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Abstract : We introduce a variant of the proximal gradient method in which the quadratic term is
diagonal but may be indefinite, and is safeguarded by a trust region. Our method is a special case of
the proximal quasi-Newton trust-region method of Aravkin et al. [3]. We provide closed-form solution
of the step computation in certain cases where the nonsmooth term is separable and the trust region is
defined in the infinity norm, so that no iterative subproblem solver is required. Our analysis expands
upon that of [3] by generalizing the trust-region approach to problems with bound constraints. We
provide an efficient open-source implementation of our method, named TRDH, in the Julia language
in which Hessians approximations are given by diagonal quasi-Newton updates. TRDH evaluates one
standard proximal operator and one indefinite proximal operator per iteration. We also analyze and
implement a variant named iTRDH that performs a single indefinite proximal operator evaluation
per iteration. We establish that iTRDH enjoys the same asymptotic worst-case iteration complexity as
TRDH. We report numerical experience on unconstrained and bound-constrained problems, where
TRDH and iTRDH are used both as standalone and subproblem solvers. Our results illustrate that, as
standalone solvers, TRDH and iTRDH improve upon the quadratic regularization method R2 of [3]
but also sometimes upon their quasi-Newton trust-region method, referred to here as TR-R2, in terms
of smooth objective value and gradient evaluations. On challenging nonnegative matrix factorization,
binary classification and data fitting problems, TRDH and iTRDH used as subproblem solvers inside
TR improve upon TR-R2 for at least one choice of diagonal approximation.

Acknowledgements: Research supported by an NSERC Discovery grant. The authors thank Joshua
Wolff from École Normale Supérieure des Techniques Avancées (ENSTA), Paris, for the work he
conducted during his undergraduate internship at GERAD in the summer of 2022 and that made this
research possible.

Dedicatory: In honor and memory of our colleague and friend Daniela di Serafino.
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1 Introduction

We consider the nonsmooth regularized problem

minimize
x∈Rn

f(x) + h(x) subject to ℓ ⩽ x ⩽ u, (1)

where ℓ ∈ (R ∪ {−∞})n, u ∈ (R ∪ {+∞})n with ℓ ⩽ u componentwise, f : Rn → R is continuously
differentiable on an open set containing [ℓ,u], and h : Rn → R ∪ {+∞} is proper and lower semicon-
tinuous (lsc). A component ℓi = −∞ or ui = +∞ indicates that xi is unbounded below or above,
respectively. Both f and h may be nonconvex. Typically, h is nonsmooth and serves to identify a local
minimizer of f with desirable features, such as sparsity.

Numerical methods for (1) are typically based on the proximal-gradient method [21]. Aravkin
et al. [3] provide an overview of recent works focusing on (1) where both f and h may be nonconvex,
to which we refer the reader. In addition, they propose two methods: an adaptive quadratic
regularization approach named R2, which may be viewed as a proximal-gradient method with
adaptive step size, and a quasi-Newton trust-region method named TR in which the subproblem
consist in minimizing a quadratic approximation of f about the current iterate regularized by a model
of h inside a trust region. Typically, an explicit solution to the subproblem is not known, and an
iterative procedure must be used—the authors use R2. Aravkin et al. [2] develop a similar approach
designed for applications where f is a least-squares residual. They propose a trust-region and a
regularization approach. Again, they use R2 as subproblem solver.

In both R2 and the traditional proximal-gradient method, a uniformly positively scaled ∇f is
used to compute a step, and that computation relies on the proximal operator—see Section 2 for
precise definitions. Some authors consider positive-definite diagonal gradient scaling—see below.
In the present research, we contend that generalizing the definition of the proximal operator by
allowing a diagonal scaling of ∇f, and even permitting negative scaling factors, continues to allow
us to derive analytical solutions for several nonsmooth terms of interest in applications. Moreover,
such potentially indefinite scaling might allow the model to better capture inherent nonconvexity
in f about the current iterate. We devise a trust-region method based on those ideas and name it
TRDH, which stands for trust-region method with diagonal Hessian approximations. At every iteration,
our method performs the evaluation of both a classical proximal operator and a generalized proximal
operator with indefinite diagonal scaling. However, it is possible to modify TRDH slightly to devise a
variant that requires a single generalized proximal operator evaluation per iteration while preserving
the asymptotic worst-case evaluation complexity bound. We name the variant iTRDH, which stands
for indefinite trust-region method with diagonal Hessian.

