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recherche du Québec – Nature et technologies.
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– Bibliothèque et Archives Canada, 2023

The publication of these research reports is made possible thanks
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recherche du Québec – Nature et technologies.
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b Département de mathématiques et génie indus-
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Abstract : This paper addresses risk averse constrained optimization problems where the objective
and constraint functions can only be computed by a blackbox subject to unknown uncertainties. To
handle mixed aleatory/epistemic uncertainties, the problem is transformed into a conditional value-at-
risk (CVaR) constrained optimization problem. General inequality constraints are managed through
Lagrangian relaxation. A convolution between a truncated Gaussian density and the Lagrangian
function is used to smooth the problem. A gradient estimator of the smooth Lagrangian function
is derived, possessing attractive properties: it estimates the gradient with only two outputs of the
blackbox, regardless of dimension, and evaluates the blackbox only within the bound constraints. This
gradient estimator is then utilized in a multi-timescale stochastic approximation algorithm to solve the
smooth problem. Under mild assumptions, this algorithm almost surely converges to a feasible point
of the CVaR-constrained problem whose objective function value is arbitrarily close to that of a local
solution. Finally, numerical experiments are conducted to serve three purposes. Firstly, they provide
insights on how to set the hyperparameter values of the algorithm. Secondly, they demonstrate the
effectiveness of the algorithm when a truncated Gaussian gradient estimator is used. Lastly, they show
its ability to handle mixed aleatory/epistemic uncertainties in practical applications.

Keywords : Risk averse optimization, constrained blackbox optimization, multi-timescale stochastic
approximation, conditional value-at-risk, mixed aleatory/epistemic uncertainties, truncated Gaussian
gradient estimator
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1 Introduction

Blackbox optimization (BBO) is concerned with optimization problems where the functions used to

compute the objective and the constraints are blackboxes. In optimization, a blackbox is any process

that returns an output when an input is provided, but the inner workings of that process are not ana-

lytically available [8]. This type of problem is common in signal processing [17], machine learning [40],

and engineering design [1, 25]. In the presence of uncertainties, a constrained blackbox optimization

problem may be formulated as follows

min
x∈X⊂Rn

Ξ0[C0(x, ξ)]

s.t. Ξj [Cj(x, ξ)] ≤ 0, ∀j ∈ [1,m],
(1)

where x is the vector of the design variables, X := [bℓ,bu] is a hyperectangle, and ξ is the vector

modelling the uncertainties. The source of uncertainties may arise from the design variables, the

parameters, the inner processes of the blackbox (for example, when Monte Carlo simulation is used

in the blackbox), or even combinations of these factors. Uncertainties may or may not depend on x.

C0(·, ξ) denotes the version of the objective function c0 : X → R subject to uncertainties, while for all

j ∈ {1, 2, . . . ,m}, Cj(·, ξ) denotes the version of the constraint cj : X → R subject to the uncertainties

(also called the limit state function in the reliability community). Since the objective function and the

constraints depend on the uncertainty vector, the measures Ξj , j ∈ {0, 1, . . . ,m} are used to map them

into R. It follows from this formulation that the key factor is the selection of the uncertainties model,

which in turn determines the choice of the measures Ξj . In the following, various methods commonly

found in the literature are presented, depending on the assumptions made, the chosen uncertainty

model, and the level of information available about these uncertainties.

1.1 Related work

In probabilistic reliability-based design optimization (RBDO), uncertainties are considered as random

vectors with known probabilistic distributions. In this field [18], Problem (1) is transformed into the

following

min
x∈X⊂Rn

C0(x,p)

s.t. P[Cj(x,p) ≤ 0] ≥ αj , ∀j ∈ [1,m],
(2)

where αj , j ∈ {1, . . . ,m} are the desired reliability levels and x and p are the means of the noised

design variables and parameters respectively. In this reformulation, the expectation is utilized to

handle the uncertainties in the objective function, and a linear approximation is employed to derive

the deterministic objective function 1. To address the uncertainties in the constraints, a probability

measure is employed. The conventional approach to solving Problem (2) involves two nested loops:

the outer loop searches for an optimal design, while the inner loop evaluates the feasible probability

of the optimal candidate.

The inner loop is often computationally demanding due to the time-consuming estimation of feasible

probabilities. To address this challenge, numerically efficient methods for RBDO problems have been

developed. In a first set of methods, the inner loop involves solving a deterministic optimization

problem. The fundamental idea behind this class of methods is to identify a point on the constraint

boundary that is closest to the solution, known as the ”most probable point” (MPP) of failure. Then,

the task consists in finding this point efficiently. Typically, first or second-order reliability methods

(FORM/SORM) [16] are utilized. These methods transform the uncertainty vectors into uncorrelated

Gaussian random vectors using the Rosenblatt or Nataf transformation [27], then the constraints are

1For a differentiable function C0 perturbed only by uncertainties in its design variables. These uncertainties can
be written as x + ξx where x = Eξx

[x + ξx]. Then a first-order Taylor approximation of the function gives that

Eξx
[C0(x+ ξx)] ≈ Eξx

[C0(x) +∇C0(x)T ξx] = C0(x). A similar observation holds for the parameters.
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approximated linearly or quadratically. Therefore, the probabilistic constraints in Problem (2) are

reformulated as a deterministic optimization problem, reducing the task of solving Problem (2) to

two nested deterministic optimizations. Various approaches have been employed to solve it with a

double loop, such as the Performance Measure Approach (PMA) or the Reliability Index Approach

(RIA) [4], a single loop, such as the Single Loop Approach (SLA) [32], or decoupled approaches

like the Sequential Optimization and Reliability Assessment (SORA) approach [19] or the Sequential

Approximate Programming (SAP) approach [14]. These methods prove to be efficient even when

dealing with nonlinear problems, and when gradients are approximated using finite differences [4].

Additionally, methods known as reliability-based robust design optimization (RBRDO) have been

developed to handle uncertainties in the objective function by employing a bi-objective formulation of

the problem [51].

However, a major drawback of FORM-based methods is their reliance on linear approximations

of the objective and constraint functions. These approximations can be inaccurate in practice if the

underlying problem is not smooth. Therefore, other methods have been developed that do not rely

on linear approximations. Similar to FORM-based methods, these approaches generally use a double-

loop strategy. In the inner loop, a reliability analysis estimates the feasible probability. Examples of

such methods include important sampling [11, 60], line sampling [3], subset simulation algorithms [6],

or surrogate modeling strategies [29, 41]. Subsequently, the estimation of the feasible probability is

incorporated into the RBDO problem, resulting in a deterministic problem if the objective function is

unnoised or a linear approximation of the objective function can be made.

In addition to the linear approximation, FORM-based methods suffer from another major drawback:

they depend on the precise characterization of the uncertainty model of the variables and parameters

(required for applying the Nataf transformation). However, the Nataf transformation cannot always

be applied, especially when the blackbox inherently contains noise. Even when applicable, the Nataf

transformation assumes a specific dependence structure of the uncertainties [28]. Nevertheless, in

the absence of sufficient data, justifying and enforcing a specific dependency assumption becomes

challenging and unwarranted due to its biasing effect on the final solution. The papers of R. Lebrun and

A. Dutfoy [27, 28] provide a detailed discussion of these issues related to using Nataf’s transformation

in FORM-based methods.

Uncertainties are commonly classified into two categories: aleatory uncertainties and epistemic

uncertainties [43]. Aleatory uncertainties represent the stochastic behavior and randomness of events

and variables. Epistemic uncertainty is generally associated with a lack of knowledge about phenomena,

imprecision in measurements, and poorly designed models. Aleatory uncertainties can be modeled by

random variables, while epistemic uncertainties can be represented by interval or point data. Using

probabilistic models for epistemic uncertainties may lead to infeasible designs in practice [43]. Even for

aleatory uncertainties, selecting an appropriate probabilistic model can be challenging, especially when

the dimension of the uncertainties is large or when dependencies are unknown due to data scarcity [43].

A poorly chosen model can result in underperforming designs or designs with significant failures [45].

When epistemic uncertainties are involved in reliability analysis, non-probabilistic approaches based

on evidence theory [52], possibility theory [20], or fuzzy sets [33, 61] may be used.

Recently, some approaches have utilized ellipsoidal sets to model uncertainties [36, 56]. When both

types of uncertainties are present, combining probabilistic and non-probabilistic models to address

these uncertainties may be an interesting option [21, 35]. Alternatively, distributionally robust chance-

constrained programming [57] or a Bayesian probabilistic approach using Gaussian processes [2, 38]

also appear promising. Finally, scenario optimization, that tackles the problem (1) using available data

without prescribing a specific model (or a set of models) for the uncertainty, has been explored [44].

Unfortunately, the described approaches are primarily used for reliability analysis, and they do not

handle uncertainties in the objective function, except in the work in [2], which is limited to parameter

uncertainties. Another significant drawback is the lack of a convergence proof to an optimal point of

the problem. Table 1 summarizes the different methods based on several criteria. The first two criteria
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assess whether the methods may deal with nonsmooth problems, while the third evaluates the ability of

the method to handle noise in the objective function as well as in the constraints. The fourth criterion

examines whether the method requires a precise characterization of the distribution that models the

aleatory uncertainties, (e.g. for applying the Nataf transformation). Finally, the last criterion assesses

the capability of the method to handle uncertainties in the absence of perfect knowledge of the data.

Table 1: Summary of the different methods and their limits

Methods Type 1

Handles
nonsmooth
constraints

Handles
nonsmooth
objective

Handles noisy
objective

Allows unknown
aleatory

uncertainty
Allows lack of

data 2

FORM-
based [4, 14, 19, 32] O ✗ ✗ ✗ ✗ ✗

RBRDO [51] O ✗ ✓ ✓ ✗ ✗

Importance
Sampling [11, 60] O ✓ ✓ ✗ ✗ ✗

Line Sampling [3] RA ✓ N/A N/A ✗ ✓

Subset
simulation [6] RA ✓ N/A N/A ✓ ✗

Surrogate
modelling [29, 41] RA ✓ N/A N/A ✓ ✗

Mixed
approaches [21, 35] O ✗ ✗ ✗ ✗ ✓

Ellipsoidal
set [36, 56] O ✗ ✗ ✗ ✗ ✓

Bayesian approach
(I) [38] RA ✓ N/A N/A ✓ ✓

Bayesian approach
(II) [2] O ✓ ✓ ✓3 ✓ ✗

Scenario
Optimization [44] O ✗ ✗ ✗ ✓

Only point
data

This work O ✓ ✓ ✓ ✓ ✓4

1 The type indicates if the method handle the whole stochastic constrained optimization problem (O) or is limited to
reliability analysis (RA).
2 Only points or interval data are available.
3 Only parameters uncertainties.
4 For interval data, the method allows only to obtain worst-case solution.

1.2 Contributions

To account for the uncertainties in both the objective and constraint functions, methods utilizing

the conditional value-at-risk (CVaR) have been developed [30, 49]. CVaR is a coherent risk measure

that evaluates the risk associated with a design solution by combining the probability of undesired

events with a measure of the magnitude or severity of those events. CVaR methods have found

extensive applications in risk averse optimization like in trust-region algorithms [37], in engineering

design problems [23, 31, 47, 58], and in constrained reinforcement learning [15, 55].

One of the main interest of the CVaR measure lies in the flexibility provided by the parameter

α. When α = 0, the CVaR measure corresponds to the expectation, whereas as α approaches 1,

it corresponds to the supremum of the function over the support of the uncertainties [48]. This

versatility allows to handle both aleatory and epistemic uncertainties, albeit in a worst-case scenario

only. However, substituting failure probability constraints with CVaR constraints is a conservative

approach [53, chapter 6] that might render the problem infeasible in the worst case. Moreover, the

closer the value of α is to 1, the more sensitive the measure becomes to the uncertainty model,
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particularly in the tails. Managing this heightened sensitivity necessitates an untractable number of

samples. While the former issue is challenging to avoid a priori, the latter can be partially addressed by

employing a multi-timescale stochastic approximation algorithm to estimate the CVaR value [15, 42].

Unfortunately, the methods utilized in the referenced papers cannot be directly applied to solve a

CVaR formulation of the problem (1). In fact, these methods cleverly leverage the properties of the

Markov Decision Process to compute estimates of the gradients, a strategy that is impossible to use

in the context of the present study. The contributions of this work are outlined as follows.

First, in Section 3, the process of smoothing the problem and obtaining analytical gradient estimates

from noisy measurements of the blackbox is described. A smooth approximation of the gradient [9, 39]

is employed. The concept involves approximating the original function by its convolution with a

multivariate density function. The resulting approximation possesses several desirable properties:

it is infinitely differentiable even if the original function is only piecewise continuous, it preserves

the structural properties (such as convexity and Lipschitz constant) of the original function, and an

unbiased estimator of the gradient of the smooth approximation can be calculated from only two

measurements of the blackbox. In most studies [22, 39], Gaussian or uniform density functions are

utilized for the approximation. However, in this paper, a truncated Gaussian density function is

developed to satisfy the bound constraints of the problem (1). The properties of this new approximation

and its associated unbiased gradient estimator are provided.

Second, Problem (1) is reformulated as a CVaR-constrained problem, wherein the objective function

and the constraints are approximated by their smooth truncated Gaussian counterparts. The quality

of this approximation is theoretically examined and depends on several parameters such that the value

of α, the dimension and the value of the smoothing parameter. Subsequently, following the approach

in [15], a Lagrangian relaxation is applied to the problem. The method used to solve the relaxed

problem is developed in Section 4. It involves a four-timescale stochastic approximation algorithm.

The first timescale aggregates information about the gradient, the second estimates the quantile of

the objective and constraint functions, the third updates the design variables in a descent direction,

and the last one updates the Lagrange multiplier in the ascent direction. The convergence analysis

of this algorithm is studied in Section 5 and is conducted using an Ordinary Differential Equation

(ODE) approach. Under mild assumptions, this algorithm almost surely converges to a feasible point

of the CVaR-constrained problem whose objective function value is arbitrarily close to that of a local

solution.

Finally, in Section 6, practical implementation details are provided to minimize the number of

hyperparameters in the developed algorithm. Numerical experiments are conducted to estimate the

values of the remaining hyperparameters. Then, comparisons are made between the algorithm using the

Gaussian gradient estimator and its truncated counterpart. In the last subsection, the efficiency of the

algorithm is demonstrated on problems involving mixed aleatory/epistemic uncertainties. Conclusions

are drawn in Section 7.

2 Problem formulation

In order to formally settle the problem and to develop the convergence analysis, the following assump-

tions are made on the functions Cj and used throughout the paper.

Assumption 1. Let (Ω,F ,P) be a probability space and consider Cj(x, ξ) : Rn × Rd → R, j ∈ [0,m]

where ξ : Ω → Ξ ⊂ Rd is the vector modelling the uncertainties. Then, the following hold for all

j ∈ [0,m].

1. There exists a measurable function κ1(ξ) : Ξ → R such that Eξ[κ1(ξ)] ≤ L1 < ∞ and for which

|Cj(x, ξ)| ≤ κ1(ξ), ∀x ∈ X and ξ ∈ Ξ.
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2. There exists a measurable function κ2(ξ1, ξ2) : Ξ × Ξ → R where ξ1 and ξ2 are i.i.d. random

vectors such that Eξ[κ2(ξ1, ξ2)] ≤ L2 < ∞ and for which

|Cj(x, ξ1)− Cj(y, ξ2)| ≤ κ2(ξ)||x− y||, ∀(x,y) ∈ X × X and (ξ1, ξ2) ∈ Ξ× Ξ.

