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Dépôt légal – Bibliothèque et Archives nationales du Québec, 2023
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Abstract : This paper first introduces a computationally efficient approach for conducting a time-
series impact analysis of electric vehicle (EV) charging on the loading levels of power system equipment.
This study incorporates the stochastic nature of EV owners’ charging behaviours by modelling various
charging profiles as probability distributions. This work then develops new mitigation strategies to
temporally shift EV charging from periods of equipment overloading to alternative time periods to
improve power system equipment lifetime. A reward program and a time-of-use (TOU) tariff are pro-
posed to incentivize EV owners to participate to the mitigation effort. A search algorithm integrating
a convex optimization problem is developed to determine optimal incentive levels and quantify result-
ing changes in EV owner charging behaviours. The proposed mitigation strategies are numerically
evaluated on a modified version of the large-scale IEEE-8500 test feeder with a high EV penetration
to mitigate the overloading of the substation transformer.

Keywords: Electric vehicles, power distribution networks, equipment overload, demand response,
convex program.
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1 Introduction

As the electrification of the transportation sector promotes the adoption of electric vehicles (EVs), the

penetration of EVs is rapidly increasing in distribution systems. While EVs offer the advantage of re-

ducing reliance on fossil fuels and lowering greenhouse gas emissions, charging them can pose significant

challenges to power distribution networks, especially in scenarios with high EV penetration. Abnormal

operating conditions may occur such as equipment overloading, voltage fluctuations, phase imbalances,

harmonic distortions, and more [3, 14]. From the perspective of utilities, stochastic analyses are nec-

essary to study the impact that EV charging may have on the network conditions. These analyses

consider the uncertainties in EV charging-related variables, e.g., locations, start time, duration, and

power levels, and help reveal potential abnormal conditions on power networks [12, 17, 20]. It is im-

portant to address the identified network issues through mitigation plans and network optimization to

ensure safe grid operations and maintain high-quality service.

A conventional approach to mitigate these issues requires substantial infrastructure investments,

including expanding equipment capacity and deploying voltage regulation and reactive power control

technologies [4, 11]. Alternatively, optimal charging schedule for EVs connected to the network can

be derived through coordination to minimize network losses [7, 26], reduce the peak demand [22], and

limit transformers’ loading [21]. However, how incentive plans can be designed to attract customers

to participate in coordinated charging is not discussed in these works. Demand response (DR) pro-

grams, on the other hand, provide a potential solution to the challenges posed by EV charging. These

programs, either incentive-based [24] or price-based [5, 25], are designed to shift EV charging loads

to periods when the grids are lightly loaded. For example, in [24] an incentive-based DR program is

proposed to minimize impacts of controllable loads to distribution networks. A constrained optimiza-

tion problem is formulated to allocate a demand limit for each customer during a time period, and

customers can select charging hours for their EVs as long as the demand limit is respected at all times.

Effectiveness of the DR program is shown at different EV penetration levels; however, the relationship

between the incentive and the demand limit is not clear. In [25], load patterns are studied when a DR

strategy is implemented to non-critical loads (including EV charging) with time-of-use (TOU) rates.

In [5], to reduce EV charging demand at the peak hours, a schedule is developed in response to the

TOU rates to minimize users’ charging costs. In both works, TOU rates are assumed to be pre-defined

but not optimized considering variations of load demands which includes EVs.

A common shortcoming of all the aforementioned works is that the proposed strategies are not

demonstrated on large-scale networks for effectiveness. This could be due to the heavy computation

burden when assessing the network conditions under the strategies for a large number of EVs while

accounting for charging behaviour uncertainties. In our previous works [20], we have proposed a

rapid estimation method to perform a stochastic analysis for impacts of EV charging on distribution

networks. In this work, we focus on the impacts of EV charging to loading levels of key network

equipment, e.g., a substation transformer during a period of time. As severe overloading may shorten

equipment’s service lifetime and cause premature failures [8], we propose an approach to avoid loss of

equipment’s lifetime by mitigating overloading issues identified by the stochastic impact analysis.

Key contributions of the paper include:

• Proposing incentive-based mitigation strategies that aim to shift EV charging from the peak

period when equipment is heavily loaded, to the off-peak period when the equipment is lightly

loaded. Two types of incentive programs are considered under the proposed mitigation strategies:

reward for reducing power consumption during the peak period and a TOU tariff.

• Formulating a bi-level optimization problem to design the mitigation strategy. The problem is

then reformulated into a computationally tractable single-level convex program.

• Embedding the convex program into a novel search algorithm to efficiently determine optimal

incentive levels and the corresponding shift in customer charging probabilities. The proof of

convergence is provided and the optimality of the converged value is discussed.
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The inclusion of a TOU tariff, the analysis of the convex reformulation, and the novel search algorithm

along with the convergence proof are major enhancements to [19].

The rest of the paper is organized as follows: Section 2 presents the model for time-series stochastic

impact analysis in terms of EV penetration rate. In Section 3, we derive a bi-level optimization problem

to design the mitigation strategy. Instead of directly solving the non-linear optimization problem, in

Section 4 we reformulate it to a convex problem, and embed it into a search algorithm to determine the

reward level and the TOU tariff. Section 5 illustrates the results of the proposed mitigation strategy

to an overloaded substation transformer due to EV charging on a modified IEEE-8500 test feeder.

Finally, we conclude in Section 6 and point out some future work directions.

2 Time-series stochastic EV impact analysis

In our previous work [20], we developed a rapid estimation method (REM) to analyze the impact of

grid-edge technologies, including EVs to distribution networks at a specific time, e.g., loading levels of

power system equipment during peak hours, under various penetration rates. Due to its computational

efficiency, we extend the method here to perform a time-series impact analysis of EV charging to

distribution networks.

