed. In the k-HSNDP, the focus is on creating edge-disjoint paths, whereas in the NDPVC,

the primary and backup paths do not need to be disjoint. The primary requirement is to ensure

hop-constrained connectivity from sources to destinations in the event of the failure of any k edges

in the network. Consequently, solutions of the k-HSNDP are more conservative than those of the

NDPVC Gouveia and Leitner (2017). Branch-and-cut and Benders decomposition algorithms were

developed for the NDPVC to accelerate its solution efficiency of the models Gouveia et al. (2018).

These models depend on the explicit enumeration of edge sets, and on constructing paths. Observing

that the network only needs to ensure the existence of such paths, but does not necessarily need to

explicitly model them, Arslan et al. (2020) presented models based on the idea of length-bounded cuts.

These models do not rely on edge set enumeration, but implicitly guarantee the existence of paths.

They proved to be more efficient than the former models on a wide range of problem instances.

1.2 Scientific contributions and organization of the paper

We extend the network design problem with vulnerability constraints by considering failure probabili-

ties associated with edges of the network. We introduce the Network Design Problem with Vulnerability

Constraints and Edge Reliability (NDPVC-PER) and present mathematical models for solving it. The

models in the literature developed for solving similar problems without any enumeration cannot be

applied to the NDPVC-PER, and we therefore propose a novel idea based on a new cut type, referred

to as Resilient Length-bounded Cut. This idea enables us to formulate a model that does not require

the edge set enumeration. We conduct computational experiments to test the effectiveness of these

models, and demonstrate that considering probabilities is important to measure the impacts on the

design costs.
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In Section 2, we provide the preliminaries and formally introduce the problem. In Section 3,

we present an arc-flow model for solving this problem that is built on the idea of enumerating edge

subsets. In Section 4, we present a model based on length bounded cuts inspired from the literature.

In Section 5, we develop a model based on resilient length-bounded cuts, which does not require edge

set enumeration. Section 6 describes the separation problem, and methods for solving this problem

including several heuristics. Section 7 presents a computational study and results. We conclude the

paper in Section 8.

2 Preliminaries and problem definition

We now present the preliminaries in Section 2.1, model the resilience in Section 2.2 and define the

problem in Section 2.3.

2.1 Preliminaries

Let G = (N,E) be an undirected graph, where N is the set of nodes and E is the set of edges e = [i, j]

with i, j ∈ N and i < j. Parameter ce = cij is the cost of edge e = [i, j] ∈ E with 0 ≤ ce ≤ 1, and

pe = pij is the edge reliability. Consider the corresponding directed graph Ḡ = (N,A) where the arc

set A contains arcs (i, j) and (j, i) for each edge [i, j] ∈ E. For arc (i, j) ∈ A, let dij be the minimum

number of arcs in Ḡ from node i to node j ∈ N . A demand r is defined as a tuple ⟨or, dr, Hr
p , H

r
b ⟩,

where or is the origin, dr is the destination, and Hr
p and Hr

b are the primary and backup hop limits,

respectively. Set R represents the set of all demands. Let Ap
r = {(i, j) ∈ A : dsri + djtr + 1 ≤ Hp

r } be

the primal graph and Ab
r = {(i, j) ∈ A : dsri + djtr + 1 ≤ Hb

r} be the backup arc sets corresponding

to demand r ∈ R. Let Np
r and N b

r be the node sets induced by the respective arc sets, Ap
r and Ab

r.

Similarly, let Ep
r and Eb

r be the edge sets induced by the respective arc sets, Ap
r and Ab

r. We refer

to the graphs Gp
r = (Np

r , A
p
r) and Gb

r = (N b
r , A

b
r) as the primary and backup graphs, respectively, of

demand r ∈ R. For r ∈ R, and an edge set C ⊂ Er
b , let Gb

r(C) be the graph induced by the arcs

Ab
r(C) := {(i, j) ∈ Ab

r : [i, j] ∈ C}. When C contains only one edge [i, j], we write Ab
r([i, j]) instead

of Ab
r({[i, j]}). In other words, Ar

b([i, j]) includes arcs (i, j) and (j, i), if they exist in Ar
b . The set

Ar
p([i, j]) is similarly defined for the primal path. Let A

b

r(C) := Ab
r \Ab

r(C), N
b

r(C) be the set of nodes

induced by the arc set A
b

r(C), and G
b

r(C) := (N
b

r(C), A
b

r(C)). The set G
p

r(C) is similarly defined.

2.2 Resilience definition

The Oxford English Dictionary defines reliability as “the quality or fact of being able to recover quickly

or easily ...”. In the scope of this paper, for a network G and a resilience level 0 < P < 1, the following

three statements are equivalent:

• A network is (100× P )-resilient.

• A network is resilient to edge failures happening with at least probability P .

• All simultaneous edge failures that have a probability at least P can be effectively handled (i.e.,

there is a backup plan for such occurrences).

In other words, the network manager is concerned with all events with at least probability P . If the

probability of failure is less than P , the network does not guarantee the existence of a backup plan for

these cases (for example, when several edges fail simultaneously).

Let pe be the probability of edge e ∈ E being operational. The probability of failure is then given

by 1− pe. For a subset of the edge set, C ⊂ E, the probability of simultaneous failures is

P (C) :=
∏
e∈C

(1− pe). (1)
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2.3 Problem definition

Definition 1. Given an undirected graph G = (N,E), a demand set R, and a resilience level P , the

Network Design Problem with Vulnerability Constraints and Probabilistic Edge Reliability (NDPVC-

PER) is defined as finding a subset of edges with the minimum cost that ensures the connectivity of all

demands from their origins to their destinations, respecting their primary hop limit, and ensuring that

there exists a backup path between the same O-D pair when all edges in the edge set C are removed

for every C ⊂ E : P (C) ≥ P .

3 Model based on arc flows

We now present a mathematical model that explicitly builds the paths for every edge failure case in
the network by enumerating all subsets of the edge set. Let xe be a binary variable that equals 1 if
edge e ∈ E is selected, and 0 otherwise. We define binary variables yrij equal to 1 if and only if arc
(i, j) ∈ Ar

p for r ∈ R is on the path from or to dr. Similarly, for every demand r ∈ R and every

subset of edges C ⊂ Er
b such that p(C) ≥ P , we define binary variables zrCij equal 1 if and only if arc

(i, j) ∈ A
b

r(C) is on the path from or to dr when edges in C fail. In line with the resilience definition
in Section 2.2, for r ∈ R, the edges that should be taken into account when designing the network
are C ⊂ E : p(C) ≥ P . However, the edges in E \ Er

b will not be used by either the primal or the
backup paths. Therefore, we only consider the edge set Er

b when determining the failing edges. Note
that considering only the edges in Er

p would not be correct because the backup path may still use the
edges in Er

b \ Er
p to ensure the backup connectivity and should use the edges that have not failed. In

the following model, all such sets need to be enumerated before building the model. The model M1 is
then formulated as follows.

