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Abstract : We investigate counterparty credit risk and credit valuation adjustments in portfolios
including derivatives with early-exercise opportunities, under a netting agreement. We show that
credit risk and netting agreements have a significant impact on the way portfolios are managed (that
is, on options’ exercise strategies) and, therefore, on the value of the portfolio and on the price of
counterparty risk. We derive the value of a netted portfolio as the solution of a zero-sum, finite
horizon, discrete-time stochastic game. We show that this dynamic-game interpretation can be used
to determine the value of the reglementary capital charges required of financial institutions to cover
for counterparty credit risk and we propose a numerical valuation method. Numerical investigations
show that currently used numerical approaches can grossly misestimate the value of credit valuation
adjustments.

Keywords : Game theory, finance, CVA, netting, options

Résumé : Cet article étudie le risque de crédit de contrepartie et l’ajustement réglementaire corre-
spondant (CVA) pour des portefeuilles de produits dérivés avec possibilité d’exercice anticipé, lorsque
les parties ont signé un accord de compensation (netting). Nous montrons que le risque de contrepartie
et le netting ont un impact significatif sur la façon dont les portefeuilles sont gérés (c’est-à-dire sur
les stratégies d’exercice des options) et, par conséquent, sur la valeur du portefeuille et sur le prix
du risque de contrepartie. Nous obtenons la valeur du portefeuille à partir de la solution d’un jeu
dynamique stochastique à somme nulle sur horizon fini. Nous montrons que cette interprétation de
l’interaction entre les parties peut être utilisée pour déterminer la valeur des exigences réglementaires
requises des institutions financières pour couvrir le risque de contrepartie et nous proposons une ap-
proche numérique. Nos expériences numériques montrent que les approches actuellement utilisées en
pratique peuvent entrâıner des erreurs importantes dans l’estimation du CVA.

Mots clés : Théorie des jeux, finance, CVA, netting, options
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1 Introduction

Over-the-counter (OTC) derivatives form a considerable portion of the securities market, with the

Bank for International Settlements estimating the notional value of outstanding OTC derivatives to

be in excess of $600 trillion as of June 2022 (see BIS (2022)). However, the absence of a centralized

clearinghouse in the OTC market leads to counterparty credit risk (CCR), defined as the risk of

incurring losses in OTC contracts, in the event of a counterparty defaulting on its payment obligations.

The 2008 financial crisis highlighted the systemic implications of CCR when the collapse of Lehman

Brothers, a significant player in numerous OTC contracts, ignited a chain reaction through the global

financial system, causing widespread instability. One of the responses of financial institutions and

regulators to CCR was the extensive use of the credit valuation adjustment (CVA) as an instrument

to mitigate counterparty credit risk (see Duffie and Singleton (2003), Bielecki and Rutkowski (2004),

Brigo and Masetti (2005b) for early reviews on CVA).

The CVA can be interpreted as the market value of CCR. It is used to adjust the default-free value

of a contract in order to obtain a fair value that accounts for the possible default of the counterparty.

The use of the CVA has been advocated by the Basel Committee on Banking Supervision for the

management of CCR; specifically, the Basel III Accord (BCBS (2011)) requires financial institutions

to calculate a CVA risk capital charge, which is an amount of capital that banks must set aside to

absorb potential losses from fluctuations of the CVA. Given that this adjustment can have a significant

impact on financial statements and available investment capital, the precise and efficient estimation of

the CVA is crucial for financial institutions.

Brigo and Masetti (2005b) give a general pricing formula for the CVA, which can be seen as a call

option on the derivative value with a random maturity corresponding to the counterparty default date

or, equivalently, as an expected discounted loss from counterparty default. While the computation of

the CVA is generally straightforward for European-style derivatives (see, e.g., Klein (1996) and Lando

(1998)), this is not the case for derivatives with early-exercise opportunities.

Simulation-regression approaches, commonly known as least-squares Monte Carlo (LSMC) meth-

ods, are extensively used in the financial industry to approximate the CVA (Brigo and Pallavicini

(2007), Cesari et al. (2009), Gregory (2012)). Simulation-based approaches can be computationally

intensive, especially when there are many stochastic factors or correlation structures, and alternative

methods have been recently proposed to compute the CVA approximately or semi-analytically (see for

instance Kim and Leung (2016), Brigo and Vrins (2018), Antonelli et al. (2022)).

However, none of these approaches consider contracts with early-exercise features. Typically, in

practice, simulation-based methods disregard the impact of counterparty risk on the exercise mecha-

nism, which is an unrealistic simplification that can lead to significant misestimations (Klein and Yang

(2013), Breton and Marzouk (2018)).

In this paper, we address the estimation of the CVA of portfolios of contracts under a netting

agreement, when these contracts can include early-exercise features. Netting agreements between

two counterparties involved in multiple contracts are a widespread practice in the financial industry,

primarily used to mitigate CCR. Netting refers to the understanding that, in the event of a default, all

transactions between the two counterparties are to be netted and considered as a single transaction.

As noted in Brigo and Masetti (2005a), the CVA of a netted portfolio is often smaller than the sum of

individual CVAs. This result is predominantly driven by the offsetting positions within the portfolio,

which reduce the overall exposure to CCR.

Considering netted portfolios raises the issue of both parties being subject to default risk. The

debt valuation adjustment (DVA) is a measure of the CCR due to one party’s own default risk (in

a bilateral agreement, it is the negative of the CVA of the other party). The bilateral valuation

adjustment (BVA), defined as the sum of the CVA and the DVA, accounts for the impact of both

parties on the risk adjustment value.
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The CVA or BVA of a netted portfolio can be readily obtained using analytical or Monte Carlo

techniques when the contracts do not involve early-exercise opportunities (see, e.g., Brigo and Masetti

(2005a) and Brigo and Pallavicini (2007)). Extending the approach of Brigo and Pallavicini (2007),

Brigo et al. (2011) investigates the bilateral risk of netted portfolios, showing that the risk adjustment

is akin to a long position in a put option and a short position in a call option on the residual net

value of the portfolio at the relevant default times. Using a similar approach, an iterative evaluation

procedure for the BVA of a netted portfolio is proposed in Durand (2010). More recently, Ballotta

et al. (2019) introduces a structural approach to compute the CVA of a netted portfolio, discussing

the impact of collateralization and wrong-way risk on the CVA value. The evaluation of the BVA

of a portfolio for a party engaged in multiple netting sets with different defaultable counterparties is

discussed in Burgard and Kjaer (2017) and Brigo et al. (2019), where it is shown that the value of a

portfolio is not necessarily equal to the sum of the values of netting sets.

None of the above-mentioned works consider the possibility of counterparties in a netting agree-

ment having early-exercise opportunities. As noted in Breton and Marzouk (2018), it is possible to

adapt a dynamic programming approach using risk-adjusted exercise strategies to compute the CVA

of a netted portfolio, provided that only one of the counterparties has exercise rights (see also An-

dersson and Oosterlee (2021) for an empirical study). However, when both counterparties involved in

a netting agreement have early-exercise opportunities, exercise decisions by one of the parties impact

the expected gains of both parties, adding another layer of complexity to the CVA computation.