2.1 Assumption on input data

We assume that the following input data for the analysis is given, which can be gathered from either

statistical surveys such as [6, 23, 28] or can be estimated from EV usage and travel data [13].

• A set of L charging profiles LEV = {ljEV(t)}j=1,2,··· ,L, where ljEV(t) is an EV charging profile in

kW during an entire day discretized over the set T = {1, 2, · · · , T}. Here, T is the cardinality

of T and depends on the time step, e.g., T = 96 if each time step has a duration of ∆t = 15

minutes. For a profile, if charging is active at t, ljEV(t) > 0 and ljEV(t) = 0 otherwise.

• Adoption probability Pri[LEV] ∈ RL attached to customer i ∈ {1, 2, · · · , Nm} to adopt a charging
profile type j in LEV, where Nm is the total number of customers.

Note that we do not presume any type of distribution for Pri(LEV), hence it can be of any arbitrary

probability distribution. In addition, the network model for the impact analysis should also be available

such that equipment data and network topology can be extracted. Finally, we consider only the

residential customers in this paper as they account for up to 80% of charging events with diversified
and stochastic charging patterns [27], but our approach can be extended to other customer types

without limitations as long as corresponding charging profiles and adoption probabilities are provided.

2.2 Equipment loading levels

Denote xt(p) ∈ RT as the loading levels of an equipment (in per-unit or percentage) on the power

distribution network for t ∈ T at an EV penetration rate p. The penetration rate is defined as the

ratio of the total number of EVs nEV over the total number of customers on the network Nm, i.e.,

p = nEV/Nm. Due to the stochasticity of EV charging events, xt is no longer deterministic; rather, it

should be characterized by its probability density function (PDF) at p, which is denoted by m(xt, p).

The evolution of m(xt, p) with respect to p can be described by the following Fokker-Planck equation

(FPE):
∂m(xt, p)

∂p
+

∂

∂xt

{
m(xt, p)u(xt, p)

}
= d

∂2m(xt, p)

∂x2
t

, (1)

subject tom0 = m(xt, p
0). Without loss of generality, let us assume p0 = 0 hereinafter, i.e., the baseline

network does not have any EV. In (1), the diffusion velocity term d is a small positive constant, and

the drift velocity term u(xt, p) specifies the rate of change to equipment loading level xt at a given p

due to EV charging.



Les Cahiers du GERAD G–2023–48 3

The term u(xt, p) is computed by taking the derivative of equipment loading levels at given p. For

distribution networks, u(xt, p) is usually computed by-phase because the equipment loading level is

calculated on each phase. However, for the purpose of this paper the REM is modified to compute the

loading level of the equipment on all connected phases. Let xt,e(p) be the loading level of equipment e

at EV penetration p, and xt,e(p) can be expressed by:

xt,e(p) = xt,e(p
0) + gt,e(p), (2)

where xt,e(p
0) is the loading level of e which can be obtained from a power flow analysis to the

baseline network when no EV is connected, and gt,e(p) is the increased amount of loading to e. We

can approximate gt,e(p) by the following [20]:

gt,e(p) ≈
nEV Pre(p)E[SEV](t)

Se

, (3)

where Pre(p) is the time-invariant probability that EVs are connected to sections downstream of e,

E[SEV](t) ∈ R is the expected apparent power at time t of an EV being charged at downstream of e

which is independent of p, and Se ∈ R is the rated power of e which is assumed to be known. Readers

are referred to [20] for more details on the calculation of Pre(p). The drift velocity u(xt,e, p) can then

be computed for each t ∈ T by taking the derivative of xt,e(p) or equivalently of gt,e(p) with respect

to p.

Once u(xt,e, p) is computed, (1) is numerically solved by the finite-volume method (FVM) using an

implicit scheme [18] for a given t. Thus, we obtain a sequence of PDFs indexed by p, from which the

mean or any percentile value of xt,e(p) can be computed as well as the probability of e being overloaded

at t. To evaluate equipment loading levels for period T , the analysis must be repeated for each t ∈ T .

As the result obtained at time t does not depend on that at any other t, the process can be parallelized

for improved efficiency. The application of REM for such a time-series analysis is denoted as the

ts-REM hereinafter. If the ts-REM results indicate that the equipment is frequently overloaded or

the overload lasts long at certain EV penetration rate, a higher risk of premature equipment failure is

expected which in turn increases the operating and maintenance costs for utilities. Given the increasing

EV penetration, a mitigation strategy becomes necessary to manage equipment loading levels.

3 Mitigation strategy

The expected charging power E[SEV] of an EV connected downstream of equipment e in (3) is expressed

by:

E[SEV](t) =
1

|Ke|
∑

i∈Ke

E[Si
EV](t)

E[Si
EV](t) =

∑
j
ljEV(t) Pr

i
L[j],

(4)

where Ke is the set of customers who are downstream of e, and |Ke| is its cardinality. If all customers

on the network are downstream of e, then |Ke| = Nm. If EV owning customers tend to charge their

vehicles during peak hours (denoted by T P) when the total demand is already high, these customers

possess high probabilities of adopting charging profiles that are active during T P (denoted by LP
EV).

In such a case, it is expected that E[SEV](t) is large for t ∈ T P. Consequently, the extra loading due

to EV charging will be significant according to (3). The probability of overloading network equipment

is then greatly increased, especially when p is high. Conversely, if a control mechanism is in place to

limit E[SEV] during T P, the equipment overloading can be mitigated.