(M1) minimize
∑
e∈E

cexe (2)

subject to

∑
j:(i,j)∈Ar

p

yr
ij −

∑
j:(j,i)∈Ar

p

yr
ji =


1 if i = or

−1 if i = dr

0 otherwise

i ∈ Nr
p , r ∈ R (3)

∑
j:(i,j)∈Ar

b
\A[C]

zrCij −
∑

j:(j,i)∈Ar
b
\A[C]

zrCji =


1 if i = or

−1 if i = dr

0 otherwise

i ∈ Nr
b , C ⊂ Er

b : p(C) ≥ P, r ∈ R

(4)∑
(i,j)∈Ar

p

yr
ij ≤ Hp

r r ∈ R (5)

∑
(i,j)∈A

b
r(C)

zrCij ≤ Hb
r C ⊂ Er

b : p(C) ≥ P, r ∈ R (6)

∑
(k,l)∈Ar

p([i,j])

yr
kl ≤ xe e = [i, j] ∈ Er

p , r ∈ R (7)

∑
(k,l)∈Ar

b
([i,j])

zrCkl ≤ xe C ⊂ Er
p \ {e} : p(C) ≥ P,

e = [i, j] ∈ Er
b , r ∈ R (8)

xe ∈ {0, 1} e ∈ E (9)

yr
ij ∈ {0, 1} (i, j) ∈ Ar

p, r ∈ R (10)

zrCij ∈ {0, 1} (i, j) ∈ Ar
b \A[C],

C ⊂ Er
p : p(C) ≥ P, r ∈ R. (11)

Objective function (2) minimizes the total network design cost. Constraints (3) are node balance

equations that yield a primary path for every demand r ∈ R. Similarly, constraints (4) are node bal-
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ance equations for building backup paths for every subset of edges C ⊂ Er
p such that p(C) ≥ P . Con-

straints (5) ensure that the constructed primal and back paths respect the hop bounds. Constraints (6)

and (7) ensure that an arc can only be used if the corresponding edge is selected. Constraints (9)–(11)

define the domains of the variables.

Observe that the enumerative nature of Model M1 is restrictive. In the following section, we develop

alternative models based on the notion of length-bounded cuts.

4 Model based on Length-bounded cuts

We now develop models based on length-bounded cuts.

Definition 2. Given a directed graph Ḡ = (N,A), a demand r ∈ R, a positive integer H as a length

bound on the paths and an O-D pair (or, dr), a set of arcs S̄ ⊂ A is called an lbcut, if the removal of

the arcs in S̄ disconnects all paths of length at most H from or to dr in G.

Note that every cut in graph Ḡ is also an lbcut. There may be additional lbcuts in Ḡ that disconnect

all path of certain length. Let S ⊂ E be the set of edges induced by the arcs in S̄ ⊂ A, which is an

lbcut in the corresponding undirected graph G. Let Γp
r be the set of all such edge sets S corresponding

to the lbcuts S̄ of length bound Hp
r in Gp

r . Similarly Γb
r is defined as the set of all edge sets S ⊂ E

corresponding to the lbcuts S̄ ⊂ A of length bound Hp
r in Gb

r. We also define Γb
r(C) as the set of all

edge sets S ⊂ E corresponding to the lbcuts S̄ ⊂ A
b

r(C) of length bound Hp
r in G

b

r(C).

We now develop a natural formulation for the NDPVC-PER, which we refer to as M2. In our

formulation, we ensure the existence of a hop-constrained path using lbcuts Dahl et al. (2006); Arslan

et al. (2020, 2019). For the sake of completeness, we repeat Proposition 1 in Arslan et al. (2020) here.

Proposition 1. [Proposition 1 in Arslan et al. (2020)] For a given graph G, an O-D pair (s, t)

and a hop bound H, there exists a path of length at most H from s to t if and only if every lbcut

contains at least one edge of the path.

For the proof, we refer the reader to Arslan et al. (2020). M2 ensures the existence of paths by

implicitly through lbcuts.

(M2) minimize
∑
e∈E

cexe

subject to∑
e∈S

xe ≥ 1 S ∈ Γp
r , r ∈ R (12)∑

e∈S

xe ≥ 1 S ∈ Γb
r(C), C ⊂ Ab

r : p(C) ≥ P, r ∈ R (13)

xe ∈ {0, 1} e ∈ E.

The objective function minimizes the total cost. Constraints (12) ensure that, for r ∈ R there

exists a primal path of length at most Hp
r between or and dr. Constraints (13) ensure the existence of

a path of length at most Hr
b between the same O-D pair when edges in the edge set C fails for every

C ⊂ Ab
r : p(C) ≥ P . The last set of constraints define the binary requirements.

There are exponentially many constraints corresponding to every lbcut for every demand. Hence we

develop a branch-and-cut algorithm for solving the problem and the corresponding separation problem,

and its results are presented in Section 6.

Observe that even though the enumeration of lbcuts is avoided by solving the model using a branch-

and-cut algorithm, the failing edges C still need to be enumerated a priori in Model M2. In other words,

Constraints (13) are added to the model for every lbcut in the graph that corresponds to removal of
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edges in the edge set C ⊂ Ab
r : p(C) ≥ P and this set needs to be enumerated. When solving the

NDPVC with k failing edges (without considering the edge reliability), the cardinality of the failing

edges is always taken as k − 1. Therefore, the constraints
∑

e∈S xe ≥ k for every S ⊂ Γp ensure

the existence of hop-constrained backup paths because when k − 1 edges fail, the remaining one edge

still ensures connectivity. Nevertheless, this is no longer the case for the problem at hand when we

consider edge reliability because the cardinality of the edge set C is not necessarily fixed. Therefore, the

model developed by Arslan et al. (2020) for solving the NDPVC with k failing edges cannot solve the

NDPVC-PER. Hence, even when M2 is solved by means of a branch-and-cut algorithm, the separation

problem still needs to be solved for every edge set C ⊂ Ab
r : p(C) ≥ P . In the following section, we

present a novel idea that also avoids the enumeration of these sets.

5 Model based on resilient length-bounded cuts

We now present a natural model that does not require enumerating the failing edges C ⊂ Ab
r : p(C) ≥ P .

We first define a resilient length-bounded cut (r-lbcut).

Definition 3. Given a directed graph Ḡ = (N,A), edge reliability pij for all (i, j) ∈ A, a resilience level

P , a demand r ∈ R, a positive integer H as a length bound on the paths and an O-D pair (or, dr), a

set of arcs T̄ ⊂ A is called a Resilient Length-bounded Cut (r-lbcut), if the removal of the arcs in T̄ ∪ C
disconnects all paths of length at most H from or to dr in G for a set C ⊂ A : p(C) ≥ P .

Observe that, in the above definition, T̄ ∪ C is an lbcut. The r-lbcut T is simply those edges that

ensure connectivity of the O-D pair after the edges in C fails.

Remark 1. Given an lbcut S, set T := S \ C is an r-lbcut for every C ⊂ S : p(C) ≥ P .

For r ∈ R and a resilience level P , let Ωb
r(P ) be the set of all r-lbcuts. By definition, Ωb

r(P ) =

Γb
r(C), C ⊂ Ab

r : p(C) ≥ P . We can then model the NDPVC-PER using the idea of r-lbcuts, which does

not require the enumeration of failing edge sets.

