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Les textes publiés dans la série des rapports de recherche Les Cahiers
du GERAD n’engagent que la responsabilité de leurs auteurs. Les
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Abstract : Station-based Bike-sharing systems have been implemented in multiple major cities,
offering a low-cost and environmentally friendly transportation alternative. As a remedy to unbalanced
stations, operators typically rebalance bikes by trucks. The resulting dynamic planning has received
significant attention from the Operations Research community. Due to its modeling flexibility, mixed-
integer programming remains a popular choice. However, the complex planning problem requires
significant simplifications to obtain a computationally tractable model. As a result, existing models
have used a large variety of modeling assumptions and techniques regarding decision variables and
constraints. Unfortunately, the impact of such assumptions on the solutions’ performance in practice
remains generally unexplored.

In this paper, we first systematically survey the literature on rebalancing problems and their mod-
eling assumptions. We then propose a general mixed-integer programming model for multi-period
rebalancing problems that can be easily adapted to different assumptions, including trip modeling,
time discretization, trip distribution, and event sequences. We develop an instance generator to syn-
thesize realistic station networks and customer trips, as well as a realistic fine-grained simulator to
evaluate the operational performance of rebalancing strategies. Finally, extensive numerical experi-
ments are carried out, both on the synthetic and on real-world data, to analyze the effectiveness of
various modeling assumptions and techniques. Based on our results, we identify the assumptions that
empirically provide the most effective rebalancing strategies in practice. Specifically, a set of specific
trip distribution constraints and event sequences ignored in the previous literature seem to provide
particularly good results.

Keywords: Facilities planning and design, bike sharing systems, dynamic rebalancing, modeling
framework, mixed-integer programming
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1 Introduction

Bike-sharing systems (BSSs) are quickly gaining popularity worldwide, as they help to reduce traffic

congestion and vehicle CO2 emissions. Over the past few years, BSSs were implemented in most major

cities such as New York, Boston, London, Sydney, Beijing, Paris, Toronto, and Montreal. We focus

on station-based BSSs, where stations with specific capacities are installed in the city, holding an

inventory of rentable bikes. Users may rent available bikes from these stations and return their bikes

to available docks.

Throughout the day, BSS stations are often unbalanced, which leads to demand unsatisfaction,

given that rental demand may not be satisfied when a station is empty, and return demand may not

be satisfied when the station is full (i.e., no empty docks are available). As a remedy, BSS operators

employ trucks to rebalance bikes among stations. However, due to the uncertain rental and return

demand, as well as the complexity of the dynamic planning problem, manual planning tends to be

sub-optimal.

To provide decision support, the scientific community has provided a large variety of predictive

and prescriptive models, aiming at improving station rebalancing. Planning models can roughly be

divided into those based on Markov Decision Process (MDP) and those based on Mixed-integer Linear

Programming (MILP). The former, more recently applied in the context of BSSs [see, e.g., 1, 2, 3, 4,

5, 6, 7], implicitly considers uncertainty. However, in order to remain computationally tractable, MDP

models rely on state and action spaces limited in size and are therefore constrained to small station

networks, small rebalancing fleets, or limited rebalancing decisions. The majority of the literature

proposes MILP models to represent the planning problem, where MILP remains the predominant

modeling tool due to its flexibility, as well as the availability of a well-established process to integrate

and maintain such models and a wide range of solution methods within an industrial decision-making

process. For MILP, both deterministic customer demands [see, e.g., 8, 9, 10] and simplified variants

dealing with uncertain demand [see, e.g., 11, 12, 13, 14] have been considered in the literature. In both

cases, due to the complexity of the planning problem and the synergies between customer arrivals

and rebalancing operations, its modeling requires assumptions that greatly vary within the literature.

These assumptions range from the planning objective to the actual decisions and practical constraints

used within the models. Further, customer demands may occur continuously in time. To remain

computationally feasible, the planning horizon is typically divided into a set of time-periods, which

raises questions concerning the sequence of occurring rental and return demands, as well as the moment

of the planned rebalancing operations. As a result, both the planning problems and the mathematical

optimization models proposed in the literature are highly diverse. Unfortunately, most of those works

have been proposed isolated from the remainder of the literature, which therefore lacks consensus on

which assumptions and modeling techniques are best to use. Thus, operators are rather uncertain

about which modeling assumptions should be used in the context of their specific BSS and which

modeling techniques provide solutions that perform best in practice.

Objective, scope, and contributions. The objective of this paper is to provide guidelines to

both practitioners and academics on which assumptions and techniques are most appropriate and likely

to produce rebalancing solutions that perform well in practice. To this end, we provide a systematic

review of the modeling assumptions and techniques presented in the literature, mostly focused on multi-

period models, and propose a general MILP modeling framework that encapsulates most of the relevant

modeling assumptions. While several modeling assumptions have been used in the literature without

further justification or comparison, we explicitly discuss the alternatives and provide intuitive insights

on which assumptions may be more appropriate in practice. We then provide extensive numerical

results to empirically evaluate the realism of the various assumptions and modeling techniques, such

as variable domains, time discretization, the distribution of trip demand, and the assumed sequence

of bike rentals, bike returns, and rebalancing operations.
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We develop a realistic simulator that emulates customer trips and the given rebalancing strategy

on a minute-to-minute basis. This simulator evaluates the quality of a proposed rebalancing planning

solution and hence the realism of the modeling assumptions and techniques of the associated optimiza-

tion model. Throughout our experiments, the most relevant combinations of modeling assumptions

and techniques are then empirically tested on a large set of synthetically generated problem instances

that have been carefully designed to represent different BSS settings and fit the demand patterns

observed in real-world trip data from BIXI Montreal.

Based on our modeling framework and empirical results on both synthetic and real-world data,

practitioners can derive an optimization model tailored to their BSS environment. In particular,

our empirical results suggest that (i) both variable domain and type strongly impact the realism and

tractability of the model, (ii) time-related constraints are particularly important when time-periods are

short, (iii) a new set of trip distribution constraints performs better than those previously considered

in the literature, and (iv) the sequences of trips and rebalancing operations used in the literature are

outperformed by the new event sequences proposed in our paper.

We note again that we are less concerned with the possible uncertainty surrounding the input

parameters of the models, but rather with the underlying assumptions required to tractably represent

the reality within the mathematical model. As such, the presented modeling framework is deterministic

(i.e., it uses a single set of expected trip demand) for several reasons. Stochastic, scenario-based

formulations are equally subject to such modeling assumptions. Our conclusions are therefore still

likely to hold for such problem variants. While we review and discuss the corresponding literature, for

the purpose of our study, it is not necessary to explicitly represent uncertainty. Finally, a stochastic

problem variant would be computationally intractable, thus forbidding us to obtain close-to-optimal

solutions that are required for our analysis.

Outline. The rest of this paper is organized as follows. Section 2 reviews related literature on BSS

rebalancing problems and summarizes the assumptions. Section 3 describes the modeling framework

for the multi-period rebalancing problem, including a basic model that can be extended by several

constraints according to the various modeling assumptions. Section 4 presents the general framework

used to evaluate the practical performance of a given multi-period rebalancing strategy. Numerical

tests and analyses on synthetic and real-world problem instances are illustrated in Section 5. This is

followed by the conclusions in Section 6.

2 A Review of BSS rebalancing modeling assumptions

The literature mainly focuses on two types of rebalancing in BSSs [15]. User-based rebalancing in-

centivizes users to rent or return bikes at specific stations [16]. Such an approach is more common in

dockless BSSs. In contrast, operator-based rebalancing involves the active management of a rebalanc-

ing fleet (e.g., trucks) that relocates bikes from one station to another. Such an approach is specific

to station-based BSSs [17]. According to a recent statistical report [18], station-based systems are, by

far, more common. Even in the case of rebalancing planning in dockless BSSs, it has been a common

practice to divide the studying area into different sub-areas, which are then seen as stations [see, e.g.,

5, 19, 20, 21]. We, therefore, focus on operator-based rebalancing.

Operator-based bike-sharing rebalancing problems can be divided into static bicycle repositioning

problems (SBRP) and dynamic bicycle repositioning problems (DBRP) [22, 23]. SBRP typically re-

balance stations overnight, while the operations during the day are not considered. Static rebalancing,

therefore, prepares the station inventories for the next day. However, it cannot explicitly react to the

demand fluctuation occurring during the day. In contrast, DBRP focus on intraday rebalancing, where

customer trips carried out during the day heavily affect the availability of bikes and docks [24]. Indeed,

demand satisfaction highly depends on the real-time status of the stations and customers’ stochastic

rentals and returns, which poses practical challenges [25]. We here focus on dynamic rebalancing
planning, which has a higher impact on practice since it considers continuous rebalancing throughout
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the day. Given that DBRP consider trip demand and rebalancing operations over the day, the models

proposed in the literature either approach this problem using a repeatedly solved single-period model

or a multi-period model.

Single-period rolling vs. multi-period planning. A single-period model generally spans a duration

between 10 and 60 minutes. Single-period models are typically solved in a rolling horizon fashion

throughout the day, while multi-period models are either solved once at the beginning of the planning

horizon or several times throughout the day.

Solving a single-period model is computationally easier than a multi-period one. However, single-

period models tend to be myopic, i.e., the decisions made at the current time-period cannot take

into consideration the consequences in future time-periods. Such models therefore greedily maximize

demand satisfaction at the current time-period, even if this results in station inventories that cannot

satisfy demand well in the next time-periods. In contrast, multi-period models benefit from integrated

planning over all time-periods and avoid suffering from myopic behavior. On the downside, these

models may be more difficult to solve, given that they consider several sets of decision variables and

constraints for each time-period.

Since we are concerned with finding the model that performs best in practice, we focus on the

multi-period planning model. In the following, we summarize the main assumptions made in multi-

period planning models proposed in the literature, review existing alternatives and propose some that

might not have been considered yet.

2.1 Time discretization and time constraint

To represent the change in stations’ status and vehicles, the planning horizon is discretized into time-

periods. One mainly has two possibilities to discretize the planning horizon.

• Time-periods of equal length. The planning horizon is discretized into a set of evenly-spaced

time points and the length of each period is the same, which is employed in most multi-period

models. In the multi-period planning framework, we could obtain the changes of stations for

each time-period and gain the look-ahead information. However, it is hard to define the optimal

length of the time-period. It should depend on the model complexity and the length of the

planning horizon we focus on.

• Time-periods of different lengths. Here, the length of each period in the planning horizon
can be different. [10] split each cumulated demand function into weakly-monotonic segments

with extreme values that are regarded as end-of-segment events. Further, the arrival of a vehicle

at a station to rebalance bikes is referred to as a station-visit event. These two types of events

are sequentially considered to separate the planning horizon.

For multi-period dynamic rebalancing, time-period with equal length is most common in the liter-

ature [see, e.g., 14, 26, 27]. Typically, it is assumed that each vehicle rebalances at most one station

during one time-period. Selecting an appropriate length of time-period is crucial to the rebalancing

strategy and its performance. Several works have investigated the effect of such aggregation on the

rebalancing performance [see, e.g. 9, 14, 28]. Generally, aggregations over shorter time-periods allow

for more rebalancing operations and, therefore, lower lost demand. However, this typically comes at

the cost of increased computing times.

Moreover, when the time-period is short, a time constraint may be required to ensure that the

required time for rebalancing and transiting to the next station fits into the length of the time-period.

Time constraints, therefore, interdict truck relocations that are unrealistic in practice. [9] and [29] do

not use time constraints, while follow-up work [13, 30] apply time constraints within a single-period

rolling planning framework. [8] and [14] use time constraints considering only vehicle traveling time,

while the handling time at stations is ignored. [10] and [31] consider both traveling and handling
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time, where the latter is computed as an average value regardless of the number of loading/unloading

operations. A summary of how time constraints are handled in the literature, along with other model

characteristics, is presented in Table 14 in the Online Supplement.

Note that the introduction of time constraints may make the model difficult to solve. It is therefore

crucial to select a proper time-period length that can lead to a reasonable solution time while providing

high-quality rebalancing strategies.

2.2 Trip modeling and variable domains

Each customer trip contains one bike rental demand and one bike return demand. To model successful

trips, mainly two types of variables have been considered:

• Origin-destination (O-D) variables xt1,t2
s1,s2 , contain departure station s1, arrival station s2,

departure time t1, and arrival time t2.

• Station-based variables represent the departure of a trip, i.e., satisfied rental demand x+,t1
s1

and the arrival of a trip, i.e., satisfied return demand x−,t2
s2 .

Station-based variable models require fewer variables but lack the connection between rentals and

returns. The O-D variable models avoid this issue at the expense of a large number of variables, which

may complicate the solutions of the model. A general classification of existing models can be found in

Table 15 in the Online Supplement.

Next to the type of variables, the variable domains may also impact the performance of the induced

solutions. In the rebalancing model, variables represent three main actions: routing, rebalancing, and

the above-discussed user trips. The routing variables typically indicate the location of a vehicle along

the planning horizon and the route taken. These variables are always binary. Rebalancing variables

represent the inventory of vehicles and the number of bikes to be rebalanced. Most models define them

as continuous variables [see, e.g., 8, 10, 13, 14, 29, etc.]. [31] use integer rebalancing variables. User

trip variables for rentals and returns also interact with the inventories of stations. Most models in the

literature use continuous variables, except for [32], which use integer O-D variables.

2.3 Trip distribution

If the rental/return demand exceeds the current inventory of bikes/docks, a basic optimization model

(such as the one in Section 3.1) may select the rentals/returns opportunistically according to the

objective function. In reality, however, demand will be satisfied based on a first-come-first-serve rule.

Several works therefore aimed at enforcing a more realistic distribution of the trips by adding specific

constraints. We review the existing assumptions on demand distribution below:

• Station-based variables without distribution. Two variables are created to present rentals

and returns for each station and each period [see, e.g., 10]. Similarly, [8] use two variables

to represent the shortage and excess of bikes, which is equivalent to the use of station-based

variables. Demands will be greedily satisfied in the optimization model without considering the

link between rentals and returns. As a result, the lost demand tends to be underestimated.

• Station-based variables with proportional distribution. [14] enforce a trip distribution

proportional to the O-D trip demand as x−,t2
s2 ≤

∑t2−1
t=0

∑
s x

+,t
s

F t,t2
s,s2

f+,t
s

. Especially, the proportion

is given by the ratio between the number of trips starting at station s in time-period t and ending

at station s2 in time-period t2 (F t,t2
s,s2) and the total number of trips starting at station s in time-

period t (f+,t
s ). The authors also assume that the number of bikes returned during a specific

time-period is not higher than the number of bikes rented in the previous periods multiplied by

the corresponding proportion. Similarly, [33] consider a return ratio on the number of returns at

station s divided by the total number of bikes currently used by customers during the time-period
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t. The return demand at station s in period t is assumed to be the product of the return ratio

and the total number of bikes being used.