Diagonal gradient scaling could be referred to as diagonal quasi-Newton, and though the literature
appears to be thin on that subject, there exist a few references. Diagonal Hessian approximations
range from a multiple of the identity, as in the traditional proximal-gradient or the spectral gradient
method, to approximations computed based on a relaxed secant equation. We go into more details in
Section 4.

Because we use the ℓ∞-norm to define the trust region, we are able to treat bound constraints
naturally, by taking the intersection of [ℓ, u] with the trust region. Our generalized indefinite proximal
operators must take the indicator of the resulting box into account together with h, or a model
thereof.

A by-product of the present research is an efficient software implementation of TRDH and
iTRDH, both as standalone solvers, and as subproblem solvers for use inside TR. TRDH and
iTRDH can use several diagonal Hessian approximations: the multiple of the identity given by
the spectral gradient approximation, and two diagonal quasi-Newton approximations based on
the weak secant equation. Our open-source implementations in Julia are available from https:

//github.com/JuliaSmoothOptimizers/RegularizedOptimization.jl.

https://github.com/JuliaSmoothOptimizers/RegularizedOptimization.jl
https://github.com/JuliaSmoothOptimizers/RegularizedOptimization.jl
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We report numerical experience conducted with TRDH, iTRDH, TR-TRDH and TR-iTRDH on a
range of unconstrained and bound-constrained problems, where TR-TRDH and TR-iTRDH refer to
TRDH and iTRDH used as subsolvers in TR. Our general conclusion is that for at least one choice
of a diagonal Hessian approximation, TRDH and iTRDH outperform R2 in terms of evaluations of
f and ∇f. In addition, for at least one choice of a diagonal Hessian approximation, TR-TRDH and
TR-iTRDH outperform TR-R2 on the same metric. Our detailed results are in Section 6.

Related research

Most of the literature focuses on positive-definite diagonal scaling of the proximal operator; Becker
and Fadili [9] and Becker et al. [10] consider positive-definite quasi-Newton approximations of the
form H = D+ VVT where D is positive definite and diagonal, and a specialized procedure to solve
the proximal quasi-Newton subproblems. Under their assumptions, H remains uniformly bounded.
Their analysis is restricted to f and h convex and does not provide complexity bounds.

Duchi et al. [17] present the ADAGRAD algorithm, which is commonly used in online learning.
ADAGRAD is a stochastic algorithm but a deterministic implementation of it would minimize a
smooth objective such as f using a variant of the projected gradient algorithm, that can be seen
as a special case of the proximal gradient method, using a positive diagonal gradient scaling. At
iteration k, the scaling is set to diag(Gk)

−1/2 where Gk =
∑k
j=0 ∇f(xj)∇f(xj)T .

Scheinberg and Tang [27] also focus on positive-definite and uniformly-bounded Hessian approxi-
mations for f and h convex. Their numerical results employ a limited-memory BFGS approximation,
although the latter is liable to grow unbounded [14, §8.4]. The proximal quasi-Newton subproblem is
solved inexactly with a coordinate descent algorithm.

Aravkin et al. [3] propose a proximal quasi-Newton trust-region method for nonconvex f and
h under weak assumptions, accompanied by a complexity analysis. They employ limited-memory
BFGS or SR1 approximations and solve subproblems using the proximal-gradient method or R2.
Though their analysis assumes the Hessian approximations are uniformly bounded, there are known
procedures to estimate bounds on the eigenvalues of quasi-Newton approximations after an update,
and those bounds can be used to skip or modify the update to keep it bounded [22].

Similarly, Baraldi and Kouri [4] present a proximal trust-region method with inexact objective
and gradient evaluations, under the additional assumption that h must be convex. They show
numerical results with exact Hessian when it is available, and employ iterative solvers to approximate
it otherwise.

