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Abstract : We introduce an iterative solver named MinAres for symmetric linear systems Ax ≈ b,
where A is possibly singular. MinAres is based on the symmetric Lanczos process, like Minres and
Minres-qlp, but it minimizes ∥Ark∥ in each Krylov subspace rather than ∥rk∥, where rk is the current
residual vector. When A is symmetric, MinAres minimizes the same quantity ∥Ark∥ as Lsmr, but
in more relevant Krylov subspaces, and it requires only one matrix-vector product Av per iteration,
whereas Lsmr would need two. Our numerical experiments with Minres-qlp and Lsmr show that
MinAres is a pertinent alternative on consistent symmetric systems and the most suitable Krylov
method for inconsistent symmetric systems. We derive properties of MinAres from an equivalent
solver named cAr that is to MinAres as Cr is to Minres, is not based on the Lanczos process, and
minimizes ∥Ark∥ in the same Krylov subspace as MinAres. We establish that MinAres and cAr
generate monotonic ∥xk − x⋆∥, ∥xk − x⋆∥A and ∥rk∥ when A is positive definite.

Keywords : MinAres, cAr, Minres, Cr, Lsmr, symmetric, singular, inconsistent, iterative method,
Lanczos process, Krylov subspace, QR factorization, LQ factorization
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1 Introduction

Suppose A ∈ Rn×n is a large symmetric matrix for which matrix-vector products Av can be computed

efficiently for any vector v ∈ Rn. We present a Krylov subspace method called MinAres for computing

a solution to the following problems:

Symmetric linear systems: Ax = b, (1)

Symmetric least-squares problems: min ∥Ax− b∥, (2)

Symmetric nullspace problems: Ar = 0, (3)

Symmetric eigenvalue problems: Ar = λr, (4)

Singular value problems for rectangular B:

[
B

BT

] [
u
v

]
= σ

[
u
v

]
. (5)

If A is nonsingular, problems (1)–(2) have a unique solution x⋆. When A is singular, if b is not in the

range of A then (1) has no solution; otherwise, (1)–(2) have an infinite number of solutions, and we

seek the unique solution x⋆ that minimizes ∥x∥. Whenever x⋆ exists, it solves the problem

min 1
2∥x∥

2 subject to A2x = Ab. (6)

Let xk be an approximation to x⋆ with residual rk = b − Axk. If A were unsymmetric or

rectangular, applicable solvers for (1)–(2) would be Lsqr [16] and Lsmr [4], which reduce ∥rk∥ and

∥ATrk∥ respectively within the kth Krylov subspace Kk(ATA,ATb) generated by the Golub-Kahan
bidiagonalization on (A, b) [7].

For (1)–(5), we propose an algorithm MinAres that solves (6) by reducing ∥Ark∥ within the kth

Krylov subspace Kk(A, b) generated by the symmetric Lanczos process on (A, b) [11]. Thus when A is

symmetric, MinAres minimizes the same quantity ∥Ark∥ as Lsmr, but in different (more effective)

subspaces, and it requires only one matrix-vector product Av per iteration, whereas Lsmr would need

two.

Qualitatively, certain residual norms decrease smoothly for these iterative methods, but other norms

are more erratic as they approach zero. It is ideal if stopping criteria involve the smooth quantities. For

Lsqr and Lsmr on general (possibly rectangular) systems, ∥rk∥ decreases smoothly for both methods.

We observe that while Lsqr is always ahead by construction, it is never by very much. Thus on

consistent systems Ax = b, Lsqr may terminate slightly sooner. On inconsistent systems Ax ≈ b, the

comparison is more striking. ∥ATrk∥ decreases erratically for Lsqr but smoothly for Lsmr, and there

is usually a significance difference between the two. Thus Lsmr may terminate significantly sooner [4].

Similarly for Minres [15] and MinAres, ∥rk∥ decreases smoothly for both methods, and on

consistent symmetric systems Ax = b, Minres may have a small advantage. On inconsistent symmetric

systems Ax ≈ b, ∥Ark∥ decreases erratically for Minres and its variant Minres-qlp [2] but smoothly

for MinAres, and there is usually a significant difference between them. Thus MinAres may terminate

sooner.

We introduce cAr, a new conjugate direction method similar to Cg and Cr and equivalent to

MinAres when A is SPD. We prove that ∥rk∥, ∥xk − x⋆∥ and ∥xk − x⋆∥A decrease monotonically for

cAr and hence MinAres when A is positive definite.

1.1 Notation

A symmetric positive definite matrix is said to be SPD. For a vector vk, ∥vk∥ denotes the Euclidean

norm of vk, and for an SPD matrix A, the A-norm of vk is ∥vk∥2A = vTAv. For a matrix Vk, ∥Vk∥
may be any norm. Vector ej is the jth column of an identity matrix Ik of size dictated by the

context. An approximate solution xk has residual rk = b − Axk, and x⋆ is the unique solution of



Les Cahiers du GERAD G–2023–40 2

Ax = b if A is nonsingular, or the minimum-norm solution of A2x = Ab otherwise. Kk(A, b) is the

Krylov subspace {b, Ab, . . . , Ak−1b}. We abusively write z = (ζ1, . . . , ζn) to represent the column

vector z =
[
ζ1 . . . ζn

]T
. If H is SPD and {d1, . . . , dk} is a set of non-zero vectors, the vectors

are H-conjugate if dTiHdj = 0 for i ̸= j. If H = I, conjugacy is equivalent to the usual notion of

orthogonality.

2 Applications

2.1 Null vector, eigenvector, and singular value problems

Given a symmetric A and nonzero b, MinAres solves A2x = Ab even if A is singular. If b is random

and A is singular, r = b−Ax is unlikely to be zero, but it will be a nonzero nullvector of A because

Ar = 0.

If an eigenvalue λ of A is known, we can use it as a shift in the Lanczos process with a random starting

vector b to find a null vector r such that (A − λI)r = 0. Then r is an eigenvector because Ar = λr.
MinAres is effectively implementing the inverse power method [8, 18] to obtain the eigenvector in one

iteration. If λ is approximate, MinAres can implement Rayleigh quotient iteration [8, 18] to obtain

increasingly accurate eigenpair estimates.

Similarly, if a singular value σ is known for a rectangular matrix B, the singular value problem

Bv = σu, BTu = σv may be reformulated as a null vector problem or eigenvalue problem:([
B

BT

]
− σI

)[
u
v

]
= 0 ⇐⇒

[
B

BT

] [
u
v

]
= σ

[
u
v

]
,

for which MinAres may be used to implement inverse iteration or Rayleigh quotient iteration (although

an algorithm based on the Golub-Kahan bidiagonalization of B would be preferable).

2.2 Singular systems with semi-positive definite matrices

Inconsistent (singular) symmetric systems could arise from discretized semidefinite Neumann boundary
value problems [10, sect. 4]. Measurement errors will be random, so b is unlikely to be in the range of

singular A.

Another potential application is large, singular, symmetric, indefinite Toeplitz least-squares problems

as described in [6, sec. 5]. Rank-deficient Toeplitz matrices arise in image reconstruction and system

identification problems. In both cases, A is a semi-positive definite matrix and MinAres is a suitable

solver.

3 Symmetric systems

With A symmetric and starting vector b, we make use of the symmetric Lanczos process [11] of

Algorithm 1. After k iterations the situation may be summarized as

AVk = VkTk + βk+1vk+1e
T
k = Vk+1Tk+1,k, (7a)

V Tk Vk = Ik, (7b)

where

Vk :=
[
v1 . . . vk

]
, Tk =


α1 β2

β2 α2

. . .

