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– Library and Archives Canada, 2023

GERAD HEC Montréal
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Abstract : Improving neural network optimizer convergence speed is a long-standing priority. Re-
cently, there has been a focus on quasi-Newton optimization methods, which have fewer hyperparam-
eters compared to gradient-based methods and show improved convergence results in deterministic
optimization. We introduce PLSR1, a limited-memory partitioned quasi-Newton optimizer designed
for optimizing a partially separable loss function, which is a sum of element loss functions of smaller di-
mensions. PLSR1 aggregates limited-memory quasi-Newton approximations of individual element loss
Hessians to better approximate the overall loss Hessian. To keep storage affordable, element function
dimensions must be small compared to the total dimension. Thus, we adapt standard neural network
architectures by incorporating separable layers, creating a partitioned architecture (PSNet). The nu-
merical results compare the performance of several optimizers training the same partially-separable
loss function on LeNet and PSNet architectures of similar sizes and effectiveness. The graphs ex-
hibit the optimizer accuracies over epochs, on both the MNIST and CIFAR10 datasets. PLSR1 and
an adaptative Nesterov variant show a training convergence comparable to Adam and outperforms
LBFGS and SGD.
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1 Introduction

Deep learning is now a cornerstone of our society. In supervised learning, neural networks are trained

on datasets to solve data-aligned problems. For multiclass classification [12], neural networks seek to

correctly identify the class where any input adhering to the network’s architecture belongs. The net-

work is trained using an optimizer on a specific dataset, trying iteratively to reduce misclassifications.

The optimizer minimizes a loss function, which assesses the relevance of score for one input and its

label. As a result, it enhances class determination and increase the neural network’s accuracy.

Datasets have expanded to the point where assessing them entirely is impractical. For example, the

ImageNet dataset comprises over 14 million images [32]. Consequently, training datasets are divided

into smaller, randomly selected minibatches to ensure reasonable loss function evaluations. However,

this approach introduces stochastic noise when evaluating the loss function on a minibatch.

In Robbins and Monro [31], the foundation of stochastic optimization was laid, leading to the

first method rooted in gradient loss computations from data subsets, commonly known as stochastic

gradient descent (SGD) [24]. SGD represents the prototype among gradient-based methods, where

weight updates rely on scalar adjustments derived of first partial derivatives. Over time, gradient-

based methods evolved. Momentum was introduced by [28], followed by more recent techniques like

AdaGrad [13], RMSProp [18], and Adam [21]. These methods offer distinct strategies concerning the

step size derived from sampled loss gradient moments. While a comprehensive exploration of these

methods isn’t within our scope, interested readers can delve into further insights through sources such

as [3, 5, 24].

Within deterministic smooth convex optimization scope—where the full-size batch loss gradient is

considered—gradient-based methods display linear convergence towards the minimum [5]. This linear

convergence rate is surpassed by second-order methods, which also require fewer hyperparameter.

In particular, quasi-Newton methods which seek to approximate the Hessian (or its inverse) from

past gradients. Namely, BFGS and its limited-memory variant LBFGS [26] achieve local superlinear

convergence and outperforms gradient-based methods significantly.

Within a stochastic setup, both gradient-based methods and limited quasi-Newton methods achieve

sub-linear convergence rates [5]. However, quasi-Newton methods are likely to enhance the hidden

constant behind theoretical asymptotic convergence results [5].

Among quasi-Newton methods, a specific subclass, known as partitioned quasi-Newton methods,
has demonstrated notably superior performance in deterministic optimization [16, 26]. While quasi-

Newton methods are applicable to any C2 smooth function, the partitioned variants require the function

to exhibit partial separability, i.e. a sum of smaller dimension element functions. In this work, we ex-

ploit a partially-separable loss function [1] to train a multiclass classification neural network with a

partitioned quasi-Newton optimizer. To fully exploit partial separability and benefit its determinist

performances, traditional neural network architectures must be adapted. To address this issue, [1]

employs separable layers to construct partitioned architectures. [1] details how partitioned structure

enlarged the panel of techniques distributing training computations by evaluating element loss com-

putation on different devices. Federated learning benefits from this characteristic, as the training is

distributed across less capable edge devices [34].