Notation

B is the unit ball centered at the origin and defined by a norm dictated by the context, and ∆B is
the ball of radius ∆ > 0 centered at the origin. For fixed x ∈ Rn, the ball of radius ∆ centered at x
is x + ∆B. When it is necessary to indicate that B is defined by the ℓp-norm, for 1 ⩽ p ⩽ +∞, we
write Bp. For A ⊆ Rn, the indicator of A is χ(· | A) : Rn → R∪ {+∞} defined as χ(x | A) = 0 if x ∈ A
and +∞ otherwise. If A ̸= ∅, χ(· | A) is proper. If A is closed, χ(· | A) is lsc. For D ∈ Rm×n with
elements δi,j, |D| ∈ Rm×n has elements |δi,j|. For a finite set A ⊂ N, we denote |A| its cardinality. If
f1 and f2 are two positive functions of ϵ > 0, we say that f1(ϵ) = O(f2(ϵ)) if there exists a constant
C > 0 such that f1(ϵ) ⩽ Cf2(ϵ) for all ϵ > 0 sufficiently small.

2 Background

The following are standard variational analysis concepts—see, e.g., [26]. Let ϕ : Rn → R and x̄ ∈ Rn
where ϕ is finite. The Fréchet subdifferential of ϕ at x̄ is the closed convex set ∂̂ϕ(x̄) of v ∈ Rn such
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that

lim inf
x→x̄
x ̸=x̄

ϕ(x) − ϕ(x̄) − vT (x− x̄)

∥x− x̄∥ ⩾ 0.

The limiting subdifferential of ϕ at x̄ is the closed, but not necessarily convex, set ∂ϕ(x̄) of v ∈ Rn
for which there exist {xk} → x̄ and {vk} → v such that {ϕ(xk)} → ϕ(x̄) and vk ∈ ∂̂ϕ(xk) for all k.
∂̂ϕ(x̄) ⊂ ∂ϕ(x̄) always holds.

The horizon subdifferential of ϕ at x̄ is the closed, but not necessarily convex, cone ∂∞ϕ(x̄) of
v ∈ Rn for which there exist {xk} → x̄, {vk} and {λk} ↓ 0 such that {ϕ(xk)} → ϕ(x̄), vk ∈ ∂̂ϕ(xk) for all
k, and {λkvk} → v.

If C ⊆ R
n and x̄ ∈ C, the closed convex cone N̂C(x̄) := ∂̂χ(x̄ | C) is called the regular normal

cone to C at x̄. The closed cone NC(x̄) := ∂χ(x̄ | C) = ∂
∞χ(x̄ | C) is called the normal cone to C at x̄.

N̂C(x̄) ⊆ NC(x̄) always holds, and is an equality if C is convex.

If ϕ : Rn → R is proper lsc, and C ⊆ Rn is closed, we say that the constraint qualification is satisfied
at x̄ ∈ C for the constrained problem

minimize
x∈Rn

ϕ(x) subject to x ∈ C

if
∂∞ϕ(x̄) ∩NC(x̄) = {0}. (2)

As an example where (2) fails to hold, let n = 1, f(x) = 0 for all x ∈ R,

h(x) =

{
x if x ⩾ 0,
+∞ if x < 0,

and C = [0, 1]. Clearly, x̄ = 0 is the only stationary point and NC(x̄) = {v | v ⩽ 0}. Let epih denote the
epigraph of h, i.e., the set {(x, t) | x ∈ Rn, t ⩾ h(x)}. Because h is locally lsc about x̄, [26, Theorem 8.9]
yields

∂∞h(x̄) = {v | (v, 0) ∈ Nepih(x̄,h(x̄))} = {v | (v, 0) ∈ Nepih(0, 0)} = NC(x̄),

and the constraint qualification does not hold. The reason is that h and χ(· | C) both have a jump
discontinuity at x̄ and take the value +∞ for x < x̄, which is akin to repeating a constraint.