In this paper, we introduce a novel approach to price the CVA of a netted portfolio of derivative

securities with early-exercise features, based on a dynamic game interpretation of the interaction

between the counterparties involved in a netting agreement.

In particular, we show that credit risk and netting agreements have a significant impact on the

way portfolios are managed (that is, on options’ exercise strategies) and, therefore, on the value of the

portfolio and on the price of counterparty risk. We show that our dynamic-game interpretation can be

used to determine the value of the CVA and of the BVA and we propose a numerical implementation,

yielding the CVA (or BVA) of a netted portfolio of Bermudan options, at any point of time, as a

function of the value of the underlying asset(s) and of the set of options that have not yet been

exercised.

To the best of our knowledge, this paper is the first to investigate portfolio of derivatives under a

netting agreement when both parties have exercise rights. Our investigation allows to better understand

the impact of strategic interactions on the price of CCR and to derive general properties characterizing

the efficient management of such portfolios.

The paper is organized as follows. Section 2 is a motivating example illustrating the strategic

interactions between two parties involved in a netting agreement. Section 3 proposes a dynamic-game

model for the computation of the CVA/BVA. Section 4 reports on numerical experiments, providing

insight about the sensitivity of the CVA/BVA to various parameters and about the impact of netting

and CCR on exercise strategies and on adjustment values. Section 5 is a conclusion.

2 Motivating example

This section discusses a simplified example, involving a portfolio of two options with a single exercise

opportunity, in order to illustrate the strategic aspects underlying the model presented in Section 3.

Consider two parties, named C1 and C2, involved as counterparties in a portfolio of two options,

identified by O1 and O2, where Ci has a long position on Oi and a short position on O3−i, i = 1, 2.

Since all the cashflows generated by this portfolio are from C1 to C2 or conversely, the value of the

portfolio from the point of view of C1 is the negative of its value from that of C2. Assume that both

parties can exercise their option at a single given date before maturity (the decision date).
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Table 1 provides, at the decision date, the exercise and holding values of the two options, respec-

tively denoted ei, i ∈ {1, 2} and hi, i ∈ {1, 2}, in the absence of CCR. From these values, it is straight-

forward to conclude that both parties should hold. The value of the portfolio is then v1 = h1 −h2 = 1

for C1 (and v2 = −1 for C2).

Table 1: Exercise and holding values of options O1 and O2 at the decision date from the respective viewpoints of their
holders when both parties are risk free.

O1 O2

Exercise value (ei) 8 6
Holding value (hi) 10 9

Suppose that there is a p2 = 0.3 probability that C2 defaults, so that C1 does not recover anything

upon maturity of O1. Table 2 shows the updated holding values, where the expected holding value

ĥ1 accounts for counterparty default risk. In that case, it becomes optimal for C1 to exercise O1,

and the portfolio value for C1 is now v1 = e1 − h2 = −1. Since C1 is the only party vulnerable to

CCR, the CVA for C1 is computed by deducting the value of the vulnerable portfolio from that of the

corresponding risk-free portfolio, yielding a CVA of 2.

Table 2: Exercise and holding values of options O1 and O2 at the decision date from the respective viewpoints of their
holders when the default probability of C2 is p2 = 0.3.

O1 O2

Exercise value (ei) 8 6

Holding value adjusted for CCR ( ĥi) (1− p2)h1 = 7 h2 = 9

Note that the exercise strategy is modified by the presence of CCR. Using the risk-free exercise

strategy to evaluate this portfolio would result in the erroneous value of ĥ1−h2 = −2 for the portfolio

and a CVA of 3, a significant overestimation.

Now suppose that the portfolio is subject to a netting agreement, so that the contractual cash-flows

are no longer independent. Assuming that the probability of default by C2 is p2 = 0.3, Table 3 contains

the expected cash flows from C2 to C1 under a netting agreement in matrix form, where Ei (resp. Hi)

represents the exercising (resp. holding) decision by Counterparty i.

Table 3: Netted portfolio’s value from the viewpoint of C1 at the decision date according to the pair of decision by the
counterparties. Risk-free holding and exercise values are provided in Table 1. Default probability of C2 is p2 = 0.3.

E2 H2

E1 e1 − e2 = 2 e1 − h2 = −1

H1 ĥ1 − e2 = 1 (1− p2) (h1 − h2) = 0.7

Table 3 is a representation of a zero-sum matrix game where C1, the row player, is the maximizer,

and C2, the column player, is the minimizer. The security strategy for C1, maximizing the worst

(smallest) outcome, is to hold, which guarantees an outcome of at least 0.7. Conversely, the security

strategy for C2, minimizing the worst (largest) outcome, is also to hold, which guarantees an outcome

of at most 0.7. In that specific example, the security strategies yield the same expected outcome, so

that each party’s decision is the optimal response to the other’s, and neither party has an incentive to

depart from it, yielding a Nash equilibrium. In that case, the equilibrium strategy consists of holding

both options; the equilibrium value of the netted portfolio is 0.7, yielding a CVA of 0.3.

The results from the three cases are summarized in Table 4, showing that both CCR and netting

affect the exercise strategy of the party exposed to default risk. One also observes that netting does

reduce the portfolio’s CVA in this case.
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Table 4: Impact of CCR and of netting on exercise decisions and on the CVA. Risk-free holding and exercise values are
provided in Table 1 and default probability of C2 is p2 = 0.3.

Case Decisions (C1, C2) Portfolio value for C1 CVA

Risk-free (H,H) h1 − h2 = 1 −
CCR without netting (E,H) e1 − h2 = −1 2
CCR with netting (H,H) (1− p2) (h1 − h2) = 0.7 0.3

We now consider a case of bilateral counterparty risk by assuming a default probability of p1 = 0.25

for C1 and p2 = 0.15 for C2. Table 5 reports the adjusted holding values of the vulnerable options,

without netting, at the decision date. In that case, the optimal decision is for each party to hold its

option, and the value of the portfolio for C1 is V1 = ĥ1 − ĥ2 = 1.75.

Table 5: Exercise and expected holding values of O1 and O2 at the decision date from the respective viewpoints or their
holders when the default probabilities of C1 and C2 are respectively p1 = 0.25 and p2 = 0.15.

O1 O2

Exercise value (ei) 8 e2 = 6

Holding value (ĥi) (1− p2)h1 = 8.5 (1− p1)h2 = 6.75

Table 6 reports the expected cash flows from C2 to C1 in the presence of a netting agreement and

bilateral counterparty risk. According to these values, the security strategy of C1 is to exercise O1 and

that of C2 is to hold O2, guaranteeing in both cases a portfolio value of v1 = 1.25. The strategy pair

(E,H) is then a Nash equilibrium for the matrix game, and differs from the optimal strategies obtained

when counterparties are not linked by a netting agreement.

Table 6: Matrix-game representation of the netted portfolio’s value from the viewpoint of C1 at the decision date. Risk-
free holding and exercise values are provided in Table 1. Default probabilities of C1 and C2 are respectively p1 = 0.25 and
p2 = 0.15.