• O-D variables without distribution. In this case, O-D variables will be created to represent

the number of trips starting from one station and ending at another station during one particular

time-period.

• O-D variables with proportional distribution. [9] and [27] apply a similar proportional

distribution as [14]. The constraints xt1,t2
s1,s2 ≤ abt1s1

F t1,t2
s1,s2

f
+,t1
s1

imply that the trips rentals from a

specific station are limited by the distribution ratio multiplied with the number of currently

available bikes (abt1s1).

• Poisson distribution. [34], [4], and [29] model the arrival of rentals and returns as a Poisson

process, which implicitly models trip uncertainty.

These trip distribution constraints, as well as other alternatives, will be discussed in detail in

Section 3.2.

2.4 Sequence of rebalancing, bike rental, and bike return events

In station-based BSSs, where the operator carries out station rebalancing using trucks, both customers

and vehicles interact with the station inventories: customers may rent or return bikes, while trucks may

drop off or pick up bikes. While in reality, customers and trucks interact with the station inventory at

a specific moment in time, an optimization model aggregates these operations within each time-period.

Different assumptions can be made to deal with this issue. Some or all of these events can be

assumed to happen simultaneously, allowing rentals and pick-ups to compensate for returns and drop-

offs occurring within the same time-period. Such a generous assumption may achieve a high demand

satisfaction within the optimization model. In practice, however, this may be overly optimistic and

not perform well, i.e., rentals may occur at empty stations before returns and drop-offs, or returns may

occur at full stations before rentals and pick-ups. Alternatively, one may assume that these events

occur in a pre-defined chronological sequence within each time-period; for example, bike rentals occur

first, then bike returns, and finally, the rebalancing operations. While such an assumption is more

restrictive concerning demand satisfaction, it assumes that rentals can only be performed if sufficient

bikes are available before the returns, and customer demands cannot benefit from the rebalancing

operations that are assumed to happen at the end of the time-period.

Let us denote by (r) the event of vehicle rebalancing, (a) the event of customer arrival to return

bikes, and (d) customer departure, i.e., bike rental. While models in the literature have assumed

different event sequences, theoretically, any combination of these three event types is possible.

Table 1 summarizes the possible combinations, where events within the same parentheses are

assumed to happen simultaneously. For example, (r)(a)(d) assumes that rebalancing is performed

first, then customer arrivals, and then customer departures. In contrast (r+a+d) assumes that all

three events happen at the same time. Note also that all sequences reported within the same row in

Table 1 have the same order of events, but not necessarily within the same time-period. For example,

both (r)(a)(d) and (a)(d)(r) assume that arrivals occur after rebalancing and departures occur after

arrivals if the sequence is observed over several time-periods, e.g., (r)(a)(d)(r)(a)(d)(r)(a)(d), etc.

However, such similarity does not guarantee a similar performance of the obtained solutions.

Within the existing literature, [10] use a series of station-visit events and extreme values of cu-

mulated demand to discretize the planning horizon. Since the time required to pick up and drop

off bikes is neglected, there is no particular order of events. However, their model essentially assumes

(a+d)(r), which means that customers first rent and return bikes before vehicles rebalance. [31] assume

that rebalancing happens first and then customers rent and return bikes. [13] use sequence (a)(r)(d),

while [14] use sequence (a)(d+r). Several other works [e.g., 8, 9, 27, 35, 36, 37] ignore the issue of
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Table 1: Potential sequences of events

Three separate events
(r)(a)(d) (a)(d)(r) (d)(r)(a)
(r)(d)(a) (d)(a)(r) (a)(r)(d)

Two events simultaneously
(r)(a+d) (a+d)(r)
(a)(d+r) (d+r)(a)
(d)(r+a) (r+a)(d)

All events simultaneously (r+a+d)

event sequences, which is equivalent to assuming a simultaneous event sequence (r+a+d). Finally, a

different approach is taken by [33], who subdivide each time-period into smaller time-segments and

associate rental and return demand to such fine-grained time-segments. Bike pick-ups from rebalanc-

ing operations are assumed to happen at the first segment of each time-period, while drop-offs occur

at the end. Such an assumption does not fit our classification scheme, but the discretization into time

segments resembles the operating mode of our simulator.

Unfortunately, no studies are available exploring the degree of realism and effectiveness of the

different event sequences. In Section 3.2.3, we will therefore explicitly review the modeling of the

various alternatives and empirically evaluate their effectiveness.

Other assumptions and objective functions can be found in Appendix 1 of the Online Supplement.

3 Multi-period rebalancing modeling framework

We now present a general modeling framework that can be adapted to the various assumptions dis-

cussed in Section 2. To this end, we first propose a basic multi-period optimization model for dynamic

rebalancing. We then formulate the different assumptions, which can be easily incorporated into the

basic model.

3.1 Formulation of the basic model

We first consider a basic multi-period model with minimal assumptions. Its input parameters are

summarized in Table 2. Namely, S denotes the set of stations, while V denotes the set of available

vehicles. Each station s ∈ S has a total of Cs docks, referred to as its capacity. Each vehicle v ∈ V

has a bike capacity Ĉv. Parameters Di,j and Rt
s,s′ denote respectively the distance and transit time

between stations i and j at time-period t. We consider a planning horizon with |T | time-periods, where

each time-period t ∈ T has a duration of Lt minutes.

Table 2: Input parameters of the optimization model

Input Definition

S The set of stations.
V The set of vehicles.
T The set of discretized time-periods.
Di,j The distance between station i ∈ S and j ∈ S.
Cs The capacity of station s ∈ S.

Ĉv The capacity of vehicle v ∈ V .
Lt The length (in minutes) of time-period t ∈ T .
d1s The initial number of bikes in station s ∈ S.

d̂1v The initial number of bikes in vehicle v ∈ V .
z1s,v 1, if vehicle v ∈ V is at station s ∈ S at the beginning of planning; 0, otherwise.

f+,t
s The expected rental demand at station s ∈ S in period t ∈ T .

f−,t
s The expected return demand at station s ∈ S in period t ∈ T .

Rt
s,s′ Transit time for vehicles from station s ∈ S to station s′ ∈ S in period t ∈ T .

F t,t′

s,s′ The number of trips from station s ∈ S at period t ∈ T to s′ ∈ S at period t′ ∈ T .
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We formulate the rebalancing problem as a MILP and assume that each vehicle can only visit one

station at each period.

Table 3: Decision variables of the optimization model

Variable Definition

r+,t
s,v The number of bikes picked up at station s by vehicle v in period t

r−,t
s,v The number of bikes dropped off at station s by vehicle v in period t

zt
s,v 1, if vehicle v ∈ V is at station s ∈ S at period t ∈ T ; 0, otherwise.

dts The number of bikes available in station s ∈ S at the beginning of period t

d̂tv The number of bikes in vehicle v ∈ V at the beginning of period t
pt
s,s′,v 1, if vehicle v is at station s in period t and at station s′ in period t+ 1;

0, otherwise

x+,t
s The number of successful bike trips starting from station s in period t

x−,t
s The number of successful bike trips ending at station s in period t

The decision variables are summarized in Table 3. Variables r+,t
s,v /r

−,t
s,v represent the number of

bikes picked up/dropped off at station s by vehicle v during period t. Variable zts,v takes value 1 if

station s visited by vehicle v at period t; 0 otherwise. For each time-period, intermediate variables

are used, such as the number of bikes available at stations/in vehicles, successful trips, and the routes

of the vehicles. We employ rental and return demand without enforcing trip distribution, and use

station-based trip variables x+,t
s and x−,t

s .

Then, the basic MILP model reads as follows:

min
∑
s∈S

∑
t∈T

(f+,t
s − x+,t

s ) +
∑
s∈S

∑
t∈T

(f−,t
s − x−,t

s ) (1)

s.t. d̂t+1
v = d̂tv +

∑
s∈S

(r+,t
s,v − r−,t

s,v ) ∀ v ∈ V, t ∈ T (2)

dt+1
s = dts −

∑
v∈V

(r+,t
s,v − r−,t

s,v )− x+,t
s + x−,t

s ∀ s ∈ S, t ∈ T (3)∑
s∈S

zts,v = 1 ∀ v ∈ V, t ∈ T (4)

r+,t
s,v + r−,t

s,v ≤ Ĉvz
t
s,v ∀ s ∈ S, v ∈ V, t ∈ T (5)

0 ≤ d̂tv ≤ Ĉv, 0 ≤ dts ≤ Cs ∀ s ∈ S, v ∈ V, t ∈ T (6)

0 ≤ x+,t
s ≤ f+,t

s , 0 ≤ x−,t
s ≤ f−,t

s ∀ s ∈ S, t ∈ T (7)

0 ≤ r+,t
s,v , r

−,t
s,v ≤ Ĉv ∀ s ∈ S, v ∈ V, t ∈ T (8)

zts,v ∈ {0, 1} ∀ s ∈ S, v ∈ V, t ∈ T (9)

Objective function (1) minimizes the total lost rental and return demand in the planning horizon

over all stations and time-periods. If required, it can be modified according to the preferences of the

BSS operators (see Appendix 1.2 of the Online Supplement). Constraints (2) ensure that the number

of bikes in each vehicle is synchronized with the vehicles’ bike pick-ups and drop-offs. Constraints

(3) manage the station inventory along time, considering the rebalancing operations and successful

customer trips (i.e., rentals and returns). Note that we use the sequence (r+a+d) in our basic model.

The initial inventory of stations d1s is an input of the optimization model and can be obtained from

the operators or through static rebalancing. Constraints (4) ensure that each vehicle is at exactly

one station at each time-period, which forms the flow of vehicles sequentially. [13] use an alternative

constraint:
∑

s′ p
t
s,s′,v −

∑
s′ p

t−1
s′,s,v = 0 (∀ s, t, v), which directly ensures that the flow out of station

s for vehicle v at time-period t is equivalent to the flow of v into the station s at time t− 1. Both of

them indicate the relocation of vehicles along time. Note that, in our model, the vehicle can stay at

the same station in the next time-period, i.e., zts,v = zt+1
s,v = 1. Constraints (5) ensure that a vehicle

only operates at the station where it is currently located. Constraints (6) enforce that the number
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of bikes in each vehicle is limited by its capacity and the number of bikes at each station is within

the station’s capacity. Constraints (7) impose that the number of successful trips is bounded by the

expected demand for rentals and returns. Constraints (8) force the number of picked-up/dropped-off

bikes to respect the vehicle capacity.

The model can easily be reformulated using O-D variables xt,t′

s,s′ instead of station-based variables.

In this case, all occurrences of x+,t
s within (1)–(3) simply have to be replaced by

∑
s′,t′ x

t,t′

s,s′ , while

Constraints (7) have to be replaced by xt,t′

s,s′ ≤ F t,t′

s,s′ .

3.2 Formulating different modeling assumptions

We now show how to extend the basic model to account for the additional modeling assumptions

discussed in Section 2.

3.2.1 Time constraints.

The basic model assumes that vehicles can relocate to any other stations and carry out the rebalancing

operations within the duration of a time-period. When the duration of the time-period is short, the

resulting planning solution may become infeasible in practice. Since vehicles may not have sufficient

time to relocate and rebalance bikes, time constraints (as discussed in Section 2.1) may be added to

restrict the vehicle relocation between stations and rebalancing operations to the time available. We

formulate time constraints as follows. First, for each pair of stations s and s′, vehicle v, and time-

period t, Constraints (10) enforce variable pts,s′,v to take value 1 if both variables zts,v and zt+1
s′,v are

have value 1. Then, time constraints (11) guarantee that the transit time between stations and the

operation time for picking up/dropping off bikes for each period will not surpass the available time Lt.

zts,v + zt+1
s′,v − 1 ≤ pts,s′,v ∀ s, s′ ∈ S, v ∈ V, t ∈ T (10)∑

s∈S

∑
s′∈S

pts,s′,vR
t
s,s′ + op

∑
s∈S

(r+,t
s,v + r−,t

s,v ) ≤ Lt, ∀ v ∈ V, t ∈ T (11)

pts,s′,v ∈ {0, 1} ∀ s, s′ ∈ S, v ∈ V, t ∈ T, (12)

where op is the average operational time to pick up/drop off a single bike. Parameters |T | and
Lt can be altered by the decision-maker. In Section 5.3, we will test different lengths of time-periods

along with the time constraints to explore their impact on the solution performance.

3.2.2 Trip distribution constraints.

We now discuss the proportionality distribution for station-based trip variables. The proportionality

distribution constraints for O-D variables can be found in Appendix 2 of the Online Supplement.

Consider a trip starting at station s1 in period t1 and ending at station s2 in period t2. The

station-based trip variables related to this trip are x+,t1
s1 and x−,t2

s2 . The proportional distribution can

be written as:

x−,t2
s2 ≤

t2−1∑
t=0

∑
s∈S

x+,t
s

F t,t2
s,s2

f+,t
s

∀ s2 ∈ S, t2 ∈ T (TD1)

x+,t1
s1 ≤

|T |∑
t=t1+1

∑
s∈S

x−,t
s

F t1,t
s1,s

f−,t
s

, ∀ s1 ∈ S, t1 ∈ T (TD2)

where, as discussed,
F t,t2

s,s2

f+,t
s

represents the proportion of all rental demand from s at time-period t that

will be returned to s2 at time-period t2.
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Constraints (TD1) impose that the number of bikes returned to station s2 during period t2 is no

more than the bikes rented in the previous periods with a proportion of
F t,t2

s,s2

f+,t
s

. Conversely, constraints

(TD2) impose that the number of bikes rented in station s1 during period t1 is no more than the bikes

returned in the later periods with proportion
F t1,t

s1,s

f−,t
s

.

Similarly, instead of considering the number of rented/returned bikes, we can consider the number

of available bikes/docks. To this end, we rewrite (TD1) and (TD2) to (TD3) and (TD4) by replacing

x+,t
s with abt1s1 and x−,t

s with adt1s1 .

x−,t2
s2 ≤

t2−1∑
t1=0

∑
s∈S

abts
F t,t2
s,s2

f+,t
s

∀ s2 ∈ S, t2 ∈ T (TD3)

x+,t1
s1 ≤

|T |∑
t=t1+1

∑
s∈S

adts
F t1,t
s1,s

f−,t
s

, ∀ s1 ∈ S, t1 ∈ T (TD4)

where abts and adts are the number of available bikes and docks respectively at station s in period t.