3. The function Cj(·, ξ) has a continuous cumulative distribution function and there exists a mea-

surable function κ3(ξ1, ξ2) : Ξ × Ξ → R, where ξ1 and ξ2 are i.i.d. random vectors such that

Pξ(κ3(ξ1, ξ2) ≤ L3) = 1 with L3 < ∞ and for which

|Cj(x, ξ1)− Cj(x, ξ2)| ≤ κ3(ξ1, ξ2)||x− y||, ∀(x,y) ∈ X × X and (ξ1, ξ2) ∈ Ξ× Ξ.

Three comments on these assumptions. First, note that no assumptions are made about the

differentiability of the functions Cj . Second, Assumption 1.1 will be made throughout this paper

because it allows the value-at-risk (VaR) and the CVaR of the functions Cj to be well defined. The

other assumptions are used in Section 3 to bound the approximation of the constrained CVaR blackbox

problem and in Section 5 to study the convergence of the proposed method. Finally, the assumptions

are increasingly strong, i.e., Assumption 1.3 implies Assumption 1.2, which implies Assumption 1.1.

Now, the VaR at level α ∈ (0, 1) of the objective and constraint functions may be defined. It

is originally derived from the left-side quantile of level α of a given random variable. Given j ∈
{0, 1, . . . ,m} and a reliability level αj ∈ (0, 1), the VaR of a function Cj(x, ξ) is defined as

VaRαj (x) := inf{t |P(Cj(x, ξ) ≤ t) ≥ αj}.

The VaR of a function has several interesting properties. When the cumulative distribution function

P(Cj(x, ξ) ≤ u) is right continuous with respect to t, the infemum is a minimum and if it is, in

addition, continuous and strictly increasing, then VaRαj
is the unique t such that P(Cj(x, ξ) ≤ t) = α.

However, the VaR of a function is computationally intractable, is not a coherent risk measure [5] and

does not take into account the magnitude/severity of the undesired events. Therefore, in practice

another measure is used: the Conditional Value-at-Risk. The CVaR of a function Cj(·, ξ), for a level

αj ∈ (0, 1) at a point, x may be defined as [49]

CVaRαj (x) := min
t∈R

Vαj (x, t), (3)

where

Vαj
(x, t) = t+

1

1− αj
Eξ[(Cj(x, ξ)− t)+], (4)

where the superscript plus denotes the function (t)+ := max{0, t}. The level αj gives the possibility

to choose the desired degree of reliability. Choosing a level close to 0 is tantamount to taking the

expectation measure into account, i.e. adopting a ”risk neutral” approach. On the other hand,

choosing a level close to 1 is tantamount to taking a ”worst-case” approach. In this way, different

values of αj can be used for the different objective and constraint functions, depending on the degree

of reliability desired for each of them. Now, problem (1) can be reformulated as a CVaR-constrained

blackbox optimization problem:

min
x∈X

CVaRα0(x)

s.t. CVaRαj
(x) ≤ 0, ∀j ∈ [1,m].

(5)

This formulation is a convex program if the objective and constraint functions are convex in the design

space. This convexification of the design space makes Problem (5) a conservative approximation of

Problem (2) [Chapter 6, [53]]. Thus, this formulation guarantees a conservative result in terms of

failure probability, see e.g. [45]. To solve Problem (5), it is usually reformulated with the function Vα

as follows

min
(x,t)∈X×Rm+1

Vα0
(x, t0)

s.t. Vαj
(x, tj) ≤ 0, ∀j ∈ [1,m].

(6)

The equivalence between Problem (5) and Problem (6) is shown in the following lemma.
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Lemma 2.1. Suppose the solution sets of Problem (5) and Problem (6) are not empty. Then these

problems are equivalent in the sense that, x∗ is a solution of Problem (5) if and only if there exist

t∗ ∈ Rm+1 such that (x∗, t∗) is a solution of Problem (6), and the optimal values are the same.

Proof. By the definition of the Conditional Value-at-Risk given in Equation (3), Problem (5) may be

reformulated as follows

min
x∈X

(
min
t0∈R

Vα0(x, t0)
)

s.t.
(
min
tj∈R

Vαj (x, tj)
)
≤ 0, ∀j ∈ [1,m].

(7)

Now, the following relations hold

min
x∈X

(
min
t0∈R

Vα0
(x, t0)

)
= min

(x,t0)∈X×R
Vα0

(x, t0)(
min
tj∈R

Vαj (x, tj)
)
≤ 0, ∀j ∈ [1,m] ⇐⇒ ∀j, ∃tj s.t. Vαj (x, tj) ≤ 0.

Therefore, the Problems (7) and (6) are equivalent. Now, let x∗ be a solution of Problem (5), it is

possible to construct the associated vector t∗(x∗) where t∗j (x
∗) = VaRαj (x

∗),∀j ∈ [0,m]. The tuple

(x∗, t∗(x∗)) is then solution of Problem (7) and as a consequence of Problem (6) which ends the

proof.

Despite this property, Problem (5) is difficult to solve for two main reasons. First, since the

functions Cj are the outputs of a blackbox, the gradients of these functions may not exist, and even if

they do, their analytic formulations are not available. Second, the problem is highly sensitive to the

values of αj , and the closer the values are to 1, the harder the problem is to solve. The next section

describes the strategy used in this paper to overcome these difficulties.

3 Smooth approximation and Lagrangian relaxation of the problem

This section introduces a method for solving the Problem (5). To obtain a more tractable problem,

the original problem is approximated by a smooth problem using truncated Gaussian smoothing. The

quality of the approximation is then studied and a Lagrangian relaxation of the smooth problem is

given.

3.1 Truncated Gaussian smooth approximation

In a blackbox optimization framework, all we know is that for any given input, the blackbox will

return an output, which may be subject to uncertainties. To obtain a more tractable problem, a

smooth approximation may be used [50, pp. 263]. The principle of this method is to approximate the

function by its convolution with a kernel density function. Formally, if c is an integrable function,

β > 0 is a scalar, and u is a random vector with distribution ϕ, the smooth approximation of c can be

defined as

cβ(x) :=

∫ +∞

−∞
c(x− βu)ϕ(u)du = Eu[c(x+ βu)]. (8)

The smooth approximation benefits from several attractive properties. First, it can be interpreted as

a local weighted average of the function values in the neighborhood of x. If c is continuous at x, it is

possible to obtain a value of cβ(x) that is arbitrarily close to the value of c(x) by using an appropriate

value of β. Second, it inherits the degree of smoothness of the density function as a consequence of

the convolution product. Finally, depending on the chosen kernel, stochastic gradient estimators can

be computed. They are unbiased estimators of the gradient of cβ and can be constructed only from

values of c(x) and c(x+ βu).
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The most commonly used kernels are the Gaussian distribution and the uniform distribution on

a sphere [22, 39]. However, if the problem has bound constraints, a significant drawback of these

distributions is that the random vector x + σu may fall outside the bound constraints. For instance,

if u ∼ N (0, 1), x+ σu might be sampled outside the bounds. This issue persists even with a uniform

distribution if x is near the bounds. However, the bound constraints are usually non-relaxable in the

sense of [26], meaning that the output of the blackbox lacks significance for optimization outside the

bound constraints. This can occur due to physical phenomena or when the blackbox is undefined

beyond the bounds. In such cases, the gradient estimate of cβ , computed from the values of the

function c at the points x and x+βx, becomes unreliable. To address this issue, a truncated Gaussian

estimator is developed in this paper, and its main properties are summarized in the following lemma.

Lemma 3.1. Let c be an integrable function on X , the smooth approximation cβ is defined as

cβ(x) = Eu[c(x+ βu)],

where u ∼ T N (0, I, bℓ−x
β , bu−x

β ), bℓ and bu are respectively the lower and the upper bounds of the

problem. In what follows, ϕ and Φ denote respectively the probability density function (p.d.f.) and the

cumulative density function (c.d.f.) of the standard Gaussian distribution. Now, the following holds.

1. cβ is infinitely differentiable: cβ ∈ C∞.

2. A one-sided unbiased estimator of ∇cβ is

∇̃cβ(x) =
(u− µ)c(x+ βu)− (u− µ)c(x)

β
, (9)

where µ is the mean of the truncated Gaussian vector, i.e,

µi =
ϕ
(

bℓi−xi

β

)
− ϕ

(
bui

−xi

β

)
Φ
(

bui
−xi

β

)
− Φ

(
bℓi−xi

β

) , ∀i ∈ [1, n].

3. Let u1 ∼ T N (0, I, bℓ−x
β , bu−x

β ) and u2 ∼ T N (0, I, x−bu

β , x−bℓ

β ), a two-sided unbiased estimator

of ∇cβ is

∇̃cβ(x) =
(u1 − µ1)(c(x+ βu1)− c(x))− (u2 − µ2)(c(x− βu2)− c(x))

2β
, (10)

4. In addition, if c is a L-Lipschitz continuous function, let β ≥ 0, then ∀x ∈ Rn

|cβ(x)− c(x)| ≤ Lβ
√
n.

Proof. 1. This can be shown by noting that the truncated Gaussian kernel is infinitely differentiable

within the bounds. However, to obtain the above estimators, the calculation must be done. Therefore,

using the above notation, and given that the components ui of u are mutually independent, it follows

that

Eu[c(x+ βu)] =

∫ bu−x
β

bℓ−x

β

c(x+ βu)

n∏
i=1

ϕ(ui)

Φ
(

bui
−xi

β

)
− Φ

(
bℓi

−xi

β

)du
=

∫ bu−x
β

bℓ−x

β

1

(2π)
n
2
c(x+ βu)

n∏
i=1

e−
u2
i
2

Φ
(

bui
−xi

β

)
− Φ

(
bℓi

−xi

β

)du
=

1

(2π)
n
2

 n∏
i=1

1

Φ
(

bui
−xi

β

)
− Φ

(
bℓi

−xi

β

)
∫ ∞

−∞
1[

bℓ−x

β ,bu−x
β

](u)c(x+ βu)

n∏
i=1

e−
u2
i
2 du,
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where 1[·](·) denotes the indicator function. Substituting v = x+ βu leads to:

Eu[c(x+ βu)] =
1

(2π)
n
2 βn

 n∏
i=1

1

Φ
(

bui
−xi

β

)
− Φ

(
bℓi

−xi

β

)
∫ ∞

−∞
1[bℓ,bu](v)c(v)

n∏
i=1

e
− (xi−vi)

2

2β2 dv.

By setting

h1(x) =
1

(2π)
n
2 βn

n∏
i=1

1

Φ
(

bui
−xi

β

)
− Φ

(
bℓi

−xi

β

) ,
h2(x) = 1[bℓ,bu](x)c(x) and h3(x) =

n∏
i=1

e
− (xi)

2

2β2 ,

cβ(x) may be compactly written as

cβ(x) = h1(x)(h2 ∗ h3)(x),

where ∗ is the convolution product between two functions. As h3 ∈ C∞(Rn) and h2 ∈ L1(Ω,F ,P)
then (h2 ∗h3) ∈ C∞(Rn) (property of convolution product). Moreover, h1 ∈ C∞(Rn) as well, therefore

cβ(x) ∈ C∞(Rn) as it is the product of infinitely continuously differentiable functions.

2. By using the same notation as above, the partial derivative of cβ may be computed, for j ∈ [1, n]

as

∂cβ(x)

∂xj
=

∂h1(x)

∂xj
(h2 ∗ h3) (x) + h1(x)

(
h2 ∗

∂h3

∂xj

)
(x).

Yet, we have

∂h1(x)

∂xj
=

1

(2π)
n
2 βn

 n∏
i=1

1

Φ
(

bui
−xi

β

)
− Φ

(
bℓi

−xi

β

)
 ϕ

(
buj

−xj

β

)
− ϕ

(
bℓj

−xj

β

)
β
(
Φ
(

buj
−xj

β

)
− Φ

(
bℓj

−xj

β

)) = −µjh1(x)

β

∂h3(x)

∂xj
= −xj

β2
h3(x).

Thus, we obtain
∂cβ(x)

∂xj
= Eu

[
uj − µj

β
c(x+ βu)

]
.

From this result, an unbiased estimator of the gradient of cβ is

∇̃cβ(x) =
u− µ

β
c(x+ βu).

As the variance of this estimator gets unbounded as β goes to 0, in practice the following estimator is

used

∇̃cβ(x) =
(u− µ)c(x+ βu)− (u− µ)c(x)

β
.

This estimator is still unbiased since Eu[(u− µ)c(x)] = 0.

3. Symmetrically, if u ∼ T N (0, I, x−bu

β , x−bℓ

β ), an unbiased estimator is

∇̃cβ(x) =
(µ− u)c(x− βu)− (µ− u)c(x)

β
.
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thus, by summation of the two one-sided estimator, the two-sided estimator is obtained.

4. Finally, we have, with u1 ∼ T N (0, I, bℓ−x
β1 , bu−x

β1 ) and u2 ∼ T N (0, I, bℓ−x
β2 , bu−x

β2 )

|cβ(x)− c(x)| = |Eu[c(x+ βu)]− c(x)| ≤ Eu[|c(x+ βu)− c(x)|] ≤ LβEu[||u||].

where the first inequality comes from the Jensen’s inequality and the second one comes from the L-

Lipschitz continuity of c. It remains to bound Eu[||u||] when u is a truncated Gaussian vector, for this

purpose, the proof of Lemma 1 of [39] is adapted for truncated Gaussian distribution. The following

identity is used:∫ bu−x
β

bℓ−x

β

e−
||u||2

2 du = (2π)n/2
n∏

i=1

(
Φ

(
bui

− xi

β

)
− Φ

(
bℓi − xi

β

))
:= κ.

By setting v = x+ βu and multiplying by βn, the last equalities become∫ bu

bℓ

e
− ||v−x||2

2β2 dv = (2π)n/2
n∏

i=1

(
Φ

(
bui

− xi

β

)
− Φ

(
bℓi − xi

β

))
βn = κβn.

Taking the logarithm yields

ln

(∫ bu

bℓ

e
− ||v−x||2

2β2 dv

)
= n ln(β) +

n

2
ln(2π) +

n∑
i=1

ln

(
Φ

(
bui

− xi

β

)
− Φ

(
bℓi − xi

β

))
. (11)

Now, the derivative of the left-hand-side of Equation (11) with respect to β is given by

∂

∂β
ln

(∫ bu

bℓ

e
− ||v−x||2

2β2 dv

)
=

1

κβn

∫ bu

bℓ

||v − x||2

β3
e
− ||U−x||2

2β2 dv

=
1

κβ

∫ bu−x
β

bℓ−x

β

||u||2e−
||u||2

2 du since
v − x

β
= u

=
1

β
Eu[||u||2]

and the derivative of the right-hand-side of Equation (11) is given by

n

β
+

n∑
i=1

bℓi−xi

β2 ϕ
(

bℓi−xi

β

)
− bui

−xi

β2 ϕ
(

bui
−xi

β

)
Φ
(

bui
−xi

β

)
− Φ

(
bℓi−xi

β

) .