E2 H2

E1 e1 − e2 = 2 e1 − ĥ2 = 1.25

H1 ĥ1 − e2 = 2.5 (1− p2) (h1 − h2) = 0.85

Similarly to the CVA, the BVA is computed by subtracting the vulnerable portfolio’s value from

its non-vulnerable counterpart. The BVA can be negative or positive, depending on the two parties’

relative vulnerability to CCR. The impact of a netting agreement on the exercise decisions of defaultable

parties and on the BVA for this bilateral instance is summarized in Table 7. Again, one observes that

netting affects the portfolio’s risk adjustment value and decreases the BVA (in absolute value). Note

that using either the risk-free or the risk-adjusted strategy to evaluate the netted portfolio value would

result in a BVA of -0.75, a significant overestimation.

Table 7: Impact of CCR and netting agreement on exercise decisions and BVA. Risk-free holding and exercise values are
provided in Table 1. Default probabilities of C1 and C2 are respectively p1 = 0.25 and p2 = 0.15.

Case Decisions (C1, C2) Portfolio value for C1 BVA

Risk-free (H,H) h1 − h2 = 1 −
CCR without netting (H,H) ĥ1 − ĥ2 = 1.75 −0.75

CCR with netting (E,H) e1 − ĥ2 = 1.25 −0.25

Finally, Table 8 reports an instance where the default probabilities for C1 and C2 are respectively

p1 = 0 and p2 = 0.4. In that case, the security (maxmin) strategy of C1 is to hold, guaranteeing a

payoff of at least 0, while the security (minmax) strategy of C2 is also to hold, guaranteeing a payoff of
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at most 0.6. The matrix game does not admit a Nash equilibrium in pure strategies since the minmax

and maxmin values do not coincide.1

Table 8: Matrix-game representation of the netted portfolio’s value from the viewpoint of C1 at the decision date. Risk-
free holding and exercise values are provided in Table 1. Default probabilities of C1 and C2 are respectively p1 = 0 and
p2 = 0.4.

E2 H2

E1 e1 − e2 = 2 e1 − h2 = −1

H1 ĥ1 − e2 = 0 (1− p2) (h1 − h2) = 0.6

In such a situation, we can propose various conjectures about the way the parties would act, which

will affect the value of the portfolio. One plausible assumption is that each party adheres to its own

security strategy. In the case of the matrix game represented in Table 8, both parties would then

choose to hold their option, resulting in a portfolio value of v1 = 0.6 for C1 (and v2 = −0.6 for C2).

A second assumption is that parties adopt a mixed strategy, that is, they randomize their decision

by choosing a probability to exercise their option at the decision date. This assumption is founded on

a game-theoretical interpretation of managing the netted portfolio, as zero-sum matrix games always

admit a Nash equilibrium in mixed strategies. For the game presented in Table 8, the equilibrium

mixed strategy is for C1 to exercise with a probability of 1/6 and for C2 to exercise with a probability

of 20/45. It is straightforward to check that, if C1 exercises with a probability of 1/6, C2 cannot

reduce the expected value of the portfolio below 0.3 (actually, the value of the portfolio is 0.3 whether

C2 exercises or holds). In the same way, if C2 exercises with a probability of 20/45, C1 can not do

better than an expected value of 0.3. Under this equilibrium mixed strategy, the portfolio value is

then v1 = 0.3.

The three simple instances reported in this section illustrate the impact of CCR and netting on

the exercise decisions of the parties and, therefore, on the value of the portfolio. In the absence of

a netting agreement, each claim is examined individually to determine the optimal exercise strategy,

where the holding value of each individual claim is adjusted to account for the possibility of loss upon

default. Under a netting agreement, however, losses upon default are applied to the net value of the

portfolio; specifically, upon default of C2 (resp. C1), losses are only incurred if the net value of the

portfolio claims is positive (resp. negative) for C1, which can modify the adjustment value.2 When, in

addition, the portfolio includes claims with early-exercise features, netting can also impact the exercise

strategy and, therefore, further modify the risk adjustment.

The following section proposes a general model to evaluate a portfolio of claims having early-exercise

features under CCR and netting.

3 Model

We consider two parties (C1 and C2) involved in a portfolio of claims under a netting agreement, where

the portfolio includes contractual payments in both directions (from C2 to C1 and from C1 to C2),

possibly with early-exercise features. We assume that both parties have at least one early-exercise

opportunity.

Since all cash flows from this portfolio is from one party to the other, its value from the perspective

of one party is the negative of that of the other. In the sequel, the netted portfolio value is expressed

from the perspective of C1.

The essential feature of a netting agreement is the consolidation of contractual obligations upon

default of one of the parties. Accordingly, the agreement and the portfolio cease to exist on the date

1The best response of C2 when C1 holds is to exercise.
2Clearly, a portfolio of claims should include both positive and negative cash flows (from the point of view of one

party) for netting to have an impact on the expected payoffs to the counterparties.
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of the first default event; at that date, the values of the claims are netted, and the result is recovered

by C1 (if positive) or C2 (if negative). Since, on the date of the first default event, some claims can

include optional rights, we will assume in this paper that, upon default, the value of the netted portfolio

corresponds to the expected value of its future cash flows under a risk- and netting-adjusted exercise

strategy.

3.1 Notation

To simplify the exposition, we assume that the portfolio is composed of n = n1+n2 Bermudan options

with distinctive features (maturity, exercise payoffs and dates, underlying asset), where C1 holds the

optional rights of the first n1 options and C2 holds the optional rights of the remaining n2 options.3

Let t = 0 denote the inception of the netting contract and t = T the longest maturity among the n

options included in the portfolio. Denote by (Xt)0≤t≤T the (possibly multidimensional) process of the

underlying risk factors, including the price process of the options’ underlying assets. We assume that

(Xt)0≤t≤T is a finite Markov process, where (Ft)0≤t≤T is the filtration generated by (Xt)0≤t≤T .

Let T = {tm,m = 0, 1, ...,M} be a set of discrete evaluation dates that includes all possible exercise

dates for all options in the portfolio, where tM ≡ T . The notation Em[·] represents the expectation at

date tm, under the risk-neutral measure, conditional on no prior default and on the filtration (Ftm). For

j = 1, ..., n, Fmj(x) then denotes the exercise payoff of option j at (tm, Xtm = x) from the perspective

of C1, where Fmj(x) = 0 when exercise of option j is not allowed at tm.

Let r denote the risk-free interest rate, assumed constant. To simplify the notation, we assume

that evaluation dates are evenly distributed in [0, T ], so that the discount factor corresponding to a

single time step ∆ ≡ tm+1 − tm,m = 0, ...,M − 1, is given by β ≡ e−r∆.

We denote by τi the stochastic default date (possibly infinite) of Ci and by ρi ∈ [0, 1] the determin-

istic recovery rate upon default by Ci, i ∈ {1, 2}. The recovery rate is applied to the netted portfolio

value eventually recovered by C3−i.