Given that station-based variables do not maintain the link between bike rental and return, we

may use Constraints (TD5) below to enforce that the total number of rentals equals the total num-

ber of returns. When all trips are assumed to take no longer than one time-period, one may use

Constraints (TD6) below to enforce a stronger relationship. Under the same assumption, Constraints

(TD6) can also be derived by summing (TD2) all over s1.∑
t

∑
s

x+,t
s =

∑
t

∑
s

x−,t
s , (TD5)∑

s

x+,t
s =

∑
s

x−,t+1
s ∀t ∈ T. (TD6)

Practical toy example. To develop an intuition of the impact of the trip distribution constraints, we

consider the following toy example. We consider two time-periods with four stations, each of which has

a pair of [abts, ad
t
s] indicating the current number of bikes available for rentals and docks for returns,

visualized in Figure 1. The value of abts is equal to dts −
∑

v(r
+,t
s,v − r−,t

s,v ) + x−,t
s and it is analogous for

the value of adts. The numbers circled in red along the arcs represent the trip demands for each station

pair. Stations s1 and s2 may either have a sufficient (S) or insufficient (I) number of bikes to satisfy
rental demand. Further, station s3 and s4 may either have a sufficient (S) or insufficient (I) number

of empty docks to satisfy return demand. This leads to 4 different configurations shown in Figure 1.

Figure 1: Toy example with 4 different situations of bike/dock availability
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Ideally, for scenario I-I, a BSS operator would expect to see 4 trips to station s3 and 2 trips to

station s4 to fill their empty docks, and will not mind whether the trips come from station s1 or

station s2 as long as they have sufficient bikes. The ideal distribution is similar for scenario S-I. In

contrast, in the case of scenario I-S, the operator would expect to see 4 trips from station s1 and 3

trips from station s2 such that all the available bikes can be used. However, there is no preference for

the destinations of the 4 trips from station s1. Clearly, scenario S-S is irrelevant since all trip demand

is satisfied.

In order to compute the successful trips under different trip distribution constraints, we solved the

basic model with each of them. For station-based trip variables, based on Constraints (3), (6), and

(7), we have x+,t1
s1 ≤ min{f+,t1

s1 , abt1s1} and x−,t2
s3 ≤ min{f−,t2

s3 , adt2s3}.

Minimizing the lost demand for cases I-I, I-S, and S-I in Figure 1 under the different trip distribution

constraints results in the departures and arrivals [x+,t1
s1 , x+,t1

s2 , x−,t2
s3 , x−,t2

s4 ] indicated in Table 16. Here,

all ideal trip distributions as expected by the BSS operator are indicated in the first row (an ‘*’ refers

to any coherent allocation). Note that all trip distribution constraints result in the same solution for

case S-S since all trip demands can be satisfied. The solutions that are considered coherent with an

ideal solution are indicated in bold.

Table 4: Trip distribution for 3 different demand scenarios under different trip distribution constraints for station-based
variables

Constraints I-I I-S S-I

Ideal solution [*, *, 4, 2] [4, 3, *, *] [*, *, 4, 2]

without TD [4, 3, 4, 2] [4, 3, 5, 6] [8, 3, 4, 2]
(TD1) [4, 3, 3, 2] [4, 3, 3, 4] [8, 3, 4, 2]
(TD2) [4, 22

15
, 4, 2] [4, 3, 5,6] [ 68

15
, 22

15
, 4, 2]

(TD6) [x+,t1
s1 + x+,t1

s2 = 6, 4, 2] [4, 3,x−,t2
s3 + x−,t2

s4 = 7] [x+,t1
s1 + x+,t1

s2 = 6, 4, 2]
(TD1)+(TD2) [ 8

3
, 1, 5

3
, 2] [4, 3

2
, 5

2
, 3] [ 8

3
, 1, 5

3
, 2]

(TD1)+(TD6) [4, 0, 2, 2] [4, 3, 3, 4] [4, 0, 2, 2]
(TD2)+(TD6) [4, 4

3
, 10

3
, 2] [4, 2, 0, 6] [ 68

15
, 22

15
, 4, 2]

(TD3) [4, 3, 3, 2] [4, 3, 3, 4] [8, 3, 4, 2]
(TD4) [4, 22

15
, 4, 2] [4, 3, 5, 6] [ 68

15
, 22

15
, 4, 2]

(TD3)+(TD4) [4, 22
15

, 3, 2] [4, 3, 3, 4] [ 68
15

, 22
15

, 4, 2]

(TD3)+(TD6) [4, 1, 3, 2] [4, 3, 3, 4] [x+,t1
s1 + x+,t1

s2 = 6, 4, 2]
(TD1)+(TD4) [4, 22

15
, 112

45
, 2] [4, 3, 3, 4] [ 68

15
, 22

15
, 124

45
, 2]

(TD2)+(TD3) [ 56
15

, 19
15

, 3, 2] [4, 29
15

, 3, 4] [ 68
15

, 22
15

, 4, 2]

According to the observed trip distribution, (TD3)+(TD6) and (TD3)+(TD4) have the potential

to produce trips that are close to an ideal solution. The combination of (TD1) and (TD2) will be

tight for the feasible region, especially for full/empty stations. Constraints (TD1)+(TD6) introduce

strict proportional limitations for rentals when the docks are insufficient for returns, which deviates

from the ideal solution. Using only (TD1) may result in solutions with more rentals than returns.

Based on this analysis, within our empirical evaluation in Section 5, we will consider the station-

based variable model without trip distribution constraints, with (TD1), (TD6), (TD3)+(TD6), and

(TD3)+(TD4). The trip distribution of O-D variables, as well as the discussion, is illustrated in Table

16 of the Online Supplement.

3.2.3 Sequences of events

The basic station-based model (1)–(9) implicitly uses event sequence (r+a+d), where the three events

are assumed to occur simultaneously. We now show how this model can be modified to take into

account the different sequences of rebalancing, rental, and return events. We give several sequence

examples which perform well in the following experiments or are used in the literature.
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(r)(a)(d): Since the rebalancing operations performed by the vehicles occur at the beginning of

each time-period, Constraints (13)–(16) need to be added, in order to ensure that arrivals consider the

rebalancing and departures consider both rebalancing and departures.∑
v

r+,t
s,v ≤ dts ∀ s ∈ S, t ∈ T (13)∑

v

r−,t
s,v ≤ Cs − dts ∀ s ∈ S, t ∈ T (14)

x+,t
s ≤ dts −

∑
v

r+,t
s,v +

∑
v

r−,t
s,v + x−,t

s ∀ s ∈ S, t ∈ T (15)

x−,t
s ≤ Cs − dts +

∑
v

r+,t
s,v −

∑
v

r−,t
s,v ∀ s ∈ S, t ∈ T (16)

(r)(d)(a): Since rebalancing occurs first, we require Constraints (13) and (14). In order for bike

rentals to consider the previous rebalancing, we further require Constraints (17). Finally, bike returns

are already correctly implemented due to Constraints (3) and (6).

x+,t
s ≤ dts −

∑
v

r+,t
s,v +

∑
v

r−,t
s,v ∀ s ∈ S, t ∈ T (17)

(r)(a+d): Here, we use Constraints (13) and (14) since vehicles operate at the beginning of each

period. The restrictions related to the rentals and returns are already satisfied by Constraints (3) and

(6). The constraints required for all remaining event sequences can be found in Appendix 3 of the

Online Supplement.

4 Dynamic rebalancing evaluation framework

Evaluation framework for rebalancing strategies. The framework used to obtain rebalancing strate-

gies for given problem instances and to evaluate their estimated performance in practice is visualized

in Figure 2. The input set contains the trip demand with exact time-stamps, referring, for example,

to historical days with similar demand patterns (e.g., weekdays).

In order to analyze the effect of the various modeling assumptions in a controlled environment,

we first generate synthetic problem instances, including a station network along with probability

distributions of trip demand over a specified time horizon (in our case one day). For each problem

instance, an input set and a test set are sampled, containing a certain amount of days of trip demands.

The deterministic optimization model then receives as input the expected trip demand (i.e., a single

demand scenario). While this point estimate may be provided by a predictive model, we here refrain

from using a predictive model to focus on the impact of the modeling assumptions without potential

interference from prediction errors. Instead, we compute the expected demand by averaging over the

demand (for each time-period and station) of all days in the input set. Note that, if a stochastic

(scenario-based) model was used, each scenario would contain the trip data of a different day.

The rebalancing strategies obtained from the optimization model are then applied to a simulated

BSS, which aims at realistically estimating the performance (e.g., the lost demand) of the planning

solutions on the various trip demand days within the test data set.

We also define an optimization-simulation-gap, representing the difference between the number of

successful trips in the deterministic optimization model and the average number of successful trips

simulated on each day in the input set. This gap therefore estimates the deviation from reality, largely

explained by the temporal aggregation of the optimization model versus a FIFO policy that applies in

reality.
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Figure 2: Evaluation framework for dynamic rebalancing strategies

Specifically,
(
|
∑

t,s x
+,t
s − x̄+,t

s |
)
/
(∑

t,s x̄
+,t
s

)
and

(
|
∑

t,s x
−,t
s − x̄−,t

s |
)
/
(∑

t,s x̄
−,t
s

)
compute the

relative gaps of rentals and returns, respectively, over the entire planning horizon and all stations, where

x+,t
s / x−,t

s are rentals/returns as computed by the optimization model and x̄+,t
s / x̄−,t

s are the average

number of successful rentals/returns within the simulator.

Fine-grained simulator. Using a simulator to evaluate the performance of the proposed rebalancing

strategies has been a common approach in the literature [13, 30]. Most simulators, however, aggre-

gate the entire demand of each time-period, therefore allowing return demand to cancel out rental

demand (and vice-versa). This is overly optimistic and deviates from the first-arrive-first-serve policy

in practice. The required operating time for rebalancing is also typically ignored.

Aiming at a more realistic evaluation, we develop a discrete-event simulator taking into account

more realistic operational BSS mechanisms. Each time-period used in the optimization model (span-

ning 30 or 60 minutes) is further discretized into 1-minute time-slots (which is sufficiently fine-grained

to be considered real-time in practice). We consider both users’ behaviors (rentals and returns) and

trucks’ operations (pick-ups and drop-offs) as discrete events, each of which is associated with a specific

1-minute time-slot. Rebalancing operations may occur in parallel to rentals and returns and depend

on the time the truck arrives at the station. Customer trips and rebalancing operations are therefore

considered in chronological order.

For ease of presentation, the operation mode of the simulator is now described verbally. First,

the simulator initializes the station and vehicle inventories according to the input data. Each rental

demand is associated with its respective 1-minute time-slot. Pick-up and drop-off attempts for the

first time-period are associated with their respective time-slot, taking into consideration the time to

load/unload bikes on/from the truck.

The simulator then scrolls through the time-slots minute by minute, attempting to perform all

scheduled events for that time-slot. The operating rules in this iterative process can be summarized

as follows: (i) A rental demand is satisfied if the station holds at least one bike. In this case, a

return demand is created for the destination station and associated with a future time-slot based on

an estimated travel time. If station inventory is insufficient, the rental demand is counted as lost. (ii)

Analogously, a return demand is satisfied if a free dock is available. Otherwise, the bike is returned to

the nearest station with an available dock. However, this return demand is then counted as lost. Note

that lost returns can only occur if the corresponding rental demand was successful. (iii) Drop-off and

pick-up attempts from rebalancing operations are carried out as best as the available inventory and

available docks at the stations and the vehicles allow. (iv) Once a truck has finished the rebalancing

attempt, it departs to the next station as prescribed by the planning solution for the next time-period.

The arrival event is scheduled for a future time-slot based on the estimated travel time of the vehicle.
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(v) Once a truck arrives at a new station, it is assumed to immediately start the rebalancing operations.

However, rebalancing will not start before the first time-slot associated with the current time-period.

A pseudo-code of the simulator, along with a technical description can be found in Appendix 5 of

the Online Supplement.

5 Computational experiments

We now report on different sets of computational experiments on both synthetic and real-world data

to systematically explore the impact of the various modeling assumptions, based on the evaluation

framework we proposed in Section 4.

In Section 5.1, we first elaborate on the synthetic problem instances used throughout the majority

of our experiments. In Section 5.2, we compare dynamic and static rebalancing, as well as the usage of

different variable types. Section 5.3 focuses on the impact of time discretization and time constraints.

Section 5.4 analyzes the importance of the various trip distribution constraints. In Section 5.5, we

cross-test whether the previous findings still hold when different variable domains are used. Section 5.6

focuses on the impact of the assumed event sequence. Finally, Section 5.7 empirically validates a variety

of such modeling assumptions on real-world data from the Montreal bike-sharing system.

5.1 Generation of synthetic data and computing environment

Even though we have access to real-world trip data from different BSSs, the majority of our experiments

are based on synthetically generated instances for a variety of reasons. First, the unobserved demand

makes it difficult to obtain accurate rebalancing strategies and evaluate their performance. Second,

existing data often contains errors and noise concerning trip and station inventory. Third, rebalancing

operations carried out in the BSS alter station inventories, but existing data sets do not provide reliable

data on the rebalancing carried out. We therefore develop an instance generator that aims at generating

realistic instances with BSS networks of different sizes and characteristics, as well as trip data that is

coherent with trips observed in reality (see details in Appendix 4 of the Online Supplement). Note,

however, that we validate the most relevant conclusions within a case study based on real-world data

in Section 5.7.

For the purpose of our study, we only focus on weekdays, since they have similar demand patterns

for work-related trips and demand tends to be much higher than on weekends. We divide the entire

daily trip demand into four types. People who live outside city centers and work inside city centers

typically use similar origin (outside city centers) and destination stations (within city centers) during

peak hours. These trips are denoted as OI trips. Trips of people who live and work outside the

centers are referred to as OO trips. In contrast to work-related OI and OO trips, RD trips refer to

random trips occurring during the day and RN trips refer to random trips during the night. Such

random trips do not have the same origin and destination stations. The departure time for each

trip type is characterized by a Beta distribution (see Appendix 4.2 of the Online Supplement). The

average demand per 30-minute duration for weekdays of one week in July 2019 at BIXI is visualized

in Figure 3(a). For comparison, the trip demand averaged over 500 days as generated by our instance

generator is displayed in Figure 3(b) and shows a similar pattern as the trip demand observed at BIXI.

We generate 3 ground truths with different station networks. For each ground truth, we generate 5

instances with the proportions for the four trip types. For each instance, we generate 5000 weekdays,

from which a single expected demand is computed for each time-period and station as input for the

optimization model. We then generate 1000 weekdays of trips as test data, on each of which the

planned solution will be simulated. Table 5 shows the characteristics of the 3 ground truths. The

percentage of stations within the city centers and those associated with each trip type are indicated

in rows 2 to 5. Ground Truth 3 (GT3) has more work-related trips, compared to Ground Truth 1
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(GT1). Ground Truth 2 (GT2) has two city centers under the same trip pattern as GT1. A detailed

description can be found in Appendix 4.3 of the Online Supplement.

Figure 3: Total rental and return demand over 24 hours (48 time-periods) : (a) Average weekday demand at BIXI ; (b)
Average demand in the synthetic instance GT1 (Sample of 500 days)

.