. . .
. . . βk

βk αk

, Tk+1,k =

[
Tk

βk+1e
T
k

]
.
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Algorithm 1 Lanczos process

Require: A, b
1: v0 = 0
2: β1v1 = b β1 > 0 so that ∥v1∥ = 1
3: for k = 1, 2, . . . do
4: qk = Avk − βkvk−1

5: αk = v
T
k qk

6: qk = qk − αkvk
7: βk+1 = ∥qk∥
8: if βk+1 = 0 then
9: ℓ = k; return ℓ
10: else
11: vk+1 = qk/βk+1 βk+1 > 0 so that ∥vk+1∥ = 1
12: end if
13: end for

In exact arithmetic, Vk is an orthonormal basis of Kk(A, b). The Lanczos process terminates after ℓ ≤ n

iterations when βℓ+1 = 0, and we then have AVℓ = VℓTℓ, where square Tℓ is nonsingular if and only if

b ∈ range(A) [2, sec. 2.1 property 4]. Tk+1,k has full column rank k for all k < ℓ [2, sec. 2.1 property 2]

and the rank of Tℓ is ℓ or ℓ− 1 but no less (because the first ℓ− 1 columns of Tℓ are independent).

In finite arithmetic, (7a) holds to machine precision. Reorthogonalization would be needed for (7b)

to hold accurately, but it is enough to note that we always have ∥Vk∥ = O(1).

3.1 CG, SYMMLQ, MINRES, MINARES

As with Cg [9], Symmlq [15], and Minres [15], the goal of MinAres is to solve symmetric problems

Ax ≈ b. All methods define an approximate solution xk = Vkyk at iteration k (where yk is different for

each method). MinAres chooses yk to minimize ∥Ark∥ in Kk(A, b), so that ∥Ark∥ is monotonically

decreasing towards zero. MinAres is therefore well suited to singular inconsistent symmetric systems.

This case is difficult for the other methods because ∥xk − x⋆∥A, ∥xk − x⋆∥ and ∥rk∥ do not converge

to zero and they are the quantities minimized respectively by Cg, Symmlq, and both Minres and

Minres-qlp.

4 Derivation of MINARES

4.1 Subproblems of MINARES

From Algorithm 1 we have Ab = β1α1v1 + β1β2v2 because β2v2 = Av1 − α1v1. Hence

Ark = A(b−AVkyk)

= Ab−AVk+1Tk+1,kyk

= β1α1v1 + β1β2v2 − Vk+2Tk+2,k+1Tk+1,kyk

= Vk+2(β1α1e1 + β1β2e2 − Tk+2,k+1Tk+1,kyk), k ≤ ℓ− 2, (8a)

Arℓ−1 = Vℓ(β1α1e1 + β1β2e2 − TℓTℓ,ℓ−1yℓ−1), (8b)

Arℓ = Vℓ(β1α1e1 + β1β2e2 − T 2
ℓ yℓ). (8c)

Theoretically, Vk has orthonormal columns (1 ≤ k ≤ ℓ), so that ∥xk∥ = ∥yk∥ and ∥Ark∥ is minimized

with ∥xk∥ of minimal norm if we define yk as the unique solution of the following subproblems:

minimize
yk∈R

k
∥Tk+2,k+1Tk+1,kyk − β1α1e1 − β1β2e2∥, k ≤ ℓ− 2, (9a)

minimize
yℓ−1∈R

ℓ−1
∥TℓTℓ,ℓ−1yℓ−1 − β1α1e1 − β1β2e2∥, (9b)

minimize
yℓ∈R

ℓ
∥yℓ∥2 subject to T 2

ℓ yℓ = β1α1e1 + β1β2e2. (9c)
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We define yk from these subproblems even though Vk does not remain orthonormal numerically. In

practice, we expect ∥Ark∥ ≤ ∥Ark−1∥ unless k becomes too large.

To be sure that the subproblems have unique solutions, we need to verify that Tk+2,k+1Tk+1,k has

rank k (k ≤ ℓ − 2), TℓTℓ,ℓ−1 has rank ℓ − 1, and T 2
ℓ yℓ = β1α1e1 + β1β2e2 is consistent even if Tℓ is

singular. These results are proved in Theorem 1, Theorem 2 and Theorem 3.

Theorem 1. For k ≤ ℓ− 2, Tk+2,k+1Tk+1,k has rank k.

See proof on page 14.

Theorem 2. TℓTℓ,ℓ−1 has rank ℓ− 1.

See proof on page 14.

Theorem 3. T 2
ℓ yℓ = β1α1e1 + β1β2e2 is consistent even if Tℓ is singular.

See proof on page 14.

From (8c) and Theorem 3, Arℓ = Vℓ(T
2
ℓ yℓ − β1α1e1 − β1β2e2) = 0. Hence with definition (9c) we

can conclude that xℓ is the solution x⋆ of (6).

4.2 QR factorization of Tk

To solve (9), we first need the QR factorization used by Minres:

Tk+1,k = Qk

[
Rk
0

]
, Rk =



λ1 γ1 ε1

λ2 γ2
. . .

λ3

. . . εk−2

. . . γk−1

λk


, (10)

where QTk = Qk+1,k . . . Q3,2Q2,1 is an orthogonal matrix defined as a product of 2× 2 reflections with

the structure

Qi+1,i =



1 ... i−1 i i+1 i+2 ... k

1 1

.

.

.
. . .

i−1 1
i ci si

i+1 si −ci
i+2 1

.

.

.
. . .

k 1


.

If we initialize Q0 := I, λ̄1 := α1, γ̄1 := β2, individual factorization steps may be represented as an

application of Qk+1,k to QTk−1Tk+1,k:

[ k k+1

k ck sk
k+1 sk −ck

] [ k k+1 k+2

λ̄k γ̄k 0
βk+1 αk+1 βk+2

]
=

[ k k+1 k+2

λk γk εk
0 λ̄k+1 γ̄k+1

]
.

The reflection Qk+1,k zeroes βk+1 on the subdiagonal of Tk+1,k and affects three columns and two

rows. It is defined by

λk =

√
λ̄2k + β2

k+1, ck = λ̄k/λk, sk = βk+1/λk, (11)

and yields the following recursion for k ≥ 1:

γk = ckγ̄k + skαk+1, (12a)

λ̄k+1 = skγ̄k − ckαk+1, (12b)

εk = skβk+2, (12c)

γ̄k+1 = −ckβk+2. (12d)
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4.3 Definition of Nk

Let us define

Nk := Tk+2,k+1Qk

[
Ik
0

]
, where NkRk = Tk+2,k+1Tk+1,k, k ≤ ℓ− 2, (13a)

Nℓ−1 := Tℓ,ℓ−1Qℓ−1

[
Iℓ−1

0

]
, where Nℓ−1Rℓ−1 = TℓTℓ,ℓ−1, (13b)

Nℓ := TℓQℓ, where NℓRℓ = T 2
ℓ . (13c)

Because Qk = Q2,1Q3,2 . . . Qk+1,k, we have

eTkQk = eTkQk,k−1Qk+1,k = sk−1e
T
k−1 − ck−1cke

T
k − ck−1ske

T
k+1, (14a)

eTk+1Qk = eTk+1Qk+1,k = ske
T
k − cke

T
k+1. (14b)

Moreover, Tk+2,k+1 =

 T
T
k+1,k

βk+1e
T
k + αk+1e

T
k+1

βk+2e
T
k+1

 and the product Tk+2,k+1Qk can be determined in three

parts. From (10), TTk+1,kQk =
(
QTk Tk+1,k

)T
=
[
RTk 0

]
, and from (14) we have

(βk+1e
T
k + αk+1e

T
k+1)Qk = βk+1sk−1e

T
k−1 + (αk+1sk − βk+1ck−1sk)e

T
k

− (αk+1ck + βk+1ck−1sk)e
T
k+1

= εk−1e
T
k−1 + γke

T
k − (αk+1ck + βk+1ck−1sk)e

T
k+1,

βk+2e
T
k+1Qk = skβk+2e

T
k − ckβk+2e

T
k+1

= εke
T
k − ckβk+2e

T
k+1.