To compute the CCR valuation adjustment, one needs to compare the value of the vulnerable

portfolio with that of a risk-free portfolio with the same characteristics. To this end, we introduce a

state vector b = (b1, b2) of binary variables indicating which options of the portfolio are still alive, that

is, for j = 1, ..., n, bj = 1 if Option j has not yet been exercised or expired, whereas bj = 0 indicates

that Option j no longer exists in the portfolio. At a given evaluation date tm where Xtm = x and given

no prior default, let V̂m(x, b) and Vm(x, b) denote respectively the value of the vulnerable portfolio and

that of the corresponding risk-free portfolio, under the risk-neutral measure.

Finally, the indicator function 1A is defined by

1A ≡

{
1 if A is true

0 otherwise,

and, for a given y ∈ R,
y+ ≡ max{0, y}

y− ≡ min{0, y}.

3.2 The risk-free portfolio

It is easy to show that netting has no impact on the optimal exercise of the individual options in a

risk-free portfolio, so that

Vm(x, b) =

n∑
j=1

bjVmj(x) (1)

3It is straightforward to adapt the model to the general case of derivatives with multiple contractual cash flows.
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where, for j = 1, ..., n, Vmj(x) is the value (from the perspective of C1) of Option j at (tm, Xtm = x),

under its holder’s optimal exercise strategy, assuming Option j has not been exercised yet. The risk-free

value of the n options satisfy the following recursive equations

Vmj(x) = max{Fmj(x);βEm[Vm+1,j(Xtm+1
)]} for j = 1, ..., n1 and m < M (2)

Vmj(x) = min{Fmj(x);βEm[Vm+1,j(Xtm+1
)]} for j = n1+1, ..., n and m < M (3)

VMj(x) = FMj(x) for j = 1, ..., n. (4)

3.3 The vulnerable netted portfolio

However, as shown in Section 2, netting can impact the exercise strategies of the vulnerable portfolio’s

claims, giving rise to a dynamic game interpretation for the value of the netted portfolio. We therefore

proceed to characterize the payoffs and exercise strategies of the counterparties involved in a netting

agreement in order to obtain the value of a netted portfolio of vulnerable options.

3.3.1 Exercise payoff

At a given evaluation date, let a = (a1, a2) represent a vector of binary decisions with respect to each

of the n options, where, for j = 1, ..., n, option j is exercised by its holder if aj = 1. Note that feasible

decision vectors satisfy a ≤ b, and recall that Fmj(x) = 0 if exercise of option j is not allowed at tm.

The exercise payoff Rm(x, a) corresponding to a feasible action vector a at (tm, Xtm = x) is defined by

Rm(x, a) ≡
n∑

j=1

ajFmj(x). (5)

3.3.2 Holding value

The holding value Wm(x, b) of the portfolio at (tm, Xtm = x), given no prior default, is the expected

value of all the remaining options in the netted portfolio, described by the vector b. Accordingly, using

a recursive interpretation and assuming that the value of the vulnerable portfolio is known at the next

evaluation date as a function of the state vector, the holding value is computed by considering the

expected discounted value of the portfolio upon three mutually exclusive and collectively exhaustive

events during the time interval until the next evaluation date, namely, survival of both parties, first

default of C1, or first default of C2, given no prior default. We can then write

Wm(x, b) = W 0
m(x, b) +W 1

m(x, b) +W 2
m(x, b), (6)

where W 0
m(x, b), W 1

m(x, b) and W 2
m(x, b) correspond respectively to the holding value upon each of

these three mutually exclusive events, defined as follows:

Case 0: Let D0
m = 1tm+1<τ21tm+1<τ1 indicate the event that both parties will survive until tm+1.

In this case, the holding value at tm is the discounted value of the portfolio value at the next

evaluation date, yielding

W 0
m(x, b) = βEm

[
D0

mV̂m+1(Xm+1, b)
]
. (7)

Case 1: Let D1
m = 1tm<τ1≤tm+1

1τ1<τ2 indicate the event that C1 is the first to default during the

time interval (tm, tm+1]. In this case, if the expected value of the portfolio at (tm + 1, Xtm+1
) is

negative, C2 will recover a portion ρ1 of this (discounted) value at τ1; otherwise, C2 will deliver

the total of the portfolio’s expected discounted value to C1 at τ1. We then have

W 1
m(x, b) = βEm

[
D1

m

(
V̂m+1(Xtm+1

, b)+ + ρ1V̂m+1(Xtm+1
, b)−

)]
. (8)
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Case 2: Let D2
m = 1tm<τ2≤tm+1

1τ2<τ1 indicate the event that C2 is the first to default during the

time interval (tm, tm+1]. Similarly to Case 1, if the expected value of the portfolio at the next

evaluation date is positive, C1 will recover a portion ρ2 of it, otherwise C2 will recover the total

value, yielding

W 2
m(x, b) = βEm

[
D2

m

(
ρ2V̂m+1(Xtm+1

, b)+ + V̂m+1(Xtm+1
, b)−

)]
. (9)

Using (7)–(9), Equation (6) reduces to

Wm(x, b) =βEm

[(
1− (1− ρ2)D

2
m

)
V̂m+1(Xtm+1 , b)

+

+
(
1− (1− ρ1)D

1
m

)
V̂m+1(Xtm+1 , b)

−
]
. (10)

It is important to note that the above characterization of the holding value implicitly assumes that,

upon default, both parties agree on the value of the portfolio, that is, on the expected discounted value

of its future cash flows. Obviously, the future cash flows of an option with early-exercise opportunities

depend on the exercise strategy of its holder, and the value of an option is obtained by assuming an

optimal exercise strategy. As shown in Section 2, the holder’s exercise strategy should account for

counterparty risk and for the impact of netting on its exposure.

3.3.3 Security strategies

A security strategy for C1 at (tm, Xtm = x, b) prescribes a decision vector maximizing the outcome

against all the possible decisions of the other party. The lower value of the portfolio at (m,x, b) is

defined by

V S1
m (x, b) ≡ max

a1≤b1

{
min
a2≤b2

{Rm(x, a) +Wm(x, b− a)}
}
, (11)

where b − a indicates the contracts remaining in the portfolio after the exercise decisions designated

by the vector a = (a1, a2). A security strategy for C1 then satisfies

aS1
m (x, b) ∈ arg max

a1≤b1

{
min
a2≤b2

{Rm(x, a) +Wm(x, b− a)}
}
. (12)

In the same way, a security strategy for C2 at (tm, Xtm = x, b) is a decision vector aS2
m (x, b)

minimizing the outcome against all the possible decisions of C1. The upper value of the portfolio at

(m,x, b) is defined by

V S2
m (x, b) ≡ min

a2≤b2

{
max
a1≤b1

{Rm(x, a) +Wm(x, b− a)}
}
, (13)

and a security strategy for C2 satisfies

aS2
m (x, b) ∈ arg min

a2≤b2

{
max
a1≤b1

{Rm(x, a) +Wm(x, b− a)}
}
. (14)

Security strategies are pure strategies, of dimension n1 for C1 and n2 for C2. They indicate the vector of

decisions (exercise or hold) corresponding to all the options in the portfolio held by each counterparty,

as a function of tm, x = Xtm and b. Note that the feasibility condition a ≤ b ensures that options that

are no longer alive cannot be exercised.