Table 5: The parameters for the ground truths

GT1 GT2 GT3

Station
Network

Number of city centers 1 2 1
City center capacity 26% 35% 26%

Trip
Pattern

OI 32% - β(3, 8) 32% - β(3, 8) 55% - β(3, 8)
OO 32% - β(3, 7) 32% - β(3, 7) 25% - β(3, 7)
RD 23% - β(3, 7) 23% - β(3, 7) 15% - β(3, 7)
RN 13% - β(6, 8) 13% - β(6, 8) 5% - β(6, 8)

Our optimization models are solved by IBM ILOG CPLEX on 2.70 GHz Intel Xeon Gold 6258R

machines with 8 cores. The stopping criterion for the optimization model is a MIP optimality gap of

0.01% and a maximum running time of 24 hours. In the following, we will report results for GT1 and

GT2. While GT3 has been harder to solve, its results demonstrated the same conclusions. Detailed

results can be found in Appendix 6 of the Online Supplement.

5.2 Impact of initial station inventory and trip variable types

To quantify the impacts of the initial inventory at stations, we define two baselines as the pre-allocated

inventory.

• Baseline 1: Inventory proportional to rental demands without rebalancing. The initial

inventories of stations at the beginning of a day are set to predefined levels proportional to the

rental demands of the first time-period in the planning horizon. We round the values to the

closest integer, respecting the station capacities and the total number of bikes available in the

system.

• Baseline 2: Static rebalancing only. The optimal static rebalancing is obtained by solving

the problem given by (30)–(34) in Appendix 6.2 of Online Supplement, where the inventories for

the first time-period are decision variables that sum to the total number of available bikes in the

system.

In the following, we set the initial inventory of the stations according to these two baselines in the

optimization model and run our simulator without dynamic rebalancing for all 3 ground truths. We

consider a planning horizon from 6 a.m. to 1 p.m. (i.e., 7 hours) and divide the planning horizon into

14 time-periods with a length of 30 minutes each. We calculate the average rental and return demands

for each instance over the input set at each station of each time-period. Rebalancing strategies are

obtained through the optimization model and then applied in the simulator to estimate the lost demand

on the test set.
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Table 6 summarizes the results for GT1 and GT2. The results for GT3, as well as for the O-D

variables can be found in Appendix 6.2 of the Online Supplement. We report the optimal value of

the objective function as ‘O.F. Value’ and the running time of the optimization model as ‘Opt. Time’

in minutes. The ‘MIP gap’ refers to the optimality gap as reported by CPLEX when the stopping

criterion is reached. The lost demand is computed as the relative gap between successful trips and the

original demand specified in the problem instances. To be specific,
∑

s,t(f
+,t
s −x̂+,t

s )∑
s,t f

+,t
s

defines the lost rental

demand over the entire planning horizon, where x̂+,t
s is the number of successful rentals in simulator.

Similarly, the lost return demand is computed as
∑

s,t(x̂
+,t
s −x̂−,t

s )∑
s,t x̂

+,t
s

, where x̂−,t
s is the number of successful

returns in simulator. Since, in practice, return demand does not exist when the corresponding rental

demand is unsuccessful, the lost returns are only associated with successful rentals x̂+,t
s . Lost return

demand has to be interpreted critically since the relative lost return may be high when the lost rental

is low (which doesn’t indicate a low-quality planning solution). In our result analysis, we, therefore,

emphasis on the lost rental.

For each ground truth, the initial inventory observed from Baselines 1 and 2 is directly applied

to the simulator without any rebalancing operations, whose average lost demand over 5 instances is

reported as ‘Baseline 1/2 without rebal.’.

Table 6: Station-based model with baseline 1 and baseline 2 (60 stations, 4 trucks, 30 mins)

Baselines, Configuration,
Trip Modeling

O.F.
Value

Opt.
Time (mins)

MIP
Gap (%)

Lost Demand (%)

Rental Return

GT1

Baseline 1 without rebal. - - - 26.05 10.27
Baseline 2 without rebal. (static) - - - 10.40 11.79
Baseline 1 dyn.rebal. station-based 44.2 1440 0.10 11.11 2.12
Baseline 2 dyn.rebal. station-based 0.8 < 1 0.00 8.78 7.99

GT2

Baseline 1 without rebal. - - - 21.22 6.85
Baseline 2 without rebal. (static) - - - 11.61 3.18
Baseline 1 dyn.rebal. station-based 6.4 294 0.01 11.22 1.78
Baseline 2 dyn.rebal. station-based 0.5 < 1 0.00 9.46 1.78

According to the first two rows for each GT in Table 6 (baselines without rebalancing), the initial

station inventory seems important to the performance of the BSS. Compared to Baseline 1, static

rebalancing (Baseline 2) can significantly improve the lost demand. However, static rebalancing is still

insufficient to meet customer demand.

Based on the initial station inventory from Baselines 1 and 2, rows 3-4 for each GT compare

the impact of the two different strategies with additional dynamic rebalancing. For the dynamic

rebalancing, we use model (1)–(9) without trip distribution and time constraints.

The lost rental is improved when dynamic rebalancing is applied. The performance of dynamic

rebalancing varies substantially between the two baselines, which highlights the importance of optimiz-

ing the initial station inventory before the dynamic rebalancing. For GT1, the lost rental for dynamic

rebalancing with Baseline 1 is higher, leading to a decrease in actual return demands. Given that we

only consider lost returns for successful rentals, it is possible that the relative lost return is small when

the relative lost rental is high (i.e., only a few successful rentals).

Since strategies based on Baseline 2 outperform those based on Baseline 1, in the following ex-

periments, we will use Baseline 2 to define the initial inventory of each station. Note that we use

pre-defined initial locations and inventories for trucks because previous experiments have shown that

such assumptions do not affect the performance (see Appendix 6.1 of Online Supplement for details).
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5.3 Impact of time discretization and time constraints

We now explore the impact of the length of time-periods and the use of time constraints. We consider

two lengths of time-periods: 30-minute and 60-minute, and with or without time constraints. The

comparative results for station-based trip variables are summarized in Table 24. The results of similar

experiments using O-D variables can be found in Appendix 6.3 of the Online Supplement.

Table 7: Station-based model with/without time constraints in 30/60 mins (60 stations, 4 trucks)

Time
Period (mins)

Time
Constraints

O.F.
Value

Time
(mins)

MIP
Gap (%)

Lost Demand (%) Opt-sim-gap (%)

Rental Return Rental Return

GT1

30 No 0.8 < 1 0.00 8.78 7.99 9.62 15.88
30 Yes 0.9 69 0.00 8.13 6.06 8.84 12.69
60 No 9.5 < 1 0.00 8.50 4.39 8.52 11.24
60 Yes 9.5 2 0.00 8.73 5.85 8.80 13.27

GT2

30 No 0.5 < 1 0.00 9.46 1.78 10.42 9.21
30 Yes 0.5 28 0.00 8.48 1.90 9.24 8.18
60 No 10.4 < 1 0.00 9.72 1.20 9.88 8.90
60 Yes 10.5 1 0.00 9.63 1.40 9.76 9.02

As shown in Table 24, 30-minute time-periods allow for more rebalancing operations within the

optimization model, leading to smaller optimal objective function values than those for cases with 60-

minute time-periods. Note again, that in our simulator, we postpone the rebalancing operations if the

truck cannot reach the station in time due to long relocation distances. Using 30-minute time-periods,

the lost rental without time constraints may therefore be worse than in the case of 60-minute time-

periods. Coherently, time constraints with 30-minute time-periods give the best overall performance.

Thus, if we have a tolerance for optimization time and the distances between stations tend to be large,

a short time-period (30 mins) with time constraints seems beneficial. For longer time-periods, time

constraints do not seem necessary. Using the model with O-D variables, we reach similar conclusions

(see Appendix 6.3 of the Online Supplement).

5.4 Impact of trip distribution constraints

We implement optimization models with various TD constraints as discussed in Section 3.2 for station-

based trip variables with Baseline 2. The results of station-based trip variables are shown in Table 8.

The results of O-D variables can be found in Table 28 of the Online Supplement.

Table 8: Station-based model with different trip distribution constraints (60 stations, 4 trucks, 30mins)

Constraints
O.F.
Value

Time
(mins)

MIP
Gap (%)

Lost Demand (%) Opt-sim-gap (%)

Rental Return Rental Return

GT1

(TD1) 600.3 1440 1.41 3.65 6.34 0.56 40.07
(TD6) 137.7 < 1 0.00 9.94 11.22 5.89 14.28
(TD3)+(TD6) 240.3 < 1 0.00 8.61 6.56 0.01 2.35
(TD3)+(TD4) 170.5 1440 0.13 6.15 1.57 0.11 1.82
None 0.8 < 1 0.00 8.78 7.99 9.62 15.88

GT2

(TD1) 588.6 1440 1.48 4.78 1.76 1.20 40.70
(TD6) 101.3 < 1 0.00 10.86 3.21 8.40 7.45
(TD3)+(TD6) 165.0 < 1 0.00 8.68 2.08 3.14 0.94
(TD3)+(TD4) 150.0 1440 0.06 7.34 1.20 2.05 0.56
None 0.5 < 1 0.00 9.46 1.78 10.42 9.21

According to Table 8, the use of Constraints (TD1) performs best in terms of lost rental for both

input and test sets even if optimality has not been proven within 24h. This suggests that (TD1)

reflects the flow of rentals more realistically as also shown by the low rental Opt-sim-gap. Since (TD1)
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imposes a strict restriction for returns, the lost return of the optimization model is quite high, and

lost rental is low. That leads to a small opt-sim-gap for rental but a large one in return. Constraints

(TD3)+(TD4) also provide a good performance. Both sets of Constraints (TD1) and (TD3)+(TD4)

include the proportionality characteristics of the trip flow. They improve performance, but they require

longer computing times.

Based on these experimental results, in the following, we will restrict our analysis to station-based

variables with (TD1), (TD3)+(TD4), and (None).

5.5 Impact of variable domains

If the variable domains were selected such that they represent more realistically the BSS operations,

trip variables would be binary, while station and vehicle inventory, as well as the rebalancing variables,

would be integer. However, using such variable domains may result in models that may be difficult to

solve and restricted by certain trip distribution constraints, severely underestimating successful trips.

We now explore the impact of using different variable domains. In our models, routing variables zts,t
are always binary. Let variables dtv, r

+,t
s,v , and r−,t

s,v be referred to as rebalancing variables and variables

dts, x
+,t
s , and x−,t

s be referred to as station variables. In the previous experiments, both rebalancing

and station variables have been continuous, which we denote as an All-continuous model. Here, we also

consider the other two cases: the All-integer model and the Partially-integer model. In the All-integer

model, both rebalancing and station variables are integers. In the Partially-integer model, the station

variables are continuous, while the rebalancing variables are integers.

Table 9: Station-based model with different variable domains and trip distribution constraints for GT1 (30 stations, 2
trucks, 30 mins)

Variable
Domains

Constraints
O.F.
Value

Time
(mins)

MIP
Gap (%)

Lost Demand (%) Opt-sim-gap (%)

Rental Return Rental Return

All-continuous
(TD1) 262.7 1440 0.18 2.93 1.86 0.82 43.73
(TD3)+(TD4) 82.7 19 0.00 6.00 0.87 1.62 2.86
None 0.5 < 1 0.00 8.95 4.73 9.83 11.80

Partially-integer
(TD1) 263.6 1440 0.33 2.95 1.29 0.75 44.11
(TD3)+(TD4) 82.8 50 0.00 5.78 1.47 1.96 2.32
None 0.5 < 1 0.00 6.72 3.56 7.20 7.81

All-integer
(TD1) 656.5 140 0.08 3.89 4.62 30.43 81.39
(TD3)+(TD4) 408.3 < 1 0.00 9.22 1.96 29.56 29.60
None 380.5 < 1 0.00 10.50 7.65 24.88 22.36

Since the optimization models with 60 stations and trip distribution constraints (TD1) and (TD3)+

(TD4) cannot be solved within the given time limit, we also carry out experiments with the 30-station

network to reliably explore the impact of such constraints coupled with different variable domains.

Specifically, we consider two ground truths with 30 stations using the same configurations as GT1 (see

Table 5).

The results of the corresponding experiments for GT1 under different trip distribution constraints

are summarized in Table 9. Surprisingly, the All-integer model is more tractable. Although we have

not conducted a complete analysis of this behavior, we observed that more cuts are generated by

CPLEX for the All-integer model, which helps in improving the dual bound.More precisely, under

Constraints (TD1), three of the five instances of the All-integer model are solved to optimality within

24 hours. For the All-continuous and Partially-integer models under Constraints (TD1), none of the

instances has been solved to optimality within the time limit. However, the MIP gaps are relatively

small. As previously concluded from Table 8, we again observe that Constraints (TD1) provide the

lowest lost demand, and this is consistent for all types of variable domains. In terms of the performance

for different variable domains, even though it is fast to solve, the All-integer model provides the worst

performance, which indicates that restricting station variables to integer values may result in too
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conservative trips. The Partially-integer model introduces an improvement and performs best in most

of the cases, especially with constraints (TD3)+(TD4) and (None). The results for O-D variables can

be found in Appendix 6.4 of the Online Supplement.

5.6 Impact of event sequences

Recall that using no particular event sequence, which equals (r+a+d), within the All-continuous

station-based model without trip distribution constraints yields an average rental loss of 8.78% on the

test set of the 60-station network instances (see Table 8). Based on the model (1)–(9) with continuous

variables and the event sequences reviewed in Section 3.2.3, we now analyze the impact of such event

sequences for problem instances on the 60-station network in Table 10.