The structure of the paper is as follows: Section 2 provides a brief overview of the unsupervised

learning context. Section 3 delves into the concept of partial separability, outlines the derivative

partitioned structure and introduce a partially-separable loss function. Section 4 recalls quasi-Newton

principles and details our limited-memory partitioned quasi-Newton approximation of the Hessian and

the resulting optimization method [2]. Section 5 recaps separable layers and introduces the partitioned

architectures from Anonymous [1]. Finally, Section 6 compares various training strategies applied to

a partitioned architecture, discusses current limitations, and concludes in Section 7.
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2 Supervised learning context and multiclass classification neural
network

Neural networks for multiclass classification aim to categorize inputs among C distinct classes [12].

To achieve this, they compute a score cj for each class and select the class with the highest score

(argmaxj=1,...,C cj). Parametrized by n weights, the neural network architecture can be seen as a

function c : Rn → RC , applicable to inputs that conforms to its architectural specifications.

In supervised training, the dataset is divided into two segments: the training dataset and the test

dataset. A dataset comprises observations denoted as X, paired with their respective labels Y. Each

x ∈ X signifies an individual observation, while its corresponding label y ∈ Y is described by 1 ≤ y ≤
C, y ∈ N. A dataset containing L pairs of observation-label is expressed as (X,Y) = {(x(l), y(l))}Ll=1.

In tandem with the architecture that generates the function c, the training problem requires an

evaluation of its prediction accuracy. This role is fulfilled by the loss function L(x, y;w), which quan-

tifies the appropriateness of the neural network’s predictions for each observation-label pair (x, y).

When applied to a minibatch (X,Y ) ⊂ (X,Y) of size L, the loss function computes the mean loss of

all observation-label :

L(X,Y ;w) =
1

L

L∑
l=1

L(x(l), y(l);w). (1)

For the context of multiclass classification, a widely-used loss function combines the softmax layer and

negative log-likelihood, another way to break down the cross-entropy loss [9]:

LNLL(x(l), y(l);w) = − log

(
exp(cy(l)(x(l);w))∑C
i=1 exp(ci(x

(l);w))

)
︸ ︷︷ ︸

softmax

, (2)

where exp(cy(l)) represents the score for the expected result y(l) given the input x(l). Observe that the

denominator of the softmax layer in LNLL encompasses all the scores produced by the neural network.

Consequently, LNLL : RnNLL → R is fully parameterized by w, i.e. nNLL = n.

3 Partially-separable training

Section 3.1 formalizes the partially-separable function concept. Then, Section 3.2 proposes a partially-

separable loss function.

3.1 Partially-separable function

A partially separable function is defined as:

f(w) =

N∑
i=1

f̂i(Uiw), Ui ∈ Rni×n, w ∈ Rn. (3)

Here, f sums element functions of smaller dimensions f̂i : Rni → R, where ni < n. The linear

operator Ui selects the variables parametrizing f̂i. The concept of partial separability is detailed in the

early 1980s, originally motivated by partial differential equation discretized problems [10, 15]. This

structure has since found applications across various optimization domains, including quasi-Newton

methods [8, 10, 15], derivative-free methods [6, 30], and evolutionary methods [14]. Essentially, partial

separability leads to partitioned derivatives:

∇f(w) =

N∑
i=1

U⊤
i ∇f̂i(Uiw), ∇2f(w) ≈ B =

N∑
i=1

U⊤
i B̂iUi, (4)
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where ∇f̂i ∈ Rni and B̂i = B̂⊤
i ∈ Rni×ni approximates ∇2f̂i. For example: f(w) = f1(w1, w2, w3) +

f2(w3, w4, w5) + f1(w1, w3, w5) gets the partitioned Hessian:

∇2f =


 .

This property generates straightforward schemes to parallelize computations. In particular, [25, 29]

explain it in the context of deterministic optimization context, while [1] specifics are more related to

deep learning.

3.2 Partially-separable loss function

A loss function must yield a high value if the neural network’s maximum score argmaxj=1,..,C cj differs

from y(l) for a given input x(l). Conversely, if cy(l) is correctly identified, the value returned must be

low.