3.4 Equilibrium

At a given evaluation date tm where Xtm = x and the options still included in the portfolio are

described by the vector b, if the lower value and the upper value of the portfolio coincide, the security
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strategies of the counterparties define a Nash equilibrium at (m,x, b). In that case, it is reasonable to

assume that the counterparties will use the strategy pair (aS1
m (x, b), aS2

m (x, b)) since neither party can

improve its outcome by changing its strategy.4 The value of the netted portfolio is then defined by

V̂m(x, b) ≡ V S1
m (x, b) = V S2

m (x, b). (15)

If however the upper and lower values do not coincide at (m,x, b), there exists no equilibrium in

pure strategies at (m,x, b), and the value of the portfolio is open to interpretation. As illustrated in

Section 2, we propose three ways to determine the value of the netted portfolio in that case, based on

plausible conjectures about the exercise strategies used by the counterparties.

3.4.1 Robust interpretation

In the first case, we assume that each counterparty uses its security strategy, a robust behavior avoiding

the worst possible outcomes and ensuring that the value of the portfolio lies between its lower and

upper values. The strategy pair used by the counterparties is then aSm(x, b) ≡ (aS1
m (x, b), aS2

m (x, b)) and

the value of the portfolio is given by

V̂m(x, b) ≡Rm(x, (aSm(x, b)) +Wm(x, b− aSm(x, b)) (16)

∈
[
V S1
m (x, b), V S2

m (m, b)
]
.

3.4.2 Mixed strategies

In the second case, we consider the possibility that counterparties randomize their decisions by choosing

a probability distribution over the set of actions available to them. A mixed strategy for Ci, i ∈ {1, 2}
is a vector zi of dimension 2ni such that each element is in [0, 1] and the elements sum to 1. The

exercise payoff and holding value corresponding to a mixed strategy is the weighted average of the

values corresponding to each of the 2ni pure strategy vectors available to counterparty Ci, denoted by

aik , k = 1, ...2ni . Accordingly, under a mixed strategy z1, the exercise payoff of the netted portfolio at

(tm, Xtm = x) when C2 uses the action vector a2 is defined by

R̃m(x, z1, a2) =

2n1∑
k=1

z1kRm(x, a1k , a2). (17)

In the same way, under a mixed strategy z1, the holding value of the netted portfolio at (tm, Xtm = x)

when C2 uses the action vector a2 is defined by

W̃m(x, z1, a2) =

2n1∑
k=1

z1kWm(x, b− (a1k , a2)). (18)

The exercise payoff and holding value of the netted portfolio corresponding to the use of a mixed

strategy by C2 are defined similarly.

Note that a Nash equilibrium in mixed strategies always exists.5 The value of the portfolio

V̂m(x, b) ≡ v (19)

can be obtained by solving the following linear program at (m,x, b):

max
z,v

v (20)

4To simplify the exposition, we assume in the sequel that the solutions to the optimization problems (11) and (13)
are unique. Note that the portfolio value is well-defined even when this is not the case. The issue of multiple solutions
is addressed in Section 4.

5Again, the equilibrium value is unique even though multiple equilibrium strategies may exist.
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s.t.

v ≤R̃m(x, z, a2l) + W̃m(x, z, a2l) for l = 1, ...2n2 (21)

2n1∑
k=1

zk =1 (22)

zk ≥0, k = 1, ..., 2n1 . (23)

The equilibrium mixed strategy for C1 is the vector z ∈ R2n1
solving (20)–(23). The equilibrium

mixed strategy for C2 is the vector of dual variables corresponding to the 2n2 constraints (21).

3.4.3 Conservative values

Finally, we consider the possibility that parties do not agree on the value of the portfolio, so that

each party computes its own estimation of the value of the vulnerable portfolio, a conservative value

corresponding to either the lower (for C1) or the upper (for C2) value, obtained using Equations (11)

or (13), respectively.

To summarize, we propose three distinct assumptions about the behavior of the parties in a netted

agreement, leading to four different ways to compute the value of a vulnerable portfolio, namely:

A1 Parties agree on the value of the portfolio, which corresponds to a Nash equilibrium. In that

scenario, parties use mixed strategies when a Nash equilibrium in pure strategies does not exist.

The value of the portfolio is obtained using Equation (19).

A2 Parties agree on a robust interpretation of the value of the portfolio. In that scenario, each party

uses its security strategy, which is not necessarily in equilibrium, but guarantees that the value

of the portfolio, obtained using Equation (16) lies between the upper and the lower value.

A3 Parties do not agree on the value of the portfolio and use a conservative value obtained using

Equations (11) for C1 and Equation (13) for C2.

Clearly, both counterparties should agree that the value of the portfolio lies between its lower and

upper values. Note that Equations (16) and (19) satisfy this condition and yield the same result,

corresponding to Equation (15), when the lower and the upper values coincide.

3.5 Computation of valuation adjustments

Given that the value of the vulnerable portfolio is a known function of (x, b) at maturity,

V̂M (x, b) =

n∑
j=1

bjFMj(x), (24)

Equations (6)–(9) provide a backward recursive formulation to compute the holding value Wm(x, b)

at tm when the value of the vulnerable netted portfolio is known at tm+1 as a function of the state

vector (x, b). Under Assumptions A1 or A2, the vulnerable portfolio value can then be obtained at tm
using Equations (16) or (19), respectively. Note that the two equations yield the same value when the

upper and lower values of the vulnerable portfolio coincide.

The BVA at (tm, Xm = x, b) is then given by the difference

BVAm(x, b) = Vm(x, b)− V̂m(x, b). (25)

When only one party is exposed to default risk, say Ci, the stochastic default time τi is set to = ∞
in Equations (7)–(9). The CVA at (m,x, b) is then given by

CVAm(x, b) = Vm(x, b)− V̂m(x, b). (26)
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When parties do not agree on the value of the vulnerable portfolio (Assumption A3), and, therefore,

on the price of counterparty risk (BVA or CVA), each party will compute its own conservative value

of the risk adjustment, yielding the conservative BVAs

BVA1
m(x, b) =Vm(x, b)− V S1

m (x, b)

BVA2
m(x, b) =Vm(x, b)− V S2

m (x, b).

These conservative BVA values are likely to differ and to be higher (in absolute value) than the BVA

computed using either the mixed strategy or the robust assumptions.

The general model proposed in this section provides an analytical characterization of the price of

counterparty risk under various default risk models and various assumptions about the state process

(Xt)0≤t≤T , provided the expectations in (7)–(9) can be computed or approximated efficiently. In

particular, it can accommodate both intensity-based and structural default models by including the

risk factors (e.g., structural or exogenous variables) in the state vector.

However, while analytic, Equations (2)–(4) and (11), (13), (16) or (19) do not admit closed-form

solutions in general and require some form of numerical approximation. In the numerical illustrations

presented in the next section, we solve Equations (2 )–(4) and (11), (13), (16) or (19) on a set of grid

points for the state vectorX and approximate the value of the portfolio using linear spline interpolation

(see Breton and Frutos (2012)).

4 Numerical illustration

This section reports on numerical experiments addressing the sensitivity of counterparty risk to various

parameters and the impact of netting and CCR on exercise strategies and adjustment values.