Thus,

Eu[||u||2] = n+

n∑
i=1

bℓi−xi

β ϕ
(

bℓi−xi

β

)
− bui

−xi

β ϕ
(

bui
−xi

β

)
Φ
(

bui
−xi

β

)
− Φ

(
bℓi−xi

β

) ≤ n, (12)

where the inequality holds because the sum is negative for x ∈ X . Finally, with the result in Equa-

tion (12) and the results of Lemma 1 of [39], the following bound appears

Eu[||u||] ≤
√
n.

When only noisy outputs of the blackbox are available, the following estimator is used

∇̃Cβ(x, ξ) =
(u− µ) (C(x+ βu, ξ1)− C(x, ξ2))

β
, (13)

where ξ1 and ξ2 are two independent identically distributed realizations of a random vector ξ. This

estimator is still unbiased because

Eu,ξ[∇̃cβ(x, ξ)] = Eu[Eξ[∇̃cβ(x, ξ)|u]] = ∇cβ(x).
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3.2 Smooth approximation of CVaR-constrained blackbox optimization problem

The non-smoothness of a CVaR-constrained blackbox optimization problem arises from two elements:

the potential non-smoothness of the functions Cj and the non-smoothness introduced by the function

max in the CVaR formulation. The concept of smoothing a CVaR-constrained optimization problem

is not novel; it has been explored in prior works [34, 54]. In this study, this concept is applied to

both sources of non-smoothness using the aforementioned truncated Gaussian smoothing. As t is an

unconstrained vector, arbitrarily large bounds are introduced for this vector. Let β1, β2 > 0 be two

scalars, u ∼ T N (0, I, bℓ−x
β1

, bu−x
β1

) a random vector of size n and v ∼ T N (0, I, −tmax

β2
, tmax

β2
), a random

vector of size m + 1, where tmax is chosen to be sufficiently large, the smooth approximation of Vαj

and CVaRαj
for all j ∈ [0,m] are defined respectively as

V β
αj
(x, tj) = Eu,v[Vαj

(x+ β1u, tj + β2vj)], and

CVaRβ
αj
(x) = min

tj∈R
Eu,v[Vαj (x+ β1u, tj + β2vj)].

Then, the smooth approximation of the Problem (6) may be formulated as follows

min
(x,t)∈X×Rm+1

V β
α0
(x, t0)

s.t. V β
αj
(x, tj) ≤ 0, ∀j ∈ [1,m].

(14)

Now, the quality of this smooth approximation is studied. The following Lemma states properties of

the truncated Gaussian smoothing approximation applied with the CVaR measure.

Theorem 3.2. Under Assumption 1.2, the following holds.

1. |CVaRβ
αj
(x)− CVaRαj

(x)| ≤ L2β1
√
n+β2

1−αj
for all j ∈ [0,m] and x ∈ X ;

2. |CVaRβ
α0
(x̃∗)−CVaRα0

(x∗)| ≤ L2β1
√
n+β2

1−αj
, where x̃∗ and x∗ are solutions of Problem (14) and (5)

respectively.

3. If Assumption 1.3 holds, then there exists a threshold ᾱj ∈ (0, 1] such that for all αj ≥ ᾱj

CVaRαj (x) ≤ CVaRβ
αj
(x) ≤ CVaRαj (x) +

L2β1
√
n+ β2

1− αj
.

Thus, for αj ≥ ᾱj , if x̃
∗ is a solution of Problem (14), then it is a feasible point for Problem (5).

Proof. 1. Under Assumption 1.2, it follows that for all (x, tj) ∈ X × R

|V β
αj
(x, tj)− Vαj

(x, tj)| =
1

1− αj

∣∣Eu,v,ξ[(Cj(x+ β1u, ξ1)− (tj + β2vj))
+ − (Cj(x, ξ2)− tj)

+]
∣∣

≤ 1

1− αj
Eu,v,ξ[|(Cj(x+ β1u, ξ1)− (tj + β2vj))

+ − (Cj(x, ξ2)− tj)
+|]

≤ 1

1− αj
Eu,v,ξ[|Cj(x+ β1u, ξ1)− β2vj − Cj(x, ξ2)|]

≤ 1

1− αj
Eu,v,ξ[κ2(ξ1, ξ2)β1||u||+ β2|vj |]

≤ L2β1
√
n+ β2

1− αj
,

where the first inequality follows from Jensen’s inequality, the second from the following inequality

|max(0, a) − max(0, b)| ≤ |a − b|, the third from Assumption 1.2 and the last one from the inde-

pendence of u and κ2(ξ) and the bound on the expectation of the norm of (truncated) Gaussian
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random vectors. This is true for all tuples (x, tj) ∈ X × R, in particular for t∗j ∈ argminV (x, tj) and

t̃∗j ∈ argminEu,v[Vαj (x+ β1u, tj + β2vj)]. Therefore, it follows that for any j ∈ [0,m] and any x ∈ X

V β
αj
(x, t̃∗j ) ≤ V β

αj
(x, t∗j ) ≤ Vαj

(x, t∗j ) +
L2β1

√
n+ β2

1− αj
.

Conversely, it also follows that

Vαj
(x, t∗j ) ≤ Vαj

(x, t̃∗j ) ≤ V β
αj
(x, t̃∗j ) +

L2β1
√
n+ β2

1− αj
.

Recalling that CVaRαj
(x) = Vαj

(x, t∗j ) and CVaRβ
αj
(x) = V β

αj
(x, t̃∗j ), we obtain that

|CVaRβ
αj
(x)− CVaRαj

(x)| ≤ L2β1
√
n+ β2

1− αj
∀j ∈ [1,m].

2. Using the same previous argument but with respect to x instead of t allows to obtain the second

inequality.

3. Consider x ∈ X and suppose that Assumption 1.3 holds. It follows that for all j ∈ [0,m] and

ξ ∈ Ξ

|Cj(x, ξ)| − |Cj(0,0)| ≤ |Cj(x, ξ)− Cj(0,0)| ≤ κ3(ξ,0)||x||,
which implies that |Cj(x, ξ)| is almost surely bounded by a function depending on x. Now, for all

x ∈ X , Mj(x) is defined as the essential supremum of Cj(x, ξ), i.e,

Mj(x) := inf{t ∈ R | Cj(x, ξ) ≤ t for almost every ξ ∈ Ξ}.

Now, we have by definition

VaRαj=1(x) = inf{t | P(Cj(x, ξ) ≤ t) = 1} = Mj(x).

As the c.d.f. of Cj(·, ξ) is assumed continuous, then it follows by [46] that

CVaRαj (x) =
1

1− αj

∫ 1

αj

VaRτ (x)dτ.

As for τ ∈ [αj , 1], the VaRτ function is continuous with respect to τ with VaRαj
(x) ≤ VaRτ (x) ≤

VaRαj=1(x) = Mj(x), the mean value theorem ensures

VaRαj
(x) ≤ CVaRαj

(x) ≤ Mj(x).

Thus, for all x ∈ X , limαj→1 CVaRαj
(x) = Mj(x) and we can set CVaRαj=1(x) = Mj(x) which

ensures continuity of the CVaRαj function with respect to αj for αj ∈ (0, 1]. Now,

CVaRβ
αj=1(x) = VaRβ

αj=1(x) = inf{t | P(Cj(x+ β1u, ξ)− β2vj ≤ t) = 1},

where the probability measure is taken with respect to ξ, u ∼ T N (0, I, bℓ−x
β1

, bu−x
β1

) and

v ∼ T N (0, I, −tmax

β2
, tmax

β2
). It follows that

VaRβ
αj=1(x) = sup

ξ∈Ξ, u∈[
bℓ−x

β1
,bu−x

β1
],

vj∈[(−tmax
β2

)j ,(
tmax
β2

)j ]

Cj(x+ β1u, ξ)− β2vj = sup
x∈X

Mj(x) + (tmax)j ,

where the sup is understood as the essential supremum of the function. Thus, for any x ∈ X ,

CVaRαj=1(x) < CVaRβ
αj=1(x). Therefore, by continuity of CVaRαj

with respect to αj , there ex-

ists ᾱj ∈ (0, 1] such that for all αj ≥ ᾱj

CVaRαj
(x) ≤ CVaRβ

αj
(x) ≤ CVaRαj

(x) +
L2β1

√
n+ β2

1− αj
,

where the second inequality comes from the first part of the theorem.
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Theorem 3.2.2 shows that the difference in the values of objective function of Problem (14) and

Problem (5) is bounded by a constant that depends on the values of αj , β1, and β2. Theorem 3.2.3

demonstrates that, with additional mild conditions, if αj is chosen sufficiently close to 1, the solution

obtained in Problem (14) is feasible for Problem (5). Therefore, the solution of Problem (14) may be

feasible for Problem (5) and its value can be arbitrarily close to that of Problem (5) with sufficiently

small values of β1 and β2. However, it is important to note that in practice, if β1 and β2 are chosen too

small, the difference between the empirical values of the function will also be too small to represent

the function differential [12].

To solve Problem (14) and to avoid the use of inner loops, which are computationally intractable,

a Lagrangian relaxation is employed. This approach leads to the following unconstrained problem.

max
0≤λ∈Rm

min
(x,t)∈X×Rm+1

Lβ(x, t,λ) := V β
α0
(x, t0) +

m∑
j=1

λjV
β
αj
(x, tj), (15)

where t = (t0, . . . , tm) ∈ Rm+1. The next section describes a method allowing convergence to a saddle

point of the Problem (15) whose the definition is recalled here.

Definition 3.3 (Saddle point). A saddle point of L(x, t,λ) is a point (x∗, t∗,λ∗) such that for some

r > 0, ∀(x, t) ∈ X × Rm+1
⋂
B(x∗,t∗)(r) and for all λ ≥ 0, we have

L(x, t,λ∗) ≥ L(x∗, t∗,λ∗) ≥ L(x∗, t∗,λ),

where B(x∗,t∗)(r) is a hyper-dimensional ball centred at (x∗, t∗) with radius r > 0.

4 A risk averse multi-timescale stochastic approximation algorithm

Section 4.1 presents the multi-timescale stochastic approximation methods, and Section 4.2 describes

the complete algorithm used to solve the Problem (15).

4.1 Multi-timescale stochastic approximation methods

Multi-timescale is used to address the second difficulty raised at the end of Section 2, i.e., to avoid

using nested loops to estimate a quantile of the level α and to compute the probabilistic constraints.

Multi-timescale stochastic approximation [9, 10] is a method that utilizes updates with different step-

size schedules. Multi-timescale algorithms are useful when, between two successive updates of the

algorithm, an inner-loop procedure must be performed recursively until it converges. Employing a

multi-timescale algorithm allows both updates (for the inner and outer loops) to run together and

converge to the desired point. In conditional value-at-risk (CVaR) optimization, this is typically the

case for updating the additional variable t that could have been updated in an inner loop procedure.

For example, the work [15, 42] use a multi-timescale algorithm to update the additional variable. Other

cases where multi-timescale can be applied include aggregating information about the gradient through

an exponential moving average and updating the Lagrangian multipliers in the case of a Lagrangian

relaxation. For more details on multi-timescale stochastic approximation, readers may refer to [10,

Chapter 6] or [9, Section 3.3].

In this work, four different timescales are used. The four different step sizes sk1 , s
k
2 , s

k
3 and sk4 are

chosen so that Assumption 2 holds.

Assumption 2. For k ≥ 0, the step sizes sequences sk1 , s
k
2 , s

k
3 and sk4 are strictly positive and satisfy

the requirements: ∑
sk1 =

∑
sk2 =

∑
sk3 =

∑
sk4 = +∞,∑(

(sk1)
2 + (sk2)

2 + (sk3)
2 + (sk4)

2
)
< ∞,

lim
k→∞

sk1
sk2

= lim
k→∞

sk2
sk3

= lim
k→∞

sk3
sk4

= 0.
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These four step sizes differ by their speed to reach the infinity. In fact, under the previous assump-

tion, there exists an integer k0 such that, for every K ≥ k0, the partial sums satisfy

K∑
k=0

sk1 <

K∑
k=0

sk2

and the gap between the above two summations increases with K. Thus, the time scale associated

Algorithm 1 Risk Averse Multi-timescale Stochastic Approximation (RAMSA) algorithm

1: Input: x0, X , T ,L,Kmax.
2: Set k = 0 be an iteration counter
3: Define stepsize sequences (sk1), (s

k
2), (s

k
3) and (sk4) having the following form :

ski =
s0i

(k + 1)τi
, ∀i ∈ {1, 2, 3, 4}

4: where the exponential decays τi, i = 1, . . . , 4 are chosen such that the Assumption 2 are satisfied.
5: Set M0 = g̃0,V0 = (M0)2 and t0 = 0
6: while k ≤ Kmax do

7: Draw samples uk ∼ T N (0, I, bℓ−xk

β1
, bu−xk

β1
) and vk ∼ T N (0, I, −tmax−tk

β2
, tmax−tk

β2
).

8: Recall that an unbiased output of the Lagrangian is given by:

L̃(x, t,λ, ξ) = Ṽα0 (x, t0, ξ) +

m∑
j=1

λj Ṽαj (x, tj , ξ) (16)

9: where Ṽαj (x, tj , ξ) = tj + 1
1−αj

(Cj(x, ξ)− tj)
+.

10: Calculate the gradient estimate g̃ := (g̃x, g̃t, g̃λ) ∈ Rn × Rm+1 × Rm with respect to x, t and λ with:

g̃k
x =

(
L̃(xk + β1uk, tk + β2vk,λk, ξk1)− L̃(xk, tk,λk, ξk2)

)
(uk − µk

1)

β1
,

g̃k
t =

(
L̃(xk + β1uk, tk + β2vk,λk, ξk1)− L̃(xk, tk,λk, ξk2)

)
(vk − µk

2)

β2
,

g̃k
λj

= Ṽαj (x
k, tkj , ξ

k
1) ∀j ∈ [1,m].

(17)

11: Update the long term gradient estimators:

Mk+1 = sk4 g̃
k + (1− sk4)M

k

Vk+1 = sk4(g̃
k)2 + (1− sk4)V

k
(18)

12: Update the current iterates xk, tk and λk;

tk+1 = ΠT

tk − sk3
Mk+1

t√
Vk+1

t + ϵ

 (19)

xk+1 = ΠX

xk − sk2
Mk+1

x√
Vk+1

x + ϵ

 (20)

λk+1 = ΠL

λk + sk1
Mk+1

λ√
Vk+1

λ + ϵ

 (21)

13: k ← k + 1
14: end while
15: Return xk

with s2 is said to be faster than the time scale associated with s1. In this work, the fastest timescale

is used to aggregate information about the gradient, the first intermediate timescale is used to update

the additional variable t and the second intermediate timescale is used to update the design vector x,

and the slowest timescale is used to update the Lagrangian multipliers λ.
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4.2 The RAMSA algorithm

Algorithm 1 summarizes the different updates. Note that when the square (·)2, the square root
√
· or

division ·
· operators are applied to a vector, it is elementwise. Further remarks about algorithm 1 are

outlined:

• The updates (18) are the updates used to aggregate information about the gradient and are

computed from the unbiased estimator defined in Equation (13). It will be shown later in the

convergence proof that in fact ||Mk − ∇L(xk, tk,λ)|| → 0 and ||Vk − (∇L(xk, tk,λ))2|| → 0

almost surely when k → ∞. The Mk iterates can be thought of as an exponential moving

average of the gradient estimators and aim to aggregate information about the direction of the

gradient. The Vk iterates aim to avoid exploding gradient updates and aggregate information

about the magnitude of the gradient.