Considering (4), E[SEV] during T P can be reduced if the probabilities PriL[j ∈ LP
EV] of all customers

are decreased while those in PriL[j ∈ LEV \ LP
EV] are increased. In other words, we are shifting high

values of E[SEV] during T P to other time periods. Under such a strategy, we can mitigate potential
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overloading issues to network equipment due to EV charging during T P by reducing customers’ prob-

abilities of charging their EVs in this period. In the following section, we discuss how modifications to

PriL are made when customer i participates in a mitigation strategy.

3.1 Modification to charging profile probabilities

We partition the time period T and the set of profile types LEV into the following disjoint sets:

T = T P ∪ T OP ∪ T MP

LEV = LP
EV ∪ LOP

EV ∪ LMP
EV ,

(5)

where

T P is the peak period and LP
EV is the set of profiles where charging starts during T P. Under a

mitigation strategy, customers’ probabilities PriL[j ∈ LP
EV] are to be reduced;

T OP is the off-peak period and LOP
EV is the set of profiles where charging starts during T OP, and

customers’ probabilities PriL[j ∈ LOP
EV] are to be increased under a mitigation strategy, and;

T MP is the mid-peak period and LMP
EV is the set of profiles where charging starts during T MP, and

under a mitigation strategy customers’ probabilities PriL[j ∈ LMP
EV ] remain unchanged.

In general, T P should include the hours during which the network is heavily-loaded, hence we can

assume that overloading never occurs to equipment during T OP and T MP periods, even when a miti-

gation strategy is applied.

Let yP ∈ {0, 1}L = [yPj , j = 1, 2, · · ·L]⊤ be an indicator vector where yPj = 1 if j ∈ LP
EV and yPj = 0

otherwise. Similarly, let yOP ∈ {0, 1}L be another indicator vector for profiles in LOP
EV. For a given

PriL, we have PriL = Pri,PL +Pri,OP
L +Pri,MP

L , where Pri,PL = PriL ⊙yP, Pri,OP
L = PriL ⊙yOP, and ⊙ is

the Hadamard product.

Denote Σi,P = (PriL)
⊤
yP ∈ [0, 1] as customer i’s total probability of adopting charging profiles in

LP
EV. Suppose that we would like to reduce Σi,P by an amount ∆i

prob ≥ 0, such that the customer’s

probabilities of adopting charging profiles in LP
EV are reduced. Let P̃r

i,P

L ∈ [0, 1] be the resulting

probabilities, and we have:

P̃r
i,P

L = Pri,PL −
∆i

prob

Σi,P
Pri,PL . (6)

We consider (6) as equivalent to scaling down the probabilities in Pri,PL such that the sum of reductions

adds up to ∆i
prob. To ensure that all elements of P̃r

i,P

L are non-negative, we impose 0 ≤ ∆i
prob ≤ Σi,P.

Conversely, we scale up the probabilities in Pri,OP
L such that the total probability is increased by

∆i
prob, i.e.,

P̃r
i,OP

L = Pri,OP
L +

∆i
prob

Σi,OP
Pri,OP

L , (7)

where Σi,OP = (PriL)
⊤
yOP ∈ [0, 1]. From (6) and (7), the resulting probability distribution P̃r

i

L
obtained by shifting probabilities of charging during T P to T OP can be expressed by:

P̃r
i

L = P̃r
i,P

L + P̃r
i,OP

L + Pri,MP
L . (8)

To acknowledge the fact that not all customers are willing to change their charging habits under

a mitigation program, we let Kp ⊆ Ke be the set of customers who participate, and λp ∈ [0, 1] be the

participation factor, which is defined by λp =
|Kp|
|Ke| . We have:

∆i
prob = 0, ∀i ∈ Ke \ Kp. (9)
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We extend the above process of modifying charging profile probabilities to all customers in a

matrix form. By denoting PrL ∈ [0, 1]|Ke|×L as the EV charging profile probabilities for all customers

in Ke, we extract the probabilities of profiles in LP
EV for all customers by PrPL = PrLy

P, where

yP = diag{yP} ∈ {0, 1}L×L. Similarly, the probabilities of profiles in LOP
EV are PrOP

L = PrLY
OP. We

write (6) in the following matrix form for all customers:

P̃r
P

L = PrPL − (ΣP)−1∆probPrPL, (10)

where ΣP = diag{Σi,P} and ∆prob = diag{∆i
prob} which are |Ke| × |Ke| square matrices. Similarly,

the adjusted probabilities for profiles in LOP
EV after adding ∆prob are:

P̃r
OP

L = PrOP
L + (ΣOP)−1∆probPrOP

L . (11)

From (10) and (11), we obtain the modified probabilities of charging profiles for all customers as,

P̃rL = P̃r
P

L + P̃r
OP

L +PrMP
L

= PrPL − (ΣP)−1∆probPrPL

+PrOP
L + (ΣOP)−1∆probPrOP

L +PrMP
L

= PrL −Σinv

[
∆probPrL 0|Ke|,L
0|Ke|,L ∆probPrL

]
y, (12)

where Σinv =
[
(ΣP)−1 −(ΣOP)−1

]
∈ R|Ke|×2|Ke|, 0|Ke|,L is a zero-matrix, and y =

[
Y P Y OP

]⊤
∈

{0, 1}2L×L.

It is remarked that (12) formulates how the probabilities are modified assuming ∆prob is given.

Recall that for a non-participating customer i /∈ Kp, ∆
i
prob = 0. For each participating customer, we

discuss in the next section how to determine ∆i
prob from an optimization problem. Without loss of

generality, for the rest of the paper we assume that λp = 1, i.e., all customers are participating into

the mitigation program.

3.2 Optimal values of ∆prob

Recall that the goal of encouraging EV owners to shift their probabilities of charging periods from T P

to T OP is to avoid overloading the key network equipment, which might shorten equipment lifetime.