4.1 Base-case specification

We consider a portfolio consisting of n = n1+n2 Bermudan put options written on the same underlying

asset, with possibly distinct strike prices denoted byKj , j = 1, ..., n. All options have the same maturity

T = 1 and 50 equally spaced exercise opportunities, which, along with the inception date, form the set

T . Counterparty C1 and C2 are in a netting agreement, where C1 holds a long position on Options

1, ..., n1 and a short position on Options n1 + 1, ...n and C2 holds the opposite position.

We assume that the underlying asset price process is described by a geometric Brownian motion,

so that the price process under the risk-neutral measure is given by

Xt = X0 exp

(
(r − σ2

2
)t+ σBt

)
, (27)

where X0 is the asset price at inception, σ is the volatility of the price process, and Bt denotes a

standard Brownian motion. The benchmark values characterizing the underlying asset process are

reported in Table 9.

Table 9: Benchmark values for the numerical experiments.

Underlying asset

Parameters r X0 σ
Base value 0.05 100 0.35

We use an intensity-based model of default and assume that parties’ defaults are exogenous events

governed by the first jump of independent Poisson processes with constant hazard intensities, denoted
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respectively by λi, i = 1, 2. Accordingly, the probability that counterparty Ci defaults first during a

time interval ∆, given that it has not defaulted yet, is a constant given by

pi ≡ Em

[
1tm<τi≤tm+1

1τi<τ3−i

]
=

λi

λ1 + λ2
(1−exp(−∆(λ1+λ2))), m = 1, ...,M−1, i ∈ {1, 2}. (28)

In that case, Equation (10) simplifies to

Wm(x, b) = β
(
(1− p1(1− ρ1))Em

[
V̂m+1(Xtm+1

, b)+
]
+ (1− p2(1− ρ2))Em

[
V̂m+1(Xtm+1

, b)−
])

.

(29)

In our numerical investigations, we set ρ1 = ρ2 = 0. This last assumption is without loss of generality,

since it is easy to see, using Equation (29), that setting p̂i = pi(1 − ρi) and ρ̂i = 0 for i ∈ 1, 2 yields

an equivalent model.

Finally, note that if the following condition is satisfied

p1(1− ρ1) = p2(1− ρ2) ≡ s, (30)

the holding value further simplifies to

Wm(x, b) = β(1− s)Em

[
V̂m+1(Xtm+1

, b)
]
. (31)

In this specific instance, where both parties are subject to the exact same counterparty default risk, it

is easy to see that netting has no impact, so that it is optimal for each party to use its risk-adjusted

exercise strategy, independently of the decisions of the other party.

4.2 Exercise strategies in a netted portfolio

Our first set of experiments is meant to illustrate the complexity of the evaluation of CCR in a netted

portfolio, even when only one party is exposed to counterparty risk, or when the portfolio contains

identical options.

We first consider the portfolio of four Bermudan options described in Table 10.

Table 10: Portfolio of four Bermudan put options with unilateral counterparty risk.

Option O1 O2 O3 O4

Strike price K 110 100 105 103

Holder C1 C2

Default intensity λ 0 0.5

Figure 1 represents the exercise strategies of the four options over time, assuming that no option

has been exercised yet. The red curve depicts the security strategy of the counterparty holding the

option, that is, the exercise barrier as a function of the date and of the price of the underlying asset.

Also represented on Figure 1 are the mixed strategies, that is, the probability of exercising the option

(in grey) in the regions where the upper and lower values of the portfolio differ.

This example shows that there can exist significant regions for the underlying asset price, along the

life of the portfolio, where there exists no equilibrium in pure strategies. It also shows that the exercise

value of options under a netting agreement can exhibit non-smooth behavior, namely in regions where

security strategies are not in equilibrium. It is noteworthy that the existence of a netting agreement can

alter the exercise strategy of options even when their holder is not exposed to CCR (in this example,

the payoff of Options O3 and O4, held by C2, is deterministic).
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(a) O1 (b) O2

(c) O3 (d) O4

Figure 1: Equilibrium exercise strategies (security and mixed) of the four options described in Table 10 under a netting
agreement. The white (resp. black) area is the region where the probability of exercising the option is equal to 1 (resp. 0).
The red line is the security strategy of the option holder.

We now consider a portfolio of four identical Bermudan put options, as described in Table 11. Note

that, under a netting agreement, it may be optimal not to exercise identical options simultaneously,

since the exercise decision depends on the composition of the portfolio. This is illustrated in Figure 2,

where exercise barriers correspond to the parties’ security strategies.

Table 11: Portfolio of four identical Bermudan options with unilateral counterparty risk.

Option O1 O2 O3 O4

Strike price K 100 100 100 100

Holder C1 C2

Default intensity λ 0 0.5

Under netting, there exists a region where both options are exercised, and a distinct region where

only one of the two options is exercised, for the party exposed to counterparty risk as well as for the

party not vulnerable to CCR. For C1, who is exposed to CCR, both exercise barriers are higher (C1

will exercise earlier) than in the risk-free case, but lower than when there is no netting agreement.

C2, who is not exposed to CCR, will exercise one of its two options at a higher price (earlier) than

the risk-free barrier when involved in a netting agreement, while the exercise barrier for both options

coincides with the risk-free barrier.

4.3 Impact of parameter values on exercise strategies

The next set of experiments illustrates the impact of CCR on the equilibrium strategies in a netted

portfolio with bilateral risk. For ease of representation, we consider a portfolio of two options, and

assume that parties use security strategies. Table 12 describes the base case parameters for this

portfolio.
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(a) Exercise policies of both parties under netting. (b) Comparison of exercise policies for options held by C1.

Figure 2: Illustration of the impact of netting and CCR on the exercise boundaries of four identical options as characterized
in Table 11. Panel (a) shows the exercise boundaries of the four options under their respective owner’s security strategies.
Panel (b) compares the exercise boundaries for options held by C1 with the risk-free boundary and with the risk-adjusted
boundary when there is no netting agreement. Note that for the options held by C2, the boundary for the exercise of
both options coincides with the risk-free boundary.

Table 12: Portfolio of two Bermudan put options with bilateral counterparty risk.

Option O1 O2

Strike price K 120 100

Holder C1 C2

Default intensity λ 0.3 0.5

Figure 3 shows how the exercise strategy of Option 1, held by C1, varies with the risk of default

by C2 (λ2), the strike price of Option 1 (K1), the strike price of Option 2 (K2), the volatility of the

underlying asset price (σ), and C1’s own default risk (λ1).

As expected, the exercise barrier rises (that is, the option is exercised earlier) with C. We also

observe that the exercise barrier rises with decreasing K2, which increases the value of the portfolio for

C1 and therefore its exposure to default risk, prompting C1 to exercise its option earlier. The exercise

barrier also rises with λ2, which is an expected result since an increase in counterparty risk decreases

the holding value of the portfolio. Notice that this impact of λ2 on the exercise barrier becomes larger

(resp. smaller) with increasing K1 (resp. K2). An intriguing outcome is the observation that the

option’s exercise barrier rises with λ1, that is, with the option holder’s own default risk. The rationale

is as follows: an increase in the risk of loss from C1’s default leads to an earlier exercise of the option

held by C2, so that the benefit from netting mitigation for C1 is reduced, which leads C1 to exercise its

option sooner. These observations, obtained by experimenting with a simple portfolio of two options,

can be generalized to more complex situations. Risk and exposure have the expected impact on option

holders’ exercise barrier, while earlier exercise by one counterparty reduces the risk-mitigating effect

of netting, inducing the other party to also exercise earlier.