• The update of the variable t is done in the update (19). The interest of updating t with a faster

timescale than those of x is that x will be quasi static compared to t. Thus, for a given x, the

updates of t will appear to have converged to a point t∗(x), where t∗ is an estimate of the VaR

at the point x of the objective and constraint functions.

• A projection is employed in the updates of the variables x, t and λ. This projection is required

in the case of x because the space of the design variables is bounded. For t and λ, the projection

is required for convergence analysis. Since the bounds on t and λ can be arbitrarily large, this

is not a problem in practice. In the algorithm, the sets X , T , and L are all hyperrectangles, i.e.,

sets of type [bℓ,bu] ⊂ Rd where d is a given dimension. Furthermore, the projection operator

ΠX (x) is defined as ΠX (x) = (Π1(x1), . . . ,Πd(xd)), where the individual projection operators

Πj : R → R are defined by Πj(xj) = min((bu)j ,max((bℓ)j , xj)) for all j ∈ [1, d]. The projection

operators for the variables t and λ are defined in the same way.

5 Convergence analysis

The convergence of the RAMSA algorithm is stated in the following theorem.

Theorem 5.1. Under Assumption 1.3 and Assumption 2, let further assume that the problem given

in Equation (14) is strictly feasible and there exists K ∈ N such that xK and λK are in the domain

of attraction of x∗ and λ∗ with λ∗ ∈ L◦ respectively. Then, the iterates (xk, tk,λk), produced by

the RAMSA algorithm, converge almost surely to a saddle point of the Lagrangian function Lβ and
(x∗, t∗) is a locally optimal solution for the smooth CVaR-constrained problem given in Equation (14).

While the technical details of the proof of this theorem are given in Appendix A, a high-level

overview of the proof steps is given below.

• First, for each timescale, a discrete stochastic approximation analysis is used to prove the almost

sure convergence of the iterates (Mk,Vk,xk, tk,λk) to a stationary point (M∗,V∗,x∗, t∗,λ∗) of

the corresponding continuous-time system.

• Then, to show that the continuous-time system is locally asymptotically stable at the stationary

point, a Lyapunov analysis is performed.

• Finally, considering the iterates (xk, tk,λk), the Lyapunov function used in the above analysis is

the Lagrangian function L(x, t,λ). Therefore, the stationary point (x∗, t∗,λ∗) is a saddle point.

Thus, by the saddle point theorem, we deduce that x∗ is a locally optimal solution to the smooth

CVaR-constrained blackbox optimization problem given in Equation (14).

This convergence proof procedure is standard for multi-timescale stochastic approximation algorithms,

see [9, chapter 10], [10, chapter 6] or [9, 15], for further references. Note that this procedure must be

done for each timescale, requiring four similar proof steps. This is due to the different speeds of the

timescales. Here, the updates (Mk,Vk) converge on a faster timescale than tk, which converges on
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a faster timescale than xk, while λk converges on the slowest timescale. The idea of multi-timescale

convergence analysis is then to assume that, given a timescale, the updates made on faster timescales

are quasi-equilibrated, i.e. have already converged to an equilibrium point. The updates made on slower

timescales are quasi-static, i.e. fixed with respect to the given timescale. Therefore, the convergence

analysis of the updates of the given timescale is done by considering all other updates as fixed. To

illustrate the mathematical meaning of this assumption, consider two updates xk,xk
2 ∈ X1 × X2 such

that

xk+1
1 = xk

1 + sk1
(
f1(x

k
1 ,x

k
2) + δk+1

1

)
, (22)

xk+1
2 = xk

2 + sk2
(
f2(x

k
1 ,x

k
2) + δk+1

2

)
, (23)

where f1 and f2 are Lipschitz continuous function and δ1, δ2 are square integrable martingale difference

sequence with respect to the σ-field σ(xi
1,x

i
2, δ

i
1; i ≤ k) and σ(xi

1,x
i
2, δ

i
2; i ≤ k). If sk1 and sk2 are non-

summable and square summable step sizes with sk2 which is a faster timescale than sk1 , i.e., s
k
1 = o(sk2).

Then, the previous recursion may be rewritten as follows

xk+1
1 = xk

1 + sk2

(
sk1
sk2

(
f1(x

k
1 ,x

k
2) + δk+1

1

))
, (24)

xk+1
2 = xk

2 + sk2
(
f2(x

k
1 ,x

k
2) + δk+1

2

)
. (25)

As sk1 = o(sk2), this recursion may be seen as a noisy discretization of the ODEs ẋ1 = 0 and ẋ2 =

f2(x1,x2). Since ẋ1 = 0, x1 is a constant and the second ODE may be replace with ẋ2 = f2(x
0
1,x2),

where x0
1 is a constant. Finally it can be proved [10, Chapter 6, Theorem 2] that (xk

1 ,x
k
2) converge

(x∗
1, µ(x

∗
1)), where µ is a Lipschitz continuous function, µ(x∗

1) is a locally stable equilibrium of the

ODE ẋ2 = f2(x
∗
1,x2) and x∗

1 is a locally stable equilibrium of the ODE ẋ1 = f1(x1, µ(x1)).

In Theorem 5.1, it is proved that the iterations converge to a locally optimal solution of the problem

given in Equation (14). It is possible to obtain a result for the original CVaR-constrained problem

given in Equation (5) by utilizing Theorem 3.2. This is the subject of the following corollary.

Corollary 5.2. Under the same assumptions as Theorem 5.1, it follows that there exists a threshold

ᾱ ∈ (0, 1] such that if αj ≥ α for all j ∈ [0,m], then the iterates xk converge almost surely to a feasible

solution x∗ of Problem (5) whose the objective function value is within L2β1
√
n+β2

1−maxj∈[1,m] αj
of that of a local

solution of Problem (5).

Proof. The proof is straightforward, considering the result of Theorems 5.1 and 3.2.

This corollary is particularly interesting because it ensures the almost sure convergence of Al-

gorithm 1 to a feasible point of the CVaR-constrained problem whose objective function value is

arbitrarily close to that of a local solution. To the best of our knowledge, this result is the first of its

kind in the area of derivative-free RBDO with unknown uncertainty distribution.

6 Computational implementations and numerical experiments

This section is divided into five parts: details of the numerical implementation are given in Sec-

tion 6.1. Section 6.2 describes the setup of the experiments. Section 6.3 presents the experiments

aimed at finding relations between the hyperparameters and the problems to be solved. Finally, Sec-

tion 6.4 exhibits the results obtained using the truncated Gaussian gradient estimator instead of

its classical counterpart, while Section 6.5 shows the results when the problem is subject to mixed

aleatory/epistemic uncertainties.
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6.1 Computational implementation

In this section, practical details of the implementation of Algorithm 1 are given. They aim to reduce

the number of hyperparameters required by the algorithm and improved its practical efficiency.

The first difficulty the algorithm faces is when the bounds of the decision variables differ in magni-

tude. A first approach is then to adjust the initial step sizes according to each coordinate. However,

this increases the number of hyperparameter values to be set. Another approach, which requires only

one step size for all coordinates j ∈ [0,m], is to map the initial hyperrectangle to the hypercube [0, 1]n.

The output of the blackbox Cj : X → R is simply replaced by C1
j : [0, 1]n → R, where

C1
j (x, ξ) = Cj(bℓ + (bu − bℓ)x, ξ).

The algorithm encounters a second difficulty related to the Lagrangian relaxation, where the values

of the objective function and constraints are added together. When constraint magnitudes differ, the

algorithm is biased towards the larger ones. To mitigate this bias, a solution consists of choosing

different step sizes for updating λ but that increases the number of hyperparameters. Alternatively, a

transformation may be applied to normalize the values, allowing the use of a single step size. In this

method, the arctan(·) function is employed to map the blackbox output values to the range of [−π
2 ,

π
2 ].

However, there is an issue when the bounds of the arctan function are approached because the gradient

estimator is computed from the difference between the values returned by the arctan function. If this

difference is too small, especially in the presence of noisy blackbox outputs, the quality of the gradient

estimator decreases. To address this issue, the cubic root function is applied beforehand to increase

the difference between these values. That leads to the following transformation

C2
j (x, ξ) = arctan

(
3

√
Cj(x, ξ)

)
,∀j ∈ [0,m].

In the rest of the paper, we refer to C̃j : [0, 1]n → [−π
2 ,

π
2 ], ∀j ∈ [0,m], the map corresponding to the

two previous transformations applied to the outputs of the blackbox.

Finally, in practical applications, it appears that initiating the process directly at the intended

reliability level can be counterproductive [62]. To overcome this difficulty, the values of αj ,∀j ∈ [0,m]

are initially set to 0. Then, these values are gradually increased until the desired reliability levels are

reached. This is done by inserting reliability level setting

αk+1
j = α∗

j + γ
(
αk
j − α∗

j

)
for every index j ∈ [0,m] in between lines 12 and 13 of Algorithm 1. Here, α∗

j are the desired reliability

levels and γ ∈ [0, 1) is a fixed threshold.

6.2 Numerical experiments

Before proceeding to the numerical experiments, this section describes the test problems chosen, the

way the experiments are performed, and the objectives of the different experiments.

First, four analytical test problems, each with a known practical optimum, are chosen from existing

literature. These problems include a Steel Column Design (SCD) problem [59], a Welded Beam Design

(WBD) problem [59], a Vehicle Side Impact (VSI) problem [59], and a Speed Reducer Design (SRD)

problem [13]. These problems are decribed in Appendix B, and further information regarding their

physical interpretations can be found in the associated references. Except in the last subsection, the

goal is to solve the following standard RBDO problem

min
x∈[0,1]n

Eξ[C̃0(x, ξ)]

s.t. P(C̃j(x, ξ) ≤ 0) ≥ 0.99, ∀j ∈ [1,m].
(26)
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It is important to note that Problem (26), unlike the classical FORM-based problem, incorporates

uncertainties not only in the constraints but also in the objective function. Moreover, despite the

analytical expressions of the problems are available and the uncertainty distributions are known, the

RAMSA algorithm operates without utilizing these information. As outlined in Sections 2 and 3 it

solves formally a smooth Lagrangian relaxation of Problem (26).

In order to make comparisons, it is essential to devise a strategy for evaluating the quality of

solutions generated by the RAMSA algorithm. As both the problem and the algorithm are subject to

uncertainties, multiple runs of the RAMSA algorithm are necessary, and the values of the proposed

solutions need to be estimated using Monte Carlo simulations. In this work, a trial consists of running

the algorithm 100 times with the same set of hyperparameters values. For each run, a maximum

budget of 5000 function evaluations is allocated. At the end of these 100 runs, the final solution points

are recorded. For each solution point, the mean of the objective function and the probabilisty to satisfy

the constraints are estimated through 10000 Monte Carlo simulations. A run is deemed successful if

all constraints are satisfied with a probability greater than 0.99. Moreover, the mean solution point

over the 100 runs, denoted as x̄∗, is calculated as well as its standard deviation. That allows to check

that the RAMSA algorithm consistently converges to the same neighborhood of an optimal point.

To further validate the results, this point is also compared with the solution obtained by the SORA

algorithm in [13, 59]. Note that the aim is not to directly compare the RAMSA and SORA algorithms

since the SORA algorithm takes advantage of the analytical expressions of the problems and knowledge

of uncertainty distributions. When a trial is consistent for a set of hyperparameter, the set and the

trial are said to be satisfactory.

Now, the objectives of the upcoming experimental sections are threefold. First, despite the trans-

formations introduced in the previous section, there are still some hyperparameters that need to be

configured. Section 6.3 provides guidelines on how to set these hyperparameters. Second, a critical

aspect is the selection of the kernel density used to estimate gradients during the optimization pro-

cess. In Section 6.4, a comparison is made between the classical Gaussian gradient estimator and the

truncated Gaussian gradient estimator introduced in Section 3.1. Third, the VSI problem is described

slightly differently in [59], allowing the means of the uncertainty variables ξ8 and ξ9 to take two val-

ues: 0.192 and 0.345. This is an opportunity to employ the RAMSA algorithm for solving the VSI

problem under mixed aleatory/epistemic uncertainties. In fact, the uncertainty in distribution param-

eters can be regarded as a source of epistemic uncertainty [38]. Detailed descriptions of the conducted

experiments are presented in Section 6.5.

6.3 Hyperparameters setting rules

The RAMSA algorithmn involves four types of hyperparameters: the exponential decays of the step

sizes τ ∈ ( 12 , 1)
4, the threshold for the adaptive reliability level γ, the initial step sizes s0 ∈ R4

+, and

the smoothing parameters β ∈ R2
+∗. Two strategies can be employed to determine the values of these

hyperparameters.

On the one hand, theoretical considerations are employed to set some hyperparameter values. This

approach is employed to set the values of the exponential decays. These values must satisfy Assump-

tion 2 to ensure the convergence of the algorithm. Moreover, they must be distinct enough to achieve

the desired multi-timescale effect, but also not too different, otherwise, either the fastest timescale is

too fast (leading to increased noise) or the slowest timescale is overly slow (impeding the convergence

process) [9, Chapter 6]. Thus, the decays are arbitrarily set to τ = (0.8, 0.7, 0.6, 0.501). The threshold

for the adaptive reliability level γ can be determined similarly. This hyperparameter depends only on

the value of Kmax because for j ∈ [0,m], it follows that ∀k ∈ N, αk+1
j = α∗

j (1 − γk). Thus γ can be

chosen such that αKmax

j ≈ α∗
j . However, if α∗

j is chosen close to 1, the problem given in Equation (14)

is particularly conservative for Problem (5), as shown in Theorem 3.2, and even more so for Prob-

lem (26). Therefore, to avoid overly conservative results, γ is chosen to be equal to 1− 5
2Kmax so that

αKmax
j ≈ 0.9 provided that Kmax = 2500 and α∗ = 0.99.
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On the other hand, there are some hyperparameters values that cannot be determined theoreti-

cally. In this case, they have to be computed experimentally. This is achieved through a two-step

strategy. The set of test problems is divided into two groups: the experimental test problems and the

validation test problems. In the first step, for each experimental problem, a set of hyperparameters,

that gives satisfactory results on this test problem, is identified. By analyzing the results obtained on

the different problems and the associated hyperparameter values, a distinction may be deduced be-

tween the hyperparameters which are problem-dependent and which are not. For problem-dependent

hyperparameters, we try to establish correlations between the hyperparameter values and relevant

problem-related quantities. Examples of such quantities include the objective function value, the gra-

dient norm, or its variance at the starting point. Then, the validation step is undertaken to check the

rules derived from the experimental step. During this phase, the rules are applied to the validation test

problems to determine the hyperparameter values of the RAMSA algorithm. If the results obtained

with this set of hyperparameters are satisfactory, the rules are deemed effective.

In this study, the two-step strategy is applied as follows. The experimental test problems selected

are the VCD, WBD, and VSI problems. Trials of Algorithm 1 are conducted with different sets of

hyperparameter values and the classical Gaussian gradient estimator [39, Equation (26)]. For the sake

of brevity, only one set of satisfactory hyperparameters and its associated results are presented for each

problem. The values of this set are listed in Table 2, while in Table 3 the associated average results of

the trials are presented. Detailed results from the 100 runs of the trials are provided in Appendix C

in the form of boxplots.