Thus, optimal values of∆prob should meet the following conditions: (a) no extensive overloading occurs

to the equipment and its nominal lifetime is maintained and; (b) customers are driven by incentives to

adopt charging behaviours according to the adjusted P̃rL which does not result in unmotivated costs

to utilities.

3.2.1 Impact of overloading on equipment lifetime and cost

As overloading often results in higher operating temperature of the equipment, its expected lifetime

is reduced if the equipment is periodically overheated due to the loading levels [9]. To assess the

reduced lifetime, thermal-aging models are used. For example, IEEE standard C57.91 [2] describes

the thermal-aging model for transformers and IEEE standard 1283-2013 [1] describes the model for

lines and conductors. Details on the thermal-aging model are omitted due to the space limit, but let

us denote TAM : loading 7→ Flife as the thermal-aging model. Here, loading ∈ RT is the equipment

loading levels over the period T , and Flife is an annualized stress factor indicating the ratio of the

expected over the nominal lifetime of the equipment. If Flife = 1, the equipment’s expected lifetime

is maintained at its nominal value, whereas the equipment is stressed by the loading levels and the

lifetime is reduced when Flife > 1.
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Let c(Flife) denote the increased annual cost of the equipment (depreciation, operating & mainte-

nance, etc.) due to the shortened lifetime, i.e.,

c(Flife) = cannual(max{1, Flife} − 1), (13)

where cannual > 0 is the total annual cost at the nominal lifetime. We remark that it is possible

to have Flife < 1. This indicates that the equipment is still in service after its nominal lifetime is

reached. However, in this paper, we assume that no equipment operates beyond its nominal lifetime

for economical and safety reasons. Hence, when Flife ≤ 1, there is no saving in cost and we have

c(Flife ≤ 1) = 0.

3.2.2 Incentives to customers

Recall that incentives are given to customers in exchange for changes in their charging habits, i.e.,

adjusting PrL to P̃rL by reducing ∆prob from their total probabilities of charging EVs during T P.

Let Ri(∆i
prob) denote the annualized incentive given to customer i, and F̃life the resulting lifetime factor

when all customers are adopting P̃rL. The total annual incentives given to all customers should not

exceed c(Flife)− c(F̃life); otherwise, the best option for the utility is to keep operating the equipment

at a reduced lifetime Flife and to pay no incentives to customers. Hence, c(Flife)− c(F̃life) is considered

as a “budget” for the total incentives, and we have the following constraint on the total incentives to

be paid: ∑|Ke|

i=1
Ri ≤ c(Flife)− c(F̃life). (14)

It is remarked that if c(Flife) = 0, it is not necessary to adjust customers’ charging habits hence no

incentive is given to customers and ∆prob = 0. For the rest of paper, we assume that Flife > 1 initially

with EVs connected to the network before any mitigation strategy is adopted, hence c(Flife) > 0.

In this work, two types of incentives are considered: (1) reward for reduced consumption of EV

charging during T P, and (2) time-of-use (TOU) pricing during the entire day. The formulation as well

as the objective function of each type of incentive is detailed in the following sections. It is assumed

here that the reward or TOU pricing applies only to EV consumption, i.e., a separate meter is installed

for the EV charger [10].

Reward for reduced consumption of EV charging during T P As each customer contributes to reducing

equipment loading during T P, a reward is given based on the expected reduction of consumption for
EV charging. Customer i’s daily reward is given by:

Ri,reward
day = r

∑
t∈T P

∆Ei (15)

∆Ei = ∆t
∑

j
ljEV(t)

(
PriL(j)− P̃r

i

L(j)
)
, (16)

where ∆t is the time step, and r ∈ R ($/kWh) is the unit reward applicable to all customers which is

another variable in the optimization problem. The annualized reward for customer i is:

Ri = 365Ri,reward
day . (17)

In addition, the following constraint is imposed which ensures that each customer’s total expected

energy consumed for EV charging remains unchanged with and without the reward.∑
t∈T

∆Ei = 0, ∀i = 1, 2, · · · , |Ke|. (18)

TOU pricing Given that we have partitioned each day into three periods, the electricity rate needs to

be determined for each period. Let pnomrate ($/kWh) be the nominal rate. Because customers’ charging
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probabilities in the mid-peak period T MP remain unchanged, the rate remains at pnomrate , i.e., p
MP
rate =

pnomrate . For the off-peak period, the rate is decreased by ξ ≥ 0, i.e., pOP
rate = pnomrate − ξ. For the peak

period, a surcharge η ≥ 0 is added to the nominal rate, i.e., pPrate = pnomrate + η. Both ξ and η are to

be determined by the optimization problem. Under such a TOU pricing, customer i’s daily savings in

electricity price is:

Ri,TOU
day = (pnomrate + η)

∑
t∈T P

∆Ei + (pnomrate − ξ)
∑

t∈T OP

∆Ei − η
∑
t∈T P

Ei + ξ
∑

t∈T OP

Ei + pnomrate

∑
t∈T MP

∆Ei,

(19)

where Ei = ∆t
∑

j l
j
EV(t) Pr

i
L(j) and ∆Ei is defined in (16). The annualized reward for customer i is:

Ri = 365Ri,TOU
day . (20)

The EV charging energy conservation constraint (18) also applies. Further, because neither the

electricity price during the off-peak period nor each customer’s reward can be negative, the following

constraints are added:

pOP
rate > 0

Ri,TOU
day > 0.