Table 10: Station-based model with different sequences of events (60 stations, 4 trucks, 30 mins)

Sequences
of events

O.F.
Value

Time
(mins)

MIP
Gap (%)

Lost Demand(%) Opt-sim-gap(%)

Rental Return Rental Return

GT1

(r)(a)(d) 1.0 288 0.00 7.91 5.22 8.62 1.39
(a)(d)(r) 3.3 298 0.00 7.64 4.63 8.19 11.83
(d)(r)(a) 13.4 1399 0.04 6.02 5.81 5.38 9.89
(r)(d)(a) 8.2 1013 0.03 5.61 3.26 5.36 6.53
(d)(a)(r) 15.1 879 0.01 6.40 3.48 5.70 7.65
(a)(r)(d) 2.0 < 1 0.00 7.51 2.79 8.12 8.04
(r)(a+d) 0.8 < 1 0.00 8.49 6.86 9.28 14.12
(a+d)(r) 1.6 < 1 0.00 7.42 6.92 7.98 12.87

GT2

(r)(a)(d) 3.2 288 0.00 8.05 3.61 8.71 9.35
(a)(d)(r) 1.9 864 0.49 8.33 5.11 8.98 11.55
(d)(r)(a) 17.5 1440 0.16 6.75 5.51 5.88 10.14
(r)(d)(a) 11.9 1440 0.08 6.39 3.79 5.93 7.77
(d)(a)(r) 20.0 1341 0.13 6.38 3.77 5.26 7.74
(a)(r)(d) 3.8 < 1 0.00 7.87 1.93 8.50 7.25
(r)(a+d) 0.7 < 1 0.00 8.40 3.29 9.15 9.63
(a+d)(r) 1.9 576 0.03 7.98 3.66 8.53 9.56

Sequences (d)(r)(a), (r)(d)(a), and (d)(a)(r) perform best for lost rental and return with a small

opt-sim-gap. Although GT3 instances are hard to solve, these three sequences still perform well (see

Table 30 in Appendix 6.5 of Online Supplement). In contrast, the sequences used in the literature (i.e.,

(r+a+d), (a)(r)(d), and (a+d)(r)) have performed less well in our experiments. Instead, sequences

(d)(r)(a), (r)(d)(a), and (d)(a)(r) may be a better choice, reducing lost rental by an additional 1%-2%.

Table 11 shows the results of the same experiments for the problem instances on a 30-station

network and 60-minute time-periods. Here, all instances have been solved to optimality and lead

to the same conclusions. Particular sequences help reduce the lost rental: sequences (d)(r)(a) and

(r)(d)(a) reduce the lost rental to around 7.45% from 9.12% in the test set.

In Section 5.4, we have concluded that it is beneficial to use trip distribution constraints (TD1)

when no particular event sequence is used. The results discussed above suggest that it is beneficial to

use a specific event sequence, such as (r)(d)(a) when no trip distribution constraints are used.

We now explore the combination of those two modeling assumptions and further backtest on dif-

ferent variable domains. To this end, Table 12 summarizes the results for GT1 problem instances

on the 30-station network using trip distribution constraints (TD1) and various event sequences for

All-continuous and Partially-integer variable domains. The models for both variable domains seem

to perform similarly well in terms of lost rentals, while the All-continuous models tend to be solved

faster.

When comparing with the results in Table 11, the introduction of Constraints (TD1) further de-

creases the lost rental for any of the event sequences. However, the improvement for (r+a+d) is
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the highest, indicating that using Constraints (TD1) without any specific event sequence may be the

best option if the longer computing time is acceptable. Operators may therefore opt for event se-

quence (r)(d)(a) with all-continuous variables without trip distribution constraints if a quick solution

is required, or Constraints (TD1) without a specific event sequence if higher computing times can be

tolerated.

Table 11: Station-based model with different sequences of events (30 stations, 2 trucks, 60 mins)

Sequences
of events

O.F.
Value

Time
(mins)

MIP
Gap (%)

Lost Demand (%) Opt-sim-gap (%)

Rental Return Rental Return

GT1

(r)(a)(d) 10.4 < 1 0.00 8.95 2.09 8.83 7.94
(a)(d)(r) 15.0 < 1 0.00 9.38 1.37 8.47 7.63
(d)(r)(a) 37.7 < 1 0.00 7.43 1.23 1.22 6.01
(r)(d)(a) 33.1 < 1 0.00 7.45 1.10 1.93 6.10
(d)(a)(r) 42.1 < 1 0.00 7.89 1.81 1.04 7.00
(a)(r)(d) 11.3 < 1 0.00 8.62 1.92 8.29 7.34
(r)(a+d) 5.3 < 1 0.00 9.81 2.08 9.89 9.94
(a+d)(r) 9.8 < 1 0.00 9.53 2.48 8.72 10.05
(r+a+d) 5.3 < 1 0.00 9.12 2.55 9.07 9.76

Table 12: Station-based model with (TD1) and sequences of events (30 stations, 2 trucks, 60 mins, GT1)

Sequences
of events

O.F.
Value

Time
(mins)

MIP
Gap (%)

Lost Demand (%) Opt-sim-gap (%)

Rental Return Rental Return

All-continuous

(r)(d)(a) 499.4 22.9 0.00 6.62 4.09 14.36 65.34
(d)(a)(r) 515.1 7 0.00 6.78 5.66 16.50 65.35
(a+d)(r) 503.4 6 0.00 7.10 5.14 14.33 65.12
(r+a+d) 485.5 237.16 0.00 6.32 3.87 12.37 65.22

Partially-integer

(r)(d)(a) 500.1 18 0.00 6.72 3.22 14.41 65.62
(d)(a)(r) 515.6 5 0.00 6.73 6.32 16.69 65.08
(a+d)(r) 504.1 7 0.00 6.97 6.59 14.57 64.65
(r+a+d) 485.9 440.67 0.00 6.64 3.74 12.15 65.13

5.7 Case study on BIXI Montreal data

We now validate our previous findings by means of a case study based on real-world data from BIXI

Montreal [38].

Data preprocessing. We focus on the 2019 season. To ensure a coherent association of historical ar-

rivals and rentals to the given station IDs, we first discarded stations that changed locations throughout

the 2019 seasons by more than 1 km (which is common given that the operator relocates stations due

to events, construction, or holidays). The resulting network contained 606 stations, which, obviously,

would result in optimization models that are too large to solve directly. Given that vehicle relocation

is time-consuming, efficient rebalancing solutions typically relocate locally rather than over large dis-

tances. It is therefore reasonable to assume that the network can be subdivided into sub-clusters [see,

e.g., 35, 39, 40, 41, 42, 43, etc.].

To this end, we first cluster stations via k-means based on demand pattern similarity [see, e.g.,

35, 40, 42], ensuring the inclusion of city center stations and work-related trips. Similar to [39], we

also limit the maximal distance between stations that belong to the cluster, which is motivated by the

fact that the vehicles only travel within one cluster. We selected a cluster with 53 stations distributed

around the downtown and Plateau areas (see Figure 4), which has approximately the same number of

total rentals and returns [28] (a requirement, which is obviously satisfied in closed BSSs systems).

We focus on days with high demand, i.e., weekdays within the summer season of 2019, which have

therefore not been affected by the COVID-19 pandemic. Outlier days with extremely low numbers of
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trips (e.g., due to bad weather or special events) are excluded, resulting in a total of 50 days. Aligned

with the experiments on synthetic problem instances, we here consider a planning horizon from 7 a.m.

to 2 p.m. (7 hours) with 14 time-periods, each of which spans 30 mins.

Figure 4: Considered station cluster from BIXI Montreal (generated through Google Maps [44])

Empirical results. With the objective of validating the most relevant conclusions drawn from the

experiments on synthetic problem instances, we here use the station-based model. As opposed to

O-D variables, the use of station-based rental and return variables x+,t
s and x−,t

s also enables us to

aim at capturing trips to and from all stations in the original network, not only those included in

the considered cluster. We further focus on the impact of variable domains, the event sequences, and

the best-performing trip distribution constraints (TD1). Note that the use of time constraints is not

necessary, given that all stations within the clusters are located sufficiently close to each other.

Trip constraints (TD1) consider the proportion of successful rentals that depart from any sta-

tion to a specific station. Given that our model only uses stations within the considered cluster

C ⊂ S, this proportion cannot be computed. We may rewrite the right-hand side of (TD1) as∑t2−1
t=0

∑
s∈C x+,t

s

F t,t2
s,s2

f+,t
s

+
∑t2−1

t=0

∑
s∈S\C x+,t

s

F t,t2
s,s2

f+,t
s

, where the first term accounts for successful trips

from within the cluster, and the second term refers to rentals from stations outside the considered

cluster. We replace x+,t
s (s ∈ S \C) by f+,t

s (s ∈ S \C) within the second term, therefore optimistically

assuming that rentals outside the cluster are all satisfied. The adapted trip constraint then writes as

follows:

x−,t2
s2 ≤

t2−1∑
t=0

∑
s∈C

x+,t
s

F t,t2
s,s2

f+,t
s

+

t2−1∑
t=0

∑
s∈S\C

F t,t2
s,s2 ∀ s2 ∈ C, t2 ∈ T.

Table 13 summarizes the results of the corresponding experiments. Here, Baseline 2 refers to the

model that only carries out (overnight) static rebalancing (see Section 5.2). In contrast to the results

on synthetic problem instances, the improvement through dynamic rebalancing (as opposed to Baseline

2 only) is not impressive when no trip distribution constraints are used. The small improvement may

be explained by the fact that the here-considered real-world data only contains successful trips. All

other observations are well aligned with the results for synthetic instances. Using partially-integer

variable domains without trip distribution constraints and without a specific event sequence reduces

the estimated lost demand (compare Table 9). Further, the use of adapted trip distribution constraints
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(TD1) positively impacts lost demand (compare Table 9, and Tables 11 and 12). Interestingly, the

combination of using partially-integer domains with trip constraints seems particularly effective on

real-world data, providing the lowest lost demand among all configurations. Finally, event sequences

(r)(d)(a) and (d)(a)(r), which have been found to be among the best-performing sequences on synthetic

instances, here also perform well with both all-continuous variables and partially integer variables in

lost rental and return without trip distribution constraints. Finally, we note that all models have been

solved to optimality within 1 minute, which is, of course, sufficiently fast for use in practice.

Table 13: Station-based model (53 stations, 4 trucks, 30 mins, 50 days high demand, Baseline 2)

Sequences
of events

(TD1)
O.F.
Value

Time
(mins)

MIP
Gap (%)

Lost Demand (%) Opt-sim-gap (%)

Rental Return Rental Return

Baseline 2 - - - - - 8.32 6.12 - -

All-continuous

(r)(d)(a) 0.0 < 1 0.00 7.43 6.15 20.95 18.04
(d)(a)(r) 0.0 < 1 0.00 7.19 6.13 20.93 18.07
(a+d)(r) 0.0 < 1 0.00 8.32 6.11 20.75 18.05
(r+a+d) 0.0 < 1 0.00 9.42 7.65 20.82 18.30

Partially-integer

(r)(d)(a) 0.0 < 1 0.00 7.54 7.22 20.58 18.55
(d)(a)(r) 0.0 < 1 0.00 7.36 6.14 20.92 18.05
(a+d)(r) 0.0 < 1 0.00 8.32 6.12 20.75 18.05
(r+a+d) 0.0 < 1 0.00 8.32 6.12 20.75 18.05

All-continuous

(r)(d)(a) ✓ 453.4 < 1 0.00 5.70 6.67 20.98 25.50
(d)(a)(r) ✓ 453.4 < 1 0.00 3.88 7.21 20.83 25.29
(a+d)(r) ✓ 453.4 < 1 0.00 5.09 4.99 20.66 25.36
(r+a+d) ✓ 453.4 < 1 0.00 6.31 6.23 20.84 25.29

Partially-integer

(r)(d)(a) ✓ 453.5 < 1 0.00 4.53 6.96 20.91 25.27
(d)(a)(r) ✓ 453.5 < 1 0.00 2.82 6.59 20.60 25.42
(a+d)(r) ✓ 453.4 < 1 0.00 2.89 6.34 20.61 25.25
(r+a+d) ✓ 453.4 < 1 0.00 5.79 6.07 20.70 25.36

6 Conclusions

In this paper, we aimed to disentangle and structure the various modeling assumptions and constraints

used in the literature on Mixed-Integer Programming models for BSSs rebalancing optimization. To

this end, we first surveyed the literature according to modeling techniques and assumptions, with

a particular focus on multi-period models. We then introduced a modeling framework, rooted in a

basic model, and showed how to adapt it to the various modeling assumptions. Finally, we evaluated

the performance of the planned solutions induced by the different model variants as realistically as

possible. Specifically, we generated different ground truths that propose BSSs networks and trip

patterns matching observed trip patterns at BIXI Montreal. We then developed a fine-grained discrete-

event simulator for truck movement, rebalancing operations, as well as bike rentals and returns on a

minute-to-minute basis.

6.1 Summary recommendation

Based on the simulation results on a large set of test instances, we focused on two performance measures

to analyze the appropriateness of the various modeling assumptions: the lost rental and return demand

observed throughout the simulation, and the simulation-optimization-gap that indicates the deviation

between the lost demand observed as estimated by the optimization model and by the simulator.

Extensive numerical experiments on problem instances with networks including 30 and 60 stations and

three different ground truths were carried out. Experiments have also been carried out on real-world

data with 53 stations from the BIXI Montreal 2019 summer season. While one is required to be more

careful when drawing conclusions from such results, given that the observed trip data refers to trips
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satisfied in the past, the corresponding conclusions tend to align. Based on these results, our principal

conclusions can be summarized as follows:

(i) On the synthetic data sets, adding dynamic rebalancing to static rebalancing reduces the lost

rental demand by an additional 2% (e.g., from 10.43% to 8.79% in Table 6).

(ii) Using station-based trip variables instead of more detailed trip variables based on origin-

destination pairs generally appears to be competitive and results in faster solution times.

(iii) Shorter time-periods tend to allow for planning more rebalancing operations but may require

time constraints to ensure that the resulting rebalancing is time-feasible in practice.

(iv) Trip distribution constraints, especially (TD1), reflect more realistically the trip flow observed

in practice and may strongly improve the lost demand on both synthetic and real-world data (e.g.,

from 8.78% to 3.65% in Table 8; from 9.42% to 6.31% in Table 13); further, the best performing trip

distribution constraint(s) are not necessarily those used in the literature.

(v) Using integer variables exclusively for truck routes, while keeping all other variables continuous

(even the pick-up and drop-off decisions in the rebalancing operations) generally approximates reality

sufficiently well; in some specific cases, it is beneficial to impose integrality on the rebalancing variables,

while it does not seem beneficial to use integer variables for all decisions that, in reality, would also be

integer.

(vi) Exploring the various sequences in which bike rentals, bike returns, and rebalancing operations

may occur yields interesting conclusions. In particular, event sequences that have not been studied

in the literature perform particularly well and tend to reduce lost rental by an additional 2% - 3%

(Tables 10 and 11). Coupling specific event sequences, in particular (d)(a)(r), with our proposed trip

distribution constraints (TD1) provides consistently low lost demand in short computing times on both

synthetic and real-world instances.

The optimization model for the real-world problem instance has been solved within 1 minute of

computing time, while the solution time for synthetic instances may vary strongly with the model

configuration. When computing resources are limited and quick decisions are required, using a combi-

nation of trip distribution constraints with one of the newly proposed event sequences, in particular the

above-mentioned combination of (TD1) with sequence (d)(a)(r), seems to be recommended (compare

Table 12).

With unrestricted resources for computing time and memory, we would recommend applying trip
distribution constraints with a short time-period for both synthetic data and real-world data. When

computing resources are limited and quick decisions are required, we recommend introducing event

sequences (r)(d)(a) or (d)(a)(r). Within the experiments on real-world data, partially-integer variable

domains, along with constraints (TD1) and event sequence (d)(a)(r) performed particularly well.