It’s worth noting that despite the summation in (1), LNLL(X,Y ;w) doesn’t exhibit partial separa-

bility, as n = nNLL ≮ n. To establish an element loss of smaller dimension, it needs to rely on a subset of

the scores cj , which depend only on a subset of weights. Formally, ĉj(x
(l), y(l);Ujw) = cj(x

(l), y(l);w),

where ĉj : Rnj → R, with nj < n and parametrized by weights selected by Uj (as illustrated in Fig-

ure 2). Our approach introduces a partially separable loss (PSL), in which each element loss function

focuses on a specific pair of scores:

LPSL(X,Y ;w) :=
1

L

L∑
l=1

C∑
j=1

e
cj(x

(l);w)−c
y(l) (x

(l);w)
, (5a)

=

C∑
p=1

C∑
j=1̸=p

hp,j(X,Y ;w), (5b)

hp,j(X,Y ;w) :=
1

L

L∑
l=1

δp,j(y
(l)) ecj(x

(l);w)−cp(x
(l);w), (5c)

where δp,j(y
(l)) = 1 if y(l) = p, and 0 otherwise. Each element function hp,j exclusively utilizes the

weights that correspond to the two scores cp and cj :

ĥp,j(X,Y ;Up,jw) = hp,j(X,Y ;w), Up,j ∈ Rnp,j×n.

Here, the linear operator Up,j combines the selected weights from both Up and Uj , np,j ≤ np + nj and

np,j ≤ n. Section 5 discusses partitioned neural networks designed to minimize np,j before n [1].

4 Limited-memory partitioned quasi-Newton training

Second-order methods differ from gradient-based methods, which update weights mainly from the

sampled loss gradient. Section 4.1 recalls the basics of quasi-Newton methods while Section 4.2 presents

our limited-memory partitioned variant. This method is tailored for partially-separable problems and

can be applied in any neural network training problem minimizing LPSL.

4.1 Quasi-Newton methods

Secant quasi-Newton operators aim to approximate ∇2f(xk) (or ∇2f(xk)
−1) using linear operators

Bk = B⊤
k (or Hk) throughout optimization iterations. These operators rely on gradient evaluations
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and satisfy the secant equation:

Bk+1sk = yk, sk = wk+1 − wk, yk = ∇f(wk + sk)−∇f(wk). (6)

Among the most prevalent quasi-Newton updates are BFGS:

BBFGS
k+1 = Bk − (Bksk)(Bksk)

⊤

s⊤k Bksk
+

yky
⊤
k

s⊤k yk
, (7)

which maintains BBFGS
k+1 ≻ 0 if Bk ≻ 0 and s⊤k yk > 0 , and SR1 [11]:

BSR1
k+1 = Bk +

(yk −Bksk)(yk −Bksk)
⊤

s⊤k (yk −Bksk)
, (8)

which might result in an indefinite BSR1
k+1.

Historically, these linear operators were implemented using dense matrices. However, as problem

dimensions grow, dense matrices become impractical. Limited-memory variants emerged: LBFGS [7,

26] and LSR1 [27]. In these variants, Bk doesn’t use a matrix; instead, it employs a linear operator

v → Bkv, based from the last corresponding m updates retained as {sk−j , yk−j}mj=1. For an operator

of memory m, v → Bkv is accomplished with a double loop over {sk−j , yk−j}mj=1, whose computational

complexity is Θ(mn). Limited-memory variants are commonly employed within a conjugate gradient

linear solver [17], requiring only v → Bkv to (approximately) solve a linear system.

4.2 Partitioned quasi-Newton methods

Partitioned quasi-Newton methods approximate every ∇2f̂i using matrices B̂i updated through BFGS

or SR1 formulas (7)–(8). In these formulas, y and s are replaced with ŷi = ∇f̂i(Uiwk+1)−∇f̂i(Uiwk)

and ŝi = Ui(wk+1 − wk). By updating all B̂i at each iteration, the matrix Bk+1 − Bk becomes of

relatively high rank, i.e. min(N,n), in contrast to (L)BFGS or (L)SR1 updates (e.g. rank 1 or rank 2).