However, while we observe in Figure 3 that σ has a negative impact on the exercise boundary, this

result cannot be generalized. An increase in the value of σ affects all the options in the portfolio, so

that a change in the volatility of the underlying asset affects both the total exposure and the value of

individual options, possibly in opposite directions, so that the impact of a change in σ on each option’s

exercise boundary cannot be predicted.

Figure 3 also compares the exercise barrier under netting with the exercise barriers of risk-free

options. As expected, we find that the price at which vulnerable (put) options included in a netting

portfolio are exercised is always higher than the risk-free exercise barrier.
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(a) K1 = 110 (b) K1 = 120 (c) K1 = 130

(d) K2 = 90 (e) K2 = 100 (f) K2 = 110

(g) σ = 0.2 (h) σ = 0.35 (i) σ = 0.5

(j) λ1 = 0 (k) λ1 = 0.3 (l) λ1 = 0.6

Figure 3: Impact of changes in various parameters on the exercise boundary of Option O1, held by C1. Benchmark
parameter values are reported in Tables 9 and 12.

On the other hand, when Condition (30) is satisfied, netting has no impact, and therefore the

equilibrium exercise barrier coincides with the risk-adjusted optimal exercise barrier. Examination

of Equation (29) shows that netting benefits the party having the lowest probability of defaulting

first (eventually adjusted for recovery). Accordingly, in our setting, the exercise barrier of vulnerable

(put) options under netting is lower (resp. higher) than the corresponding risk-adjusted barrier for

the counterparty having a lower (resp. higher) default probability, as can be observed on Figure 3.

Finally, one interesting conclusion from our investigation is the fact that options will be exercised

in the order of their intrinsic value (or, equivalently, of their expected loss upon default). The reason

is that, in a bilateral netting agreement, all vulnerable contracts held by one party are subject to
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the same level of risk. Consequently, multiple solutions may arise when deciding about an exercise

strategy, for instance when a portfolio holds many identical options. Recall that this does not mean

that identical options should be exercised together, but rather that any subset of those identical options

can be exercised in the corresponding region.

4.4 Impact of parameter values on portfolio value and BVA/CVA

While the impact of model parameters on the exercise strategies in a netted portfolio can be deciphered,

the situation is more complex when trying to predict how the value of a netted portfolio reacts to

changes in parameter values that can affect subsets of options (e.g., common risk factors or underlying

assets).

Moreover, since changes in parameter values also affect the the risk-free portfolio, the risk valuation

adjustment (CVA or BVA), which is a difference, is even more unpredictable. Numerical investigations

show that no general indication can be obtained concerning the sensitivity of risk valuation adjustments

to changes in model parameters in a netted portfolio, even in the unilateral risk case, apart from the

observation that an increase in default risk of the counterparty results in an increase of the risk

valuation adjustment. This is illustrated in Figure 4, which shows the sensitivity of the CVA (BVA in

panel (d)) for a portfolio of three options (see Table 13) to variations in the value of various parameters.

These results are obtained under the assumption that parties use mixed strategies.

(a) Variation of K1 (b) Variation of K2 (c) Variation of σ (d) Variation of λ1

Figure 4: Sensitivity analysis of the CVA (BVA) at inception to counterparty risk (λ2) for various values of K1, K2, σ,
and λ1 in the portfolio of three Bermudian options described in Table 13.

Table 13: Portfolio of three Bermudan put options with unilateral counterparty risk.

Option O1 O2 O3

Strike price K 120 100 90

Holder C1 C2

Default intensity λ 0 0.3

4.5 Behavioral assumptions

As indicated in Section 3.4, the dynamic-game model used to evaluate the price of CCR in a netted

portfolio where both parties have optional rights can be used under distinct assumptions about the

way to compute the value of a vulnerable portfolio. The three assumptions proposed in Section 3.4

lead to four different values for the BVA/CVA. This happens as soon as there exist at least one region

of the state space, over the remaining horizon of the portfolio, where the the upper and lower values

do not coincide. This is due to the fact that the portfolio value is an expectation of future cash flows,

contingent to the exercise strategies of both parties.

Figure 5 plots the four portfolio and corresponding BVA values, computed under the three scenarios,

for the netted portfolio described in Table 10.

One can observe that Assumption A3 leads to BVA values that differ among counterparties, who

both overestimate their expected losses by assuming the worst possible outcomes when an equilibrium
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(a) λ1 = 0 (b) λ1 = 0.5

(c) λ1 = 0 (d) λ1 = 0.5

Figure 5: Comparison of the netted portfolio value (panels a and b) and CVA/BVA (panels c and d) at inception, as a
function of λ2, according to the assumption used to compute the portfolio value. The composition of the portfolio is
described in Table 10.

in pure strategies does not exist. The difference between these various interpretations of the price of

CCR can be significant in some cases, namely when the region where the upper and lower values differ

is extensive. Our numerical investigations show that this is likely to happen when the value of the

portfolio approaches 0 (parties have commensurable claims) and/or when one party’s default risk is

substantially higher than that of the other. Recall that when Condition (30) is satisfied, the value of

the portfolio is simply the sum of the individual options’ values (netting has no impact), so that the

four interpretations coincide, as seen in Figure 5 when λ2=λ1.

4.6 Methodological choices

The conventional methodology used for assessing the risk adjustment value of derivatives with early-

exercise features typically employs two successive steps. The exercise strategy is initially obtained

for all derivatives, disregarding counterparty default risk. Subsequently, a Monte Carlo simulation of

the default process and of the market risk factors is conducted in order to estimate the expected loss

corresponding to the risk-free exercise strategy. As shown in Breton and Marzouk (2018), this two-step

technique, while widely used in the industry, can lead to significant inaccuracies in the estimation of

the CVA of individual derivative products. The numerical experiments presented above show that

netting can further modify the exercise strategy of options, leading to unpredictable effects on the

value of the CVA or BVA.

Our next set of experiments illustrates the misestimation that can arise when disregarding the

impact of CCR and netting on the exercise strategies of derivatives. We use the simplest example of a

portfolio of two Bermudan options written on the same underlying asset, described in Table 12, under

the assumption that the parties can use mixed strategies.

For the unilateral-risk case, Figure 6 compares the CVA obtained using the risk-free, the risk-

adjusted and the netting-adjusted exercise strategies, while in the bilateral-risk case, Figure 7 plots

the difference, in percentage points, between the BVA obtained using the netting-adjusted strategies
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(a) CVA value (b) Difference

Figure 6: Difference between the CVA estimation when using the risk-free, risk-adjusted and netting-adjusted exercise
strategy at inception, as a function of λ2, for the portfolio of two Bermudan put options described in Table 12 when
λ1 = 0.