We say that x̄ is first-order stationary for (1) if 0 ∈ ∂(f+ h+ χ(· | [ℓ,u]))(x̄) = ∇f(x̄) + ∂(h+ χ(· |
[ℓ,u]))(x̄). If x̄ is a local solution of (1), it is first-order stationary [26, Theorem 10.1]. Under (2)
applied to (1), which reads (∇f(x̄) + ∂∞h(x̄))∩N[ℓ,u](x̄) = {0}, the necessary optimality condition can
be written equivalently as 0 ∈ ∇f(x̄)+∂h(x̄)+N[ℓ,u](x̄) [26, Theorem 8.15]. When (1) is unconstrained
or x̄ ∈ int[ℓ,u], the normal cone is {0}, the constraint qualification is satisfied, and the necessary
condition reduces to 0 ∈ ∇f(x̄) + ∂h(x̄).

The proximal operator associated with h is

prox
νh

(q) := argmin
x

1
2ν

−1∥x− q∥2
2 + h(x), (3)

where ν > 0 is a preset steplength. If h is prox-bounded and ν > 0 is sufficiently small, proxνh(q) is
a nonempty and closed set. It may contain multiple elements.

The proximal gradient method [21] is a generalization of the gradient method that takes the
nonsmooth term into account. It generates iterates {xk} according to

xk+1 ∈ prox
νkh

(xk − νk∇f(xk)). (4)
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Equivalently, and more instructively,

sk ∈ argmin
s

1
2ν

−1
k ∥s+ νk∇f(xk)∥2

2 + h(xk + s), (5a)

= argmin
s

∇f(xk)T s+ 1
2ν

−1
k ∥s∥2

2 + h(xk + s), (5b)

xk+1 = xk + sk, (5c)

where it becomes clear that the computation of sk results from formulating a simple quadratic model

f(xk) +∇f(xk)T s+ 1
2ν

−1
k ∥s∥2

2 ≈ f(xk + s) (6)

of the smooth term f, to which we add the nonsmooth term h.

The effectiveness of (5) comes from the observation that it is possible to determine a closed form
solution sk, or at least a specialized procedure to identify such a global minimizer, for numerous
choices of h that are relevant in applications [8], without resort to a general-purpose optimization
solver.

Aravkin et al. [3] devise a trust-region quasi-Newton method for (1) without explicit bound
constraints in which subproblems are solved inexactly by a method closely related to (5). However,
the subproblem has the additional trust-region constraint s ∈ ∆kB:

sk ∈ argmin
s

∇f(xk)T s+ 1
2ν

−1
k ∥s∥2

2 + h(xk + s) + χ(s | ∆kB), (7)

where ∆k > 0, which may be construed as changing h(xk+ s) to h(xk+ s)+χ(s | ∆kB). Because both
s 7→ h(xk + s) and s 7→ χ(s | ∆B) are proper and lsc, so is their sum. In addition, because ∆kB is
bounded, h no longer needs to be prox-bounded for a solution to exist. Again, a closed form solution
may be found for a variety of cases of interest in applications [2, 3].

3 The indefinite proximal operator

3.1 Definition and Examples

We restrict ourselves to the case where h is separable, i.e., h(x) = h1(x1) + · · ·+hn(xn), in which case
the search for an element s of (6) decouples componentwise:

si ∈ argmin
si

gisi +
1
2ν

−1s2
i + hi(xi + si),

where gi is the i-th component of ∇f(xk). If B is defined in the ℓ∞-norm, (7) also decouples. Without
loss of generality, and accounting for the bound constraints of (1), we write it as

si ∈ argmin
si

gisi +
1
2ν

−1s2
i + hi(xi + si) + χ(si | [ℓ̃i, ũi]), (8)

where ℓ̃i := max(ℓi − xi,−∆) and ũi := min(ui − xi,∆) are the ith components of ℓ̃ and ũ ∈ Rn,
which describe the intersection of the box [ℓ,u] with the trust region.