As a result, partitioned quasi-Newton operators tend to provide more accurate approximations of

∇2f in fewer updates. Limited-memory variants of partitioned quasi-Newton updates are introduced

by [2], where each ∇2f̂i is approximated using either a LBFGS or a LSR1 operator. These variants

significantly reduce B’s storage requirements from Θ(
∑N

i=1
ni(ni+1)

2 ) to Θ(m
∑N

i=1 ni).

In the numerical results, we employ PLSR1, where each B̂k+1,i = B̂LSR1
k+1,i. In contrast to PLBFGS,

where each B̂k+1,i = B̂LBFGS
k+1,i , PLSR1 does not necessitate the fulfillment of the element curvature con-

dition ŝ⊤i ŷi > 0 to update B̂k,i. Consequently, B̂k,i is more likely to incorporate recent element updates

compared to PLBFGS, allowing it to more frequently capture local element function curvatures.

Algorithm 1 outlines an inexact line search method minimizing a partially separable function f by

exploiting a limited-memory partitioned quasi-Newton approximation of∇2f . To adapt Algorithm 1 to

the deep learning context, f and∇f correspond respectively to the sampled loss function LPSL(X,Y ;w)

and its gradient∇LPSL(X,Y ;w). Each element function f̂i refers to an element loss function ĥp,j . Note

that to calculate ŷk,i, the element function must compute∇ĥp,j(X,Y ;Up,jwk+1) on the same minibatch

X,Y as ∇ĥp,j(X,Y ;Up,jwk). Additionally, we also incorporated an adaptive Nesterov accelerated

gradient, inspired by [19, 20] which adds a momentum in ∇f(wk) computation from Algorithm 1. This

variant is denoted as PLSR1 AdaN. Both partitioned quasi-Newton training methods are compared

Figure 4 in Section 6.

5 Separable layer and partitioned architecture

Our partially separable loss function can be applied to different multiclass classification neural net-

works. However, not all architectures lead to significantly smaller np,j compared to n. To address
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Algorithm 1 Inexact partitioned quasi-Newton line search.

1: Choose w0 ∈ Rn, τ1, τ2 ∈ R+,
2: Choose B0 = B⊤

0 =
∑N

i=1 U
⊤
i B̂0,iUi ≈ ∇2f(w0).

3: k = 0
4: repeat
5: Compute an inexact solution dk

min
dk

mk(dk) = f(wk) +∇f(wk)
⊤dk + 1

2
d⊤k Bkdk

by using the conjugate gradient, such that ∥Bkdk +∇fk∥2 ≤ τ1.
6: Perform a line search to retrieve α > 0 such that

f(wk)− f(wk + αsk) ≥ α ∗ τ2∇f(wk)

7: set wk+1 = wk + αkdk
8: update every B̂k,i given ŝk,i = αkUidk and ŷk,i satisfying B̂k+1,iŝk,i = ŷk,i, e.g. (??).
9: k = k + 1
10: until convergence

this, [1] introduces the separable layer (see Figure 1). It divided neural layers into C groups, where

each group interact with its counterpart as a standard dense layer. The stacking of multiple separable

layers builds a partitioned architecture, referred as PSNet. Figure 2 provides a visual comparison of

a simplified LeNet [24] architecture with a PSNet architecture. The figure also illustrates the weight

dependencies for each score in both architectures using different colors. Specifically, blue, yellow, and

red denote weights unique to individual scores. Shared weights across all scores are depicted in green.

Figure 1: A separable layer, 9 x 6, considering C = 3 classes [1].

c1 c2 c3 c1 c2 c3

Figure 2: Simplified LeNet (left) and PSNet (right) score’s dependencies [1].

When combining a partitioned architecture with LPSL, training computations can be evenly dis-

tributed among element functions ĥp,j [1]. Each ĥp,j is assigned to a specific worker. The worker

computes ĥp,j(X,Y ;w), ∇ĥp,j(X,Y ;w), and the approximation of ∇2ĥp,j(X,Y ;w) or v → ∇2ĥp,jv.