Note that we have used a time limit of 24h in order to be capable of solving the models to optimality,

allowing us to draw conclusions on their degree of realism and potential performance in practice.

Solving models multiple times throughout the day (albeit over a smaller time horizon) in sufficiently

short computing times may require the use of parallel computing, specialized solution methods (e.g.,

mathematical decomposition), or a combination of both.

6.2 Future work

Having explored the different modeling assumptions and techniques both from methodological and

empirical standpoints, this work aimed at shedding light on the modeling jungle and guiding both

practitioners and academics in future research on multi-period rebalancing optimization.

While concepts such as the sequences of events cannot be found in most of the related classical opti-

mization problems, such as the Pickup-and-Delivery Problem, such characteristics are not exclusive to
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BSSs. Indeed, any planning problem in which the interaction between customers and system operator

is aggregated in discretized time-periods (e.g., car-sharing, multi-mode transportation planning with

synchronization) may exhibit similar event sequences, which may be worth studying.

Certain future research directions may be particularly worthwhile. First, while we have identified

the formulations that are likely to provide well-performing planning solutions, solving those models

in real-time throughout the day may be challenging; therefore, decomposition algorithms may be

employed to speed up the solution time. Second, the proposed models minimize total lost demand.

Certain BSS operators consider target intervals, which may be interesting to consider within the

objective function.

Finally, while we have intentionally focused on the deterministic planning problem which assumes as

input a single set of customer demands, some of our conclusions may also hold for models that consider

several demand scenarios simultaneously. Models explicitly considering the underlying uncertainty and

demand probability distribution are worthwhile research directions, in particular for the model variants

that have shown to be more realistic here.

Appendix

1 Other assumptions and objective functions

1.1 Initial location and inventory of vehicles

At the beginning of the planning horizon, vehicles are located at specific stations or a depot with a

predefined inventory. Existing works assume that the initial locations and inventories of vehicles are

always known and fixed [see, e.g., 8, 9, 14]. The total number of available bikes for rebalancing may

be uniformly or arbitrarily assigned to each vehicle. In contrast, some studies, such as [10] and [31],

consider a depot and use it as the initial location of the vehicles.

Intuitively, better solutions may be obtained if the model can explicitly decide on the initial location

and inventory of the vehicles [see, e.g., 29].

We numerically explore the impact of these initial settings. Given that these settings rather concern

the definition of the planning problem, but not the modeling assumptions, the surrounding discussions

can be found in Appendix 6.1. Throughout all other experiments, we applied fixed vehicle location

and inventory as it has been common in the literature.

Finally, to summarize the various modeling assumptions used for the existing multi-period models

in the literature, Table 14 classifies the existing works by their various alternatives.

1.2 Objective functions

Decision-makers may have different objectives for their rebalancing strategies. The most common

objective for dynamic rebalancing is to minimize lost demand, which is used within our experiments.

The objective is part of the problem definition and not within the scope of our paper. Further, models

with different objectives are difficult to compare directly. Therefore, we refrain from evaluating the

impact of using different objectives in this paper.

We summarize the various objectives in Table 15, classifying the measurements into several main

aspects and marking with ’✓’ when the objective function of the corresponding reference contains a

particular aspect. We also emphasize the modeling techniques the analyzed papers used to respect the

rebalancing problem, mainly including Linear Programming (LP), MILP, Mixed-integer Nonlinear Pro-

gramming (MINLP), Constraint Programming (CP), Neural Networks (NN), and MDP. Some models

may be non-linear since they have non-linear terms in the objective function or in some constraints.
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Table 14: Modeling assumptions in MIP-based multi-period rebalancing models

References
Time
Constraints

Initial Location
and Load of Trucks

Trip
Distribution

Sequences
of Events

Variable
Type

T
ra
ve
li
n
g

H
an
d
li
n
g

F
ix
ed

F
le
xi
b
le

P
ro
p
or
ti
on
al
it
y

P
oi
ss
on

[8] ✓ ✓ (r+a+d) Station-based
[9] ✓ ✓ (r+a+d) O-D
[13, 30] ✓ ✓ ✓ (a)(r)(d) Station-based
[10] ✓ ✓ ✓ (a+d)(r) Station-based
[14] ✓ ✓ ✓ (a)(d+r) Station-based
[29] ✓ ✓ (r+a+d) O-D
[36] ✓ ✓ ✓ ✓ (r+a+d) O-D
[31] ✓ ✓ ✓ (r)(a+d) Station-based
[27] ✓ ✓ (r+a+d) O-D

Concerning the criterion used within the objective function, distance-based metrics are associated

with the traveling distance of vehicles, mainly including traveling cost, traveling time, and fuel con-

sumption. Loading-based metrics are associated with the number of handling (loading/unloading)

operations. Researchers normally consider handling costs or time in the objective functions, which re-

flects the required workload of such operations. Two metrics aim at representing the dissatisfaction of

customers: one minimizes the deviations from a target value, while another minimizes the lost demand

(or, equivalently, maximizes the successful trips). Besides these popular metrics, some other factors

have been considered, such as the cost of holding bikes by rebalancing vehicles, parking costs, CO2

emissions, costs of using trucks (related to the number of trucks employed), and the number of visits

of full vehicle loads. For example, [53] consider the number of bikes held by the trucks during each

rebalancing movement and include the total holding cost in the objective function. [45] add to the

objective the usage cost of employing each truck for rebalancing. [24] add to the objective a parking

time for each station visit using the instances from an operator in Norway. [55] consider only full

rebalancing vehicle loads among stations and maximize the total number of full vehicle loads picked

up and delivered to the stations, which is indicated as the number of visits in Table 15.

Given that SBRP mainly focus on night-time operation scenarios, where the dynamic demand

is less important, their objectives mainly aim at minimizing the costs of the rebalancing operations

based on traveling distance, the number of loading/unloading operations, and deviations from pre-

defined target numbers of bikes (see Table 15. Note that some works exclude the deviation from target

values or satisfied demand from the objectives, but implement particular constraints to guarantee the

satisfaction of user demand to some degree [49, 51, 60, et al.].

In DBRP, rebalancing operations are performed multiple times during the day and real-time trip

flow is considered when rebalancing takes place. Due to the more complex nature of DBRP, their

objectives tend to include more aspects considered by operators, especially concerning the demand

unsatisfaction. Generally, the existing objective functions quantify the distance-based metrics and

customers’ satisfaction, including the traveling cost, handling cost, and lost demand. Some focus on

maximizing the profits of successful trips [e.g. 9]. [36] consider jointly traveling cost and handling

operations, which adds immediate value to the rebalancing. Among the studies considering more than

one aspect in their objective functions, [10] and [36] attribute a weight to each of them.
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2 Proportionality constraints

In the case where O-D variables xt1,t2
s1,s2 are used to represent successful trips, Constraints (TD5) are

automatically guaranteed. The proportional distribution can then be written as

xt1,t2
s1,s2 ≤ abt1s1

F t1,t2
s1,s2

f+,t1
s1

∀ s1, s2 ∈ S, t1, t2 ∈ T. (TD7)

Constraints (TD7) imply that rentals from a station have to respect the transition probability

when rental demand exceeds the number of available bikes at that station. [9] use such constraints

with abt1s1 = dt1s1 .

Note that summing (TD7) over t1 and s1, the left-hand side becomes x−,t2
s2 , which results in (TD3).

Thus, station-based trip variables with proportional distribution and O-D variables with proportional

distribution essentially represent the same type of trip distribution within the model.

For O-D variables in the Practical toy example of Section 3.2.2, the constraints enforcing the flow

to be no more than the demand of each route and the returns to be less than the available docks can

be combined as xt1,t2
s1,s2 ≤ min{F t1,t2

s1,s2 , ad
t2
s2}. To facilitate the comparison of the solutions, we present

the solution [xt1,t2
s1,s3 , x

t1,t2
s1,s4 ] of the O-D variables model in the equivalent format of station-based trip

variables, e.g., x+,t1
s1 = xt1,t2

s1,s3 + xt1,t2
s1,s4 . The results are shown in Table 16.

Table 16: Trip distribution for 3 different demand scenarios under different trip distribution constraints (O-D variables)

Constraints I-I I-S S-I

Ideal solution [*, *, 4, 2] [4, 3, *, *] [*, *, 4, 2]

O-D Variables
Without
(TD7)

[4, 2, x−,t2
s3 + x−,t2

s4 = 6]
[4, 3, x−,t2

s3 + x−,t2
s4 = 7]

xt1,t2
s2,s3 = 1, xt1,t2

s2,s4 = 2
[x+,t1

s1 + x+,t1
s2 = 6, 4, 2]

With
(TD7)

[x+,t1
s1 + x+,t1

s2 = 5, 3, 2]

xt1,t2
s1,s3 = 2, xt1,t2

s2,s3 = 1

[4, 3, 3, 4]

xt1,t2
s1,s3 = 2, xt1,t2

s1,s4 = 2
[x+,t1

s1 + x+,t1
s2 = 6, 4, 2]

For O-D variables, constraints (TD7) mainly work for the case, where the rental demands cannot

be satisfied. [8] applied station-based variable without any trip distribution constraints. [9] use (TD7).

[14] use constraints that are similar to Constraints (TD1).

We give another practical toy example here. The 4 different configurations are shown in Figure 5.

Practical toy example with 3 stations

Figure 5: Trip flow example with 3 stations
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Table 17: Solutions under different circumstances

[x+,t1
s1 , x−,t2

s2 , x−,t2
s3 ] Constraints I-I I-S S-I

Ideal solution [3, 3, 0],[2, 2, 0] [4, 2, 2] [6, 4, 2]

Station-based
variable

without TD [4, 3, 0] [4, 4, 4] [8, 4, 2]
(TD1) [4, 2, 0] [4, 2, 2] [8, 4, 2]
(TD2) [3, 3, 0] [4, 4, 4] [6, 4, 2]

(TD6) [3, 3, 0] [4, x−,t2
s2 + x−,t2

s3 = 4] [6, 4, 2]
(TD1)+(TD2) [0, 0, 0] [4, 2, 2] [4, 2, 2]
(TD1)+(TD6) [0, 0, 0] [4, 2, 2] [4, 2, 2]

(TD2)+(TD6) [3, 3, 0] [4, x−,t2
s2 + x−,t2

s3 = 4] [6, 4, 2]
(TD3) [4, 2, 0] [4, 2, 2] [8, 4, 2]
(TD4) [3, 3, 0] [4, 4, 4] [6, 4, 2]
(TD3)+(TD4) [3, 2, 0] [4, 2, 2] [6, 4, 2]
(TD3)+(TD6) [2, 2, 0] [4, 2, 2] [6, 4, 2]
(TD1)+(TD4) [3, 1.5, 0] [4, 2, 2] [6, 3, 2]
(TD2)+(TD3) [2, 2, 0] [4, 2, 2] [6, 4, 2]

O-D variable
without (TD7) [3, 3, 0] [4, x−,t2

s2 + x−,t2
s3 = 4] [6, 4, 2]

(TD7) [2, 2, 0] [4, 2, 2] [6, 4, 2]

As we can see from Table 17, constraints (TD2) add a strict limitation to the trip flow when there

is no dock available in one of the stations. If one of the return variables can be realized is zero (the

station is full), then it may cause all the variables equal to zero based on (TD1) and (TD2). In all

4 circumstances, the solutions under constraints (TD6), (TD2)+(TD6) with station-based variables,

and no proportional constraints with O-D variables can be the same. Furthermore, the solution

under constraints (TD3)+(TD6) is equivalent to the solution under constraints (TD7). Generally,

(TD2)+(TD3) and (TD3)+(TD6) perform well in this case. (TD6), (TD4), and (TD2) also give a

reasonable solution.

3 Formulations for event sequences

The rest of the event sequences are demonstrated here.

• (a)(d)(r): Here, rebalancing operations occur at the end of each time-period, which is enforced

by Constraints (18)–(21).∑
v

r+,t
s,v ≤ dts + x−,t

s − x+,t
s ∀ s ∈ S, t ∈ T (18)∑

v

r−,t
s,v ≤ Cs − dts − x−,t

s + x+,t
s ∀ s ∈ S, t ∈ T (19)

x+,t
s ≤ dts + x−,t

s ∀ s ∈ S, t ∈ T (20)

x−,t
s ≤ Cs − dts ∀ s ∈ S, t ∈ T (21)

• (d)(r)(a): Rebalancing operations occur between rentals and returns, which is enforced by

Constraints (22) and (23). Bike rentals occur at the beginning of the period and are only

restricted by the current capacity of the station, as indicated by Constraints (24). Bike returns

occur at the end and are limited by x−,t
s ≤ Cs−dts+

∑
v r

+,t
s,v −

∑
v r

−,t
s,v +x+,t

s , which can be achieved

by replacing dt+1
s in Constraints (6) (dt+1

s ≤ Cs) with the right-hand side of Constraints (3).∑
v

r+,t
s,v ≤ dts − x+,t

s ∀ s ∈ S, t ∈ T (22)∑
v

r−,t
s,v ≤ Cs − dts + x+,t

s ∀ s ∈ S, t ∈ T (23)

x+,t
s ≤ dts ∀ s ∈ S, t ∈ T (24)
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For the class of event sequences reported in the second row of Table 1, the corresponding modifi-

cations are as follows:

• (d)(a)(r): We first use Constraints (24) since rentals occur first. Then, to implement correct

returns, we add Constraint (25). Finally, given that the vehicles are assumed to rebalance after

bike rentals and returns, we also use vehicle constraints (18) and (19).

x−,t
s ≤ Cs − dts + x+,t

s ∀ s ∈ S, t ∈ T (25)

• (a)(r)(d): Returns occur at the beginning of the period and consider the current inventory, as

ensured by Constraints (21). We also add Constraints (26) and (27), since vehicles rebalance bikes

after returns. As customers rent bikes at the end of each time-period, we have to enforce x+,t
s ≤

dts −
∑

v r
+,t
s,v +

∑
v r

−,t
s,v + x−,t

s , which is explicitly satisfied when replacing dt+1
s in Constraints

(6) (0 ≤ dt+1
s ) by the right hand side of Constraints (3).∑

v

r+,t
s,v ≤ dts + x−,t

s ∀ s ∈ S, t ∈ T (26)∑
v

r−,t
s,v ≤ Cs − dts − x−,t

s ∀ s ∈ S, t ∈ T (27)

We now consider event sequences in which rentals and returns are assumed to happen simultane-

ously (see the third row in Table 1):

• (a+d)(r): The constraints for rebalancing are the same as for (a)(d)(r) and (d)(a)(r), i.e.,

Constraints (18) and (19). The restrictions for rentals and returns are enforced by using Con-

straints (20) and (25).