Table 2: Satisfactory set of hyperparameter values found for each problem

Problem β1 β2 s01 s02 s03 s04

SCD 0.05 0.0001 0.01 0.05 0.001 0.2
WBD 0.002 0.0001 0.01 0.001 0.001 0.4
VSI 0.1 0.0001 0.01 0.5 0.001 0.5

Table 3: Average result over 100 runs obtained for each problem

Problem/
Algo

Average of
E[C(x∗, ξ)]

Average of
P(Cj(x

∗, ξ) ≤ 0)
Average result point x̄∗ (and

standard deviation)
Number of

successful runs
Function
queries

SCD 3967 [0.9938] [229.7, 15.03, 103.1]
[±4.4,±0.25,±3.8]

100 5000

SORA 3989 [0.9947] [258, 13.5, 100] N/A 216

WBD 2.53 [1.0, 1.0, 0.9995, 1.0, 1.0] [6.36, 158, 211, 6.59]
[±0.01,±0.29,±0.29,±0.02]

100 5000

SORA 2.49 [1.0, 1.0, 1.0, 1.0, 1.0] [5.92, 181, 211, 6.22] N/A 505

VSI 28.38

[1.0, 1.0, 1.0, 1.0, 0.9993 [0.88, 1.34, 0.51, 1.49,
[±0.03,±0.004,±0.02,±0.009]

95 5000
1.0, 1.0, 0.9925, 1.0,

0.9996] 1.29, 1.19, 0.45]
±0.07,±0.01,±0.08]

SORA 29.55
[1.0, 1.0, 1.0, 1.0, 0.9987, [0.78, 1.35, 0.69, 1.5,

N/A 80541.0, 0.9987, 0.9983, 1.0, 1.07, 1.2, 0.78]
0.9993]

Table 3 shows that the RAMSA algorithm achieves satisfactory results in all three problems. Inter-

estingly, it appears to perform better on problems with higher dimensions and more constraints. This

phenomenon can be attributed to the approximation of the gradient used in the RAMSA algorithm.

This approximation estimates the gradient of the Lagrangian function with only two blackbox evalua-

tions, regardless of the dimension or number of constraints. Upon analyzing Table 2, it seems that β2,

s01, and s03 are problem-independent. Moreover, the value of s04 falls within a relatively narrow interval

of [0.1, 0.6]. In contrast, the smoothing parameter β1 and the initial step size s02, both associated with
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the design vector x, exhibit variations from one problem to another. This variability suggests the

problem dependency of these hyperparameters.

The first claim to be proven experimentally is the following: an appropriate order of magnitude

of β1 is so that the variance of the gradient estimator at the starting point is minimal. A such

value should reduce the variability during the initial stages of the optimization process and thus

improve the convergence rate. To validate this assertion, the gradient is approximated by computing

N Lagrangian gradient estimators given in Equation (17), at the point (x0,0,0). The gradient is

approximated for only 6 different values of β1 to prevent excessive computations. The values chosen

are [0.001, 0.005, 0.01, 0.05, 0.1, 0.2]. Then, the variance of the first n components of the gradient (i.e.,

the components of g̃x) is computed, and the average of these variances is calculated for each value

of β1. The value of β1 is finally chosen as the one leading to the smallest average variance. If the

minimum is reached for two different values of β1, the larger value is selected. The results for the three

different problems are presented in Table 4. It is observed that, selecting β1 to minimize the average

variance and halving it, yields to similar results to those of Table 2.

Table 4: Average variance of N gradient approximations for different values of the smoothing parameter β1

Value of β1 0.001 0.005 0.01 0.05 0.1 0.2

Average variance for SCD problem 4.2 0.16 0.04 0.004 0.003 0.94
Average variance for WBD problem 2.1 1.75 1.78 5.2 15 8.9
Average variance for VSI problem 0.67 0.03 0.008 0.0018 0.0016 0.0016

The second claim to be experimentally shown is that: there is a correlation between the norm of the

stochastic gradient and the value of the initial step size s02. Intuitively, that means that the smaller the

gradient norm, the larger the initial step size should be, and vice versa. To validate this hypothesis,

N stochastic gradients with β1 = 0.1 are computed, and the norm of their mean is calculated. The

result, normalized by the square root of the dimension, is presented in the third line of Table 5 for

each problem. The second line displays the result obtained in Table 2, and the last line shows the

corresponding correlation coefficients. Based on these results, it can be deduced that the correlation

coefficient should be around 10−3.

Table 5: Correlation between the norm of the gradient and the initial step size s02

SCD WBD VSI

Value of s02 0.05 0.001 0.5

Estimated value of
||∇xLβ(x0,ξ)||2√

n
≈ 0.02 ≈ 1.4 ≈ 0.01

s02 ×
||∇xLβ(x0,ξ)||2√

n
≈ 0.001 ≈ 0.001 ≈ 0.005

In the conducted experiments, the value of N is set to 10000. It is worth noting that while

this large sample size is suitable for these experiments, in a BBO context, such a number might be

intractable due to its computational cost. However, the methodology employed here can be adapted

to work with smaller sample sizes. The goal of this approach is to provide only an order of magnitude

for the hyperparameter values. Thus, a reduced number of samples can be used in a BBO context.

Additionally, it is worth mentioning that the calculated gradients used to estimate the value of β1 can

also be used to estimate the value of s02, reducing the computational cost of the method.

To validate the experimental step, the claims previously stated are applied to compute the hyper-

parameter values for solving the SRD problem. For this problem, the minimum value of the average

variance occurs for β1 = 0.1, and the norm of the Lagrangian gradient (normalized by the dimension)

is estimated to be 0.006. These values are then utilized to set the values of β1 = 0.05 and s02 = 0.15.

The values of the others hyperparameters are set as in Table 2 and s04 = 0.2. The results obtained

with this set of values are shown in Table 6.
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Table 6: Average result over 100 runs for Speed Reducer design problem

Problem/
Algo

Average of
E[C(x∗, ξ)]

Average of
P(Cj(x

∗, ξ) ≤ 0)
Average result point x̄∗ (and

standard deviation)
Number of

successful runs
Function
queries

SRD 3148

[1.0, 1.0, 1.0, 1.0, 1.0 [3.6, 0.7, 17.0, 7.41,
[±0.0,±0.0,±0.06,±0.04]

100 5000
1.0, 1.0, 0.9996, 1.0,

1.0, 1.0] 7.99, 3.51, 5.37]
±0.04,±0.01,±0.01]

SORA 3038
[1.0, 1.0, 1.0, 1.0, 0.9975, [3.57, 0.7, 17, 7.3,

N/A 24860.9986, 1.0, 0.9986, 1.0, 7.75, 3.36, 5.3]
1.0, 0.9986]

Based on these results, it appears that the rules established for setting the hyperparameter values

lead to satisfactory solutions. The consistency observed in the solution points, as indicated by the

small standard deviations obtained, suggests that the algorithm consistently converges to the same

vicinity. Moreover, this solution is relatively close to the optimal point found by the SORA algorithm.

Note, however, that these rules do not guarantee to find the best possible set of hyperparameters. For

example, by retaining all hyperparameter values but adjusting β1 to 0.01, similar values of probabilistic

constraints can be achieved, with an average objective function value of 3066.

In summary, the rules established in this section provide valuable insights into obtaining a satis-

factory set of hyperparameter values for the RAMSA algorithm. However, they must be used with

caution due to the limited number of problems used to derive them, especially for the value of β1. It

is known [12] that setting the appropriate β1 value is a challenging task in practice. One potential

approach to address this challenge is to dynamically decrease the value of β1 during the optimization

process, as done in [7]. Nevertheless, this topic falls beyond the scope of the present paper and is not

explored further here.

6.4 Truncated Gaussian vs Gaussian gradient estimator

In this section, the focus is on investigating the behavior of the algorithm when the bound constraints

are unrelaxable [26], meaning that the outputs of the blackbox are not meaningful for the optimization

process. This situation can arise when the blackbox is not defined outside its bounds or due to physical

phenomenon. In this section, the uncertainties specified in Appendix B are truncated, ensuring that

x + ξ ∈ X for every realization of ξ. Moreover, to solve the constrained problem, the algorithm is

executed using the truncated Gaussian gradient estimator instead of the classical Gaussian gradient

estimator utilized in the previous section. This modification guarantees that all the candidate points

are evaluated inside the bound constraints X .

To determine the hyperparameter values for the algorithm using the truncated Gaussian gradient

estimator, the methodology introduced in the previous section is applied. The values of β1 that

minimize the variance of the truncated Gaussian estimator are found to be 0.2, 0.005, 0.2 and 0.01for

the SCD, WBD, VSI, and SRD problems, respectively. Consequently, the values of β1 are set to

0.1, 0.0025, 0.1 and 0.025. Furthermore, the correlation coefficient between the norm of the approximate

gradient and the initial step size s02 is approximately 5 × 10−4. Thus, the values of s02 are set to

0.1, 0.0008, 0.6 and 0.01 for the SCD, WBD, VSI, and SRD problems, respectively. Finally, the values

of s04 are set to 0.25, 0.4, 0.6, and 0.2. The results of these experiments are presented in Table 7, and

the detailed results from the 100 runs are depicted in boxplots in Appendix C.

In Table 7, it is shown that utilizing the truncated Gaussian gradient approximation leads to

satisfactory results. However, the algorithm convergence is significantly slower than with classical

Gaussian gradient approximation, requiring three times more function queries. This phenomenon

cannot be attributed to the chosen hyperparameter values, as experiments with different sets of values

do not significantly improve the results. Our main hypothesis is that this phenomenon may come from
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Table 7: Best average result over 100 runs obtained for each problem with truncated Gaussian gradient estimator with
15000 function evaluations by run

Problem
Average of
E[C(x∗, ξ)]

Average of
P(Cj(x

∗, ξ) ≤ 0)
Average result point x̄∗ (and

standard deviation)
Number of

successful runs

SCD 3957 [0.9958] [226, 15, 106]
[±10,±0.6,±6]

97

WBD 2.53 [0.999, 1.0, 1.0, 1.0, 1.0] [6.37, 158, 211, 6.59]
[±0.01,±0.24,±0.24,±0.01]

99

VSI 28.97

[1.0, 1.0, 1.0, 1.0, 0.9998 [1.00, 1.35, 0.54, 1.49,
[±0.03,±0.004,±0.03,±0.008]

91
1.0, 1.0, 0.9923, 1.0,

0.9977] 1.21, 1.19, 0.48]
±0.1,±0.008,±0.1]

SRD 3093

[1.0, 1.0, 1.0, 1.0, 1.0 [3.58, 0.7, 17.0, 7.30,
[±0.002,±0.0,±0.03,±0.004]

100
1.0, 1.0, 0.994, 1.0,

1.0, 0.999] 7.78, 3.42, 5.31]
±0.003,±0.002,±0.0008]

a side effect of using the truncated Gaussian distribution. However, a comprehensive investigation of

this issue requires dedicated research, left for future work.

6.5 Solving problems under mixed aleatory/epistemic uncertainties

In this section, the behavior of the algorithm in the presence of mixed aleatory and epistemic uncer-

tainties is examined. Epistemic uncertainties may arise from uncertainties about distribution param-

eters [38]. In the VSI problem presented in [59], it is noted that the mean of the uncertainty variables

ξ8 and ξ9 can take two different values: 0.192 and 0.345. While both values were fixed to 0.345 in [59]

and in the previous experiments, in this section, these means are treated as epistemic uncertainties.

Two types of epistemic uncertainty are studied: points epistemic uncertainty where the means µξ8 and

µξ9 of ξ8 and ξ9 belong to {(0.192, 0.192), (0.192, 0.345), (0.345, 0.192),(0.345, 0.345)} and interval epis-

temic uncertainty where µξ8 and µξ9 belong to the same interval [0.192, 0.345]. The others uncertain

variables remain the same (no truncated) and are considered as aleatory uncertainties.

In this type of problems, a solution is deemed feasible if, for any values µξ8 and µξ9 , the probabilistic

constraints are satisfied with a probability greater than 0.99. Checking solution feasibility is more

complex than in the previous section. In the case of points epistemic uncertainty, checking feasibility
remains relatively straightforward since it involves evaluating the solution for the four possible pairs

of means. However, when dealing with interval epistemic uncertainty, there is no ideal method for

this verification. The approach adopted in this paper involves seeking the worst possible values of the

epistemic uncertainties, µξ8 and µξ9 , at a candidate solution x∗. To achieve this, the following problem

is solved for each constraint Cj , j ∈ [1,m]

max
(µξ8

,µξ9
)∈[0.192,0.345]2

Cj(x
∗,E[ξ]). (27)

This problem aims to find the most challenging combination of µξ8 and µξ9 . In this problem, all the

uncertainties are fixed to their means and therefore the problem is deterministic. For each constraint,

the couples solution of Problem (27) are recorded. Next, the aleatory uncertainties are introduced. For

each pair of µξ8 and µξ9 obtained , the probabilities of satisfying the constraints at x∗ are computed

using the original distribution of the aleatory uncertainties. If these probabilities are all larger than

0.99, then the candidate solution is considered feasible. This approach provides a robust assessment

of feasibility under interval epistemic uncertainty. It is noteworthy that applying this methodology to

the solution point obtained by the SORA algorithm reveals that this point is infeasible in the presence

of epistemic uncertainty. For instance, if the means µξ8 and µξ9 are taken to be equal to (0.192, 0.345),

the probability of satisfying the 7th constraint is P(C7(x
∗
SORA, ξ) ≤ 0) ≈ 0.88.
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Table 8: Average result over 100 runs obtained with mixed aleatory/points epistemic uncertainty in the VSI problem with
15000 function evaluations by run

Value of (µξ8 , µξ9 )
Average of
E[C(x∗, ξ)] Average of P(Cj(x

∗, ξ) ≤ 0)
Average result point x̄∗ (and

standard deviation)
Number of

successful runs

(0.192, 0.192)

30.38

[1.0, 1.0, 1.0, 0.9986, 1.0

[1.27, 1.35, 0.51, 1.49,
[±0.05,±0.0,±0.02,±0.007

981.0, 0.9993, 0.9930, 1.0, 1.0]

1.26, 1.19, 0.47]
±0.08,±0.01,±0.1]

(0.192, 0.345)
[1.0, 1.0, 1.0, 1.0, 1.0,

98
1.0, 0.9993, 0.9930, 1, 0.9995]

(0.345, 0.192)
[1.0, 1.0, 1.0, 1.0, 1.0,

98
1.0, 1.0, 0.9930, 1.0, 1.0]

(0.345, 0.345)
[1.0, 1.0, 1.0, 1.0, 1.0,

99
1.0, 1.0, 0.9929, 1.0, 0.9995]

To address this type of problems with the RAMSA algorithm, it is necessary to associate a prob-

ability distribution with the mean of ξ8 and ξ9. It is important to underline that this does not imply

making an assumption about the distribution of the epistemic uncertainty itself. The distribution is

just utilized to generate blackbox outputs. That allows to approach the problem from a worst-case

perspective, leveraging the CVaR properties when the values of αj are taken sufficiently close to 1. In

the algorithm, the Bernoulli distribution is employed to generate the means for points epistemic uncer-

tainty, while the uniform distribution is used to generate the means for interval epistemic uncertainty.

The results for mixed aleatory/points epistemic uncertainties are presented in Table 8, and for mixed

aleatory/interval epistemic uncertainties in Table 9.

Table 9: Average result over 100 runs obtained with mixed aleatory/interval epistemic uncertainty in the VSI problem
with 10000 function evaluations by run.