(M3) minimize
∑
e∈E

cexe

subject to

(12)∑
e∈S

xe ≥ 1 S ∈ Ωb
r, r ∈ R (14)

xe ∈ {0, 1} e ∈ E.

The difference of Model M3 with respect to M2 lies in constraints (14), which ensure the existence of a

hop-bounded backup path when edges with a certain simultaneous failure probability are removed from

the graph. The key difference lies in the way the constraints are separated. For (13), the separation

problem consists of finding an lbcut, whereas for (14), the separation problem is to identify an r-lbcut.

In the following section, we elaborate on the solution methods of the separation problem.

6 The separation problem and its solution

Given a solution x∗ ∈ R|E| of NDPVC-PER, the separation problem for Constraints (14) is to identify

an r-lbcut of weight 1 in the subgraph induced by x∗, or to conclude that none exists. For Con-

straints (12) and (13), the separation problem reduces to finding an lbcut of weight 1 on the same

subgraph, or to prove that none exists. For r ∈ R, we separate

• Constraints (14) by an r-lbcut S ∈ Ωb
r with x∗(S) < 1, and

• Constraints (12) by an lbcut S ∈ Γp
r with x∗(S) < 1.
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Additionally, for r ∈ R and C ⊂ Ab
r : p(C) ≥ P , we separate

• Constraints (13) by an lbcut S ∈ Γb
r(C) with x∗(S) < 1.

Since the problem of finding an r-lbcut is a generalization of the problem of finding an lbcut, we focus

on the former. We next present a linearization for modeling the multiplication of probabilities, and we

then present a mathematical model for finding the minimum weight r-lbcut.

Proposition 2. The following two statements are equivalent:

P (C) ≥ P (15)∑
[i,j]∈C

log
1

(1− pij)
≤ log

1

(1− P )
. (16)

Proof. By considering the logarithms and elementary operations, the proof is straightforward (see

Exercise 4.39 in Ahuja et al. (1993)).

Using this linear reformulation, we next present a mathematical model for solving the separation

problem.

6.1 A mathematical model for the separation problem

Consider a directed graph G = (N̂ , Â), an O-D pair (o, d), edge weights x̂ij for arc (i, j) ∈ Â and a hop

bound H. Let uij = 1 if and only if arc (i, j) ∈ Â is in the minimum r-lbcut, and tij = 1 if and only if

arc (i, j) ∈ Â is in the failed arcs set C. Additionally, let πi be the shortest path from the destination

node d to node i ∈ N̂ , if this path does not contain any arc on the r-lbcut S or on the set of failing

edges C, and a large number otherwise. These variables could be considered as node potentials. The

mathematical model for solving the minimum r-lbcut problem is

(r-lbcutM) minimize
∑

(i,j)∈Â

x̂ijuij (17)

subject to

πd = 0 (18)

πi ≤ πj + 1 +M(uij + tij) (i, j) ∈ Â (19)

πo ≥ H + ε (20)∑
(i,j)∈Â

log(
1

1− pij
)tij ≤ log(

1

1− P
) (21)

πi ≥ 0 i ∈ N̂ (22)

uij , tij ∈ {0, 1} (i, j) ∈ A. (23)

The objective function (17) minimizes the weight of the r-lbcut. Constraints (18) and (19) ensure

that the node potentials are correctly calculated by the π variables. Constraint (20) ensures that the

destination cannot be reached from the origin using H hops. The parameter ε is a very small number.

Constraint (21) ensures that the failing edges that form the set C yields C ⊂ Ab
r : p(C) ≥ P (due to

Proposition 2). Finally, constraints (22) and (23) define the domains of the variables.

For graph G and demand r ∈ R, we refer to preceding mathematical model as r-lbcutM(G) when

the minimum weight r-lbcut problem is solved on graph G. Observe that since we are searching for a

minimum weight r-lbcut, the arcs with zero weights do not contribute to the objective function and

the optimal solution of the mathematical model may potentially include many such arcs. To avoid

this, a straightforward idea is to change the weight of such variables with zero coefficients to a small

value ε so that the cut size is eventually finalized. Note that this may spoil the optimality of the cut,
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particularly when the weights are also too small. Therefore, we use this idea of adding an ε coefficient

to the variables with zero weights only when using the mathematical model as a heuristic. We also

impose a time limit when using this model as a heuristic, and we refer to it as ε-r-lbcutM-h(G).

6.2 An ε-minimum cut heuristic

All minimum weight cuts are also length bounded cuts, and a length bounded cut is a superset of a

resilient length bounded cut. Therefore, finding a minimum weight cut may help identify any violations

of Constraints (12), (13) or (14). Furthermore, it can be used for both fractional and integer separation.

As in the ε-r-lbcutM-h(G) heuristic, assigning an ε value to those arc with zero weights yields cuts

with minimal cardinality, and therefore the cut may be stronger. Similar strengthening ideas were also

implemented by Koch and Martin (1998) and Arslan et al. (2020).

6.3 An ε-resilient minimum cut heuristic

Observe that the minimum cut generated by the ε-minimum cut heuristic can further be strengthened

when resilience is considered. Let S be a cut generated by the ε-minimum cut heuristic. By definition

of a resilient length-bounded cut, a subset C ⊂ S may fail, and the edges in S \ C should still ensure

the connectivity. The following model minimizes the weight of the r-lbcut by maximizing the weight of

the edges that are removed from the cut as failing edges. Let tij be equal 1 if and only if edge (i, j) in

a given cut S is considered as a failing edge. Note that those failing edges are not part of the resulting

r-lbcut. Therefore, given a cut S, we present knapsack heuristic model as

(Knapsack-h) maximize
∑

(i,j)∈S

x̂ijtij (24)

subject to ∑
(i,j)∈Â

log(
1

1− pij
)tij ≤ log(

1

1− P
) (25)

tij ∈ {0, 1} (i, j) ∈ S. (26)

The objective function maximizes the weight of the set of edges that are “failing” edges. The remaining

edges in the cut form the r-lbcut. Constraint (25) ensures that the probability of simultaneous failure

of the edges is at least P (due to Proposition 2). Constraints (26) state the binary requirements on

the variables.

6.4 Length-bounded cuts with hop limits of at most three

A minimum weight length-bounded cut can be found in polynomial time if the bound is at most

three units Mahjoub and McCormick (2010). The authors of this paper build a linear time network

transformation, and solving a minimum weight cut problem on the transformed graph corresponds to

a minimum weight length-bounded cut in the original graph. We again assign an ε value for zero-

valued arcs, which helps minimalize the size of the minimum cut. Observe that the generated cut is

an lbcut, and is an exact separation for Constraints (12) when the hop limit Hp ≤ 3. On the other

hand, it is a heuristic for the separation problem corresponding to Constraints (13) and (14). In the

latter case when the algorithm is used as a heuristic, the Knapsack-h heuristic can also be applied to

the generated cut in order to construct a resilient length-bounded cut. We refer to this technique as

ε-lbcut3(G) when solved on an input graph G.