Finally, two more classes of event sequences allow for rebalancing to occur simultaneously with either

rentals or returns (see the fourth and fifth rows respectively in Table 1).

• (a)(d+r): Customers return bikes first, requiring the use of Constraints (21). Rebalancing then

simultaneously occurs with rentals, which can be implemented using Constraints (18) and (19).

• (d+r)(a): Here, employing Constraints (22) and (23) is sufficient.

• (d)(r+a): Customers rent bikes first, requiring Constraints (24). Rebalancing then simultane-

ously occurs with returns, requiring Constraints (18) and (19).

• (r+a)(d): It suffices to add Constraints (26) and (27).

4 Generation of problem instances

In this appendix, we provide more details on the generator for the synthetic problem instances.

4.1 Station network and operating settings

We first generate the station network. The parameters are defined in Table 18. We consider a rect-

angular study area defined by the latitude and longitude values for each of its 4 vertices. This area is

divided into a total of num grid grids, each of which can be assigned to at most one station. In our

studies, we use a rectangular study area with 150 × 150 grids (i.e., num grid = 22500) with latitude

values from 45.4 to 45.65 and longitude values from -73.71 to -73.49 (approximating the Montreal

island area). The total number of stations, the number of city centers, and the total capacity of the

station network can be set and changed according to what kind of instances we focus on.

We assume that there are either one or two city centers in the study area, including stations that

have high return demands during morning peak hours and high rental demands during afternoon peak

hours. If there is only one city center, its central grid is randomly selected within a square spanning
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grid 53 to 98 on both the x- and the y-axis of the study area. If there are two city centers, one central

grid is selected randomly within the square spanning grids from 30 to 75, and the other one within

the square spanning grids from 75 to 120 on both the x- and the y-axis of the study area. Each city

center is then defined as an area of ran cc× ran cc grids around its central grid.

Table 18: The input and output of station generation

Input

Study area:
minimum longitude and latitude, maximum longitude and latitude

num grid: the number of grids
num station: total number of stations
num cc: the number of city centers
total c: the total capacity of all the stations
ran cc: the range of city centers (in number of grids)
per cc: the proportion of the total network capacity located within city centers
cap cs: capacity of a city center station
cap os: capacity of a regular station

Output
Locations of stations
Distances between station pairs
Number of city center stations
Number of regular stations

Each station network has a total of num station stations (set either to 30 or 60). Regular stations

are assumed to have a capacity of cap os = 20 docks. Given that city center stations typically have

a much larger capacity, we here assume a capacity of cap cs = 40 docks for each city center station.

We consider that the total capacity of all the stations (i.e., the number of docks in the entire network)

is roughly proportional to the total number of stations num station, as observed within the network

of BIXI Montreal which had a total capacity of 14,078 with 617 stations in 2019. Therefore, we set

the total capacity total c to 1,369 for 60 station networks and 685 for 30 station networks. Note that

total c will be used only to compute the number of regular and city center stations. The number of

city center stations is set to ⌊total c × per cc/cap cs⌉ (where per cc is defined in Table 5 for each of

the ground truths). The remaining stations are assumed to be regular (i.e., out of the city center)

stations. We then randomly assign stations to the grids as follows:

• City center stations: We randomly select grids inside the city center area as locations for city

center stations. We show an example with 60 stations and two city centers in Figure 6. The

dotted boxes are the range of city centers and the blue dots are the city center stations.

• Regular stations: The remaining stations will be randomly assigned to the grids outside the

city center areas, indicated as green dots in Figure 6.

Once the locations of stations are fixed, we compute the distance between each station pair.

For the operating settings, we define the parameters in Table 19.

Table 19: The settings of BSSs and rebalancing fleet

n bikes the total number of bikes in the stations
n trucks the number of trucks available for rebalancing
cap truck the capacity of each truck
n bikeT the total available number of bikes for rebalancing trucks at the beginning

Finally, the total number of available bikes in the system, n bikes, is 608, which is proportional

to those observed at BIXI Montreal in 2019. We assume that 4 trucks (n trucks) are available to

rebalance the bikes. The capacity of each truck, cap truck, is set to 40 and the number of available

bikes for trucks to employ, n bikeT , is set to 80.
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Figure 6: Visualization of station network used by GT2 with 2 city centers, indicating regular stations (green dots), city
center stations (blue dots), and the city center central grid (red rectangle). Note that each grid has a rectangular form.

4.2 Bike trips

Based on the generated station information, we generate the trip data. Analyzing the trip data from

BIXI, we found that the demand has a similar pattern on weekdays with a morning peak and an

afternoon peak that are mainly caused by work-related trips. At weekends, there is less regularity

and trips seem more random. We therefore focus on weekdays only. To provide adequate but diverse

problem instances and to fully explore the impacts, we generate trips based on real-world data with

adaptable parameters, instead of directly applying real-world data.

Parameters to define trip demands. The parameters used for the trip generation are defined in
Table 20. Each trip contains an origin station, a destination station, a departure time, and an arrival

time. We set an average total number of trips avg trips per weekday, which can be estimated from

historical trip data in real BSSs. Note that per io+ per oo+ per rd+ per rn = 100. After having the

fixed number of trips of different types, we generate the trip data according to their characteristics. We

assume that the departure time of each trip type follows a particular distribution (Dis), specifying the

probability that a trip starts at a specific time. This allows us to model demand changes throughout

the day while preserving uncertainty.

Table 20: The input and output of trips generation

Input

avg trip: The average number of trips per weekday
per oi: The percentage of OI trips
per oo: The percentage of OO trips
per rd: The percentage of RD trips
per rn: The percentage of RN trips
per w: The percentage of work-related trips (OI and OO) expected to happen
Dis: The set of distributions for different types of trips
dur trip: The interval for the length of trips

Output All trips with origin stations, destination stations, departure time, and arrival time
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The rules for trip generation are as follows:

• RD and RN trips We choose the origin station and destination station randomly among all

stations for each random trip. The departure time is sampled from the corresponding distribution

(one distribution for RD trips and one for RN trips). The duration of the trip is selected from the

interval dur trip at uniformly random, allowing us to also compute the arrival time for this trip.

RD and RN trips are assumed to be one-way without any corresponding returns, as opposed to

work-related trips. We repeat this process to obtain all required trips for each day. The total

number of RD and RN trips will be avg trips ∗ per rd and avg trips ∗ per rn for each weekday.

• OI trips and OO trips Work-related trips normally have stable O-D pairs that include one trip

from home to work and another one back to home with the same origin/destination stations. For

each O-D pair, we first generate one trip from home to work. The stations are selected randomly

according to the type of trips. For example, the origin station of an OI trip is selected randomly

among the stations outside city centers, and the destination station is chosen from city center

stations. Then, a corresponding return trip is generated with the origin and destination stations

reversed. The process is the same for OO trips, except that both the origin and destination

stations need to be selected among the stations outside city centers. The departure time obeys the

assumed distribution. Differently from random trips, work-related trips happen during morning

peak hours and afternoon peak hours. Thus, we use two different distributions for OI trips and

two distributions for OO trips to imitate the two peaks. Using the departure time under the

particular distribution and duration dur trip, the arrival time is computed.

Random trips RD and RN may vary a lot from one day to another, so we generate them from

scratch for each weekday. However, work-related trips have distinctive characteristics. They do not

vary too much since users tend to commute between the same O-D pairs. Nevertheless, the demand

for each weekday may change slightly because users may choose alternative means of transportation or

not go to work for some personal reason on certain days. Thus, we consider an additional processing

step for work-related trips. We generate a total of avg trips ∗ per oi OI and avg trips ∗ per oo OO

trips that form a work-related trip set and we fix this set for all weekdays of a given problem instance.

We then consider a probability per w that a person is actually taking the bike for a route. For each

day, the final demand for work-related trips is based on this fixed set. We then uniformly sample

a random value between 0 to 1 for each work-related trip in the set. If the value is smaller than

or equal to per w, we select the corresponding trip with its rental and return demand. The actual

number of work-related trips OI and OO at each weekday will slightly vary but will average to about

avg trips ∗ per oi ∗ per w and avg trip ∗ per oo ∗ per w, respectively.

Parameter values to generate trips. Since BIXI has a total number of around 33,300 trips per weekday

on a 617 stations network, we set avg trip to 3,240 for our 60 station network. The probability per w

for work-related trips is set to 0.85, which means that a user has an 85% chance to choose the bike, and

its demand is generated. We assume that the duration of each trip is within [5, 30] minutes (dur trip).

We now describe the settings of the distributions in Dis. We illustrate the weekday average demand

of one week at BIXI Montreal from July 2019 in Figure 7(a). An example of generated synthetic data

is demonstrated in Figure 7(b)–(f), averaging over 500 days for 24 hours discretized into 48 time-

periods. Since our work mainly focuses on rebalancing optimization, we use Beta distributions and

linear transformations to fit our demand curve to the one of BIXI. We apply two Beta distributions

(α = 3, β = 8) for the departure time of OI trips in morning peak hours and afternoon peak hours.

The random value x generated by the Beta distribution is shifted into departure time using a linear

transformation ax+ b. For example, we set a = 530 and b = 340 for the OI trips during the morning

hours to shift random numbers into the interval of [340, 870] minutes. After transformation, we obtain

Figure 7(c) with two peaks representing the morning and evening rush hours. Similarly, two Beta

distributions (α = 3, β = 7) with a = 550 and b = 900 for OO trips are employed, as shown in

Figure 7(d).
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For RD trips happening around 10 a.m. - 9 p.m., we use a Beta distribution (α = 3, β = 7) with

a = 900 and b = 560, as illustrated in Figure 7(e). A Beta distributions (α = 6, β = 8) with a = 1200

and b = 750 is shifted to represent RN trips, mainly during 4 p.m. - 5 a.m., as depicted in Figure 7(f).

Summing the demand of the four trip types, Figure 7(b) illustrates the total average demand over 500

days.

Figure 7: Demand Information for 500 days in 24 hours (48 time-periods)

4.3 Ground truths for experiments

To test the models under different station environments and trip patterns, we generate 3 ground truths

based on the above-explained settings of parameters. Some of the parameters have the same values in

the three ground truths, namely:

• num grid: 150x150

• num station: 60

• n trucks: 4

• cap truck :40

• n bikeT : 80

• avg trip: 3630

• per w: 85%.

The parameters specified for each of the ground truths are defined in Table 5 in Section 5.1.
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5 Pseudo-code for the simulator

The pseudo-code for our simulator is given in Algorithm 1. The initial inventory of each station d0s
and each truck d0v are given as inputs, along with the capacity for each station Cs and each truck

Ĉv. Rebalancing strategies r pick(s, t, v) and r drop(s, t, v) are obtained from the optimization model.

Trip sequence N is composed of individual trips {[td(n), sd(n), ta(n), sa(n)], n ∈ N}, including rental

and return demands with td(n) ascending. For a trip n, td(n) is the time of departure, sd(n) is the

departure station, ta(n) is the arriving time, and sa(n) is the arrival station. A waiting set of M

events W = {[wt(m), ws(m), wi(m), wv(m)],m ∈ M} stores the upcoming demands and rebalancing

operations. The elements of W change with real-time system status. Each element w ∈ W has an

indicator wi(m) that either represents a rental demand (wi(m) = d), a return demand (wi(m) = a), a

pick-up operation (wi(m) = p), or a drop-off operation (wi(m) = f). Moreover, wt(m) is the departure

time of the event, ws(m) is the station, and wv(m) is the truck. Note that the value of wv(m) has no

impact on demand events and is set to 0. The waiting set will be sorted in non-decreasing order of

wt(m) and its first element is the event that will be processed next. Parameter Ds,s′ represents the

distance between two stations s and s′. The transit time (in minutes) between two stations during

time-period t is given by Rt
s,s′ and the average operation time for picking up or dropping off one bike

is given by op.

We denote the inventory of the station s as Avails bike(s) and the inventory of the vehicle v as

Availv bike(v). The lost demand during a period t for a station s will be counted in Lost rental(t, s)

and Lost return(t, s) respectively. We first initialize W with all rental demands from N with wi = d

and wv = 0.

The corresponding returns of successful rentals and rebalancing events are created and added to

W in simulated real-time. For each truck and time-period, we create r pick(s, t, v)/r drop(s, t, v)

consecutive events with (wi = p or wi = f respectively). Rebalancing starts as soon as the truck

arrives at the station, but not before the first minute associated with time-period t. A truck leaves

for the next station as soon as it finishes the rebalancing operations at the current station. If the

truck reaches the next station before the end of the current time-period, it waits until the beginning

of the next time-period before starting the rebalancing operations. Since rebalancing and relocation

may be scheduled continuously one after another, some rebalancing operations may be delayed due to

the previous operations.

As in reality, the simulator processes the events in W in chronological order. When a rental

demand occurs and the station holds at least one available bike, we update the station inventory and

add the corresponding return demand to the waiting set W . Otherwise, the customer is assumed to

leave the system and a lost rental demand is counted. When a return demand occurs but the station

has no available docks, we assume that the customer returns the bike at the nearest station with

available docks. However, a lost return demand will be counted. For pick-up/drop-off rebalancing

operation events, we verify whether sufficient bikes/docks at the station and space/bikes within the

truck are available. Rebalancing is carried out as close as possible to the originally planned operations.

The inventories of the station and the truck are updated accordingly. After partially/fully successive

rebalancing, the truck departs for the next station.

6 Complimentary experiments

6.1 Initial settings for vehicles

In our basic model, the initial location and inventory of each vehicle are fixed. The fixed initial

locations are at stations 1, 16, 31, and 46. Each truck has the same amount of bikes, i.e., 20 bikes.

However, the operator may have the possibility and desire to specify an initial location and inventory

for the trucks. To this end, Constraints (28) and (29) are created. Constraint (28) implies that the
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Algorithm 1: Simulator for the rebalancing strategy r pick(s, t) and r drop(s, t)

Input : {[td(n), sd(n), ta(n), sa(n)], n ∈ N}, Ds,s′ , r pick(s, t), r drop(s, t), d0s, d
0
v , Cs, Ĉv , Rt

s,s′ , and

op. T is the planning horizon.
Initialization: Lost rental(t, s) = 0; Lost return(t, s) = 0; Avails bike(s) = d0s; Availv bike(v) = d0v ;

W = {[wt(m), ws(m), wi(m), wv(m)],m ∈ M} with all the rental demands from N and the
operation events of the first time-period sorted; time = wt(1); s = ws(1); indicator = wi(1);
and v = wv(1).