Solution of
Problem (27) 1

Average of
E[C(x∗, ξ)] Average of P(Cj(x

∗, ξ) ≤ 0)
Average result point x̄∗ (and

standard deviation)
Number of

successful runs

(0.192, 0.345) 29.71

[1.0, 1.0, 1.0, 1.0, 1.0 [1.15, 1.35, 0.51, 1.49,
[±0.04,±0.00005,±0.01,±0.01

99
1.0, 0.9974, 0.9929, 1.0, 0.9994]

1.23, 1.19, 0.48]
±0.07,±0.02,±0.1]

1 There is only one point because for each run, the solutions (µξ8 , µξ9 ) of (27) are always the same.

In both cases, the RAMSA algorithm achieves satisfactory results. An interesting observation

is that the results obtained with mixed aleatory/interval epistemic uncertainties are better to those

with mixed aleatory/points epistemic uncertainties. This observation might appear counterintuitive

since, in this experiment, points epistemic uncertainty is a subset of interval epistemic uncertainty.

However, this phenomenon could be explained because the algorithm is better at handling continuous

distributions than discrete distributions. The continuous nature of interval epistemic uncertainty could

potentially make it more amenable for the gradient estimator, leading to enhanced performance in these

cases.

7 Concluding remarks

This work targets the constrained blackbox optimization problem given in Equation (1), where the

output of the blackbox is subject to uncertainties. To deal with the uncertainties, a CVaR-constrained

problem formulation is adopted. This formulation allows the selection of the desired level of reliability.

A smooth approximation of the CVaR-constrained problem is then derived by convolving the objective

and constraint functions with a truncated multivariate Gaussian density. The use of the truncated

Gaussian density, as opposed to the classical Gaussian density, ensures that sampling points are drawn
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within the bound constraints. Consequently, this approach avoids numerical failures that may occur

when functions are undefined outside their bounds. Then, a Lagrangian relaxation is applied to

handle the constraints. The resulting Lagrangian function possesses several appealing properties for

optimization. First, it is infinitely differentiable since it is a sum of smooth approximations of the

objective and constraint functions. Second, gradient estimators of the Lagrangian function can be

computed with only two noisy blackbox outputs, making it computationally efficient. Theoretical

bounds on the quality of the approximation have been derived. These bounds depend on the size of

the problem, the value of the smoothing parameters, and the desired level of reliability. It is worth

noting that it has been proved that for a reliability level sufficiently close to 1, a feasible solution of

the approximated problem remains a feasible solution of the original CVaR-constrained problem.

A new algorithm has been proposed to find a saddle point of the Lagrangian function. This

algorithm is based on multi-timescale stochastic approximation updates. In this work, four different

timescales are used. On the fastest timescale, the updates aggregate information about the gradient of

the smooth Lagrangian function. On a first intermediate timescale, they estimate the value-at-risk of

the objective and constraint functions. On a second intermediate timescale, the updates compute the

optimal solution with respect to x, while on the slowest timescale, the updates compute the optimal

values of the Lagrangian multipliers. A convergence analysis based on Lyapunov theory shows that

the different updates almost surely converge to a saddle point of the Lagrangian function. This point

is locally optimal for the smooth approximation of the CVaR-constrained problem. Furthermore,

using the previous result on the quality of the approximation, we prove that for reliability level values

sufficiently close to one, this point is feasible and its value may be arbitrarily close to an optimal value

of the CVaR-constrained problem.

Once theoretical results have been stated, details of the numerical implementations are given. These

details mainly concern two transformations: one mapping the design variables into [0, 1]n and another

mapping the blackbox outputs into [−π
2 ,

π
2 ]

m+1. These transformations are designed to scale the

design variables and the blackbox outputs, effectively reducing the number of hyperparameters. Then,

numerical experiments are performed. In these experiments, the primary objective is to establish rules

for selecting the values of the remaining hyperparameters. The results reveal that all hyperparameter

values, except two, are independent of the problem and can be pre-specified using the values determined

in this work. The first problem-dependent hyperparameter identified is the initial value of the step

size for updating x. It is determined that this value can be estimated from the norm of the gradient

estimator at the starting point. The second problem-dependent hyperparameter is the value of the

smoothing parameter. It is found that this parameter can be chosen in such a way that its value

minimize the variance of the gradient estimator at the starting point.

The secondary objective is to compare the effectiveness of the methods when truncated Gaussian

gradient estimators are used instead of the classical Gaussian gradient estimator. The proposed strat-

egy for setting the hyperparameters is applied to experiments conducted with the truncated Gaussian

gradient estimator. However, its use come at a cost. In the conducted experiments, it is observed that

the truncated estimator is approximately three times less efficient than the classical Gaussian gradient

estimator in terms of blackbox evaluations.

The tertiary objective of the experiments is to apply the algorithm to problems involving mixed

aleatory/epistemic uncertainties. In these experiments, the epistemic uncertainties are related to the

parameter distribution of the uncertainty variables. Two types of epistemic uncertainty are explored:

points epistemic uncertainty and interval epistemic uncertainty. The algorithm demonstrated signifi-

cant efficacy in handling both types of uncertainties. Notably, it performed particularly well in cases

involving interval uncertainties, yielding promising results.

Future work will focus on validating these results using real-world industrial test cases. Addi-

tionally, there are plans to compare the RAMSA algorithm with other state-of-the-art algorithms to

further assess its performance and competitiveness on problems subject to mixed aleatory/epistemic

uncertainties.
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A Proof of Theorem 5.1

First, two technical lemmas are stated to show that the iterates Mk and Vk are uniformly bounded

almost surely. For this purpose, properties about the random gradient estimator must be shown.

Lemma A.1. Under Assumption 1.3, the random gradient estimator g̃ := (g̃x, g̃t, g̃ξ) is almost surely

Lipschitz continuous with respect to x, t and λ. Moreover, ||g̃|| is almost surely bounded.

Proof. Let (x,y) ∈ X 2, (t, s) ∈ Rm+1 ×Rm+1 and consider any fixed realization of u,v, ξ1 and ξ2, it

follows that for αj ∈ (0, 1)

|Ṽαj
(x+ β1u, (tj + β2vj , ξ1)− Ṽαj

(y + β1u, sj + β2vj , ξ2)|

≤ |tj − sj |+
∣∣∣(Cj(x+ β1u, ξ1)− (tj + β1vj)

)+ −
(
Cj(y + β1u, ξ2)− (sj + β1vj)

)+∣∣∣
≤ 2|tj − sj |+ |Cj(x+ β1u, ξ1)− Cj(x+ β1u, ξ2)| ≤ 2|tj − sj |+ L3||x− y|| a.s. ,

where the second inequality follows from |max(a, 0)−max(b, 0)| ≤ |a− b| and the third is due to As-

sumption 1.3. Therefore, Ṽαj is almost surely Lipschitz continuous with respect to x ∈ X and tj ∈ R.
As, L̃ is a sum of almost surely Lipschitz continuous functions with respect to x and t, it is also an

almost surely Lipschitz continuous function. Moreover, L̃ is a linear function with respect to λ and

thus Lipschitz continuous with respect to λ.

Finally, by Assumption 1.3, we have for all x ∈ X and ξ ∈ Ξ

|Cj(x, ξ)| − |Cj(0,0)| ≤ |Cj(x, ξ)− Cj(0,0)| ≤ κ3(ξ,0)||x||.

Thus, the function Cj is almost surely bounded. Since L̃ is a sum of almost surely bounded functions,

x, t and λ are taken in compact sets and v and u are truncated Gaussian random vectors, it follows

directly that ||g̃|| is almost surely bounded.

Once this was shown, Mk and Vk may be bounded.

Lemma A.2. The sequence of updates Mk and Vk are uniformly bounded with probability one.

Proof. Let k ∈ N, we have

Mk+1 = sk4 g̃
k +

k−1∑
r=0

sl4

k−1∏
q=r

(1− sq+1
4 )g̃r +

k∏
q=0

(1− sq4)g̃
0.

It follows directly by triangular inequality that

||Mk+1|| ≤ sk4 ||g̃k||+
k−1∑
r=0

sl4

k−1∏
q=r

(1− sq+1
4 )||g̃r||+

k∏
q=0

(1− sq4)||g̃0||.

Now according to Lemma A.1, for all r ∈ N, the random gradient estimator is almost surely bounded.

Therefore, we have

||Mk+1|| ≤

(
sk4 +

k−1∑
r=0

sl4

k−1∏
q=r

(1− sq+1
4 ) +

k∏
q=0

(1− sq4)

)
sup

r∈[0,k]

||g̃r|| < +∞.

The same arguments may be applied for Vk, thus the claim follows directly.

The remainder of the section is composed of four steps.
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Step 1: Convergence of M and V updates. Since M and V converge on the fastest timescale,

according to Lemma 1 in [10, chapter 6], the convergence properties of the updates in Equation (18)

may be analyzed for arbitrary quantities of x, t and λ (here x = xk, t = tk and λ = λk are used).

These updates may be rewritten as follows

Mk+1 = Mk + sk4

(
∇L(xk, tk,λk)−Mk + δk+1

M

)
, (28)

Vk+1 = Vk + sk4

(
(∇L(xk, tk,λk))2 + V(xk, tk,λk)−Vk + δk+1

V

)
, (29)

where δk+1
M = g̃k − ∇Lβ(xk, tk,λk) and δk+1

V = (g̃k)2 − ∇Lβ(xk, tk,λk)2 − V(xk, tk,λk), with

V(xk, tk,λk) = E[(g̃k − E[g̃k|Fk])2|Fk] the variance conditioned by the associated sigma field Fk =

σ(xr, tr,λr,Mr,Vr; r ≤ k). Now, the following Lemma may be stated to prove the convergence

properties of the updates M and V.

Lemma A.3. Consider the following continuous time system dynamics of the updates,

Ṁ = h1(M,x, t,λ) := ∇Lβ(x, t,λ)−M,

V̇ = h2(M,x, t,λ) := (∇Lβ(x, t,λ))2 + V(x, t,λ)−V,

(ẋ, ṫ, λ̇) = (0,0,0).

(30)

This o.d.e. has a globally asymptotically stable equilibrium{(
∇Lβ(x, t,λ),∇Lβ(x, t,λ))2 + V(x, t,λ),x, t,λ

) ∣∣ (x, t,λ) ∈ X × T × L
}
,

and the sequences (Mk,vk,xk, tk,λk) converge almost surely to this equilibrium.

Proof. The proof may be decomposed in two parts: the first part consists of analyzing the solutions

of the two first o.d.e. given in Equation (30) and the second part consists of verifying that all the

assumptions needed to apply Lemma 1 in [10, Chapter 6] are satisfied.

First, let (x, t,λ) ∈ X × T × L be fixed and consider the following functions,

L1
x,t,λ(M) = ||∇Lβ(x, t,λ)−M||2,

L2
x,t,λ(V) = ||(∇Lβ(x, t,λ))2 + V(x, t,λ)−V||2.

Let denote M∗ = ∇Lβ(x, t,λ) and V∗ = (∇Lβ(x, t,λ))2 + V(x, t,λ) the equilibrium points of the

two first equations in Equation (30). The both functions satisfy the following conditions:

• They are globally positive definite, i.e, L1
x,t,λ(M) > 0, for all M ̸= M∗ and L2

x,t,λ(V) > 0, for

all V ̸= V∗.

• They are radially unbounded since ||M|| → ∞ =⇒ L1
x,t,λ(M) → ∞ and ||V|| → ∞ =⇒

L2
x,t,λ(V) → ∞.

• The time derivatives of the both functions are globally negative definite since d
dτL

1
x,t,λ(M(τ)) =

−2||∇Lβ(x, t,λ)−M(τ)||2 and d
dτL

2
x,t,λ(V(τ)) = −2||(∇Lβ(x, t,λ))2 + V(x, t,λ)−V(τ)||2.

Thus, both functions are Lyapunov functions associated to the two first o.d.e. given in Equation (30).

By a corollary of the LaSalle invariance theorem (see for instance [24, Corollary 4.2]), the equilibrium

points M∗ and V ∗ are globally asymptotically stable. Moreover, ∇Lβ is Lipschitz with respect to

x, t and λ since it is a continuously differentiable function defined on a bounded space. The same

may be applied for the function (∇Lβ)2. Finally, the function V is also Lipschitz, since g̃ is Lipschitz

by Lemma A.1.

Now, we use the framework of the Lemma 1 in [10, Chapter 6].

(i) By Lemma A.2, the updates Mk and Vk are uniformly bounded almost surely. The same goes

for the updates xk, tk and λk because of the projection operator.
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(ii) The functions h1 and h2 are Lipschitz continuous with respect to x, t,λ,M and V by properties

of ∇Lβ and V.

(iii) The sequence (δk+1
M ) is a martingale difference sequence with respect to the increasing sigma

fields Fk = σ(xr, tr,λr,Mr,Vr; r ≤ k) since, by properties of truncated Gaussian smoothing, it

follows that

E[δk+1
M |Fk] = E[g̃k|Fk]−∇Lβ(xk, tk,λk) = 0.

This sequence is also square integrable since

E[||δk+1
M ||2|Fk] ≤ 2(E[||g̃||2|Fk] + E[||∇Lβ(xk, tk,λk)||2]) < ∞,

because ||a − b||2 ≤ 2(||a||2 + ||b||2), g̃ is almost surely bounded by Lemma A.1 and ∇Lβ is a

continuous function taking inputs in a compact set.

(iv) The sequence (δk+1
V ) is a martingale difference sequence with respect to Fk since

E[δk+1
V |Fk] = E[(g̃k)2|Fk]− (∇Lβ(xk, tk,λk))2 − V(xk, tk,λk) = 0,

by definition of conditional variance V(xk, tk,λk) = E[(g̃k)2|Fk] − (E[g̃k|Fk])2 and is square

integrable

E[||δk+1
V ||2|Fk] ≤ 2(E[||(g̃)2||2] + ||(∇Lβ(xk, tk,λk))2 + V[g̃|Fk]||2 < +∞,

thanks to the same arguments as for δk+1
M .

(v) Finally, the step sizes sk1 , s
k
2 , s

k
3 and sk4 satisfy Assumption 2.

Under these conditions, Lemma 1 in [10, Chapter 6] may be applied, and the claim follows directly.

Step 2: Convergence of the t-update. The t-update converges on a faster timescale than the

ones on x and λ, while M and V converge faster than t, thus, according to Lemma 1 in [10, Chapter

6] the convergence of the t update may be proved for any arbitrary λ and x (here x = xk and λ = λk

are taken). Furthermore, in the M-updates and V-updates, as a result of Lemma A.3 the following

limits hold ||Mk −∇Lβ(xk, tk,λk)|| → 0 and ||Vk − (∇Lβ(xk, tk,λk))2 − V(xk, tk,λk)|| → 0 almost

surely. Consequently, by defining

∇k
tL

β = ∇tL
β(xk, tk,λk) and Vk

t = Vt(x
k, tk,λk),

the update on t may be rewritten as follows

tk+1 = ΠT
[
tk + sk3

(
−Ψxk,λk(tk) + δk+1

t

)]
, where


Ψxk,λk(tk) =

∇k
tL

β

√
(∇k

tL
β)2+Vk

t+ϵ
,

δk+1
t = Ψxk,λk(tk)− Mk+1

t√
Vk+1

t +ϵ
.

(31)

Now, the following Lemma may be stated to prove the convergence properties of the update t.