7 Computational study

We now present the data, the implementation details, the experimental design, and the results.
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7.1 Data

Table 1 shows the NDPVC instances in Gouveia and Leitner (2017), which include a total of 350

networks with grid and random structures. In this study, we use the same set of instances. Additional

details on the generation of these networks are discussed in Gouveia and Leitner (2017). The first five

columns in Table 1 show the name, the node, edge and demand counts and the number of instances

in each set, respectively. The parameter Hmin represents the minimum hop limit among the demands

in the particular set of instances. Columns 6−8 report the minimum, average and maximum value of

the Hmin of these instances.

Table 1: Properties of the instance sets.

Hmin

Set |N | |E| |R| Number Minimum Average Maximum

C-1 100 342 5 20 3 4.7 7
C-2 100 342 10 20 4 5.4 7
C-3 400 1482 5 20 3 4.7 7
C-4 400 1482 10 20 4 5.05 7
C-5 400 1482 20 20 4 5.75 7
C-6 900 3422 5 20 3 4.65 7
C-7 900 3422 10 20 4 5.4 7
C-8 900 3422 20 20 4 5.6 7
C-9 900 3422 30 20 4 5.9 7

D-1 25 72 10 10 3 3.8 4
D-2 49 156 10 10 4 5.2 6
D-3 100 342 10 10 7 8.2 9
D-4 100 342 45 10 6 8.1 9
D-5 400 1482 10 10 12 14.6 18

E-1 50 122 10 5 6 7.6 9
E-2 50 122 45 5 7 8.6 11
E-3 50 245 10 5 4 4.6 6
E-4 50 245 45 5 4 4.8 6
E-5 75 277 10 5 5 5.6 6
E-6 75 277 45 5 6 8.6 12
E-7 75 555 10 5 3 4.4 6
E-8 75 555 45 5 4 4.6 5
E-9 100 495 10 5 5 5.2 6
E-10 100 495 45 5 6 7.2 9
E-11 100 990 10 5 3 4.0 5
E-12 100 990 45 5 3 4.8 6

R-1 50 122 10 5 3 4.6 6
R-2 50 122 45 5 4 5.2 6
R-3 50 245 10 5 2 2.8 3
R-4 50 245 45 5 3 3.0 3
R-5 75 277 10 5 3 3.8 4
R-6 75 277 45 5 4 4.2 5
R-7 75 555 10 5 2 2.6 3
R-8 75 555 45 5 2 2.8 3
R-9 100 495 10 5 3 3.6 5
R-10 100 495 45 5 4 4.0 4
R-11 100 990 10 5 2 2.0 2
R-12 100 990 45 5 3 3.0 3

In the experimental design, we used 10 selected networks to test the performance of the models

and to determine the best parameter settings. These networks are referred to as the “10 networks”

in the remainder of this paper, and they come of C-1 and C-2 datasets. All 10 networks have 100

nodes, 342 edges and 5 demands. They are the first five networks in C10x10-5-1 10 10 50-2 5 and

C10x10-5-1 10 10 50-2 7 networks in the dataset.
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In addition to the parameters provided in the dataset, we need reliability for all the edges in the

networks. In this study, we assign the reliability of edge (i, j) ∈ E as follows:

pij = pbase + (1− pbase − ε)× fij ,

where 0 < pbase < 1 is the minimum probability value, ε is a very small value, which we take as 10−7,

and fij is a parameter between 0 and 1 that controls the distribution of the edge probability between

pbase and 1− 10−7. This ensures that 0 < pij < 1. In this study, we generate fij using two methods.

We refer to the first one as cost-dependent, in which fij = cij/cmax where cmax is the maximum cost

for the particular instance. This ensures that the instances can easily be replicated, and also the

underlying idea is that the cost would increase for more reliable arcs, and hence the function. In the

second method, we randomly generate fij using Java with seed number 1000. This also ensures that

pij is distributed uniformly between pbase and 1−10−7. The instances can again be replicated, and this

instance generation yields a more random edge reliability to test the efficiency of the methods. We use

the “Random generator = new Random(1000)” command to generate fij values. In the experimental

design, we refer to the reliability distribution as F , and F = c implies that the reliability is a function

of cost, and F = r implies that it is randomly distributed.

Table 2 presents the maximum number of edge subsets for which a backup path should be built for

varying values of P and pbase among the 10 networks. Observe that the number reaches to more than

30.5 million paths when P = 0.99 and pbase = 0.65. Clearly, enumerating these subsets and building

a model is not practical (or even infeasible) with the existing computational power. Table 3 reports

the minimum, the average and the maximum numbers of edges in these failing edge sets for different

values of P and pbase among the 10 networks. Note that the average number of edges in each set varies

between 1 and 4 when pbase = 0.65 and P = 0.99, and the average set cardinality is 3.35. These values

show the difficulty of enumeration and justify the development of methods that do not require explicit

enumeration.

Table 2: Maximum number of edge subsets for which a backup path should be built for varying values of P and pbase
among 10 selected networks.

Reliability level (P )

pbase 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

0.65 18,565 31,411 40,040 47,416 54,652 63,065 74,107 1,150,847 2,745,684 30,504,945
0.70 843 876 6,875 25,566 38,878 48,923 58,966 71,065 777,273 3,504,831
0.75 811 833 861 881 916 21,803 41,083 55,388 72,685 1,596,046
0.80 734 768 811 833 876 893 951 30,113 53,735 81,418
0.85 628 681 711 768 811 843 881 951 6,973 58,996
0.90 0 275 556 613 681 734 811 876 951 1,006
0.95 0 0 0 0 0 0 556 681 811 951

Maximum 18,565 31,411 40,040 47,416 54,652 63,065 74,107 1,150,847 2,745,684 30,504,945

7.2 Implementation details

We implemented our algorithms using Java, and all the experiments were conducted on the Cedar

cluster of Digital Research Alliance of Canada using single thread and 20GB of RAM on a Linux

environment. We used CPLEX 22.1.0.0 and its built-in constraint callback functions. The time limit

for each of the experiments was set to two hours.

The pseudo-code of the separation algorithm is presented in Algorithm 1. The time limit for

solving the ε-r-lbcutM-h heuristic is set to 0.1 seconds. When separating at fractional solutions, we

only implemented it at the root node. To avoid tailing-off effects, we stopped adding cuts at the root

node when the LP relaxation has not improved over the previous three iterations by more than 0.01%.

Finally, when solving the exact separation in line 14−18 of the pseudo-code, we broke the loop as soon

as a violation is detected in order not to spend time on separating the solutions exactly when this may

be done heuristically in the next iteration.
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Table 3: (Minimum, average, maximum) edge numbers in failing edge sets to be considered in the problem for different
values of P and pbase.