(21)

3.2.3 Optimization problem formulation

The optimization problem is formulated to identify optimal levels of ∆prob and incentives such that

utilities’ costs are minimized while the equipment is maintained at its nominal lifetime or as close as

possible. This is expressed as:

min
∆prob,r,(ξ,η)

∑|Ke|

i=1
Ri

subject to ∆prob ∈ argmin∆prob
|F̃life − 1|

subject to 0 ≤ ∆prob ≤ ΣP

loading = ts-REM(P̃rL)

F̃life = TAM(loading)

(9), (12), (13), (14), (18), and

(15) or (19), (21).

(22)

Recall that ts-REM refers to the time-series REM method presented in Section 2 which evaluates

impacts of P̃rL to the equipment loading levels loading, and TAM refers to the thermal-aging model

which computes the lifetime factor under the resulting loading. Each customer’s incentive can either

be a reward-based as in (17) or a TOU pricing-based as in (20). If the latter is adopted, the variable r

is replaced by ξ and η in (22).

4 Convex reformulation

We remark that the optimization problem formulated so far is a bi-level, non-linear, and non-convex

problem, which is difficult to solve and global optimality is not guaranteed. In this section, we aim to

reformulate (22) into a single-level convex optimization problem, which can be efficiently solved.
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4.1 Approximation of total incentives

The total annualized reward Ri used in (14) and (22) is non-convex due to the form of Ri,reward
day

and Ri,TOU
day in (15) and (19), respectively. To approximate the incentives, we use the price elasticity

model [15, 16] to measure a customer’s response to the incentive offered, where

−∆Ei = εi∆prate = ε
Ei

pnomrate

∆prate. (23)

In (23), due to the definition of ∆Ei in (16), a negative sign is necessary to model the expected change

in energy consumption for EV charging when an incentive ∆prate (e.g., r in the reward program or −ξ

and η in the TOU pricing) is offered under the mitigation program. The individual price elasticity εi of

customer i is related to the energy consumed Ei, the nominal electricity price pnomrate , and an averaged

price elasticity factor ε < 0 which applies to all customers independent of the time period. It is

remarked that we ignore the changes of energy consumed in one period due to the price change in

another period, hence cross elasticity factors are not considered [15]. In addition, for given ε, pnomrate ,

and ∆prate, customers with higher consumption Ei contribute more in reducing the consumption under

the mitigation strategy.

We apply (23) to the two type of incentives, and obtain:

R̂i,reward
day = r∆Ei,P = −εi,Pr2, (24)

R̂i,TOU
day = −εi,P(η2 + ηpnomrate )− εi,OP(ξ2 − ξpnomrate )− ηEi,P + ξEi,OP + pnomrate∆Ei,MP, (25)

where εi,P = εEi,P

pnom
rate

and εi,OP = εEi,OP

pnom
rate

. The total incentives are now expressed as:

R̂i =

365R̂i,reward
day , if reward

365R̂i,TOU
day , if TOU.

(26)

We note that for the TOU type of incentives, constraint (21) should apply to R̂i,TOU
day .

4.2 Constraint to loading

In the second level of (22), we aim to maintain the equipment at its nominal lifetime by adjusting

equipment’s loading. The lifetime is likely to be shortened (i.e., F̃life > 1) when loading shows severe

or prolonged overloading, mainly due to simultaneous EV charging during the peak hours. While it

is natural to add a constraint to limit the loading levels at all time, it is difficult to find an optimal

constraint as loading is numerically computed by the ts-REM model. Alternatively, as discussed in

Section 3 and by (3), the extra loading to the equipment due to EV charging depends on E[SEV].

Hence, constraining E[SEV] would have an equivalent effect to limiting loading.

Let us assume that there exists some time-varying limit St for E[S̃EV] when a mitigation strategy

is applied and |F̃life − 1| is minimized. Under this assumption, not only can we move the ts-REM

and TAM models out of (22), we can also remove the second level of (22). The optimization problem

becomes:

min
∆prob,r,(ξ,η)

∑|Ke|

i=1
R̂i

subject to 0 ≤ ∆prob ≤ ΣP

E[S̃EV](t) ≤ St, ∀t ∈ T∑|Ke|

i=1
R̂i ≤ c(Flife)

(9), (12), (18), and

(24) or (25), (21)

(27)
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Note that as the TAM model is not embedded in the optimization problem, the c(F̃life) term appearing

in (14) cannot be evaluated. Hence we relax it by taking the initial cost of c(Flife) as the budget. Such

a relaxation is exact if F̃life = 1, i.e., the nominal lifetime is achievable under a mitigation strategy.

The reformulated optimization problem (27) is equivalent to (22), is convex, and is readily solvable

to optimality but depends on St. Next, we discuss how to determine St.

4.3 Determination of St

In this subsection, we discuss the calculation of St which is essential for (27).

4.3.1 Limit for T OP and T MP

For a given EV penetration p, the loading level xt,e(p) for t ∈ T can be computed via (2). As we

assumed that the equipment should never be overloaded during T OP and T MP, we have the following

inequality:

xt,e(p
0) + gt,e(p) ≤ 1,

gt,e(p) ≤ 1− xt,e(p
0), t ∈ T OP ∪ T MP. (28)

Substituting (3) into (28) we get,

nEV Pre(p)E[SEV](t)

Se

≤ 1− xt,e(p
0),

E[SEV](t) ≤
Se

(
1− xt,e(p

0)
)

nEV Pre(p)
, t ∈ T OP ∪ T MP.

(29)

The right-hand side of (29) is the limit for E[SEV](t) during the off-peak and mid-peak periods which

is a sufficient condition to guarantee that the equipment is not overloaded, i.e.,

St =
Se

(
1− xt,e(p

0)
)

nEV Pre(p)
, t ∈ T OP ∪ T MP. (30)

Note that the limit expressed in (30) is time-variant and independent of customers’ charging proba-

bilities.