Lemma A.4. Consider the following continuous time system dynamics of the updates,

ṫ = Γt [−Ψx,λ(t)] = Γt

[
−∇tL

β(x, t,λ)√
∇tLβ(x, t,λ) + Vt(x, t,λ) + ϵ

]
,

(ẋ, λ̇) = (0,0),

(32)

where

Γt[−Ψx,λ(t)] := lim
0<η→0

ΠT [t− ηΨx,λ(t)]−ΠT [t]

η
.
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This o.d.e. has an asymptotically globally stable equilibrium{(
x, t∗(x,λ),λ

) ∣∣ (x,λ) ∈ X × L
}
,

where t∗(x,λ) = {t | Γt [−Ψx,λ(t)] = 0} and the sequences (xk, tk,λk) converge almost surely to this

equilibrium.

It is worth noting that Γt[K(t)] is the left directional derivative of the function Πt[t] in the direction

of K(t). By using the left directional derivative Γt [−Ψx,λ(t)] in the gradient descent algorithm for t,

the gradient will point in the descent direction along the boundary of T whenever the t-update hits

its boundary.

Proof. Similar to the analysis made for the M-update and V-update, the proof is decomposed in two

parts. First, the solution of the first o.d.e. given in Equation (32) is described. Let (x,λ) ∈ X ×L be

fixed and consider the following function

Lx,λ(t) = Lβ(x, t,λ)− Lβ(x, t∗,λ),

where t∗ is a minimum point (for any (x,λ), the function Lβ is convex in t). This function satisfies

the following conditions:

• The function is positive definite since Lx,λ(t) > 0, for all t ̸= t∗ and radially unbounded since

||t|| → ∞, =⇒ Lx,λ(t) → ∞.

• The time derivative of the function is

dLx,λ(t)

dτ
= ∇tL

β(x, t,λ)T Γt [−Ψx,λ(t)]

and the goal is to show that this quantity is negative definite. There are two sets of cases to

study:

– The cases where t ∈ T ◦ = T \∂T . In all this cases, there exist η > 0 sufficiently small such

that t− ηΨx,λ(t) ∈ T , therefore by definition of Γt and Ψt, it follows that (recall that the

operators on the vectors are elementwise):

dLx,λ(t)

dτ
= −

m∑
j=0

(
∂Lβ(x,t,λ)

∂tj

)2
√(

∂Lβ(x,t,λ)
∂tj

)2
+ Vtj (x, t,λ) + ϵ

.

– The cases where t ∈ ∂T . When t ∈ ∂T , the indices j ∈ [0,m] of the variables of t may

be grouped in three complementary sets : Smin = {j ∈ [0,m] | tj = −(tmax)j}, Smax =

{j ∈ [0,m] | tj = (tmax)j} or S◦ = {j ∈ [0,m] | tj = (−(tmax)j , (tmax)j)}. Then, for

the variables tj whose the indices are in S◦, there exists η > 0, sufficiently small such

that (t − ηΨx,λ(t))j ∈ (−(tmax)j , (tmax)j). For the variables tj whose the variables are

in Smin, then either (Ψx,λ(t))j ≤ 0, so Πtj [(−tmax − ηΨx,λ(t))j ] = (−tmax − ηΨx,λ(t))j ;

or (Ψx,λ(t))j > 0 so Πtj [−tmax − ηΨx,λ(t))j ] = −(tmax)j . For the variables tj whose the

variables are in Smax, the symmetric result may be obtained. Therefore, it follows that

dLx,λ(t)

dτ
= lim

0<η→0
∇tL

β(x, t,λ)T
(
Πt[t− ηΨx,λ(t)]− t

η

)
= lim

0<η→0

(
−
∑
j∈S◦

∂Lβ(x, t,λ)

∂tj
(Ψx,λ(t))j

−
∑

j∈Smin

∂Lβ(x, t,λ)

∂tj

Πtj [(−tmax − ηΨx,λ(t))j ] + (tmax)j

η



Les Cahiers du GERAD G–2023–46 28

−
∑

j∈Smax

∂Lβ(x, t,λ)

∂tj

Πti [(tmax − ηΨx,λ(t))j ]− (tmax)j
η

)

≤ −
∑
j∈S◦

(
∂Lβ(x,t,λ)

∂tj

)2
√(

∂Lβ(x,t,λ)
∂tj

)2
+ Vtj (x, t,λ) + ϵ

,

Therefore,
dLx,λ(t)

dτ < 0 whenever Γt [−Ψx,λ(t)] ̸= 0, i.e, is negative definite.

Thus, the function Lx,λ is a Lyapunov function and by [24, Corrolary 4.2], the equilibrium point

t∗(x,λ) = {t | Γt [−Ψx,λ(t)] = 0} is globally asymptotically stable. Moreover, since ∇Lβ is Lipschitz

continuous with respect to x and λ, it follows that t∗(x,λ) is Lipschitz continuous with respect to

these vectors as well. Now, the framework of the Lemma 1 and Theorem 2 in [10, Chapter 6] is used.

• The conditions (i) to (v) given in the proof of Lemma A.3 are still satisfied.

• The function Γt [−Ψx,λ(t)] is Lipschitz continuous by properties of ∇Lβ .

• The random sequence (δk+1
t ) converges asymptotically to 0 by Lemma A.3.

Therefore, the t-update is a stochastic approximation with a null martingale difference sequence term

and an additional error term δk+1
t . Then, by applying Theorem 2 in [10, Chapter 6] and the enveloppe

theorem [15, Theorem 16], the claim follows directly.

Step 3: Convergence of the x-update. The convergence of the x-update is very similar

to the convergence of the t-update. The x-update converges on a faster timescale than the one of

λ, while t, M and V converge on faster timescales than x, thus, according to [10, Chapter 6] the

convergence of the x update may be proved for any arbitrary λ (here λ = λk is taken). Furthermore,

in the t, M and V updates, as a result of Lemma A.3 and Lemma A.4 the following limits hold

||Mk−∇Lβ(xk, tk,λk)|| → 0, ||Vk−(∇Lβ(xk, tk,λk))2−V(xk, tk,λk)|| → 0 and ||tk−t∗(xk,λk)|| → 0

almost surely. Consequently by defining

∇k
xL

β = ∇xL
β(xk, tk,λk) and Vk

x = Vx(x
k, tk,λk),

the update on x may be rewritten as follows

xk+1 = ΠX
[
xk + sk2

(
−Ψλk(xk) + δk+1

1,x + δk+1
2,x

)]
, (33)

where

Ψλk(xk) =
∇xL

β(xk, t∗(xk,λk),λk)√
(∇xLβ(xk, t∗(xk,λk),λk))2 + Vx(xk, t∗(xk,λk),λk) + ϵ

,

δk+1
1,x =

∇k
xL

β√
(∇k

xL
β)2 + Vk

x + ϵ
− Mk+1

x√
Vk+1

x + ϵ
,

δk+1
2,x = Ψλk(xk)− ∇k

xL
β√

(∇k
xL

β)2 + Vk
x + ϵ

.

Now, the following Lemma may be stated to prove the convergence properties of the update x.

Lemma A.5. Consider the following continuous time system dynamics of the updates,

ẋ = Γx [−Ψλ(x)] = Γx

[
−∇xL

β(x, t∗(x,λ),λ)√
∇xLβ(x, t∗(x,λ),λ) + Vx(x, t∗(x,λ),λ) + ϵ

]
,

λ̇ = 0,

(34)
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where

Γx[−Ψλ(x)] := lim
0<η→0

ΠX [x− ηΨλ(x)]−ΠX [x]

η
.

Assume there exists K1 ∈ N such that xK1 is in the domain of attraction of x∗ where x∗ is some local

minimum of Lβ with respect to x. Then, this o.d.e. has a locally asymptotically stable equilibrium{(
x∗(λ),λ

) ∣∣ λ ∈ L
}
, (35)

where x∗(λ) = {x ∈ X | Γx [−Ψλ(x)] = 0} is the local minima of the assumption and the sequences

(xk,λk) converge almost surely to the set given in Equation (35).

Proof. First, the solutions of the first o.d.e. in Equation (34) is described. Let λ ∈ L be fixed and

consider the following function

Lλ(x) = Lβ(x, t∗(x,λ),λ)− Lβ(x∗, t∗(x∗,λ),λ),

where x∗ is the local minimum in X defined in the statement of the Lemma. This function is locally

positive definite and its time derivatives is

dLλ(x)

dτ
= ∇xL

β(x, t∗(x,λ),λ)T Γx [−Ψλ(x)] ,

which is negative definite (the proof may be done in the exact same way as the one given in Lemma A.4

and is omitted here). Therefore, the function is a Lyapunov function and, by Lyapunov stability the-

orem [24, Theorem 4.1], x∗(λ) = {x | Γx[−Ψλ(x)] = 0} is a locally asymptotically stable equilibrium.

Since ∇Lβ is Lipschitz continuous with respect to λ, it follows that x∗(λ) is Lipschitz as well. Now,

the framework in [10, Chapter 6] is used.

• The conditions (i) to (v) given in the proof of Lemma A.3 are still satisfied.

• The function Γx [−Ψλ(x)] is Lipschitz continuous by properties of ∇Lβ .

• The random sequence (δk+1
1,x ) and (δk+1

2,x ) converges asymptotically to 0 by Lemma A.3

and Lemma A.4.

By assumption, the iterates xK1 belongs to the domain of attraction of x∗ for some K1 ∈ N. By

definition of the domain of attraction, xk is in the domain of attraction for all k ≥ K1. Thus, by

applying Theorem 2 in [10, Chapter 6] from the iteration K, the claim follows directly.

At this stage, the results obtained in Lemma A.4 and Lemma A.5 allows concluding that for any

fixed λ ∈ L, the following holds:

(xk, tk) → (x∗(λ), t∗(x∗(λ),λ)) ∈ X × T .

Moreover, t∗(x∗(λ) is a minimum of Lβ with respect to t while x∗(λ) is a local minimum of Lβ with

respect to x. Since we have

min
x∈X

(
min
t∈T

L(x, t,λ)
)
= min

(x,t)∈X×T
L(x, t,λ),

it follows that this point is a local minimum for the function Lβ .

Step 4: Convergence of the λ-update. Since the λ-update converges in the slowest time

scale, according to previous analysis, the following limits hold ||Mk − ∇Lβ(xk, tk,λk)|| → 0, ||Vk −
(∇Lβ(xk, tk,λk))2−V(xk, tk,λk)|| → 0, ||tk− t∗(xk,λk)|| → 0 and ||xk → x∗(λ)|| → 0 almost surely.

Therefore, by defining

∇k
λL

β = ∇λL
β(xk, tk,λk),Vk

λ = Vλ(x
k, tk,λk),∇∗

λL
β = ∇λL

β(xk, t∗(xk,λk),λk)



Les Cahiers du GERAD G–2023–46 30

and V∗
λ = V(xk, t∗(xk,λk),λk),

the λ-update rule can be re-written as follows

xk+1 = ΠL

[
λk + sk1

(
Ψ(λk) + δk+1

1,λ + δk+1
2,λ + δk+1

3,λ

)]
, (36)

where

Ψ(λk) =
∇λL

β(x∗(λk), t∗(x∗(λk),λk),λk)√
(∇λLβ(x∗(λk), t∗(x∗(λk),λk),λk))2 + Vλ(x∗(λk), t∗(x∗(λk),λk),λk) + ϵ

,

δk+1
1,λ =

Mk+1
λ√

Vk+1
λ + ϵ

− ∇k
λL

β√
(∇k

λL
β)2 + Vk

λ + ϵ
,

δk+1
2,λ =

∇k
λL

β√
(∇k

λL
β)2 + Vk

λ + ϵ
− ∇∗

λL
β√

(∇∗
λL

β)2 + V∗
λ + ϵ

,

δk+1
3,λ =

∇∗
λL

β√
(∇∗

λL
β)2 + V∗

λ + ϵ
−Ψ(λk).

Now, the following Lemma may be stated to prove the convergence properties of the update λ.

Lemma A.6. Let consider the following continuous time system dynamics of the updates,

λ̇ = Γλ [Ψ(λ)] = Γλ

 ∇λL
β(x∗(λk), t∗(x∗(λk),λk),λk)√

(∇λLβ(x∗(λk), t∗(x∗(λk),λk),λk))2 + Vλ(x∗(λk), t∗(x∗(λk),λk),λk) + ϵ

 , (37)

where

Γλ[Ψ(λ)] := lim
0<η→0

ΠL[λ− ηΨ(λ)]−ΠL[λ]

η
.

Assume there exists K2 ∈ N such that λK2 is in the domain of attraction of λ∗ where λ∗ is some local
maximum of Lβ with respect to λ. Then, this o.d.e. has a locally asymptotically stable equilibrium

λ∗ = {λ ∈ L | Γλ [Ψ(λ)] = 0}, (38)

and the sequences (λk) converges almost surely to this local maximum given in Equation (38).

Proof. The proof is analog to the proof of convergence for the x-update. First, the solutions of the
first o.d.e. in Equation (37) is described. Let consider the following function

L(λ) = −Lβ(x∗(λ), t∗(x∗(λ),λ),λ) + Lβ(x∗(λ∗), t∗(x∗(λ∗),λ∗),λ∗),

where λ∗ is the local maximum in L defined in the statement of the Lemma. This function is locally
positive definite and its time derivatives is

dL(λ)
dτ

= ∇λL
β(x∗(λ), t∗(x∗(λ),λ),λ)T Γλ [Ψ(λ)] ,

which is negative definite (the proof may be done in the exact same way as the one given in Lemma A.4
and is omitted here). Therefore, the function is a Lyapunov function and, by Lyapunov stability
theorem [24, Theorem 4.1], λ∗ = {λ | Γλ[Ψ(λ)] = 0} is a locally asymptotically stable equilibrium.
Now, the framework in [10, Chapter 6] is used.

• The conditions (i) to (v) given in the proof of Lemma A.3 are still satisfied.

• The function Γλ [Ψ(λ)] is Lipschitz continuous by properties of ∇Lβ .

• The random sequence (δk+1
1,λ ), (δk+1

2,λ ) and (δk+1
3,λ ) converges asymptotically to 0 by Lemma A.3,

Lemma A.4 and Lemma A.5.
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By assumption, the iterates λk belongs to the domain of attraction of λ∗ for some K2 ∈ N. By
definition of the domain of attraction, λk is in the domain of attraction for all k ≥ K2. Thus,
by applying Theorem 2, in [10, Chapter 6] from the iteration K = max(K1,K2), the claim follows
directly.

Main result: convergence to a saddle point. By letting x∗ = x∗(λ∗) and t∗ = t∗(x∗(λ∗),λ∗),
it will be shown that (x∗, t∗,λ∗) is a saddle point of the Lagrangian function Lβ if λ∗ ∈ L◦ and thus by
the saddle point theorem, x∗ is a locally optimal solution for the smooth CVaR-constrained problem
given in Equation (14). This result is formally settled in Theorem 5.1 which is recalled here;

Theorem A.7. Under Assumption 1.3 and Assumption 2, let further assume that the problem given
in Equation (14) is strictly feasible and there exists K ∈ N such that xK and λK are in the domain
of attraction of x∗ and λ∗ with λ∗ ∈ L◦ respectively. Then, the iterates (xk, tk,λk) converge almost
surely to a saddle point of the Lagrangian function Lβ and x∗ is a locally optimal solution for the
smooth CVaR-constrained problem given by Equation (14).