Thus, for k ≤ ℓ− 2 we obtain

Nk =

 RTk
εk−1e

T
k−1 + γke

T
k

εke
T
k

 , Nℓ−1 =

[
RTℓ−1

εℓ−1e
T
ℓ−1 + γℓe

T
ℓ

]
, Nℓ = RTℓ . (15)

4.4 QR factorization of Nk

Nk = Q̃k

[
Uk
0

]
, Uk =



µ1 ϕ1 ρ1

µ2 ϕ2
. . .

µ3

. . . ρk−2

. . . ϕk−1

µk


, (16)

where Q̃Tk = Q̃k+2,kQ̃k+1,k . . . Q̃3,1Q̃2,1 for k ≤ ℓ − 2 , and Q̃Tℓ = Q̃Tℓ−1 = Q̃ℓ,ℓ−1Q̃
T
ℓ−2 are orthogonal

matrices defined as a product of reflections. If we initialize µ̄1 := λ1, γ̂1 := γ1 and λ̂2 := λ2, individual

factorization steps may be represented as an application of Q̃k+1,k to Q̃Tk−1Nk:


k k+1 k+2

k c̃2k−1 s̃2k−1

k+1 s̃2k−1 −c̃2k−1

k+2 1

 
k k+1 k+2

µ̄k
γ̂k λ̂k+1

εk γk+1 λk+2

 =


k k+1 k+2

¯̄µk ϕ̄k
µ̄k+1

εk γk+1 λk+2

,
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followed by an application of Qk+2,k to the result:


k k+1 k+2

k c̃2k s̃2k
k+1 1
k+2 s̃2k −c̃2k

 
k k+1 k+2

¯̄µk ϕ̄k
µ̄k+1

εk γk+1 λk+2

 =


k k+1 k+2

µk ϕk ρk
µ̄k+1

γ̂k+1 λ̂k+2

.
The reflections Q̃k+1,k and Q̃k+2,k zero γk and εk on the subdiagonals of Nk:

¯̄µk =

√
µ̄2
k + γ̂2k, c̃2k−1=µ̄k/ ¯̄µk, s̃2k−1= γ̂k/ ¯̄µk, k ≤ ℓ− 1, (17a)

µk =

√
¯̄µ2
k + ε2k, c̃2k =¯̄µk/µk, s̃2k = εk/µk, k ≤ ℓ− 2, (17b)

and they yield the recursion

ϕ̄k = s̃2k−1λ̂k+1, 1 ≤ k ≤ ℓ− 1, (18a)

µ̄k+1 = −c̃2k−1λ̂k+1, 1 ≤ k ≤ ℓ− 1, (18b)

ϕk = c̃2kϕ̄k + s̃2kγk+1, 1 ≤ k ≤ ℓ− 2, (18c)

γ̂k+1 = s̃2kϕ̄k − c̃2kγk+1, 1 ≤ k ≤ ℓ− 2, (18d)

ρk = s̃2kλk+2, 1 ≤ k ≤ ℓ− 2, (18e)

λ̂k+2 = −c̃2kλk+2, 1 ≤ k ≤ ℓ− 2, (18f)

µℓ−1 = ¯̄µℓ−1, (18g)

ϕℓ−1 = ϕ̄ℓ−1, (18h)

µℓ = µ̄ℓ. (18i)

From (8) and (16) we have

∥Ark∥ = ∥NkRkyk − β1α1e1 − β1β2e2∥ =

∥∥∥∥[Uk0
]
Rkyk − z̄k

∥∥∥∥ , (19)

where z̄k := Q̃Tk (β1α1e1 + β1β2e2) = (zk,
¯̄ζk+1, ζ̄k+2), k ≤ ℓ− 2, zk = (ζ1, . . . , ζk) represents the first k

components of z̄k, and the recurrence starts with z̄0 := (¯̄ζ1, ζ̄2) = (β1α1, β1β2). We can determine z̄k
from z̄k−1 because z̄k = Q̃k+2,kQ̃k+1,k(z̄k−1, 0) for k ≤ ℓ− 2:


k k+1 k+2

k c̃2k s̃2k
k+1 1
k+2 s̃2k −c̃2k

 
k k+1 k+2

c̃2k−1 s̃2k−1

s̃2k−1 −c̃2k−1

1

  ¯̄ζk
ζ̄k+1

0

 =

 ζk
¯̄ζk+1

ζ̄k+2

,
and zℓ = zℓ−1 = Q̃ℓ,ℓ−1z̄ℓ−2. The elements are updated according to

ζ̊k = c̃2k−1
¯̄ζk + s̃2k−1ζ̄k+1, k ≤ ℓ− 1, (20a)

¯̄ζk+1 = s̃2k−1
¯̄ζk − c̃2k−1ζ̄k+1, k ≤ ℓ− 1, (20b)

ζk = c̃2k ζ̊k, k ≤ ℓ− 2, (20c)

ζ̄k+2 = s̃2k ζ̊k, k ≤ ℓ− 2, (20d)

ζℓ−1 = ζ̊ℓ−1, (20e)

ζℓ =
¯̄ζℓ. (20f)

For k ≤ ℓ − 1, Uk and Rk are nonsingular, and from (19), ∥Ark∥ is minimized when UkRkyk = zk,

giving

∥Ark∥ =

√
¯̄ζ2k+1 + ζ̄2k+2, k ≤ ℓ− 2, ∥Arℓ−1∥ = |ζℓ|. (21)
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4.5 Computation of xk

Suppose Rk and Uk are nonsingular. If we were to update xk directly from xk = Vkyk, all components of

yk would have to be recomputed because of the backward substitutions required to solve UkRkyk = zk,

which would require us to store Vk entirely. To avoid such drawbacks, we employ the strategy of Paige

and Saunders [15]. Thus, we define Wk and Dk by the lower triangular systems RTkW
T
k = V Tk and

UTk D
T
k =WT

k . Then

xk = Vkyk =WkRkyk = DkUkRkyk = Dkzk. (22)

The columns of Wk and Dk are obtained from the recursions

w1 = v1/λ1, w2 = (v2 − γ1w1)/λ2,

wk = (vk − γk−1wk−1 − εk−2wk−2)/λk, k ≥ 3,

d1 = w1/µ1, d2 = (w2 − ϕ1d1)/µ2,

dk = (wk − ϕk−1dk−1 − ρk−2dk−2)/µk, k ≥ 3,

and the solution xk = Dkzk may be updated efficiently via x0 = 0 and

xk = xk−1 + ζkdk. (23)

This is possible for all k ≤ ℓ if Ax = b is consistent, and k ≤ ℓ− 1 otherwise. If Ax = b is consistent,
from Theorem 4, the final MinAres iterate xℓ satisfies rℓ = 0 and is the minimum-length solution. If

Ax = b is inconsistent, from Theorem 5, Arℓ−1 = 0. We obtain a solution x that satisfies A2x = Ab in

both cases.

Theorem 4. If b ∈ range(A), the final MinAres iterate xℓ is the minimum-length solution of Ax = b

(and rℓ = b−Axℓ = 0).

See proof on page 14.

Theorem 5. If Ax = b is inconsistent, ζℓ = 0 and Arℓ−1 = 0.

See proof on page 15.

If the minimum-norm solution is not required, such as problems (3)–(5), we can stop with xℓ−1 and

avoid the computation of xℓ = x⋆. We can also stop with xℓ−1 if a preconditioner is used because the

minimum-norm solution is determined in a non-Euclidean norm.

We summarize the complete procedure as Algorithm 2.

5 Stopping rules

The end of Algorithm 2 shows how ∥rk∥ and ∥Ark∥ are estimated. They are needed for use within

stopping rules. The required norm estimates are derived next.

5.1 Estimating ∥rk∥

To compute ∥rk∥, we need an LQ factorization

Uk = L̂kP̂k, L̂k =



ψ1

θ1 ψ2

ω1 θ2 ψ3

. . .
. . .