4.3.2 Search for limit during T P

While we can analytically compute the limit for the peak period by also imposing that the equipment

is not overloaded, the resulting limit may be too restricting to minimize |F̃life−1|, i.e., F̃life < 1, or (27)

may be infeasible hence no solution is possible. Instead, we let St = S
P ∈ R be constant ∀t ∈ T P,

and we propose Algorithm 1 to search for an optimal value of S
P
, such that (a) the optimization

problem (27) is feasible, and (b) |F̃life − 1| is minimized.

4.4 Search algorithm

In general, the search algorithm constructs sequences of upper bounds {un} and lower bounds {ln}.
Candidate values of S

P

n are evaluated between {un} and {ln}, and the search direction depends on the

solution to (27) and the resulting Flife,n by applying the S
P

n limit at iteration n.

To show that the sequence of S
P

n converges to a limit S
P

∗ , i.e., limn→∞ S
P

n = S
P

∗ , we first discuss

monotonic properties of the sequences {un} and {ln} constructed by the algorithm.
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Algorithm 1 Search algorithm for optimal S
P

Initialize
n← 0
un ← maxt{xt,e(p

0)}
ln ← 0

S
P
n ← δ ≪ un

while un − ln > δ do

Construct St using S
P
n and (30)

Solve the optimization problem (27)
n← n+ 1
if a feasible solution is obtained then

Compute the resulting loading and Flife,n from ts-REM and TAM models, respectively
if Flife,n > 1 then

S
P
n ← max{ln−1, S

P
n−1 exp (−1/n)}

if S
P
n has already been tried then

S
P
n ←

(ln−1+S
P
n−1)

2
end if
un ← S

P
n−1

ln ← ln−1

else if Flife,n ≤ 1 then

S
P
n ← min{un−1, S

P
n−1 exp (1/n)}

if S
P
n has already been tried then

S
P
n ←

(un−1+S
P
n−1)

2
end if
ln ← S

P
n−1

un ← un−1

end if
else if no feasible solution is obtained then

S
P
n ← min{un−1, S

P
n−1 exp (1/n)}

if S
P
n has already been tried then

S
P
n ← 1

2
(un−1 + S

P
n−1)

end if
ln ← S

P
n−1

un ← un−1

end if
end while

Lemma 1. Consider Algorithm 1, the following statements hold for n > 0:

(A) The sequence of upper bounds {un} is monotonically non-increasing, and the sequence of lower

bounds {ln} is monotonically non-decreasing.

(B) At any n > 0, un ≥ ln.

(C) limn→∞ un = inf{un}, and limn→∞ ln = sup{ln}.

Proof. For n > 0, we have the following two cases:

1. If a solution to (27) has been found at iteration n− 1, we can calculate the resulting Flife,n and

(a) if Flife,n > 1, then S
P

n ≤ S
P

n−1, un = S
P

n−1, and ln = ln−1. Further, as S
P

n is bounded below

by ln−1, we also have un = S
P

n−1 ≥ S
P

n ≥ ln−1 = ln.

Applying S
P

n at iteration n, we have the following three cases:

i. if a solution to (27) is found and Flife,n+1 > 1, then un+1 = S
P

n ≤ S
P

n−1 = un, and

ln+1 = ln.

ii. if a solution to (27) is found but Flife,n+1 ≤ 1, then un+1 = un, and ln+1 = S
P

n ≥ ln−1 =

ln.

iii. if no solution to (27) is found, then un+1 = un, and ln+1 = S
P

n ≥ ln−1 = ln.
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Hence in cases a.(i)-(iii), we have un+1 ≤ un and ln+1 ≥ ln.

(b) if Flife,n ≤ 1, then S
P

n ≥ S
P

n−1, un = un−1, and ln = S
P

n−1. Further, as S
P

n is bounded above

by un−1, we have un = un−1 ≥ S
P

n ≥ S
P

n−1 = ln.

At the next iteration, we have the following three cases:

i. if a solution to (27) is found and Flife,n+1 > 1, then un+1 = S
P

n ≤ un−1 = un and

ln+1 = ln.

ii. if a solution to (27) is found but Flife,n+1 ≤ 1, then un+1 = un and ln+1 = S
P

n ≥ S
P

n−1 =

ln.

iii. if no solution to (27) is found, then un+1 = un, and ln+1 = S
P

n ≥ S
P

n−1 = ln.

Hence in cases b.(i)-(iii), we have un+1 ≤ un and ln+1 ≥ ln.

2. If there exists no solution to (27) at iteration n−1, then S
P

n ≥ S
P

n−1, un = un−1, and ln = S
P

n−1.

The same argument as in 1.b lead to un ≥ ln.

At the next iteration, by the same argument as in 1.b, we have un+1 ≤ un and ln+1 ≥ ln.

In cases 1) and 2) we show that un+1 ≤ un and ln+1 ≥ ln hold, hence Lemma 1-(A) is proved. In

addition, we also show that un ≥ ln holds in these cases, hence Lemma 1-(B) is proved.

As {un} is monotonically non-increasing and is bounded below by {ln}, by the monotone con-

vergence theorem, {un} converges to its infimum. Similarly, {ln} converges to its supremum. Hence

Lemma 1-(C) also holds.

Next, we argue that the candidate value S
P

n at iteration n must differ from that at the previous

iteration, except in the following special cases.

Lemma 2. For n > 0, the following statements hold for the S
P

n computed by Algorithm 1:

(A) If there exists a solution to (27) at iteration n− 1 and Flife,n > 1, then S
P

n = S
P

n−1 if and only if

S
P

n−1 = ln−1.