Reliability level (P )

pbase 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

0.65 (1, 1.75, 2) (1, 1.85, 2) (1, 1.89, 2) (1, 1.93, 2) (1, 1.94, 2) (1, 1.96, 2) (1, 1.98, 3) (1, 2.6, 3) (1, 2.85, 3) (1, 3.35, 4)
0.70 (1, 1, 1) (1, 1, 1) (1, 1.52, 2) (1, 1.8, 2) (1, 1.9, 2) (1, 1.92, 2) (1, 1.95, 2) (1, 1.96, 2) (1, 2.5, 3) (1, 2.88, 3)
0.75 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1.03, 2) (1, 1.77, 2) (1, 1.9, 2) (1, 1.94, 2) (1, 1.96, 2) (1, 2.66, 3)
0.80 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1.81, 2) (1, 1.93, 2) (1, 1.97, 2)
0.85 (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1.49, 2) (1, 1.94, 2)
0.90 (0, 0, 0) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)
0.95 (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1)

(min,
avg,
max)

(0, 0.82, 2) (0, 0.98, 2) (0, 1.06, 2) (0, 1.10, 2) (0, 1.12, 2) (0, 1.24, 2) (1, 1.40, 3) (1, 1.62, 3) (1, 1.82, 3) (1, 2.11, 4)

Algorithm 1: Separation Algorithm

Input: Demand set R
Output: A set of violated constraints (CutSet)

1 begin
/* Heuristic cut generation */

2 for i ∈ {p, b} do // For ‘primal’ (p) and ‘backup’ (b)

3 CutSeti ← ∅
4 for r ∈ R do
5 G← Gi

r

6 if Hi
r ≤ 3 then

7 tempCutSeti += ε-lbcut3(G) // Section 6.4 (this algorithm is exact when i = ‘p′)
8 else
9 tempCutSeti += ε-minCut-h(G) // Section 6.2

10 CutSeti += ε-r-lbcutM-h(G) // Section 6.1

11 for cut ∈ tempCutSetb do // Strengthening the backup cuts

12 CutSetb += Knapsack-h(cut, Gb
r) // Section 6.3

13 if CutSet == null then // If no cut is found by the heuristics

/* Exact separation */

14 for r ∈ R do
15 if Hp

r > 3 then
16 CutSetp += r-lbcutM(Gp

r) // Section 6.1

17 for r ∈ R do
18 CutSetb += r-lbcutM(Gb

r) // Section 6.1

19 return CutSetp ∪ CutSetb

7.3 Experimental design

Our experimental design consists of three groups, which involves a total of 90,540 experiment runs. In

the first group, we compare the solution efficiency Models M1 and M3, and test different parameter

settings of the separation problem. Observe that M2 is an intermediate model between M1 and M3.

It is inferior to Model M3, because it is based on the same enumerative scheme as M1. Therefore, in

this first group of computational study, we compare the performances of M1 and M3. Following the

convention used in the literature, we use the same hop limit for all demands for the same problem

instance. For each instance, we use (Hp, Hb) = (Hmin+∆p, Hmin+∆p+∆b) for all ∆p,∆b ∈ {0, 1, 2}.
Furthermore, we test a resilience level P ∈ {0.9, 0.95, 0.99}, pbase ∈ {0.85, 0.9, 0.95} and F ∈ {c, r}.
This setting, as presented in Table 4, gives 162 instances for each network. We carried out tests on 10

networks, as described in Section 7.1, yielding 1620 instances per method.

Using these 1620 instances, we tested the performance of model M1, and M3 under 12 different

algorithmic settings, as presented in Table 5. In this table, the first column represents the setting

number, ‘Frac.Sep.’ in the second column indicates if fractional separation is implemented at the root

node or not. Columns 3−5 indicate whather the ε-lbcutM-h, ε-minCut-h and Knapsack-h heuristics

are implemented.
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Table 4: Parameter settings for M1 and M3 models in the first group of experiments.

Parameter Possible values

∆p {0, 1, 2}
∆b {0, 1, 2}
P {0.9, 0.95, 0.99}
pbase {0.85, 0.9, 0.95}
F {c, r}

Table 5: Hyperparameter testing for the M3 model in the first group of experiments.

Setting Frac.Sep. ε-lbcutM-h ε-minCut-h Knapsack-h

1 0 0 0 0
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 1 0
6 0 1 1 1
7 1 0 0 0
8 1 0 1 0
9 1 0 1 1
10 1 1 0 0
11 1 1 1 0
12 1 1 1 1

0 indicates exclusion, and 1 inclusion.

The first experiments demonstrate the computational superiority of M3 over M1, and also yield the

best performing setting for the algorithm. Using this setting, in the second part of the experiments,

we carried out experiments on a wider range of input values, as shown in Table 6. In this table, the

same hop limits as in the first group of experiments are tested, but additionally resilience levels from

0.90 to 0.99 with increments of 0.1 are also tested. The values tested for the base probability pbase
vary between 0.6 and 0.95 with increments of 0.05. These yields 1440 different settings, which were

tested on the previously introduced ‘10 networks’. Thus, in the second group of experiments, the total

number of runs is 14,400.

Table 6: Parameter settings for M3 model in the second group of experiments.

Parameter Possible values

∆p {0, 1, 2}
∆b {0, 1, 2}
P {0.90, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99}
pbase {0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95}
F {c, r}

In the third and last group of experiments, we tested the best performing algorithm on the complete

set of 350 networks using the parameter settings in Table 4. Since 10 networks were already tested in

the first group, we ran experiments with these 162 parameter settings in Table 4 on the remaining 340

networks, yielding 55,080 instances.

7.4 Computational performance comparison of the models

The first group experiment results that compare the solution performance of M1 model versus M3 model

under 12 different settings are presented in Table 7. The first two show present the setting and the

model solved, where setting 0 represents Model M1 with default settings of CPLEX, and settings 1−12

represents the settings in Table 5 corresponding to different separation algorithm implementations. For

each row, there are 1620 solved instances, as indicated in the third column. The fourth column shows

the percentage of solved instances (which includes those solved to optimality, and those that are found
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to be infeasible). The average optimality gap percentage and the average solution time in seconds are

presented under the fifth and sixth columns, respectively. The number of instances solved to optimality

and the number of instances shown to be infeasible are presented in seventh and eighth columns. The

number of instances with a feasible solution but with a positive gap is presented under column nine. If

no integer feasible solution is found, it is classified as unknown in the 10th column. Finally, computer

memory may be a problem for M1, and the number of instances for which the solution was terminated

due memory limit is shown under the 11th column. The first observation in this table is that M3

performs poorly for settings 1−6, which involves instances with integer separation only. In settings

7−12, fractional separation is also included. Among these six settings, 12th performs the best with

94.20% solved instances, 2.45% average gap, and 581.5 seconds of solution time. Note that these are the

best performances among all settings. When compared to Model M1, we observe a clear superiority of

M3. Model M1 could solve 64.20% of the instances, and CPLEX could not identify an integer solution

in 294 instances among 1620, and ran into a memory problem in 109 of them. From this point on, the

12th setting is used as our algorithm. Recall that this setting involves separation at fractional solutions

at the root node, and implementing the ε-lbcutM-h heuristic, ε-minCut-h heuristic, and Knapsack-h

heuristic when separating solutions.

Table 7: First group experiment results comparing the solution performance of M1 model versus M3 model under 12
different settings.