Replacing the quadratic coefficient in (8) by a positive scalar δi > 0 does not complicate the
problem as it simply amounts to changing the value of ν. In the following, we contend that replacing
the quadratic coefficient by δi ⩽ 0 continues to allow us to derive a closed form solution in certain
cases. Observe that modifying the quadratic term as described amounts to changing (6) to

f(xk) +∇f(xk)T s+ 1
2s
TDks,

where Dk = diag(dk), and dk ∈ R
n has components δk.i. Crucially, we wish to allow Dk to be

indefinite to capture any nonconvexity of f about xk to a certain extent. While such change may
make the quadratic model nonconvex, the indicator of [ℓ̃i, ũi] ensures that a finite solution exists.
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Definition 1. Let g ∈ Rn, D ∈ Rn×n be diagonal and C ⊂ R
n be nonempty. The indefinite proximal

operator of h with respect to g, D and C is

iprox
g,D,h,C

(q) := argmin
x

gTx+ 1
2x
TDx+ h(x) + χ(x | C). (9)

The usual proximal operator of νh at q ∈ Rn is a special case of Definition 1 in which C = Rn,
D = ν−1I, and g = −ν−1q.
Example 1. Consider h(x) = λ∥x∥0, where λ > 0, and C := [ℓ, u], where ℓ, u ∈ R

n with ℓ < u

componentwise. The computation of x in (9) decouples componentwise as

xi ∈ argmin
xi

gixi +
1
2δix

2
i + λ|xi|0 + χ(xi | [ℓi, ui]).

Note that

gixi +
1
2δix

2
i + λ|xi|0 =

{
0 if xi = 0
λ+ gixi +

1
2δix

2
i if xi ̸= 0.

If δi = 0, the solution set of the above problem is

• [ℓi,ui] if gi = 0 and either ℓi > 0 or ui < 0;
• argmin{λ+ gixi | xi ∈Mi} where Mi is the set {ℓi,ui} together with 0 if 0 ∈ (ℓi,ui) in all other cases.

If δi ̸= 0, the solution set is argmin{λ+ gixi +
1
2δix

2
i | xi ∈Mi}, where Mi is the finite set comprising

ℓi, ui together with

• −gi/δi if δi > 0;
• 0 if 0 ∈ (ℓi,ui).

See Figure 1 for an illustration of a few cases.

0 −gi/δi ℓi 0 ui 0 −gi/δi

Figure 1: Illustration of Example 1 with δi > 0 (left), δi = 0 (center), and δi < 0 (right). The blue curve is gixi+
1
2δix

2
i

while the red curve is gixi +
1
2δix

2
i + λ|xi|0.

Example 2. Consider h(x) = λ∥x∥1 where λ > 0, and C as in Example 1. The computation of x in (9)
decouples componentwise as

xi ∈ argmin
xi

gixi +
1
2δix

2
i + λ|xi|+ χ(xi | [ℓi, ui]).

Note that

gixi +
1
2δix

2
i + λ|xi| =

{
(gi + λ)xi +

1
2δix

2
i if xi ⩾ 0

(gi − λ)xi +
1
2δix

2
i if xi < 0.

If δi = 0, the solution of the above problem is
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• [ℓi, max(0, ℓi)] if gi = λ;
• [min(ui, 0), ui] if gi = −λ;
• proj(0 | [ℓi,ui]) if 0 ⩽ |gi| < λ;
• {ℓi} if gi > λ;
• {ui} if gi < −λ.

Consider now the case where δi > 0. The branch of quadratic for xi ⩾ 0 lies above the horizontal axis if
gi ⩾ −λ, and that for xi < 0 does the same if gi ⩽ λ. Thus, if |gi| ⩽ λ, the unique unconstrained minimizer
is 0 and, by convexity, the solution of the constrained problem is proj(0 | [ℓi,ui]).

If gi > λ, for the unconstrained minimizer is x̄i := −(gi − λ)/δi < 0. By convexity, the solution of the
constrained problem is proj(x̄i | [ℓi,ui]). The situation is similar when gi < −λ.

Consider finally the case where δi < 0. In this case, the unique constrained minimizer is argmin{gixi +
1
2δix

2
i + λ|xi| | xi ∈ Mi} where Mi is the set containing ℓi and ui together with 0 if the latter lies inside

[ℓi,ui].

Figure 2 illustrates a few representative cases.