. . .

. . .
. . . ψk−2

. . . θk−2
¯̄ψk−1

ωk−2 θ̄k−1 ψ̄k


, (24)
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where P̂T1 = I, P̂T2 = P̂1,2, and P̂
T
k = P̂Tk−1P̂k−2,kP̂k−1,k (k ≥ 3) are orthogonal. Note that L̂k is the L

factor of a QLP decomposition of Nk. If we initialize ψ̄1 := µ1, P̂1,2 is defined to zero ϕ1:[
ψ̄1 ϕ1

µ2

] [
ĉ1 ŝ1
ŝ1 −ĉ1

]
=

[ ¯̄ψ1

θ̄1 ψ̄2

]
,

Algorithm 2 MINARES

Require: A, b, ϵr > 0, ϵAr > 0, kmax > 0
1: k = 0, x0 = 0
2: w−1 = w0 = 0, d−1 = d0 = 0
3: ε−1 = ε0 = γ0 = 0, ρ−1 = ρ0 = ϕ0 = 0

4: β1v1 = b, q1 = Av1, α1 = v
T
1q1

5: q1 = q1 − α1v1, β2v2 = q1
6: ¯̄ζ1 = β1α1, ζ̄2 = β1β2
7: χ̄1 = β1, λ̄1 = α1, γ̄1 = β2

8: ∥r0∥ = χ̄1, ∥Ar0∥ = (¯̄ζ
2
1 + ¯̄ζ

2
2 )

1
2

9: while ∥rk∥ > ϵr and ∥Ark∥ > ϵAr and k ≤ kmax do
10: k ← k + 1
11: qk+1 = Avk+1 − βk+1vk, αk+1 = v

T
k+1qk+1

12: qk+1 = qk+1 − αk+1vk+1, βk+2vk+2 = qk+1

13: λk = (λ̄
2
k + β

2
k+1)

1
2 , ck = λ̄k/λk, sk = βk+1/λk

14: γk = ckγ̄k + skαk+1, εk = skβk+2

15: λ̄k+1 = skγ̄k − ckαk+1, γ̄k+1 = −ckβk+2

16: if k == 1 then
17: µ̄k = λk, γ̂k = γk
18: else
19: if k == 2 then
20: λ̂k = λk
21: else
22: ρk−2 = s̃2k−4λk, λ̂k = −c̃2k−4λk
23: end if
24: ϕ̄k−1 = s̃2k−3λ̂k, ϕk−1 = c̃2k−2ϕ̄k−1 + s̃2k−2γk
25: µ̄k = −c̃2k−3λ̂k, γ̂k = s̃2k−2ϕ̄k−1 − c̃2k−2γk
26: end if

27: ¯̄µk = (µ̄
2
k + γ̂

2
k)

1
2, c̃2k−1 = µ̄k/ ¯̄µk, s̃2k−1 = γ̂k/ ¯̄µk

28: µk = (¯̄µ
2
k + ε

2
k)

1
2 , c̃2k = ¯̄µk/µk, s̃2k = εk/µk

29: ζ̊k = c̃2k−1
¯̄ζk + s̃2k−1ζ̄k+1, ζk = c̃2k ζ̊k

30: ¯̄ζk+1 = s̃2k−1
¯̄ζk − c̃2k−1ζ̄k+1, ζ̄k+2 = s̃2k ζ̊k

31: wk = (vk − γk−1wk−1 − εk−2wk−2)/λk
32: dk = (wk − ϕk−1dk−1 − ρk−2dk−2)/µk
33: xk = xk−1 + ζkdk

34: ∥Ark∥ = (¯̄ζ
2
k+1 + ζ̄

2
k+2)

1
2

35: χk = ckχ̄k, χ̄k+1 = skχ̄k

36: if k == 1 then
37: ψ̄k = µk, ¯̄πk−1 = 0, π̄k = χk

38: ξk = ζk, ¯̄τk−1 = 0, τ̄k = ξk/ψ̄k

39: else if k == 2 then

40: ¯̄ψk−1 = (ψ̄
2
k−1 + ϕ

2
k−1)

1
2 , ĉk−1 = ψ̄k−1/

¯̄ψk−1, ŝk−1 = ϕk−1/
¯̄ψk−1

41: θ̄k−1 = ŝ2k−3µk, ψ̄k = −ĉ2k−3µk
42: ¯̄πk−1 = ĉ2k−3π̄k−1 + ŝ2k−3χk, π̄k = ŝ2k−3π̄k−1 − ĉ2k−3χk

43: ξk = ζk, ¯̄τk−1 = ξk−1/
¯̄ψk−1, τ̄k = (ξk − θ̄k−1τ̄k−1)/ψ̄k

44: else

45: ψk−2 = ( ¯̄ψ
2
k−2 + ρ

2
k−2)

1
2 , ĉ2k−4 = ¯̄ψk−2/ψk−2, ŝ2k−4 = ρk−2/ψk−2

46: ¯̄ψk−1 = (ψ̄
2
k−1 + δ

2
k)

1
2 , ĉ2k−3 = ψ̄k−1/

¯̄ψk−1, ŝ2k−3 = δk/
¯̄ψk−1

47: θk−2 = ĉ2k−4θ̄k−2 + ŝ2k−4ϕk−1, ωk−2 = ŝ2k−4µk
48: δk = ŝ2k−4θ̄k−2 − ĉ2k−4ϕk−1, ηk = −ĉ2k−4µk
49: θ̄k−1 = ŝ2k−3ηk, ψ̄k = −ĉ2k−3ηk, υk = ŝ2k−4 ¯̄πk−2 − ĉ2k−4χk

50: ¯̄πk−1 = ĉ2k−3π̄k−1 + ŝ2k−3υk, π̄k = ŝ2k−3π̄k−1 − ĉ2k−3υk
51: τk−2 = ¯̄τk−2

¯̄ψk−2/ψk−2, ξk = ζk − ωk−2τk−2

52: τ̄k−1 = (ξk−1 − θk−2τk−2)/
¯̄ψk−1, τ̄k = (ξk − θ̄k−1τ̄k−1)/ψ̄k

53: end if

54: ∥rk∥ = ((¯̄πk−1 − ¯̄τk−1)
2
+ (π̄k − τ̄k)

2
+ χ̄

2
k+1)

1
2

55: end while
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where
¯̄ψ1 =

√
ψ̄2
1 + ϕ21, ĉ1 = ψ̄1/

¯̄ψ1, ŝ1 = ϕ1/
¯̄ψ1, θ̄1 = ŝ1µ2, ψ̄2 = −ĉ1µ2. (25)

For k ≥ 3, individual factorization steps may be represented as an application of P̂k−2,k to UkP̂
T
k−1:


k−2 k−1 k

k−2
¯̄ψk−2 ρk−2

k−1 θ̄k−2 ψ̄k−1 ϕk−1

k µk

 
k−2 k−1 k

ĉ2k−4 ŝ2k−4

1
ŝ2k−4 −ĉ2k−4

 =


k−2 k−1 k

ψk−2

θk−2 ψ̄k−1 δk
ωk−2 ηk

,
followed by an application of P̂k−1,k to the result:


k−2 k−1 k

k−2 ψk−2

k−1 θk−2 ψ̄k−1 δk
k ωk−2 ηk

 
k−2 k−1 k

1
ĉ2k−3 ŝ2k−3

ŝ2k−3 −ĉ2k−3

 =


k−2 k−1 k

ψk−2

θk−2
¯̄ψk−1

ωk−2 θ̄k−1 ψ̄k

.
The reflections P̂k−2,k and P̂k−1,k zero ρk−2 and δk on the superdiagonals of Uk:

ψk−2 =

√
¯̄ψ2
k−2 + ρ2k−2, ĉ2k−4 = ¯̄ψk−2/ψk−2, ŝ2k−4 = ρk−2/ψk−2, (26a)