Hence, the partitioned linear product Bv =
∑N

i=1 U
⊤
i B̂iUiv can be distributed by having each worker

calculates B̂iUiv transmitted and aggregated by the master(s). In that case, it becomes a decentral-

ized partitioned quasi-Newton method. By distributing each element loss function computation to

a worker, the partitioned architecture aligns with the needs of federated learning. In particular, it

structurally reduces computation and enhances the privacy of edge devices. Further insights regarding
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the PSNet architectures can be found in [1]. Figure 3 in Section 6 report comparisons between LeNet

and PSNet architectures of similar size trained with Adam [21] on the MNIST [23] and CIFAR10 [22]

datasets.

6 Numerical results

Figure 3 record Adam trainings performed on LeNet and PSNet architectures using LNLL and LPSL [1],

on both MNIST and CIFAR10 datasets. MNIST’s LeNet and PSNet architectures are adapted to

CIFAR10 input dimensions. The architecture specifics are summarizes in Table 1. Every convolutional

layer use an average pooling and is parametrized by k1 × k2 × i × o, where kj specify the kernel

dimensions, i the input channels and o the output channels.

Figure 3: LeNet and PSNet training accuracies over epochs on MNIST (left) and CIFAR10 (right) [1].

Table 1: Architecture details.

LeNet PSNet

type MNIST CIFAR10 type MNIST CIFAR10

Conv 5× 5× 1× 6 5× 5× 3× 6 Conv 5× 5× 1× 30 5× 5× 3× 30
Conv 5× 5× 6× 16 5× 5× 6× 16 Conv 5× 5× 30× 40 5× 5× 30× 60
Dense 256× 120 400× 200 Separable 480× 240 750× 350
Dense 120× 84 200× 100 Separable 240× 150 350× 150
Dense 84× 10 100× 10 Separable 150× 10 150× 10

n 44426 103882 53780 81750
nj , np,j - - 6340, 11588 12279, 19998

In both Figure 3 and Figure 4, each curve represents the mean accuracy while its shaded region

is the standard deviation error. MNIST trainings run for 50 epochs whereas CIFAR10 training run

for 100 epochs. All results are produced in Julia [4], and gradient-based method implementation are

from Knet.jl [33]. All methods were running on a Nvidia A100 Tensor Core GPU, using minibatches

of size 100. Adam (resp. SGD) learning rate is fixed at (resp. 0.025), while β1 = 0.9, β2 = 0.999 and

ϵ = 10−8. The main objective of Figure 3 is to highlight the comparable performance between LeNet,

coupled with LNLL, and PSNet, combined with LPSL.

Figure 4 illustrates the comparison between several optimizers: SGD, Adam, LBFGS, and PLSR1

and PLSR1 AdaN. All are employed to minimize LPSL using a PSNet architecture over MNIST and

CIFAR10 datasets. In this setup, Adam achieves the fastest training convergence, followed closely

by both PLSR1 variants, LBFGS and SGD. The Nesterov accelerated gradient incorporation doesn’t

bring a substantial improvement on final accuracy, compare to the standard PLSR1. SGD’s slower

convergence can be attributed to its small learning rate, which is chosen to prevent numerical instability



Les Cahiers du GERAD G–2023–41 7

of the gradients. For both dataset, PLSR1 variants minimizing LPSL are able to reach after all the

epochs the asymptotic the accuracy of LeNet where Adam minimizes LNLL Figure 3.

Figure 4: Comparison of optimizer accuracies over epochs during PSNet training when minimizing LPSL on MNIST (left)
and CIFAR10 (right).

7 Conclusion

We introduce a novel partitioned limited-memory quasi-Newton training (PLSR1), tailored for par-

tially separable loss functions. To take full advantage of partial separability within the loss, it’s crucial

to incorporate separable layers into the architecture, creating a partitioned architecture. In this setup,

our empirical results demonstrate that PLSR1 outperforms SGD and LBFGS and is competitive with

Adam. Regarding future work, we aim to integrate this partitioned training into a distributed com-

puting framework to lean toward federated learning.
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