0 0 0

0 x̄i 0 x̄i 0

0 0 0

Figure 2: Illustration of Example 2. Top row: δi = 0. From left to right: 0 ⩽ gi < λ, gi = λ, and gi > λ. Middle row:
δi > 0. From left to right: gi < −λ, |gi| ⩽ λ, and gi > λ. Bottom row: δi < 0. From left to right: gi ⩽ −λ, |gi| < λ,
and gi > λ.
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3.2 Properties

At x ∈ Rn where h is finite, consider models

φ(s; x) ≈ f(x+ s) (10a)

ψ(s; x) ≈ h(x+ s) (10b)

m(s; x) := φ(s; x) +ψ(s; x). (10c)

We make the following assumption on the models (10).
Model Assumption 3.1. For any x ∈ Rn, φ(·; x) ∈ C

1, and satisfies φ(0; x) = f(x) and ∇φ(0; x) = ∇f(x).
For any x ∈ Rn where h is finite, ψ(·; x) is proper lsc, and satisfies ψ(0; x) = h(x) and ∂ψ(0; x) = ∂h(x).
Proposition 1. Let C ⊂ R

n be nonempty and compact, and let Model Assumption 3.1 be satisfied. Let (1)
satisfy the constraint qualification (2) at x ∈ C. Assume 0 ∈ argminsm(s; x)+χ(x+ s | C), and let the latter
subproblem satisfy the constraint qualification (2) at s = 0. Then x is first-order stationary for (1).

Proof. Let χx,C(s) := χ(x + s | C). Because C is compact, Model Assumption 3.1 ensures that
s 7→ m(s; x) + χ(x + s | C) is lsc, bounded below and that a minimizer exists. By assumption, 0 ∈
∇f(x)+∂(ψ+χx,C)(0). By the constraint qualification for the subproblem and Model Assumption 3.1,
0 ∈ ∇f(x) + ∂h(x) +NC(x), which are the first-order optimality conditions for (1).

In the assumptions of Proposition 1, satisfaction of the constraint qualification in the subproblem
is ensured if ∂∞ψ(0; x) = ∂∞h(x) provided (2) is satisfied at x for (1).

4 Diagonal quasi-Newton methods

The simplest possible diagonal approximation to ∇2f(xk) is Bk := σkI for some scalar σk, where I
denotes the identity. In the R2 algorithm [3, Algorithm 6.1], σk is chosen adaptively at each iteration
based on progress. A more sophisticated strategy consists in choosing σk so as to best approximate
∇2f(xk), in a sense to be defined, based on recently observed local information. That is the logic
behind the spectral projected gradient method [11], which is easily generalized as a spectral proximal
gradient method, and where

σk := sTk−1yk−1/s
T
k−1sk−1, sk−1 := xk − xk−1, yk−1 := ∇f(xk) −∇f(xk−1).

This choice of σk arises from the secant equation σksk−1 = yk−1, which, in general, has no solution,
but can be solved in the least-squares sense by minimizing ∥σsk−1 − yk−1∥2 in terms of σ.

Gilbert and Lemaréchal [19] experiment, among others, with diagonal updates of quasi-Newton
approximations. However, there may be no diagonal solution Bk to the secant equation Bksk−1 = yk−1,
and one must resort to a different approach to update a diagonal approximation. Dennis and
Wolkowicz [15] introduce the weak secant equation sTk−1Bksk−1 = sTk−1yk−1 and accompanying update
formulae. Nazareth [24] observes that some of those proposed updates can be constrained to update
only the diagonal of Bk but that the resulting Bk no longer necessarily satisfies the weak secant
equation.

Zhu et al. [30] supplement the weak secant equation by additionally requiring that Bk be diagonal,
and call the resulting set of conditions the quasi-Cauchy conditions. In particular, the spectral gradient
approximation is the only solution of the quasi-Cauchy conditions that is a multiple of I. They derive
updates from variational principles resembling those used in classic quasi-Newton updates. The first
update sets Bk to the unique solution of

minimize
B

∥B− Bk−1∥F subject to sTk−1Bsk−1 = sTk−1yk−1, (11)
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which is the counterpart of the Powell-symmetric-Broyden (PSB) variational problem. The solution
of (11) is shown to be

Bk = Bk−1 +
sTk−1(yk−1 − Bk−1sk−1)

trace(S4
k−1)

S2
k−1, Sk−1 := diag(sk−1). (12)

Like the PSB update, (12) does not possess the hereditary positive-definiteness property. However,
capturing negative curvature is a desirable feature in trust-region methods.