Optimization Status

Setting Model # instances Solved (%) Avg.Gap (%) Avg.Sol.Time (s) Optimal Infeasible Feasible Unknown Memory

0 M1 1620 64.20% 2.78%† 2828.7 1034 6 177 294 109
1 M3 1620 7.41% 80.89% 6687.8 114 6 1500 0 0
2 M3 1620 34.20% 47.36% 4773.4 548 6 1066 0 0
3 M3 1620 34.26% 47.14% 4765.6 549 6 1065 0 0
4 M3 1620 7.35% 80.93% 6709.4 113 6 1501 0 0
5 M3 1620 33.52% 47.42% 4830.6 537 6 1077 0 0
6 M3 1620 33.70% 47.78% 4834.0 540 6 1074 0 0
7 M3 1620 90.62% 4.79% 921.8 1462 6 152 0 0
8 M3 1620 91.17% 4.16% 888.6 1471 6 143 0 0
9 M3 1620 90.93% 4.03% 914.6 1467 6 147 0 0
10 M3 1620 92.90% 3.49% 672.0 1499 6 115 0 0
11 M3 1620 93.33% 3.37% 687.3 1506 6 108 0 0
12 M3 1620 94.20% 2.45% 581.5 1520 6 94 0 0
† The optimality gap reported does not include 403 instances with ‘Unknown’ and ‘Memory’ status.

Table 8 presents the results of the first group experiments with the best performing M3 model

(12th setting) for different resilience levels (P ) and base probability (pbase) settings on 10 networks

with cost-dependent and random edge probability settings. The problem is generally harder to solve

on graphs with cost-dependent edge probabilities (F = c) than those with randomly assigned edge

probabilities (F = r). The average solution time for F = c and F = r is 749.7 and 413.2 seconds,

respectively, while the average gap is 3.60% and 1.29%, respectively. We observe that the instances

are harder to solve for an increasing resilience level (P ) and for a decreasing base probability (pbase.

Clearly, this leads to more potential cases to address, and increasing numbers of constraints to separate,

which yields higher solution times and higher optimality gaps.

The primal and backup hop limits, ∆p and ∆b, have a significant impact on solution efficiency.

Table 9 presents the results of the first group of experiments with the best performing M3 model

for different ∆p and ∆b settings on 10 networks with cost-dependent and random edge probability

settings. Solving the instances with ∆p = 2 and ∆b = 2 on average takes 1952.9 seconds and yields an

average optimality gap of 11.73%, which is significantly higher than the values obtained with ∆p = 0

and ∆b = 0.

Table 10 presents the results for the first group of experiments for each of the 10 networks. Clearly,

solving the problem on some networks can be quite challenging. In particular, network C10x10-5-

1 10 10 50-2 7-2 yields the highest average gap, and network C10x10-5-1 10 10 50-2 7-3 yields the
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Table 8: First group experiment results of best performing M3 model (12th setting) for different resilience level (P ) and
base probability (pbase) settings on 10 networks with cost-dependent and random edge probability settings.

Resilience
level

Base
probability

Cost-dependent edge
probability (F = c)

Random edge
probability (F = r)

Average

(P ) (pbase) Avg.Sol.
Time (s)

Avg.Gap
(%)

Avg.Sol.
Time (s)

Avg.Gap
(%)

Avg.Sol.
Time (s)

Avg.Gap
(%)

0.90 0.85 143.6 0.00% 94.1 0.00% 118.8 0.00%
0.90 7.5 0.00% 8.0 0.00% 7.7 0.00%
0.95 7.8 0.00% 7.4 0.00% 7.6 0.00%

0.95 0.85 474.6 1.39% 299.6 0.11% 387.1 0.75%
0.90 227.6 0.00% 164.1 0.06% 195.8 0.03%
0.95 7.5 0.00% 7.3 0.00% 7.4 0.00%

0.99 0.85 3755.1 20.25% 1952.0 6.78% 2853.6 13.51%
0.90 1226.0 7.24% 674.7 3.09% 950.3 5.16%
0.95 898.0 3.52% 511.4 1.62% 704.7 2.57%

Average 749.7 3.60% 413.2 1.29% 581.5 2.45%

Table 9: First group experiment results of best performing M3 model (12th setting) for different ∆p and ∆b settings on
10 networks with cost-dependent and random edge probability settings.

Cost-dependent edge
probability (F = c)

Random edge
probability (F = r)

Average

∆p ∆b Avg.Sol.
Time (s)

Avg.Gap
(%)

Avg.Sol.
Time (s)

Avg.Gap
(%)

Avg.Sol.
Time (s)

Avg.Gap
(%)

0 0 65.1 0.00% 33.3 0.00% 49.2 0.00%
0 1 525.1 1.22% 124.7 0.03% 324.9 0.63%
0 2 443.7 1.66% 146.6 0.04% 295.1 0.85%
1 0 410.1 0.87% 157.7 0.05% 283.9 0.46%
1 1 657.4 2.51% 268.9 0.58% 463.1 1.54%
1 2 943.3 5.98% 581.8 2.08% 762.6 4.03%
2 0 610.3 2.36% 330.0 0.35% 470.2 1.36%
2 1 1139.7 6.08% 775.0 2.20% 957.3 4.14%
2 2 1952.9 11.73% 1300.4 6.31% 1626.7 9.02%

Average 749.7 3.60% 413.2 1.29% 581.5 2.45%

highest average solution time. The last five networks have Hmin = 7 while the first five networks have
Hmin = 5, which yields more combinations to be considered for the former five networks. This is the

main reason for the solution performance difference between the first five and second five networks.

Finally, Table 11 presents the average objective function value (the cost) for different reliability level

(P ) and base probability (pbase) in the first group of experiments. Clearly, when the base probability

is greater than or equal to the reliability level requested, no backup path is required, which leads to a

minimum cost. For a base probability level of 0.85, the costs are 155.5, 174.5 and 339.0 for P = 0.90,

P = 0.95, and P = 0.99, respectively. Increasing the reliability level from 0.90 to 0.95 level increases

the average cost only by 12.4%; increasing it from 0.95 to 0.99 level yields a cost increase of 93.9%.

7.5 Computational performance of the best performing algorithm under various
settings

Table 12 shows the computational results of the best performing algorithm in the second group of

experiments. Among 14,400 instances, 11,500 are solved to optimality, and 347 are proven to be

infeasible, yielding a 82.3% solution performance. There are two unknown solutions among 14,400

instances. Note that the instances in the second group are significantly harder than those of the first

group, because we consider base probabilities of 0.60 and higher with increments of 0.05. Detailed

computational results for the same set of instances are presented in Table 13. When pbase = 0.95,
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meaning a highly reliable network, the problem becomes easier (1774 instances are solved to optimality

among 1800 instances). On the other hand, the number of solved instances decreases to only 958 when

pbase = 0.60. Clearly, increasing the reliability level makes the problem more difficult. Observe that

the experiment set with pbase = 0.6, and P = 0.99 is the hardest, with only 26 instances solved to

optimality and 47 instances infeasible among 180 instances. Since these 26 instances are solved to

optimality across all settings for P and pbase, we next investigate the optimal objective function values

of these instances by varying the P and pbase values. Table 14 reports the average optimal objective

function values of these 26 instances for all P and pbase values considered in the second group of

experiments. The same values are shown in a three dimensional bar chart in Figure 1. Observe that

when the base probability is high (pbase ≥ 0.90), an increase in reliability level does not significantly

increase the cost, whereas when the base probability is low, the cost is high, and the impact of increasing

reliability level is more pronounced.