1 n = 1;
2 while time ≤ T and W ̸= ∅ do
3 Find corresponding time-period t based on time;
4 sign = 0;
5 if indicator = d then
6 if Avails bike(s) > 0 then
7 Avails bike(s) = Avails bike(s)− 1;
8 W = W ∪ {[ta(n), sa(n), a, 0]};
9 else

10 Lost rental(t, s) = Lost rental(t, s) + 1;
11 n = n+ 1;

12 else if indicator = a then
13 if Cs −Avails bike(s) > 0 then
14 Avails bike(s) = Avails bike(s) + 1;
15 else
16 Lost return(t, s) = Lost return(t, s) + 1;
17 Find s′ closest to s with available docks based on Ds,s′ ;

18 Avails bike(s′) = Avails bike(s′) + 1;

19 else if indicator = p then

20 if Avails bike(s) > 0 and Availv bike(v) < Ĉv then
21 Avails bike(s) = Avails bike(s)− 1;
22 Availv bike(v) = Availv bike(v) + 1;
23 if All the rebalancing operations are done for s then
24 sign = 1;

25 else
26 Remove the elements in W whose ws = s, wi = p, wv = v;
27 sign = 1;

28 else
29 if Availv bike(v) > 0 and Avails bike(s) < Cs then
30 Avails bike(s) = Avails bike(s) + 1;
31 Availv bike(v) = Availv bike(v)− 1;
32 if All the rebalancing operations are done for s then
33 sign = 1;

34 else
35 Remove the elements in W whose ws = s, wi = f, wv = v;
36 sign = 1;

37 if sign = 1 then
38 Create W ′ of v for t+ 1 based on Rt

s,s′ , and op;

39 W = W ∪W ′;

40 W = W\{[time, s, indicator, v]};
41 time, s, indicator, v = wt(m), ws(m), wi(m), wv(m) where wt(m) is the minimum in W ;

42 end
Output : Lost rental(t, s) and Lost return(t, s)

number of vehicles located at specific stations at the first time-period is equal to the number of vehicles

num v in the system, which, along with the Constraints (4), means that the trucks can be assigned to

any station at the beginning of rebalancing. Constraint (29) indicates that the total number of bikes

in all vehicles equals the total number of bikes av bike initially available in vehicles. Here, av bike is

set to 80, while the inventory at each vehicle is optimized.∑
s,v

z1s,v = num v (28)

∑
v

d̂1v = av bike (29)
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Note that, if we need to consider a central depot in our system, this depot can be represented as

an additional station with a particular capacity in our optimization model.

For experiments, we consider 30-minute time-periods in the station-based model without trip dis-

tribution constraints. Table 21 summarizes the results for 3 Ground truths. Compared to the initial

inventory, the initial location has obvious impacts on lost demand for dynamic rebalancing. The case

with fixed initial inventory and flexible location has the best performance for lost rentals. The results

highlight that the initial location of the trucks is important, assuming that each truck holds sufficient

bikes. For GT3 with too many work-related trips, the models are hard to solve to optimality. The trip

demand is highly concentrated during the peak hours, which makes MIP gaps hard to reach 0.01%.

Under these MIP gaps, the system can still benefit from the flexibility of initial locations.

Table 21: Station-based Model with different initial vehicle settings (60 stations, 80 available bikes for 4 trucks, 30 mins)

Initial
Location

Initial
Inventory

O.F.
Value

Time
(mins)

MIP
Gap (%)

Lost Demand (%)

Rental Return

GT1

Fixed Fixed 0.8 < 1 0.00 8.78 7.99
Fixed Flexible 0.8 < 1 0.00 8.39 8.07
Flexible Fixed 0.1 < 1 0.00 8.26 5.89
Flexible Flexible 0.1 < 1 0.00 8.30 5.60

GT2

Fixed Fixed 0.5 < 1 0.00 9.46 1.78
Fixed Flexible 0.5 < 1 0.00 9.59 2.37
Flexible Fixed 0.2 < 1 0.00 8.50 1.93
Flexible Flexible 0.1 < 1 0.00 8.92 1.58

GT3

Fixed Fixed 179.1 1440 2.46 20.33 21.67
Fixed Flexible 177.1 1440 2.33 19.89 20.86
Flexible Fixed 162.1 1440 2.52 17.46 16.66
Flexible Flexible 161.3 1440 2.37 17.78 17.19

When the BSSs network is small, a fixed initial setting is easier for the operators with an acceptable

performance since no adjustment is needed for trucks before the beginning of dynamic rebalancing.

However, if the station network is complex, the flexible initial setting may be beneficial to obtain a

better performance of lost demand.

A similar conclusion is observed in Table 22 for the O-D variable model. The flexible initial location

and fixed inventory give the best performance for GT1 and GT3. For GT2, the flexible location and

flexible inventory obtains the best results. Since there are more city center stations in GT2 and the

network is more complex, the flexibility of the rebalancing fleet has more advantages over the fixed

one. In general, O-D variables seem to work better than the station-based trip variables for GT1 and

GT3 with only one city center.

6.2 Initial station inventory and trip variable types

The static rebalancing (Baseline 2) model is presented as (30)–(34).

min
∑
t,s

(f+,t
s − x+,t

s ) +
∑
t,s

(f−,t
s − x−,t

s ) (30)

dt+1
s = dts − x+,t

s + x−,t
s ∀ s ∈ S, t ∈ T (31)∑

s

d1s = n (32)

0 ≤ dts ≤ Cs ∀ s ∈ S, t ∈ T (33)

0 ≤ x+,t
s ≤ f+,t

s , 0 ≤ x−,t
s ≤ f−,t

s , ∀ s ∈ S, t ∈ T (34)

where n is the total number of bikes in the system.

The results for the O-D model with baseline 1 and baseline 2, as well as for GT3 are illustrated in

Table 23.
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Table 22: O-D model with different initial settings (60 stations, 80 available bikes for 4 trucks, 30 mins)

Initial
Location

Initial
Inventory

O.F.
Value

Time
(mins)

MIP
Gap (%)

Lost Demand (%)

Rental Return

GT1

Fixed Fixed 52.8 < 1 0.00 7.98 5.97
Fixed Flexible 52.8 < 1 0.00 8.31 8.40
Flexible Fixed 52.4 < 1 0.00 7.73 4.76
Flexible Flexible 52.5 < 1 0.00 8.38 7.68

GT2

Fixed Fixed 51.5 288 0.00 9.95 2.27
Fixed Flexible 51.6 289 0.00 9.82 2.35
Flexible Fixed 50.9 < 1 0.00 9.36 2.07
Flexible Flexible 50.8 < 1 0.00 9.33 2.02

GT3

Fixed Fixed 227.2 1440 2.44 19.79 21.33
Fixed Flexible 223.2 1440 2.53 19.92 21.19
Flexible Fixed 207.5 1440 2.74 16.00 18.72
Flexible Flexible 208.6 1440 2.64 17.08 18.32

Table 23: O-D model with baseline 1 and baseline 2 and station-based model for GT3 (60 stations, 4 trucks, 30 mins)

Baselines, Configuration,
Trip Modeling

O.F.
Value

Opt.
Time (mins)

MIP
Gap (%)

Lost Demand (%)

Rental Return

GT1 Baseline 2 dyn.rebal. O-D 52.8 < 1 0.00 7.98 5.97

GT2 Baseline 2 dyn.rebal. O-D 51.5 288 0.00 9.95 2.27

GT3

Baseline 1 without rebal. - - - 33.26 33.83
Baseline 2 without rebal. (static) - - - 28.42 33.02
Baseline 1 dyn.rebal. station-based 232.0 1440 2.60 23.24 18.24
Baseline 2 dyn.rebal. station-based 179.1 1440 2.46 20.33 21.67
Baseline 2 dyn.rebal. O-D 227.2 1440 2.44 19.79 21.33

The O-D variable model seems to provide slightly less lost demand, but at the cost of larger

computing time due to increased model size.

6.3 Time discretization and time constraints

Table 24 shows the results of GT3 with different time-period lengths and time constraints. The

conclusion is consistent with Table 7 in Section 5.3.

Table 24: Station-based model for GT3 with/without time constraints in 30/60 mins (60 stations, 4 trucks)

Time
Period (mins)

Time
Constraints

O.F.
Value

Time
(mins)

MIP
Gap (%)

Lost Demand (%) Opt-sim-gap (%)

Rental Return Rental Return

GT3

30 No 179.1 1440 2.46 20.33 21.67 16.56 49.23
30 Yes 272.5 1440 4.69 19.29 20.57 12.58 38.29
60 No 408.4 1440 1.00 21.28 22.65 11.57 34.98
60 Yes 409.0 1440 1.73 21.66 22.40 12.00 35.28

We now explore the impacts of time constraints and time-period length for the O-D variable model.

The results for the model with O-D variables are summarized in Table 25. The conclusion is

similar to the station-based trip variable model. However, when time constraints are applied, the

running times for the models are much longer and the experiments for GT2 run out of memory.

We also carry out the same experiments on a 30 stations network. The results for them are shown

in Table 26. Given that most of the stations can be reached within 30 minutes, time constraints are

less effective. Compared to Table 7, a short time-period and time constraints are a good combination

to guarantee enough rebalancing operations and timely arrivals for a larger studying area. However,
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Table 25: O-D model with/without time constraints in 30/60 mins (60 stations, 4 trucks)

Time
Period (mins)

Time
Constraints

O.F.
Value

Time
(mins)

MIP
Gap (%)

Lost Demand (%) Opt-sim-gap (%)

Rental Return Rental Return

GT1

30 No 52.8 < 1 0.00 7.98 5.97 5.03 11.73
30 Yes 53.0 465 0.00 7.95 6.43 4.95 12.18
60 No 71.9 1440 0.09 8.40 4.74 4.69 9.94
60 Yes 71.9 1440 0.10 8.44 4.03 4.75 9.17

GT3

30 No 227.2 1440 2.44 19.79 21.33 13.89 44.67
30 Yes 328.0 1440 6.05 20.85 21.22 10.60 40.32
60 No 494.3 1440 3.44 22.52 21.69 5.70 34.94
60 Yes 496.0 1440 3.88 22.50 20.61 5.57 32.92

for small-scale BSSs, like 30 densely distributed stations, it is not worth applying time constraints,

resulting in a marginal improvement and a long optimization time.

Table 26: Station-based variable model with/without time constraints in 30/60 mins (30 stations, 2 trucks)

Time
Period(mins)

Time
Constraints

O.F.
Value

Time
(mins)

MIP
Gap (%)

Lost Demand (%) Opt-sim-gap (%)

Rental Return Rental Return

GT1

30 No 0.5 < 1 0.00 8.95 4.73 9.83 11.80
30 Yes 0.5 < 1 0.00 8.90 4.21 9.76 11.17
60 No 5.3 < 1 0.00 9.12 2.55 9.07 9.76
60 Yes 5.3 < 1 0.00 8.93 1.35 8.85 2.03

6.4 Trip distribution and variables domains for O-D model

The experiments for GT3 of the station-based model are carried out and demonstrated in Table 27.

Although GT3 is hard to solve, Constraints (TD1) perform best in lost rental as in Table 8.

Table 27: Station-based model for GT3 with different trip distribution constraints (60 stations, 4 trucks, 30mins)

Constraints
O.F.
Value

Time
(mins)

MIP
Gap (%)

Lost Demand (%) Opt-sim-gap (%)

Rental Return Rental Return

GT3

(TD1) 875.8 1440 5.21 17.71 26.18 3.19 13.49
(TD6) 205.7 1440 1.75 19.93 22.20 16.31 46.16
(TD3)+(TD6) 304.0 1440 2.71 19.62 20.94 11.61 37.83
(TD3)+(TD4) 373.7 1440 4.03 20.42 22.48 8.67 39.39
None 179.1 1440 2.41 20.33 21.67 16.56 49.23

Concerning the model with O-D variables as shown in Table 28, adding trip distribution constraints

is even harder to solve due to a large number of variables and constraints. Using Constraints (TD7)

reduces both the lost rental and the opt-sim-gap. However, the running time is significantly longer.

Table 28: O-D model with different trip distribution constraints(60 stations, 4 trucks, 30mins)

Constraints
O.F.
Value

Time
(mins)

MIP
Gap (%)

Lost Demand (%) Opt-sim-gap (%)

Rental Return Rental Return

GT1
(TD7) 55.3 1440 4.90 6.86 6.50 3.65 10.90
None 52.8 < 1 0.00 7.98 5.97 5.03 11.73

GT2
(TD7) 53.3 869 0.07 7.94 2.10 4.84 7.11
None 51.5 288 0.00 9.95 2.27 7.24 9.75

GT3
(TD7) 248.7 1440 4.90 19.79 22.06 12.94 44.85
None 227.2 1440 2.42 19.79 21.33 13.89 44.67
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We finally present the results for trip distribution constraints with different variable domains for the

O-D model in Table 29. Two instances out of five cannot be solved in the All-continuous model within

24 hours under constraints (TD7) for both the All-continuous model and the Partially-integer model.

The Partially-integer model outperforms the All-continuous model with an obvious improvement in

lost demand with or without (TD7). Since the MIP gap is really close to 0.01%, we can conclude that

trip distribution constraints (TD7) give the best performance. The All-integer model for O-D variables

is not considered here since its integer requirement for trip variables xt,t′

s,s′ are too strict.

Table 29: O-D model with Different variable domains and trip distribution constraints for GT1 (30 stations, 2 trucks, 30
mins)

Variable
Domain

Const-
raints

O.F.
Value

Time
(mins)

MIP
Gap (%)

Lost Demand (%) Opt-sim-gap (%)

Rental Return Rental Return

All-continuous
(TD7) 23.0 585 0.03 8.37 4.11 5.37 9.89
None 22.7 288 0.00 10.07 4.60 7.39 12.58

Partially-integer
(TD7) 23.0 864 0.03 4.12 1.40 0.72 2.16
None 22.7 288 0.00 7.26 4.40 4.12 8.92

6.5 Sequences of events

The results of event sequences for GT3 are shown in Table 30. Compared to Table 10, sequences

(d)(r)(a), (r)(d)(a), and (d)(a)(r) are still perform well.

Table 30: Station-based model with different sequences of events (60 stations, 4 trucks, 30 mins)

Sequences
of events

O.F.
Value

Time
(mins)

MIP
Gap (%)

Lost Demand(%) Opt-sim-gap(%)

Rental Return Rental Return

GT3

(r)(a)(d) 246.9 1440 2.35 19.57 21.98 15.14 41.38
(a)(d)(r) 295.4 1440 2.32 20.59 20.63 14.24 39.82
(d)(r)(a) 302.8 1440 3.22 19.22 21.70 8.94 41.28
(r)(d)(a) 280.3 1440 2.94 19.60 20.68 11.93 39.47
(d)(a)(r) 318.8 1440 3.12 19.23 19.74 8.57 36.62
(a)(r)(d) 259.6 1440 1.91 19.45 21.89 15.08 39.42
(r)(a+d) 236.7 1440 2.39 19.41 22.60 15.27 42.86
(a+d)(r) 285.0 1440 2.24 19.87 19.70 13.46 38.00
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