Motivated by linesearch methods, Zhu et al. [30] devise a second strategy in which they update
B

1/2
k , and that results in hereditary positive definiteness. The main idea is analogous to (11) with

the objective replaced with ∥B1/2 − B
1/2
k−1∥F. The update depends on the root of a scalar nonlinear

equation, and is therefore more costly to perform than (12).

Andrei [1] suggests an alternative variational problem in which Bk is determined as the solution
of

minimize
B

1
2∥B− Bk−1∥2

F + trace(B) subject to sTk−1Bsk−1 = sTk−1yk−1, (13)

where minimizing the trace of B tends to cluster its eigenvalues. The solution of (13) is shown to be

Bk = Bk−1 +
sTk−1(yk−1 + sk−1 − Bk−1sk−1)

trace(S4
k−1)

S2
k−1 − I. (14)

Again, (14) does not preserve positive definiteness. Also motivated by linesearch methods, Andrei [1]
employs a thresholding strategy that ensures computation of a descent direction.

Though Nazareth [24] appears to have been motivated by derivative-free methods,1 diagonal quasi-
Newton updates are good candidate approximations for use in first-order methods for regularized
optimization, and we are not aware of any prior work using them.

5 The indefinite proximal gradient method

5.1 Description of the algorithm and convergence properties

For ν > 0, define

φcp(s; x) := f(x) +∇f(x)T s, (15a)

m(s; x,ν) := φcp(s; x) +
1
2ν

−1∥s∥2
2 +ψ(s; x). (15b)

Guided by Proposition 1, we compute a first step denoted sk,1 such that

sk,1 ∈ argmin
s

m(s; xk,νk) + χ(xk + s | [ℓ, u] ∩ (xk + ∆kB)), (16)

for an appropriate value of νk > 0.

Let
m(s; x,D) := φcp(s; x) +

1
2s
TDs+ψ(s; x), (17)

where D is a diagonal matrix. The indefinite proximal gradient iteration with trust region for (1) is
defined by changing (16) to

sk ∈ argmin
s

m(s; xk,Dk) + χ(xk + s | [ℓ, u] ∩ (xk + ∆kB)), (18)

where Dk is diagonal, and by updating xk and ∆k as is customary in trust-region methods [14].
Among other possible choices, we focus on the case where Dk results from a diagonal quasi-Newton
update.
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Algorithm 1 Nonsmooth trust-region algorithm with diagonal Hessian.

1: Choose constants

0 < η1 ⩽ η2 < 1, 0 < 1/γ3 ⩽ γ1 ⩽ γ2 < 1 < γ3 ⩽ γ4, and α > 0, β ⩾ 1.

2: Choose x0 ∈ Rn where h is finite, ∆0 > 0, compute f(x0) +h(x0).
3: Choose d0 ∈ Rn and set D0 = diag(d0).
4: for k = 0, 1, . . . do
5: Set νk := 1/(∥dk∥∞ +α−1

∆
−1
k ).

6: Define φ(s;xk) and ψ(s;xk) according to Model Assumption 3.1.
7: Define m(s;xk,νk) as in (15) and compute sk,1 as in (16).
8: Define m(s;xk,Dk) as in (17) and compute a solution sk of (18) with ∆k replaced by min(∆k, β∥sk,1∥).
9: Compute the ratio

ρk :=
f(xk) +h(xk) − (f(xk + sk) +h(xk + sk))

m(0;xk,Dk) −m(sk;xk,Dk)
.

10: If ρk ⩾ η1, set xk+1 = xk + sk. Otherwise, set xk+1 = xk.
11: Choose dk+1 ∈ Rn and set Dk+1 = diag(dk+1).
12: Update the trust-region radius according to

∆k+1 ∈

 [γ3∆k, γ4∆k] if ρk ⩾ η2, (very successful iteration)
[γ2∆k, ∆k] if η1 ⩽ ρk < η2, (successful iteration)
[γ1∆k, γ2∆k] if ρk < η1 (unsuccessful iteration).