¯̄ψk−1 =

√
ψ̄2
k−1 + δ2k, ĉ2k−3 = ψ̄k−1/

¯̄ψk−1, ŝ2k−3 = δk/
¯̄ψk−1, (26b)

and for k ≥ 3 they yield the recursion

θk−2 = ĉ2k−4θ̄k−2 + ŝ2k−4ϕk−1, (27a)

δk = ŝ2k−4θ̄k−2 − ĉ2k−4ϕk−1, (27b)

ωk−2 = ŝ2k−4µk, (27c)

ηk = −ĉ2k−4µk, (27d)

θ̄k−1 = ŝ2k−3ηk, (27e)

ψ̄k = −ĉ2k−3ηk. (27f)

Assuming orthonormality of Vk+1, we have

∥rk∥ = ∥β1e1 − Tk+1,kyk∥ =

∥∥∥∥QTkβ1e1 − [Rk0
]
yk

∥∥∥∥
=

∥∥∥∥[P̂k 1

]
QTk β1e1 −

[
P̂kRkyk

0

]∥∥∥∥
=

∥∥∥∥pk+1 −
[
tk
0

]∥∥∥∥ , (28)

where

(χ1, . . . , χk, χ̄k+1) := QTk β1e1, (29a)

pk+1 := (π1, . . . , πk−2, ¯̄πk−1, π̄k, χ̄k+1) =

[
P̂k

1

]
QTk β1e1, (29b)

tk := (τ1, . . . , τk−2, ¯̄τk−1, τ̄k) solves L̂ktk = zk. (29c)

The components of QTk β1e1 can be updated with the relations

χ̄1 = β1, χk = ckχ̄k, χ̄k+1 = skχ̄k, (30)

the components of pk+1 are updated with

π̄1 = χ1, (31a)
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υ2 = χ2, (31b)

πk−2 = ĉ2k−4 ¯̄πk−2 + ŝ2k−4χk, k ≥ 3, (31c)

υk = ŝ2k−4 ¯̄πk−2 − ĉ2k−4χk, k ≥ 3, (31d)

¯̄πk−1 = ĉ2k−3π̄k−1 + ŝ2k−3υk, k ≥ 2, (31e)

π̄k = ŝ2k−3π̄k−1 − ĉ2k−3υk, k ≥ 2, (31f)

and with ω−1 = ω0 = θ0 = θ̄0 = 0 the components of tk are updated with

ξk = ζk − ωk−2τk−2, (32a)

τ̄k = (ξk − θ̄k−1τ̄k−1)/ψ̄k, (32b)

¯̄τk = (ξk − θk−1τk−1)/
¯̄ψk, (32c)

τk = ¯̄τk
¯̄ψk/ψk. (32d)

Using Lemma 1 we can estimate ∥rk∥ from the last three elements of pk+1 and the last two of tk:

∥r1∥ =

√
(π̄2

1 − τ̄21 ) + χ̄2
2, (33a)

∥rk∥ =

√
(¯̄πk−1 − ¯̄τk−1)

2 + (π̄k − τ̄k)
2 + χ̄2

k+1, k ≥ 2. (33b)

Lemma 1. In (28), πi = τi for i = 1, . . . , k − 2.

See proof on page 15.

5.2 Estimating ∥Ark∥

From (21) we have

∥Ark∥ =

√
¯̄ζ2k+1 + ζ̄2k+2, k ≤ ℓ− 2, ∥Arℓ−1∥ = |ζℓ|. (34)

6 CAR

We now introduce cAr, a conjugate direction method in the vein of Cg and Cr of Hestenes and

Stiefel [9, 17] for solving Ax = b when A is SPD. By design, cAr is equivalent to MinAres in exact

arithmetic as both methods minimize the same quantities in the same subspace, and generate the same
iterates. The name cAr stems from the property that successive A-residuals are conjugate with respect

to A. The three methods generate sequences of approximate solutions xk in the Krylov subspaces

Kk(A, b) by minimizing a quadratic function f(x):

fCg(x) =
1
2x

TAx− bTx, ∇fCg(x) = −r, ∇2fCg(x) = A,

fCr(x) =
1
2∥Ax− b∥2, ∇fCr(x) = −Ar, ∇2fCr(x) = A2,

fcAr(x) =
1
2∥A

2x−Ab∥2, ∇fcAr(x) = −A3r, ∇2fcAr(x) = A4.

Note that all three quadratic functions satisfy A∇f(x) = −∇2f(x)r, where r = b−Ax. Because cAr

minimizes ∥Ark∥ in Kk(A, b), it is an alternative version of MinAres restricted to SPD A. We can

derive it as a descent method with exact linesearch. From initial vectors x0 = 0 and r0 = p0 = b, we

update the iterates with xk+1 = xk + αkpk. From the Taylor expansion, we can determine αk that

minimizes f(xk + αpk):

f(xk + αpk) = f(xk) + α∇f(xk)Tpk + 1
2α

2pTk∇2f(xk)pk, αk = − ∇f(xk)Tpk
pTk∇2f(xk)pk

.

Afterwards we update the residuals with rk+1 = rk − αkApk and the directions with pk+1 =

rk+1 −∑k
j=0 γk+1,jpj such that Span{p0, . . . , pk+1} forms a basis of Kk+2(A, b). We could apply
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a Gram–Schmidt process to orthogonalize pk+1 against all previous directions, but a more relevant

approach is to H-conjugate them to derive a shorter recurrence, where H = ∇2f(x) is constant.

H-conjugacy also ensures that the vectors are linearly independent. For i = 0, . . . , k, pTiHpk+1 = 0

implies γk+1,i = pTiHrk+1/p
T
iHpi. Let Pk := Span{p0, . . . , pk} = Span{r0, . . . , rk}. The exact line-

search property yields ∇f(xk+1)
T pk but also ∇f(xk+1) ⊥ Pk — see, e.g., [14, proof of Theorem 5.2].

Because Api = (ri − ri+1)/αi ∈ Span{ri, ri+1} ⊂ Pk for i = 0, . . . , k − 1, we have pTiA∇f(xk+1) =

−pTi∇2f(xk+1)rk+1 = −pTiHrk+1 = 0 and γk+1,i = 0. With βk = −γk+1,k = −pTkHrk+1/p
T
kHpk, we

obtain pk+1 = rk+1 + βkpk.

Theorem 6. For Cg, Cr and cAr, we have:

αk =
ρk

pTkHpk
and βk =

ρk+1

ρk
with ρk = −∇f(xk)Trk.

See proof on page 15.

Cg, Cr and cAr require A to be SPD because we then have αk > 0 until rk = 0. The formulations of

Cg (Algorithm 3), Cr (Algorithm 4) and cAr (Algorithm 5) compare the methods and suggest efficient

implementations. The vectors sk = Ark, qk = Apk, tk = Ask = A2rk and uk = Aqk = A2pk ultimately

involve just one matrix-vector product with A per iteration. Properties of cAr are summarized in

Theorem 7. By virtue of its equivalence to MinAres in exact arithmetic, cAr allows us to establish

monotonicity of relevant quantities for MinAres (Theorem 8) on SPD systems. The proofs are strongly

inspired by those in [5, 12] for similar properties of Cr and Minres.