(a) Variation of K1 (b) Variation of K2 (c) Variation of σ (d) Variation of λ1

Figure 7: Error in the estimation of the BVA when using the risk-free strategy for the portfolio of two Bermudan put
options described in Table 12 when λ1 = 1. Values are computed at inception as a function of λ2, for various values of
the strike prices, volatility, and λ1.

and the BVA obtained using the risk-free ones, as a function of the default intensity of the second

party, for various values of the strike prices, the volatility, and the default intensity of the first party.

In the unilateral-risk case, using either the risk-free or the risk-adjusted strategy without accounting

for the netting impact always leads to an overestimation of the CVA. This is because a risk-adjusted

strategy results in exercising options earlier, thus reducing the expected loss upon default. Moreover,

as explained in Section 4.3, netting also induces the vulnerable party to exercise its options earlier

than under its risk-adjusted strategy, further reducing the price of CCR. However, in the bilateral

case, the error in the estimation of the BVA can be positive or negative, depending on the relative

parties’ exposure to CCR, as can be observed from Figure 7.

4.7 Netting impact

We conclude this section by discussing and illustrating the netting impact, that is, the difference in

the CVA or BVA of a netted portfolio with respect to a situation where parties are not in a netting

agreement and correctly use a risk-adjusted strategy to evaluate the price of CCR. Figure 8 shows the

sensitivity of the netting impact to various model parameters for the portfolio of put options described

in Table 12. Note that the netting impact vanishes when Condition (30) is satisfied, that is, when the

two parties have the same default intensity, irrespective of their relative exposure.

From a portfolio management perspective, one interesting interpretation of the netting impact is the

evaluation of the difference in the portfolio value when parties do not adjust their exercise strategies to

account for the impact of netting. As illustrated in Figure 8, this difference can be significant, especially

when the probabilities of suffering losses from CCR differ substantially among the two counterparties.
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(a) Variation of K1 (b) Variation of K2 (c) Variation of σ (d) Variation of λ1

Figure 8: Sensitivity of the netting impact on the CVA/BVA at inception as a function of λ2 to various values of the
strike prices, volatility, and initial asset price, for the portfolio of two options described in Table 12.

5 Conclusion

In this paper, we examined the impact of netting on the price of counterparty credit risk. While

it is well recognized that netting is an efficient risk-mitigation instrument when two counterparties

participate in multiple bilateral contracts, the value of netting has not been investigated when these

contracts include optional rights.

We have shown that the introduction of a netting agreement fundamentally changes the decision-

making process related to the exercise strategies of optional rights in a netted portfolio because exercise

decisions impact the expected payoffs of both counterparties in the agreement, giving rise to a stochastic

zero-sum game between the two parties.

We proposed a model that allows to recursively compute the value of this game, which can then

be compared with the value of a corresponding portfolio of risk-free contracts, thus allowing for the

determination of the market price of CCR. Our dynamic-programming interpretation allows to char-

acterize the CVA or BVA of a portfolio of contracts, for all possible values of the underlying market

factors and all possible compositions of the portfolio, at all evaluation dates until maturity.

We numerically implemented this recursive algorithm and provided various experiments to illustrate

how a netting agreement can modify the exercise strategy of both parties, even when one of the parties

is not exposed to counterparty default risk. We also provided illustrations of the impact of changes

in default probabilities, and other parameters affecting the parties exposure, on the exercise barrier of

options within a netted portfolio.

Finally, our findings challenge traditional methodologies used to assess the risk adjustment value

of netted portfolios, by showing that neglecting the impact of counterparty risk and netting on the

exercise mechanism can lead to significant errors in the estimation of the CVA or BVA. The implicit

signification of this last observation is that neglecting the impact of netting and of counterparty risk

when managing a netted portfolio including optional rights leads to a decrease in expected value.

Therefore, our investigation about the impact of CCR and netting on exercise barriers also provides

valuable insight on how optional rights within netted portfolio should be managed by their holders.
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Michèle Breton and Oussama Marzouk. Evaluation of counterparty risk for derivatives with early-exercise
features. Journal of Economic Dynamics and Control, 88:1–20, 2018.

Damiano Brigo and Massimo Masetti. A formula for interest rate swaps valuation under counterparty risk in
presence of netting agreements. Available at SSRN 717344, 2005a.

Damiano Brigo and Massimo Masetti. Risk neutral pricing of counterparty risk. 2005b.

Damiano Brigo and Andrea Pallavicini. Counterparty risk pricing under correlation between default and
interest rates. In Numerical methods for finance, pages 79–98. Chapman and Hall/CRC, 2007.

Damiano Brigo and Frédéric Vrins. Disentangling wrong-way risk: pricing credit valuation adjustment via
change of measures. European Journal of Operational Research, 269(3):1154–1164, 2018.

Damiano Brigo, Andrea Pallavicini, and Vasileios Papatheodorou. Arbitrage-free valuation of bilateral coun-
terparty risk for interest-rate products: impact of volatilities and correlations. International Journal of
Theoretical and Applied Finance, 14(06):773–802, 2011.

Damiano Brigo, Marco Francischello, and Andrea Pallavicini. Nonlinear valuation under credit, funding,
and margins: Existence, uniqueness, invariance, and disentanglement. European Journal of Operational
Research, 274(2):788–805, 2019.

Christoph Burgard and Mats Kjaer. Derivatives funding, netting and accounting. Netting and Accounting,
2017.

Giovanni Cesari, John Aquilina, Niels Charpillon, Zlatko Filipovic, Gordon Lee, and Ion Manda. Modelling,
pricing, and hedging counterparty credit exposure: A technical guide. Springer Science & Business Media,
2009.

Darrell Duffie and Kenneth J Singleton. Credit risk: pricing, measurement, and management. Princeton
University Press, 2003.

Cyril Durand. Valuation of contracts with counterparty risk under netting and collateral agreements. Masters
by Research Thesis, University of New South Wales, 2010.

Jon Gregory. Counterparty credit risk and credit value adjustment: A continuing challenge for global financial
markets. John Wiley & Sons, 2012.

Jinbeom Kim and Tim Leung. Pricing derivatives with counterparty risk and collateralization: A fixed point
approach. European Journal of Operational Research, 249(2):525–539, 2016.

Peter Klein. Pricing black-scholes options with correlated credit risk. Journal of Banking & Finance, 20(7):
1211–1229, 1996.

Peter Klein and Jun Yang. Counterparty credit risk and americanoptions. The Journal of Derivatives, 20(4):
7–21, 2013.

David Lando. On cox processes and credit risky securities. Review of Derivatives research, 2(2):99–120, 1998.

www.bis.org

	Introduction
	Motivating example
	Model 
	Notation
	The risk-free portfolio
	The vulnerable netted portfolio
	Exercise payoff
	Holding value
	Security strategies

	Equilibrium
	Robust interpretation
	Mixed strategies
	Conservative values

	Computation of valuation adjustments

	Numerical illustration
	Base-case specification
	Exercise strategies in a netted portfolio
	Impact of parameter values on exercise strategies
	Impact of parameter values on portfolio value and BVA/CVA
	Behavioral assumptions
	Methodological choices
	Netting impact

	Conclusion