Table 10: First group experiment results of best performing M3 model (12th setting) on 10 networks with cost-dependent
and random edge probability settings.

Cost-dependent edge
probability (F = c)

Random edge
probability (F = r)

Average

Network Avg.Sol.
Time (s)

Avg.Gap
(%)

Avg.Sol.
Time (s)

Avg.Gap
(%)

Avg.Sol.
Time (s)

Avg.Gap
(%)

C10x10-5-1 10 10 50-2 5-1 171.6 0.31% 75.6 0.00% 123.6 0.16%
C10x10-5-1 10 10 50-2 5-2 233.1 0.27% 71.7 0.00% 152.4 0.13%
C10x10-5-1 10 10 50-2 5-3 22.5 0.00% 13.0 0.00% 17.8 0.00%
C10x10-5-1 10 10 50-2 5-4 1360.6 8.05% 521.0 2.02% 940.8 5.03%
C10x10-5-1 10 10 50-2 5-5 300.3 0.49% 137.4 0.00% 218.9 0.25%
C10x10-5-1 10 10 50-2 7-1 701.1 2.48% 265.5 0.51% 483.3 1.49%
C10x10-5-1 10 10 50-2 7-2 1637.4 10.79% 831.7 3.66% 1234.6 7.22%
C10x10-5-1 10 10 50-2 7-3 1852.8 9.10% 1772.3 5.93% 1812.5 7.51%
C10x10-5-1 10 10 50-2 7-4 976.6 4.06% 402.8 0.83% 689.7 2.44%
C10x10-5-1 10 10 50-2 7-5 241.3 0.46% 40.4 0.00% 140.8 0.23%

Average 749.7 3.60% 413.2 1.29% 581.5 2.45%

Table 11: Average objective function value for different reliability levels (P ) and base probabilities (pbase) in the first
group of experiments.

Reliability level (P )

pbase 0.90 0.95 0.99

0.85 155.5 174.8 339.0
0.90 81.9 163.6 200.4
0.95 81.9 81.9 184.5

Table 12: Computational results of the second group experiments.

Optimization Status # instances Avg.Sol.Time (s) Avg.Gap (%)

Optimal 11500 422.4 0.0%
Infeasible 347 103.4 0.0%
Feasible 2551 TL† (7200) 43.8%
Unknown 2 TL† (7200) -

Total 14400 1616.6 7.8%
† ‘TL’ is for Time Limit.
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Table 13: Detailed computational results of the second group experiments reporting the number of instances solved per
optimization status (Optimal, Infeasible, Feasible, Unknown) for different reliability level (P ) and base probability (pbase).

Optimization Reliability level (P )

Status pbase 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 Total

Optimal 0.60 137 133 125 119 119 97 81 70 51 26 958
0.65 156 139 139 122 121 118 109 87 60 35 1086
0.70 174 169 163 147 139 127 116 108 87 52 1282
0.75 175 175 170 170 173 150 132 120 109 71 1445
0.80 179 176 174 171 165 168 164 130 117 102 1546
0.85 179 177 179 177 175 171 172 168 154 114 1666
0.90 180 180 180 179 179 177 171 173 164 160 1743
0.95 180 180 180 180 180 180 177 177 176 164 1774

Infeasible 0.60 1 3 6 6 6 8 11 22 28 47 138
0.65 0 1 1 3 6 6 8 11 22 46 104
0.70 0 0 0 1 1 3 6 8 11 25 55
0.75 0 0 0 0 0 0 1 6 8 11 26
0.80 0 0 0 0 0 0 0 1 6 11 18
0.85 0 0 0 0 0 0 0 0 0 6 6
0.90 0 0 0 0 0 0 0 0 0 0 0
0.95 0 0 0 0 0 0 0 0 0 0 0

Feasible 0.60 42 44 49 55 55 75 88 88 100 107 703
0.65 24 40 40 55 53 56 63 82 98 99 610
0.70 6 11 17 32 39 50 58 64 82 103 462
0.75 5 5 10 10 7 30 47 54 63 98 329
0.80 1 4 6 9 15 12 16 49 57 67 236
0.85 1 3 1 3 5 9 8 12 26 60 128
0.90 0 0 0 1 1 3 9 7 16 20 57
0.95 0 0 0 0 0 0 3 3 4 16 26

Unknown 0.60 0 0 0 0 0 0 0 0 1 0 1
0.70 0 0 0 0 1 0 0 0 0 0 1

Total 1440 1440 1440 1440 1440 1440 1440 1440 1440 1440 14400

Table 14: The average optimal objective function values of the 26 instances which are solved to optimality for all pbase
and P values in the second group of experiments (see Table 13).

Reliability level (P )

pbase 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 Average

0.60 202.42 206.62 212.85 216.38 225.15 262.69 290.54 338.19 374.42 478.73 280.80
0.65 172.81 186.88 198.96 207.04 214.08 219.46 245.58 284.77 331.73 412.85 247.42
0.70 151.08 152.54 164.92 184.77 197.04 208.77 216.73 241.08 286.96 357.31 216.12
0.75 145.04 151.08 151.88 153.35 156.88 181.12 203.46 216.19 247.96 309.58 191.65
0.80 135.65 140.62 145.04 151.08 152.54 156.23 157.42 189.92 215.81 262.73 170.70
0.85 120.81 129.31 133.08 136.69 145.15 151.19 154.27 157.42 168.77 221.31 151.80
0.90 74.88 92.81 112.50 118.12 129.42 135.62 145.04 152.54 157.42 159.19 127.75
0.95 74.88 74.88 74.88 74.88 74.88 74.88 112.50 129.31 145.04 157.42 99.36

Average 134.70 141.84 149.26 155.29 161.89 173.75 190.69 213.68 241.01 294.89 185.70

7.6 Computational performance of the best performing algorithm on the com-
plete dataset

The previous experiments were all executed on 10 networks. The third group of experiments are on

the complete set of 350 networks for different P , pbase, ∆
p, and ∆b settings, yielding a total of 55,080

instances. Table 15 shows the average solution time in seconds, the number of solved instances, the

percentage of solved instances and the average gap per optimization status. Among all instances, 36,719

are solved to optimality, and 1343 are proven to be optimal, yielding a total of 69.1% solved instances.

The average solution time of all instances is 2486.3 seconds and the average gap is 17.61%. Detailed
results classified by P and pbase are presented in Table 16. Note that the algorithm performs best
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Figure 1: The average optimal objective function values of the 26 instances which are solved to optimality for all pbase
and P values in the second group of experiments (see Table 14).

Table 15: Overview of the computational results of the best performing algorithm on all 350 networks in the dataset in
the third group of experiments.

Optimization Status Avg.Sol.Time (s) # Solved Instances % Solved Instances Avg.Gap (%)

Optimal 380.9 36719 66.7% 0.00%
Infeasible 16.2 1343 2.4% 0.00%
Feasible TL† (7200) 16316 29.6% 55.15%
Unknown TL† (7200) 702 1.3% -

Total 2486.3 55080 100.0% 17.61%
† ‘TL’ is for Time Limit.

for higher pbase values and lower P values among the values considered in this group of experiments.