Algorithm 3 CG

Require: A, b, ϵ > 0
k = 0, x0 = 0
r0 = b, p0 = r0
q0 = Ap0

ρ0 = r
T
0r0

while ∥rk∥ > ϵ do

αk = ρk/p
T
kqk

xk+1 = xk + αkpk
rk+1 = rk − αkqk

ρk+1 = r
T
k+1rk+1

βk = ρk+1/ρk
pk+1 = rk+1 + βkpk
qk+1 = Apk+1

k ← k + 1
end while

Algorithm 4 CR

Require: A, b, ϵ > 0
k = 0, x0 = 0
r0 = b, p0 = r0
s0 = Ar0, q0 = s0

ρ0 = r
T
0s0

while ∥rk∥ > ϵ do

αk = ρk/∥qk∥
2

xk+1 = xk + αkpk
rk+1 = rk − αkqk
sk+1 = Ark+1

ρk+1 = r
T
k+1sk+1

βk = ρk+1/ρk
pk+1 = rk+1 + βkpk
qk+1 = sk+1 + βkqk

k ← k + 1
end while

Algorithm 5 CAR

Require: A, b, ϵ > 0
k = 0, x0 = 0
r0 = b, p0 = r0
s0 = Ar0, q0 = s0
t0 = As0, u0 = t0
ρ0 = s

T
0t0

while ∥rk∥ > ϵ do

αk = ρk/∥uk∥
2

xk+1 = xk + αkpk
rk+1 = rk − αkqk
sk+1 = sk − αkuk
tk+1 = Ask+1

ρk+1 = s
T
k+1tk+1

βk = ρk+1/ρk
pk+1 = rk+1 + βkpk
qk+1 = sk+1 + βkqk
uk+1 = tk+1 + βkuk
k ← k + 1

end while

Lemma 2. Let A be SPD. The following properties hold for cAr and MinAres for all k ≥ 0:

(a) ζk+1dk+1 = αkpk

(b) sk = Ark

(c) qk = Apk

(d) tk = Ask

(e) uk = Aqk.

See proof on page 16.

Theorem 7. Let A be SPD. For (i, j) ∈ {0, . . . , n− 1}2, the following properties hold for cAr:

(a) pTiA
4pj = 0 (i ̸= j)

(b) rTiA
3pj = 0 (i > j)
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(c) rTiA
3rj = 0 (i ̸= j)

(d) αi ≥ 0

(e) βi ≥ 0

(f) qTi uj = pTiA
3pj ≥ 0

(g) qTi qj = pTiA
2pj ≥ 0

(h) qTi pj = pTiApj ≥ 0

(i) pTi pj ≥ 0

(j) xTi pj ≥ 0

(k) rTi qj = rTiApj ≥ 0.

See proof on page 16.

Theorem 8. For cAr (and hence MinAres) applied to Ax = b when A is SPD, the following properties

are satisfied:

• ∥xk∥ increases monotonically

• ∥x⋆ − xk∥ decreases monotonically

• ∥x⋆ − xk∥A decreases monotonically

• ∥rk∥ decreases monotonically.

See proof on page 17.

7 Implementation and numerical experiments

We implemented Algorithm 2 and Algorithm 5 in Julia [1], version 1.9, as part of our Krylov.jl

collection of Krylov methods [13]. These implementations of MinAres and cAr are applicable in any

floating-point system supported by Julia, including complex numbers, and they run on CPU and GPU.

They also support preconditioners.

We evaluate the performance of MinAres on systems generated from symmetric matrices A in the

SuiteSparse Matrix Collection [3]. In each case we first scale A to be A/α with α = max |Aij |, so that

∥A∥ ≈ 1.

In our first set of experiments, we compare MinAres to our Julia implementation of Minres-qlp

in terms of number of iterations on consistent systems when the stopping criterion is ∥rk∥ ≤ 10−10,

then when it is ∥Ark∥ ≤ 10−10. The right-hand side b = Ae (with e a vector of ones) ensures that the

system is consistent even if A is singular. The residual and A-residual are calculated explicitly at each

iteration in order to evaluate ∥rk∥ and ∥Ark∥. (To get a fair comparison, (33) and (34) are not used.)

Figure 1 reports residual and A-residual histories for MinAres and Minres-qlp on problems rail 5177

and bcsstm36. We observe that Minres-qlp’s ∥Ark∥ is erratic, whereas MinAres’s ∥Ark∥ and ∥rk∥
are both smooth. Also, Minres-qlp’s ∥Ark∥ lags further behind MinAres’s than MinAres’s ∥rk∥
does behind Minres-qlp’s. When the system is consistent, we have similar behavior whether A is

singular or not.

In a second set of experiments, we compare MinAres to our Julia implementations of Minres-qlp

and Lsmr in terms of number of matrix-vector products Av on singular inconsistent systems with

b = e when the stopping criterion is ∥Ark∥ ≤ 10−6 for the problem zenios and ∥Ark∥ ≤ 10−10 for laser.

Figure 2 shows that Minres-qlp has difficulty reaching the specified ∥Ark∥, but MinAres performs

well and converges much faster than Lsmr, the only other Krylov method that minimizes ∥Ark∥.
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Figure 1: Residual and A-residual histories for MinAres and Minres-qlp on consistent systems generated from the SuiteSparse
Matrix Collection. Top: System based on the nonsingular matrix rail 5177 (n = 5177). Bottom: System based on the
singular matrix bcsstm36 (n = 23052)
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Figure 2: A-residual history for MinAres, Minres-qlp and Lsmr on singular inconsistent systems generated from the
SuiteSparse Matrix Collection. Left: System based on the singular matrix zenios (n = 2873). Right: System based on the
singular matrix laser (n = 3002)

8 Summary

MinAres completes the family of Krylov methods based on the symmetric Lanczos process. By

minimizing ∥Ark∥ (which always converges to zero), MinAres can be applied safely to any symmetric

system. For SPD systems, cAr is equivalent to MinAres and extends the conjugate directions family
Cg and Cr. For such systems we prove that ∥rk∥, ∥xk − x⋆∥ and ∥xk − x⋆∥A decrease monotonically

for cAr and hence MinAres.
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On consistent symmetric systems, MinAres is a relevant alternative to Minres and Minres-qlp

because it converges in a similar number of iterations if the stopping condition is based on ∥rk∥, and
much faster if the stopping condition is based on ∥Ark∥. On singular inconsistent symmetric systems,

MinAres outperforms Minres-qlp and Lsmr, and should be the preferred method.

A Proofs

Theorem 1. For k ≤ ℓ− 2, Tk+2,k+1Tk+1,k has rank k.

Proof of Theorem 1. From (13a) and (15) we have

Tk+2,k+1Tk+1,k =

 RTkRk
(εk−1e

T
k−1+ γke

T
k)Rk

εke
T
kRk

 ,
where RTkRk has rank k because Tk+1,k and hence Rk have full column rank.

Theorem 2. TℓTℓ,ℓ−1 has rank ℓ− 1.

Proof of Theorem 2. From (13b) and (15) we have

TℓTℓ,ℓ−1 =

[
RTℓ−1Rℓ−1

(εℓ−1e
T
ℓ−1+ γℓe

T
ℓ )Rℓ−1

]
,

where RTℓ−1Rℓ−1 has rank ℓ− 1 because Tℓ,ℓ−1 and Rℓ−1 have full column rank.

Theorem 3. T 2
ℓ yℓ = β1α1e1 + β1β2e2 is consistent even if Tℓ is singular.

Proof of Theorem 3. If Tℓ is singular, the symmetry of Tℓ and its complete orthogonal decomposition

give

Tℓ = Q

[
L 0
0 0

]
P = PT

[
LT 0
0 0

]
QT and T 2

ℓ = PT
[
LTL 0
0 0

]
P,

where Q and P are orthogonal and rank(L) = ℓ− 1. Thus,

T 2
ℓ yℓ − β1α1e1 − β1β2e2 = T 2

ℓ yℓ − β1Tℓe1

= PT
([
LTL 0
0 0

]
Pyℓ − β1

[
LT 0
0 0

]
QTe1

)
= PT

[
LTLtℓ−1 − LTuℓ−1

0

]
,

where tℓ−1 and uℓ−1 are the first ℓ − 1 components of Pyℓ and β1Q
Te1. Because L has full rank,

LTLtℓ−1 = LTuℓ−1 has a unique solution. Then, yℓ = PT
[
tℓ−1

ω

]
is a solution of T 2

ℓ yℓ = β1α1e1 + β1β2e2

for any ω, which means the system is consistent.