(B) If there exists a solution to (27) at iteration n− 1 and Flife,n ≤ 1 or (27) is infeasible at iteration

n− 1, then S
P

n = S
P

n−1 if and only if S
P

n−1 = un−1.

Proof. We start with Lemma 2-(A) and prove the statement in both directions.

(⇒) If S
P

n−1 = ln−1, by the construction of Algorithm 1 we have S
P

n ≥ ln−1 and S
P

n ≤ S
P

n−1 = ln−1

at the same time. Therefore, S
P

n = ln−1 = S
P

n−1 must hold.

(⇐) If S
P

n = S
P

n−1, then S
P

n can only take the following possible values by Algorithm 1:

(a) S
P

n = ln−1, then S
P

n = S
P

n−1 = ln−1.

(b) S
P

n =
(ln−1+S

P
n−1)

2 , i.e., S
P

n = ln−1 has already been tried in previous iterations, then

2S
P

n−1 = ln−1 + S
P

n−1

⇔ S
P

n−1 = ln−1.

Hence S
P

n−1 = ln−1 always holds if S
P

n = S
P

n−1.

Therefore, it is shown that S
P

n = S
P

n−1 if and only if S
P

n−1 = ln−1 when (27) is feasible and Flife,n > 1.

The proof of Lemma 2-(B) follows the same argument as in Lemma 2-(A), and hence it is omitted.
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By Lemma 1 we established that the sequences {un} and {ln} are monotonic and convergent. We

now show that they converge to the same limit.

Lemma 3. The sequences {un} and {ln} constructed by Algorithm 1 converge to the same limit, i.e.,

limn→∞ un = limn→∞ ln.

Proof. Suppose that at n = N , we have uN = u∗, lN = l∗. Let δN ≜ uN − lN ≥ 0. If δN = 0,

then u∗ = l∗. By Lemma 1 {un} and {ln} are monotonic and un ≥ ln, ∀n > 0, then we must have

un = ln = u∗ = l∗, ∀n > N . In this case, {un} and {ln} converge to the same limit and the proof is

done.

Now we consider δN > 0. At the next iteration n = N + 1, the following cases may occur:

1. If there exists a solution to (27) at iteration N and Flife,N+1 > 1, then we have shown in Lemma 1

that S
P

N+1 ≤ S
P

N , uN+1 = S
P

N , and lN+1 = lN = l∗. We thus have:

uN+1 − lN+1 = S
P

N − l∗,

= (u∗ − l∗) +
(
S
P

N − u∗

)
,

= δN +
(
S
P

N − u∗

)
.

In what follows, we argue uN+1 − lN+1 < δN for any value of S
P

N+1 and S
P

N :

(a) When S
P

N+1 = S
P

N , by Lemma 2-(A) we have S
P

N = lN = l∗. Hence,

uN+1 − lN+1 = δN +
(
S
P

N − u∗

)
,

= δN + (l∗ − u∗) ,

= δN − δN ,

= 0.

(b) When S
P

N+1 < S
P

N , uN+1 ≤ uN = u∗ always holds by the monotonicity of {un}. As

Flife,N+1 > 1 is assumed, we have uN+1 = S
P

N which leads to S
P

N ≤ u∗. If S
P

N < u∗, then

uN+1 − lN+1 < δN must hold.

We now argue that S
P

N = u∗ cannot happen. By the construction of Algorithm 1, uN is

updated to u∗ as S
P

nu
reaches this value at some iteration nu < N . When S

P

N reaches u∗

again at iteration N , it would need to be adjusted to S
P

N =
(l∗+S

P
N−1)

2 according to the

algorithm. We show by contradiction that the adjusted S
P

N ̸= u∗. Let us assume for now

that the adjusted S
P

N = u∗, we have:

2S
P

N = l∗ + S
P

N−1

⇔ 2u∗ = l∗ + S
P

N−1

⇔ u∗ + (u∗ − l∗) = S
P

N−1

⇔ u∗ + δN = S
P

N−1. (31)

As S
P

N−1 is bounded above by u∗ and δN > 0, (31) must not hold. Hence, by contradiction,

S
P

N ̸= u∗ and we must have S
P

N < u∗. In such a case,

uN+1 − lN+1 = δN+1 < δN .
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From cases a) and b), we establish that the sequence {un − ln} is monotonically decreasing and

bounded below by 0. Hence by the monotone convergence theorem,

lim
n→∞

(un − ln) = 0 ⇔ lim
n→∞

un = lim
n→∞

ln.

2. By similar argument, we can arrive at limn→∞ un = limn→∞ ln when there exists a solution to

(27) at iteration N and Flife,N+1 ≤ 1, or when no solution is found for (27) at iteration N .

Now we state the main result for the convergence of the sequence
{
S
P

n

}
constructed by the search

algorithm.

Theorem 1. The sequences
{
S
P

n

}
, {un}, and {ln} generated by Algorithm 1 for n > 0 converge to S

P

∗ .

Proof. The sequence
{
S
P

n

}
is bounded by {un} and {ln} for all n. By Lemma 3, we have limn→∞ un =

limn→∞ ln. By the squeeze theorem, it follows that limn→∞ S
P

n = S
P

∗ = limn→∞ un = limn→∞ ln.

Let St,∗ be the St computed in (30) for t ∈ T OP ∪ T MP and the searched S
P

∗ for t ∈ T P. The

following corollary can be consequently claimed.

Corollary 1. If F̃life = 1 can be achieved, then S
P

∗ is an optimal value to achieve F̃life = 1. Further,

(27) is a convex restriction of (22).

Proof. When applying St,∗, the resulting adjustment ∆prob and incentives are (i) feasible with respect

to the original problem (22), and (ii) globally optimal with respect to the convex problem (27). Given

that F̃life = 1, the relaxation of (14) is exact. It therefore follows that (27) is a convex restriction

of (22).