Proof. Under the assumptions of the theorem, since (x∗, t∗) is a local minimum of Lβ(x, t,λ) over
the bounded set (x, t) ∈ X × T , there exists a r > 0 such that

Lβ(x∗, t∗,λ∗) ≤ Lβ(x, t,λ∗), ∀(x, t) ∈ X × T ∩ Br(x
∗, t∗).

In order to complete the proof, we must show that for all j ∈ [1,m]

cj(x
∗, t∗) := t∗j +

1

1− α
Eu,v,ξ[(C(x∗ + β1u, ξ)− (t∗j + β2vj))

+] ≤ 0 and (39)

λ∗
jcj(x

∗, t∗) = λ∗
j

(
t∗j +

1

1− α
Eu,v,ξ[(C(x∗ + β1u, ξ)− (t∗j + β2vj))

+]

)
= 0. (40)

The proof of the inequality given in Equation (39) is made by contradiction. Suppose that

cj(x
∗, t∗) = t∗j +

1

1− α
Eu,v,ξ[(C(x∗ + β1u, ξ)− (t∗j + β2vj))

+] > 0.

This implies for λj ∈ L◦
j that for any η ∈ (0, η̄]

ΠL

[
λ∗
j − η

(
t∗j +

1

1− α
Eu,v,ξ[(C(x∗ + β1u, ξ)− (t∗j + β2vj))

+]

)]
= ΠL

[
λ∗
j − ηcj(x

∗, t∗)
]

= λ∗
j − ηcj(x

∗, t∗),

with η̄ sufficiently small. Therefore, it follows that Γλj
[(Ψ(λ∗))j ] = cj(x

∗, t∗) > 0, which contradicts
the definition of λ∗ given in Equation (38). Thus, the inequality given in Equation (39) holds. To
show the result given in Equation (40), it is sufficient to show that λ∗

j = 0 when cj(x
∗, t∗) < 0. For

λ∗
j ∈ L◦, there exists a sufficiently small η > 0 such that

ΠL
[
λ∗
j + ηcj(x

∗, t∗)
]
− λ∗

j

η
= cj(x

∗, t∗) < 0.

This is again in contradiction with the definition of λ∗ given in Equation (38) and thus the equality
in Equation (40) holds. Finally, by the local saddle point theorem, it follows that x∗ is a locally optimal
solution for the smooth CVaR-constrained problem given by Equation (14).

B Analytical problems description

Here are the list of analytical problems considered in Section 6.1.
Steel column problem [59]
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• Dimension: n = 3 and m = 1.

• Original lower bounds: bℓ = (200, 10, 100)

• Original upper bounds: bu = (400, 30, 500)

• Original x0: (200, 10.5, 100)

• Equations:

C0(x, ξ) = (x1 + ξ1)(x2 + ξ2) + 5(x3 + ξ3),

C1(x, ξ) = F

(
1

As
+

ξ8eb
Us(eb − F )

)
− ξ4,

with As = 2(x1 + ξ1)(x2 + ξ2), Us = (x1 + ξ1)(x2 + ξ2)(x3 + ξ3), eb =
π2ξ9Ui

L2
,

Ui =
1

2
(x1 + ξ1)(x2 + ξ2)(x3 + ξ3)

2 and F = ξ5 + ξ6 + ξ7.

• Uncertainties: ξ1 ∼ N (0, 0.1x1), ξ2 ∼ N (0, 0.1x2), ξ3 ∼ N (0, 0.1x3), ξ4 ∼ N (400, 40), ξ5 ∼ N (5×
105, 5×104), ξ6 ∼ N (6×105, 6×104), ξ7 ∼ N (6×105, 6×104), ξ8 ∼ N (30, 3), ξ9 ∼ N (21000, 2100)
and L = 7500.

• Solution in [59]: x∗ = (257.7806, 13.5335, 100) with E[C0(x
∗, ξ)] = 3988.95 and P(C1(x

∗, ξ) ≤
0) = 0.9947 (estimated in this work from 106 samples).

Welded Beam problem [59]

• Dimension: n = 4 and m = 5.

• Original lower bounds: bℓ = (3.175, 0.0, 0.0, 0.0)

• Original upper bounds: bu = (50.8, 254, 254, 50.8)

• Original x0: (6.208, 157.82, 210.62, 6.208)

• Equations:

C0(x, ξ) = κ1(x1 + ξ1)
2(x2 + ξ2) + κ2(x3 + ξ3)(x4 + ξ4)(κ3 + x2 + ξ2)

C1(x, ξ) =
τ

93.77
− 1 with

τ =

√
τ21 + 2

τ1τ2(x2 + ξ2)

2R
+ τ22 , τ1 =

κ4√
2(x1 + ξ1)(x2 + ξ2)

,

R =

√
(x2 + ξ2)2 + (x1 + ξ1 + x3 + ξ3)2

2
, M = κ4

(
κ3 +

x2 + ξ2
2

)
,

J =
√
2(x1 + ξ1)(x2 + ξ2)

(
(x2 + ξ2)

2

12
+

(x1 + ξ1 + x3 + ξ3)
2

4

)
, τ2 =

MR

J
,

C2(x, ξ) =
σ

206.85
− 1 with σ =

6κ4κ3

(x3 + ξ3)2(x4 + ξ4)
,

C3(x, ξ) =
x1 + ξ1
x4 + ξ4

− 1,

C4(x, ξ) =
δ

6.35
− 1 with δ =

4κ4(κ3)
3

2.0685× 105(x3 + ξ3)3(x4 + ξ4)
,

C5(x, ξ) = 1− P

κ4
with P =

4.013(x3 + ξ3)(x4 + ξ4)
3√κ5κ6

6(κ3)2

(
1− x3 + ξ3

4κ3

√
κ5

κ6

)
,

where κ1 = 6.74135 × 10−5, κ2 = 2.93585 × 10−6, κ3 = 3.556 × 102, κ4 = 2.6688 × 104,
κ5 = 2.0685× 105 and κ6 = 8.274× 104.

• Uncertainties: ξ1 ∼ U(−0.1693, 0.1693), ξ2 ∼ U(−0.1693, 0.1693), ξ3 ∼ U(−0.0107, 0.0107),
ξ4 ∼ U(−0.0107, 0.0107).
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• Solution in [59]: x∗ = [5.9188, 181.2849, 210.6114, 6.2253] with E[C0(x
∗, ξ)] = 2.4948 and ∀j ∈

[1, 5], P(Cj(x
∗, ξ) ≤ 0) = 1.0 (estimated from 106 samples).

Vehicle Side Impact problem [59]

• Dimension: n = 7 and m = 10.

• Original lower bounds: bℓ = (0.5, 0.45, 0.5, 0.5, 0.875, 0.4, 0.4)

• Original upper bounds: bu = (1.5, 1.35, 1.5, 1.5, 2.625, 1.2, 1.2)

• Original x0: (1.0, 1.0, 1.0, 1.0, 2.0, 1.0, 1.0)

• Equations:

C0(x, ξ) = 1.98 + 4.9(x1 + ξ1) + 6.67(x2 + ξ2) + 6.98(x3 + ξ3) + 4.01(x4 + ξ4) + 1.78(x5 + ξ5)

+ 2.73(x7 + ξ7),

C1(x, ξ) = 1.16− 0.3717(x2 + ξ2)(x4 + ξ4)− 0.00931(x2 + ξ2)ξ10 − 0.484(x3 + ξ3)ξ9

+ 0.01343(x6 + ξ6)ξ10 − 1,

C2(x, ξ) = 0.261− 0.0159(x1 + ξ1)(x2 + ξ2)− 0.188(x1 + ξ1)ξ8 − 0.019(x2 + ξ2)(x7 + ξ7)

+ 0.0144(x3 + ξ3)(x5 + ξ5) + 0.00087570(x5 + ξ5)ξ10 + 0.08045(x6 + ξ6)ξ9

+ 0.00139ξ8ξ11 + 1.575× 10−6ξ10ξ11 − 0.32,

C3(x, ξ) = 0.2147 + 0.00817(x5 + ξ5)− 0.131(x1 + ξ1)ξ8 − 0.0704(x1 + ξ1)ξ9

+ 0.03099(x2 + ξ2)(x6 + ξ6)− 0.018(x2 + ξ2)(x7 + ξ7) + 0.0208(x3 + ξ3)ξ8

+ 0.121(x3 + ξ3)ξ9 − 0.00364(x5 + ξ5)(x6 + ξ6) + 0.0007715(x5 + ξ5)ξ10

− 0.0005354(x6 + ξ6)ξ10 + 0.00121ξ8ξ11 + 0.00184ξ9ξ10

− 0.02(x2 + ξ2)
2 − 0.32,

C4(x, ξ) = 0.74− 0.61(x2 + ξ2)− 0.163(x3 + ξ3)ξ8 + 0.001232(x3 + ξ3)ξ10

− 0.166(x7 + ξ7)ξ9 + 0.227(x2 + ξ2)
2 − 0.32,

C5(x, ξ) = 28.98 + 3.818(x3 + ξ3)− 4.2(x1 + ξ1)(x2 + ξ2) + 0.0207(x5 + ξ5)ξ10

+ 6.63(x6 + ξ6)ξ9 − 7.77(x7 + ξ7)ξ8 + 0.32ξ9ξ10 − 32,

C6(x, ξ) = 33.86 + 2.95(x3 + ξ3) + 0.1792ξ10 − 5.057(x1 + ξ1)(x2 + ξ2)− 11(x2 + ξ2)ξ8

− 0.0215(x5 + ξ5)ξ10 − 9.98(x7 + ξ7)ξ8 + 22ξ8ξ9 − 32,

C7(x, ξ) = 46.36− 9.9(x2 + ξ2)− 12.9(x1 + ξ1)ξ8

+ 0.1107(x3 + ξ3)ξ10 − 32,

C8(x, ξ) = 4.72− 0.54(x4 + ξ4)− 0.19(x2 + ξ2)(x3 + ξ3)− 0.0122(x4 + ξ4)ξ10

+ 0.009325(x6 + ξ6)ξ10 + 0.000191ξ211 − 4,

C9(x, ξ) = 10.58− 0.674(x1 + ξ1)(x2 + ξ2)− 1.95(x2 + ξ2)ξ8 + 0.028(x6 + ξ6)ξ10

+ 0.02054(x3 + ξ3)ξ10 − 0.0198(x4 + ξ4)ξ10 − 9.9,

C10(x, ξ) = 16.45− 0.489(x3 + ξ3)(x7 + ξ7)− 0.843(x5 + ξ5)(x6 + ξ6) + 0.0432ξ9ξ10

− 0.0556ξ9ξ11 − 0.000786ξ211 − 15.69.

• Uncertainties: ∀i ∈ {1, 2, 3, 4, 6, 7}, ξi ∼ N (0, 0.03), ξ5 ∼ N (0, 0.05), ξ8 ∼ N (0.345, 0.006),
ξ9 ∼ N (0.345, 0.006), ξ10 ∼ N (0, 10) and ξ11 ∼ N (0, 10).

• Solution in [59]: x∗ = (0.7872, 1.35, 0.6887, 1.5, 1.0706, 1.2, 0.7284) with E[C0(x
∗, ξ)] = 29.5585

and ∀j ∈ [1, 10], P(Cj(x
∗, ξ) ≤ 0) ≥ 0.9982 (estimated from 106 samples).

Speed Reducer problem [13]

• Dimension: n = 7 and m = 11.

• Original lower bounds: bℓ = (2.6, 0.7, 17, 7.3, 7.3, 2.9, 5.0)

• Original upper bounds: bu = (3.6, 0.8, 28, 8.3, 8.3, 3.9, 5.5)



Les Cahiers du GERAD G–2023–46 34

• Original x0: (3.5, 0.7, 17, 7.3, 7.72, 3.35, 5.29)

• Equations:

C0(x, ξ) = 0.7854(x1 + ξ1)(x2 + ξ2)
2(3.3333(x3 + ξ3)

2 + 14.9334(x3 + ξ3)− 43.0934)

− 1.508(x1 + ξ1)((x6 + ξ6)
2 + (x7 + ξ7)

2) + 7.477((x6 + ξ6)
3 + (x7 + ξ7)

3)

+ 0.7854((x4 + ξ4)(x6 + ξ6)
2 + (x5 + ξ5)(x7 + ξ7)

2),

C1(x, ξ) =
27

(x1 + ξ1)(x2 + ξ2)2(x3 + ξ3)
− 1,

C2(x, ξ) =
397.5

(x1 + ξ1)(x2 + ξ2)2(x3 + ξ3)2
− 1,

C3(x, ξ) =
1.93(x4 + ξ4)

3

(x2 + ξ2)(x3 + ξ3)(x6 + ξ6)4
− 1,

C4(x, ξ) =
1.93(x5 + ξ5)

3

(x2 + ξ2)(x3 + ξ3)(x7 + ξ7)4
− 1,

C5(x, ξ) =

√(
745(x5+ξ5)

(x2+ξ2)(x3+ξ3)

)2
+ 16.9× 106

0.1(x6 + ξ6)3
− 1100,

C6(x, ξ) =

√(
745(x5+ξ5)

(x2+ξ2)(x3+ξ3)

)2
+ 157.5× 106

0.1(x7 + ξ7)3
− 850,

C7(x, ξ) = (x2 + ξ2)(x3 + ξ3)− 40,

C8(x, ξ) = 5− (x1 + ξ1)

(x2 + ξ2)

C9(x, ξ) =
(x1 + ξ1)

(x2 + ξ2)
− 12,

C10(x, ξ) =
1.5(x6 + ξ6) + 1.9

(x4 + ξ4)
− 1,

C11(x, ξ) =
1.1(x7 + ξ7) + 1.9

(x5 + ξ5)
− 1.

• Uncertainties: ∀i ∈ [1, 7], ξi ∼ N (0, 0.005).

• Solution in [59]: x∗ = (3.5765, 0.7, 17.0, 7.3, 7.7541, 3.3652, 5.3017) with E[C0(x
∗, ξ)] = 3038.72

and ∀j ∈ [1, 11], P(Cj(x
∗, ξ) ≤ 0) ≥ 0.9976 (estimated from 106 samples).

C Detailed numerical results

This section details the numerical results of Section 6.3 and Section 6.4. In these sections, only the
average result over the 100 runs are presented. In this section, boxplots are used to describe the result
of all the 100 runs. Each run is represented by a cross, the orange line is the mediane and the bounds
of the box are the first and third quartiles. Finally, the circled crosses are the outliers. Here are the
results for Section 6.3.
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Figure 1: Detail result for Steel Column Design problem with classical Gaussian gradient approximation
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Figure 2: Detail result for Welded Beam Design problem with classical Gaussian gradient approximation
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Figure 3: Detail result for Vehicle Side Impact problem with classical Gaussian gradient approximation

Here are the results for Section 6.4.
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Figure 4: Detail result for Speed Reducer Design problem with classical Gaussian gradient approximation
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Figure 5: Detail result for Steel Column Design problem with truncated Gaussian gradient approximation
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Figure 6: Detail result for Welded Beam Design problem with truncated Gaussian gradient approximation
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Figure 7: Detail result for Vehicle Side Impact problem with truncated Gaussian gradient approximation
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Figure 8: Detail result for Speed Reducer Design problem with truncated Gaussian gradient approximation
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