Theorem 4. If b ∈ range(A), the final MinAres iterate xℓ is the minimum-length solution of Ax = b

(and rℓ = b−Axℓ = 0).

Proof of Theorem 4. The final MinAres subproblem is T 2
ℓ yℓ = β1α1e1 + β1β2e2 = Tℓβ1e1. Because

b ∈ range(A), Tℓ is nonsingular, and the latter system is equivalent to Tℓyℓ = β1e1, the subproblem

solved by Minres andMinres-qlp. The final iterate generated by these methods is the minimum-length

solution of Ax = b [2, sec. 3.2 theorem 3.1].
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Theorem 5. If Ax = b is inconsistent, ζℓ = 0 and Arℓ−1 = 0.

Proof of Theorem 5. From (13c), (16) and Theorem 3:

zℓ = Q̃Tℓ (β1α1e1 + β1β2e2) = Q̃TℓT
2
ℓ yℓ = Q̃TℓNℓRℓyℓ = UℓRℓyℓ.

When Ax = b is inconsistent, Tℓ has rank ℓ− 1 and rℓℓ = 0. Because Rℓ and Uℓ are upper triangular

matrices, ζℓ = uℓℓrℓℓυℓ = 0, where υℓ is the last component of yℓ. From (21), Arℓ−1 = 0 when ζℓ = 0.

Lemma 1. In (28), πi = τi for i = 1, . . . , k − 2.

Proof of Lemma 1. Let Lk−2 be the leading (k− 2)×(k− 2) submatrix of L̂k, and Jm,n be the first m

rows of In. Then

Lk−2Jk−2,k+1pk+1 = Jk−2,kL̂kJk,k+1

[
P̂k 0
0 1

]
QTk β1e1

= Jk−2,kUkJk,k+1Q
T
k β1e1

= Jk−2,k+2Q̃
T
kNkJk,k+1Q

T
k β1e1

= Jk−2,k+2Q̃
T
k Tk+2,k+1QkJ

T
k,k+1Jk,k+1Q

T
k β1e1

= Jk−2,k+2Q̃
T
k Tk+2,k+1Qk(Ik+1 − ek+1e

T
k+1)Q

T
k β1e1

= Jk−2,k+2Q̃
T
k (β1α1e1 + β1β2 − χ̄k+1Tk+2,k+1Qkek+1)

= Jk−2,k+2(z̄k − χ̄k+1Q̃
T
k Tk+2,k+1Qkek+1).

We now have Tk+2,k+1Qkek+1 = −(αk+1ck+βk+1ck−1sk)ek+1−ckβk+2ek+2. Further, from the structure

of the reflections composing Q̃Tk , the first k − 2 elements of Q̃Tk Tk+2,k+1Qkek+1 are zero. Thus,

Lk−2(π1, . . . , πk−2) = zk−2.

Because Lk−2 is always nonsingular,

Lk−2


π1 − τ1

.

.

.
πk−2 − τk−2

 = 0 =⇒

π1

.

.

.
πk−2

 =


τ1
.
.
.

τk−2

.

Theorem 6. For Cg, Cr and cAr, we have:

αk =
ρk

pTkHpk
and βk =

ρk+1

ρk
with ρk = −∇f(xk)Trk.

Proof of Theorem 6. Let ρk = −∇f(xk)Trk. Because pk = rk + βk−1pk−1 and ∇f(xk) ⊥ pk−1 (exact

linesearch property), ∇f(xk)Tpk = ∇f(xk)Trk. Therefore,

αk = −∇f(xk)Tpk
pTkHpk

= −∇f(xk)Trk
pTkHpk

=
ρk

pTkHpk
.

Because the directions pi are H-conjugate, pTkHpk = pTkH(rk + βk−1pk−1) = pTkHrk. With the relations

Hri = −A∇f(xi) and Apk = (rk − rk+1)/αk, we have:

βk= −p
T
kHrk+1

pTkHpk
= −p

T
kHrk+1

pTkHrk
= −∇f(xk+1)

T(rk − rk+1)

∇f(xk)T(rk − rk+1)
=

∇f(xk+1)
Trk+1

∇f(xk)Trk
=
ρk+1

ρk
,

where we used the fact that ∇f(xk+1)
T rk = −rTk+1A

irk = ∇f(xk)T rk+1 = 0, (i = 0 for Cg, i = 1 for

Cr and i = 3 for cAr).
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Lemma 2. Let A be SPD. The following properties hold for cAr and MinAres for all k ≥ 0:

(a) ζk+1dk+1 = αkpk

(b) sk = Ark

(c) qk = Apk

(d) tk = Ask

(e) uk = Aqk.

Proof of Lemma 2. (a) follows by direct comparison of Algorithm 2 and Algorithm 5.

(b)–(e) all hold by construction at k = 0. By induction, assume that they also hold at index k ≥ 0.

Then, sk+1 = sk − αkuk = Ark − αkAqk = Ark+1, which establishes (b). The remaining properties

follow similarly.

Theorem 7. Let A be SPD. For (i, j) ∈ {0, . . . , n− 1}2, the following properties hold for cAr:

(a) pTiA
4pj = 0 (i ̸= j)

(b) rTiA
3pj = 0 (i > j)

(c) rTiA
3rj = 0 (i ̸= j)

(d) αi ≥ 0

(e) βi ≥ 0

(f) qTi uj = pTiA
3pj ≥ 0

(g) qTi qj = pTiA
2pj ≥ 0

(h) qTi pj = pTiApj ≥ 0

(i) pTi pj ≥ 0

(j) xTi pj ≥ 0

(k) rTi qj = rTiApj ≥ 0.

Proof of Theorem 7. Because ∇2fcAr(x) = A4, we A4-conjugate the vectors pi by construction and (a)

is satisfied.

Because ∇fcAr(xi) = −A3ri, the exact linesearch property yields (b) as in [14, proof of Theorem 5.2].

If i > j, rTiA
3rj = rTiA

3(pj − βj−1pj−1) = 0 by (b). If i < j, rTiA
3rj = (pi − βi−1pi−1)

TA3rj = 0,

again thanks to (b), which proves (c).

First note that ρi = sTi ti = rTiA
3ri ≥ 0 because A is SPD. Thus αi = ρi/∥ui∥2 ≥ 0 and βi =

ρi+1/ρi ≥ 0, which proves (d) and (e).

We now establish (f) by induction. If i = j, qTi ui = qTiAqi ≥ 0 because A is SPD. Assuming qTi uj ≥ 0

when |i− j| = k− 1 ≥ 0, we want to show the result for |i− j| = k. If i− j = k > 0 then qTi uj = qTi ui−k.

Otherwise we have j − i = k > 0 and qTi uj = qTi ui+k. Lemma 2 yields

qTi ui−k = (si + βi−1qi−1)
Tui−k qTi ui+k = qTiAqi+k

= sTi ui−k + βi−1q
T
i−1ui−k = qTiA(si+k + βi+k−1qi+k−1)

= rTiA
3pi−k + βi−1q

T
i−1ui−k = pTiA

3ri+k + βi+k−1u
T
i qi+k−1

= βi−1q
T
i−1ui−k = βi+k−1q

T
i+k−1ui
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βi−1 ≥ 0 and βi+k−1 ≥ 0 by (e). qTi−1ui−k ≥ 0 and qTi+k−1ui ≥ 0 by induction assumption. Thus,

qTi uj ≥ 0 for |i− j| = k, which completes the proof of (f).