The results are categorized per set of networks in Table 17. While there is no clear difference between

sets C, D, E and R in terms of computational results, it is more difficult to solve the model for some

instances in each set than others. The same results as categorized by P , pbase, ∆
p, and ∆b are shown

in Table 18. We observe that smaller ∆p, and ∆b values lead to a computational better performance.

In particular, the algorithm performs the best when P ≤ 0.95, pbase = 0.95, ∆p = 0, and ∆b ≤ 1

among the settings considered in this study on the networks under consideration.
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Table 16: Detailed results of the best performing algorithm on all 350 networks in the dataset in the third group of
experiments.

Reliability Level (P )

pbase Optimization status 0.90 0.95 0.99 Total

0.85 Optimal 4553 3261 1847 9661
Infeasible 113 183 324 620
Feasible 1454 2673 3265 7392
Unknown 0 3 684 687

0.90 Optimal 5903 3941 2574 12418
Infeasible 54 142 219 415
Feasible 163 2037 3318 5518
Unknown 0 0 9 9

0.95 Optimal 5890 5905 2845 14640
Infeasible 54 54 200 308
Feasible 175 159 3072 3406
Unknown 1 2 3 6

Total 18360 18360 18360 55080

Table 17: Average percentage of the instances with ‘Optimal’, ‘Infeasible’, ‘Feasible’, and ‘Unknown’ optimization status
when solved by the best performing algorithm for different sets of networks considered in this study.

Dataset name Optimal Infeasible Feasible Unknown

C-1 89.5% 0.1% 10.2% 0.2%
C-2 68.6% 0.1% 31.0% 0.4%
C-3 87.7% 0.3% 11.8% 0.2%
C-4 67.7% 0.0% 31.9% 0.4%
C-5 42.4% 0.2% 55.0% 2.4%
C-6 87.5% 0.2% 12.3% 0.0%
C-7 66.4% 0.1% 32.9% 0.6%
C-8 50.6% 0.0% 47.2% 2.2%
C-9 40.1% 0.0% 56.2% 3.7%

D-1 99.1% 0.9% 0.0% 0.0%
D-2 98.5% 1.2% 0.3% 0.0%
D-3 74.1% 0.1% 24.9% 0.9%
D-4 52.8% 0.1% 42.8% 4.4%
D-5 20.8% 0.7% 74.0% 4.4%

E-1 91.4% 8.6% 0.0% 0.0%
E-2 75.8% 24.2% 0.0% 0.0%
E-3 92.1% 6.2% 1.7% 0.0%
E-4 72.7% 3.2% 23.3% 0.7%
E-5 86.0% 7.5% 6.4% 0.0%
E-6 62.5% 3.3% 32.3% 1.9%
E-7 74.4% 0.5% 24.9% 0.1%
E-8 55.8% 0.1% 40.9% 3.2%
E-9 80.4% 3.3% 16.3% 0.0%
E-10 52.2% 4.3% 40.1% 3.3%
E-11 62.0% 1.7% 36.3% 0.0%
E-12 29.6% 2.1% 64.3% 4.0%

R-1 93.8% 6.2% 0.0% 0.0%
R-2 90.7% 6.3% 3.0% 0.0%
R-3 87.7% 8.1% 4.2% 0.0%
R-4 63.7% 2.1% 34.0% 0.2%
R-5 92.2% 3.1% 4.6% 0.1%
R-6 59.4% 3.6% 35.9% 1.1%
R-7 58.8% 13.3% 27.8% 0.1%
R-8 41.0% 6.9% 48.0% 4.1%
R-9 78.0% 4.4% 17.3% 0.2%
R-10 48.1% 3.8% 44.9% 3.1%
R-11 36.9% 33.3% 29.8% 0.0%
R-12 34.6% 0.0% 60.7% 4.7%

Total 66.7% 2.4% 29.6% 1.3%
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Table 18: Average percentage of the instances with ‘Optimal’ and ‘Infeasible’ optimization status when solved by the best
performing algorithm on all 350 networks in the dataset in the third group of experiments for varying P , pbase, ∆

p, and
∆b settings.

Reliability ∆p = 0 ∆p = 1 ∆p = 2

pbase Level (P ) ∆b = 0 ∆b = 1 ∆b = 2 ∆b = 0 ∆b = 1 ∆b = 2 ∆b = 0 ∆b = 1 ∆b = 2 Average

0.85 0.90 90.00% 87.65% 85.15% 79.85% 75.29% 72.50% 68.09% 63.38% 64.26% 76.24%
0.95 77.94% 75.44% 69.26% 58.68% 51.32% 50.00% 44.41% 40.29% 39.12% 56.27%
0.99 65.00% 48.97% 42.06% 38.09% 30.29% 26.47% 26.76% 22.21% 19.41% 35.47%

0.90 0.90 99.71% 99.71% 99.71% 98.82% 98.09% 98.24% 94.41% 93.24% 94.12% 97.34%
0.95 82.79% 80.59% 79.41% 68.24% 64.71% 63.82% 57.94% 51.32% 51.62% 66.72%
0.99 73.97% 66.62% 55.74% 48.38% 40.00% 33.97% 35.74% 30.15% 26.18% 45.64%

0.95 0.90 99.71% 99.71% 99.71% 98.09% 97.50% 98.09% 93.97% 93.53% 93.82% 97.12%
0.95 99.71% 99.71% 99.85% 98.38% 97.94% 98.24% 95.00% 93.68% 93.82% 97.37%
0.99 75.59% 70.29% 62.65% 52.65% 43.53% 38.97% 39.56% 34.26% 30.29% 49.75%

Average 84.93% 80.96% 77.06% 71.24% 66.52% 64.48% 61.76% 58.01% 56.96% 69.10%

8 Conclusion

We have introduced, modeled and solved the Network Design Problem with Vulnerability Constraints

and Edge Reliability (NDPVC-PER). The problem is a natural extension of the NDPVC by considering

edge failures in the network. The network designer is assumed to have a certain reliability level

requirement, and the network is designed by ensuring that there exists a backup path for all edge

failure scenarios having a higher probability of occurrence than the level dictated by the designer. The

problem is a generalization of the NDPVC, and is computationally more difficult to solve. In particular,

the models built for NDPVC which do not require enumeration do not solve the NDPVC-PER.

In this paper, we have built a naive model that enumerates all edge failure scenarios and explicitly

builds paths for them. We also developed a model that does not require edge set enumeration, and

involves building resilient length-bounded cuts. These cuts disconnect all paths of a certain length

connecting a given O-D pair after the failure of edges in the network. We have presented this new

separation problem for our model, and we have solved it using various techniques. We have developed

some heuristic techniques for this separation problem, and we have guaranteed an exact separation by

solving the problem by a mathematical model.

We have thoroughly tested the computational efficiency of the models using 90,540 instances. We
have identified the best performing settings for our algorithm, and we have solved the problem for

a large variety of input parameters. Our findings show that for the graphs and settings we have

considered, increasing the reliability level from 0.90 to 0.95 level increases the average cost only by

12.4%, while increasing it from 0.95 to 0.99 level yields a much larger cost increase of 93.9%. Therefore,

we have shown that very high requirements dictated by network designers in terms of reliability may

lead to excessive costs.
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