If there exists no S
P
to achieve F̃life = 1, Theorem 1 still holds and yields some St,∗ that minimizes

|F̃life − 1|. In this case, (27) is a convex approximation to (22). We can still solve for ∆prob and

incentives from (27), but the relaxation of (14) is not exact.

5 Numerical study

We use the modified IEEE-8500 test network as in [20] to illustrate the proposed strategies. We

specifically aim to mitigate overloads on the substation transformer. The following information are

assumed:

• LEV: charging may start at each hour and lasts for 2, 4, or 6 hours, and 4 levels of EV charging

power are considered (1.8kW, 3.6kW, 6.6kW, 7.2kW, with unity power factor).

• PrL: each customer’s probability of adopting each profile in LEV is randomly generated without

using any known distribution, but to be more realistic, customers have higher probabilities of

starting charging between noon and midnight.

• The nominal electricity price is pnomrate = 0.35 $/kWh. According to [16], the averaged elasticity

factor ε ranges from −0.21 to −0.61. Hence we assume ε = −0.4.

We look at the impact to the substation transformer loading levels at 80% EV penetration for

T = 24 hours with a time step of ∆t = 1 hour. Figure 1 shows the mean and maximum/minimum

(±2× standard deviation) loading levels which are computed by the ts-REM model.

If we look at the mean loading curve (in orange color), the transformer is overloaded from 3PM

until 10PM with the worst loading at around 125%. If such a loading pattern repeats during the entire

year, it is determined by TAM that the lifetime factor is Flife = 1.1. Suppose that the annual cost of
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the transformer at the nominal lifetime is cannual = $500,000, then from (13) an extra cost of $50,000
per year is incurred to utilities due to the shortened lifetime, which serves as the budget for customer

incentives.
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Figure 1: Multiple levels of loading curves of the substation transformer with 80% EV penetration

Based on the loading curves in Figure 1, we set T P and T OP to [14:00, 21:00) and [0:00, 6:00),

respectively, and the remaining hours to T MP. Figure 2 shows the S
P

n value searched at each iteration

of Algorithm 1 for the reward type of incentives (top left) and for TOU pricing (top right). Figure 2

also shows the corresponding total yearly costs (bottom left) and the incentives levels of ξ and η

(bottom right) of each iteration. For the reward incentives, S
P

n converges to S
P

∗ = 0.61, the unit

reward is r = 10.82 ¢/kWh, and the total extra cost to utilities reduces from an initial $50,000 to

$18,868 per year (a 62.3% saving). For the TOU pricing, S
P

n converges to S
P

∗ = 0.66, a discount of

ξ = 20.25 ¢/kWh is offered during the off-peak time, and a surcharge of η = 11.69 ¢/kWh is added

during the peak time. Under such pricing, the total extra cost to utilities reduces from $50,000 to

$16,973 per year (a 66.1% saving). It is noted that the TOU program is slightly more efficient and the

total cost to implementing the mitigation strategy is less.
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Figure 2: The sequences of S
P
n searched (top), total costs (bottom left), and incentive levels of r, ξ, η (bottom right)

during iterations of Algorithm 1
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Figure 3 shows the results when the mitigation strategies based on the converged solutions for the

two types of incentive programs are applied. The bottom chart compares the averaged probabilities of

all customers charging EVs at different hours during the day. With the mitigation strategies applied,

customers decrease their probabilities of charging EVs during the peak period and increase the prob-

abilities during the off-peak period, while the probabilities of the mid-peak period remain unchanged.

As a consequence, the transformer’s overload during the peak period has been reduced to an acceptable

level while the loading during the off-peak period is increased as shown in the top and middle charts of

Figure 3. Although the transformer is still slightly overloaded for a brief period, its lifetime of service

is maintained at the nominal value under either type of incentive programs, i.e., F̃life = 1.
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Figure 3: Mitigation of the substation transformer overload by offering rewards (top) or by applying TOU (middle) and
the resulting changes to customers’ EV charging habits (probabilities of charging hours, bottom)

While all customers’ averaged probabilities of charging profiles are compared in Figure 3, Figure 4

shows the shifts of individual probabilities of 100 customers under the mitigation strategies. All

customers had higher probabilities of charging their EVs during the peak period which overloads the

transformer, and they increase the probabilities of charging during the off-peak period to receive the

incentives offered under the mitigation strategies.
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Figure 4: Comparison of 100 customers’ probabilities of charging during the day before adopting a mitigation strategy
(top) versus those by offering rewards (middle) or by applying TOU (bottom)

6 Conclusion

In this paper, we extended the rapid assessment method to perform a time-series impact analysis of

EV charging on power distribution networks. We focus on the case where the analysis result indicates

overloading issues to network equipment. To avoid loss of equipment’s usable lifetime and to minimize

associated costs, a mitigation strategy is designed to shift customers’ probabilities of charging their

EVs from peak hours to off-peak hours. Two types of incentive programs are considered, and a

dedicated search algorithm embedded with a convex optimization problem is proposed to determine

optimal levels of incentives. It is noted that under the proposed mitigation strategy, we do not enforce

a specific charging schedule on a daily basis. Rather, customers are still allowed to charge their EVs

during the peak hours when necessary. However, the probabilities of doing so in the long term should

be consistent with those determined from the mitigation plan.

Although the numerical example presented considers the full participation of customers, our for-

mulation can also account for the uncertainty in customers’ participation through the λp factor. This

offers the opportunity to perform various case studies with different participation rates and sensitivity

analysis including validation studies with real customer data for utilities as a next step.
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