At termination, define P = Span{p0, . . . , pℓ−1}, Q = Span{q0, . . . , qℓ−1} = AP and

U = Span{u0, . . . , uℓ−1} = AQ. By construction, P = Span{b, . . . , Aℓ−1b}, Q = Span{Ab, . . . , Aℓb}
and U = Span{A2b, . . . , Aℓ+1b}. Again by construction, xℓ ∈ P , and since rℓ = 0, we have Axℓ = b ∈ Q
and A2xℓ = Ab ∈ U . We see that P ⊂ Q ⊂ U .

(a) and Lemma 2 (c)–(e) imply that uTi uj = 0 for i ̸= j, and therefore, {uk/∥uk∥}k=0,...,ℓ−1 forms

an orthonormal basis for U . Thus, if we project pi and qi into U , we have

pi =

ℓ−1∑
k=0

pTi uk

uTkuk
uk and qi =

ℓ−1∑
k=0

qTi uk

uTkuk
uk.

Scalar products between these vectors can be expressed as

qTi qj =
ℓ−1∑
k=0

(qTi uk)(q
T
juk)

∥uk∥2
, pTi qj =

ℓ−1∑
k=0

(pTi uk)(q
T
juk)

∥uk∥2
and pTi pj =

ℓ−1∑
k=0

(pTi uk)(p
T
juk)

∥uk∥2
.

Thus qTi qj ≥ 0 by (f), proving (g). Because pTi uk = pTiAqk = qTi qk, p
T
i qj ≥ 0 and pTi pj ≥ 0 by (f) and (g),

which proves (h) and (i).

By construction, xi =
∑i
k=0 αkpk and so xTi pj ≥ 0 by (d) and (i), proving (j).

Finally, rTi qj =
∑ℓ−1
k=i αkq

T
kqj ≥ 0 by (d) and (g), proving (k).

Theorem 8. For cAr (and hence MinAres) applied to Ax = b when A is SPD, the following properties

are satisfied:

• ∥xk∥ increases monotonically

• ∥x⋆ − xk∥ decreases monotonically

• ∥x⋆ − xk∥A decreases monotonically

• ∥rk∥ decreases monotonically.

Proof of Theorem 8. From Theorem 7 (d) and (j),

∥xk∥2 − ∥xk−1∥2 = (xk−1 + αkpk)
T(xk−1 + αkpk)− xTk−1xk−1

= 2αkp
T
kxk−1 + α2

k∥pk∥2 ≥ 0.

From Theorem 7 (d) and (i),

∥x⋆ − xk−1∥2 − ∥x⋆ − xk∥2 =

(
ℓ−1∑
i=k

αipi

)T(ℓ−1∑
i=k

αipi

)
−
(

ℓ−1∑
i=k+1

αipi

)T( ℓ−1∑
i=k+1

αipi

)

= 2αkp
T
k

(
ℓ−1∑
i=k+1

αipi

)
+ α2

k∥pk∥2 ≥ 0.

From Theorem 7 (d) and (h),

∥x⋆−xk−1∥2A − ∥x⋆−xk∥2A=

(
ℓ−1∑
i=k

αipi

)T
A

(
ℓ−1∑
i=k

αipi

)
−
(

ℓ−1∑
i=k+1

αipi

)T
A

(
ℓ−1∑
i=k+1

αipi

)

= 2αkq
T
k

(
ℓ−1∑
i=k+1

αipi

)
+ α2

kq
T
kpk ≥ 0.
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From Theorem 7 (d) and (k),

∥rk−1∥2 − ∥rk∥2 = rTk−1rk−1 − rTkrk

= (rk + αk−1qk−1)
T(rk + αk−1qk−1)− rTkrk

= 2αk−1q
T
k−1rk + α2

k−1∥qk−1∥2 ≥ 0.

References
[1] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to numerical computing.

SIAM Rev., 59(1):65–98, 2017.

[2] S.-C. Choi, C. C. Paige, and M. A. Saunders. MINRES-QLP: A Krylov subspace method for indefinite or
singular symmetric systems. SIAM J. Sci. Comput., 33(4):1810–1836, 2011.

[3] T. Davis and Y. Hu. The University of Florida sparse matrix collection. ACM Trans. Math. Software, 38
(1):1–25, 2011. See https://sparse.tamu.edu/.

[4] D. C.-L. Fong and M. A. Saunders. LSMR: An iterative algorithm for sparse least-squares problems. SIAM
J. Sci. Comput., 33(5):2950–2971, 2011.

[5] D. C.-L. Fong and M. A. Saunders. CG versus MINRES: an empirical comparison. Sultan Qaboos
University Journal for Science, 17(1):44–62, 2012.

[6] K. A. Gallivan, S. Thirumalai, P. V. Dooren, and V. Vermaut. High performance algorithms for Toeplitz
and block Toeplitz matrices. Linear Algebra and its Applications, 241:343–388, 1996.

[7] G. H. Golub and W. Kahan. Calculating the singular values and pseudo-inverse of a matrix. SIAM J.
Numer. Anal., 2(2):205–224, 1965.

[8] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University Press, fourth
edition, 2013.

[9] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. J. Res. Natl.
Bur. Stand., 49(6):409–436, 1952.

[10] E. F. Kaasschieter. Preconditioned conjugate gradients for solving singular systems. J. Computational
and Applied Mathematics, 24(1-2):265–275, 1988.

[11] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and
integral operators. J. Res. Natl. Bur. Stand., 45:225–280, 1950.

[12] D. G. Luenberger. The conjugate residual method for constrained minimization problems. SIAM J. Numer.
Anal., 7(3):390–398, 1970.

[13] A. Montoison and D. Orban. Krylov.jl: A Julia basket of hand-picked Krylov methods. Journal of Open
Source Software, 8(89):5187, 2023.

[14] J. Nocedal and S. J. Wright. Numerical Optimization. Springer New York, NY, 2 edition, 2006.

[15] C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations. SIAM J. Numer.
Anal., 12(4):617–629, 1975.

[16] C. C. Paige and M. A. Saunders. LSQR: An algorithm for sparse linear equations and sparse least squares.
ACM Trans. Math. Software, 8(1):43–71, 1982.

[17] E. Stiefel. Relaxationsmethoden bester strategie zur lösung linearer gleichungssysteme. Commentarii
Mathematici Helvetici, 29(1):157–179, 1955.

[18] L. N. Trefethen and D. Bau III. Numerical Linear Algebra. SIAM, Philadelphia, 1997.

http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1137/100787921
http://dx.doi.org/10.1137/100787921
http://dx.doi.org/10.1145/2049662.2049663
https://sparse.tamu.edu/
http://dx.doi.org/10.1137/10079687X
http://dx.doi.org/10.24200/squjs.vol17iss1pp44-62
http://dx.doi.org/10.1016/0024-3795(95)00649-4
http://dx.doi.org/10.1016/0024-3795(95)00649-4
http://dx.doi.org/10.1137/0702016
http://dx.doi.org/10.56021/9781421407944
http://dx.doi.org/10.6028/jres.049.044
http://dx.doi.org/10.1016/0377-0427(88)90358-5
http://dx.doi.org/10.6028/jres.045.026
http://dx.doi.org/10.6028/jres.045.026
http://dx.doi.org/10.1137/0707032
http://dx.doi.org/10.21105/joss.05187
http://dx.doi.org/10.1007/978-0-387-40065-5
http://dx.doi.org/10.1137/0712047
http://dx.doi.org/10.1145/355984.355989
http://dx.doi.org/doi.org/10.1007/BF02564277
http://dx.doi.org/10.1137/1.9780898719574

	Introduction
	Notation

	Applications
	Null vector, eigenvector, and singular value problems
	Singular systems with semi-positive definite matrices

	Symmetric systems
	CG, SYMMLQ, MINRES, MINARES

	Derivation of MINARES
	Subproblems of MINARES
	QR factorization of Tk
	Definition of Nk
	QR factorization of Nk
	Computation of xk

	Stopping rules
	Estimating |rk|
	Estimating |Ar|

	CAR
	Implementation and numerical experiments
	Summary
	Proofs