We summarize the entire procedure as Algorithm 1, which is a special case of [3, Algorithm 3.1].

In [3, Algorithm 3.1], convergence hinges crucially on the fact that the decrease in m(·; xk,Dk)
achieved by sk is at least a fraction of the decrease in m(·; xk,νk) achieved by sk,1, the first proximal
gradient step with a well-chosen step size νk > 0. At iteration k of Algorithm 1, νk < 1/∥dk∥∞. Note
that the choice dk = 0 is allowed.

In Algorithm 1, the computation of sk,1 serves two purposes. The first is as stopping condition
by Proposition 1, and the second is to set the trust-region radius in the subproblem for sk. This is
at variance with [3, Algorithm 3.1], where, in addition, sk is computed by continuing the proximal
gradient iterations from sk,1.

In a similar notation to that of [3], let

ξcp(∆k; xk,νk) := f(xk) + h(xk) − (φcp(sk,1; xk) +ψ(sk,1; xk)), (19a)

ξ(∆k; xk,Dk) := f(xk) + h(xk) −m(sk; xk,Dk) (19b)

denote the optimal model decrease for (15) and (17). The definition of (16) guarantees that

f(xk) + h(xk) = m(0; xk,νk) ⩾ m(sk,1; xk,νk) = φcp(sk,1; xk) +ψ(sk,1; xk) +
1
2ν

−1
k ∥sk,1∥2, (20)

which implies

ξcp(∆k; xk,νk) ⩾
1
2ν

−1
k ∥sk,1∥2 = 1

2 (∥dk∥∞ + α−1∆−1
k )∥sk,1∥2 ⩾ 1

2α
−1∆−1

k ∥sk,1∥2. (21)

If ξcp(∆k; xk,νk) = 0, we obtain sk,1 = 0. Proposition 1 then implies that xk is first-order stationary
provided (1) satisfies the constraint qualification at xk and (15) satisfies it at s = 0.

To establish convergence properties of Algorithm 1, we require Aravkin et al.’s Step Assump-
tion 3.1, recalled in the following assumption for convenience.
Step Assumption 5.1. There exists κm > 0 and κmdc ∈ (0, 1) such that for all k,

|f(xk + sk) + h(xk + sk) − (φ(sk; xk,Dk) +ψ(sk; xk))| ⩽ κm∥sk∥2
2, (22a)

ξ(∆k; xk,Dk) ⩾ κmdcξcp(∆k; xk;νk). (22b)
1In the sense that the quasi-Cauchy condition only requires the gradient via sTy.
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Among other situations, (22a) is satisfied if {Dk} is bounded, ∇f is Lipschitz continuous, and we
select ψ(s; xk) = h(xk + s). The following proposition gives a sufficient condition for which (22b) is
satisfied.
Proposition 2. If

∥dk∥∞ ⩽ (κ−1
mdc − 1)α−1∆−1

k , (23)

then (22b) is satisfied.

Proof. By definition of sk,

m(sk; xk,Dk) ⩽ m(sk,1; xk,Dk)

= φ(sk,1; xk) +
1
2s
T
k,1Dksk,1 +ψ(sk,1; xk)

⩽ φ(sk,1; xk) +
1
2∥dk∥∞∥sk,1∥2 +ψ(sk,1; xk)

= φ(sk,1; xk) +
1
2 (ν

−1
k − α−1∆−1

k )∥sk,1∥2 +ψ(sk,1; xk),

which leads to
ξ(∆k; xk,Dk) ⩾ ξcp(∆k; xk,νk) −

1
2 (ν

−1
k − α−1∆−1

k )∥sk,1∥2.

For (22b) to be satisfied, it is sufficient to show that

ξcp(∆k; xk,νk) −
1
2 (ν

−1
k − α−1∆−1

k )∥sk,1∥2 ⩾ κmdcξcp(∆k; xk,νk),

that we rewrite as
(1 − κmdc)ξcp(∆k; xk,νk) ⩾

1
2 (ν

−1
k − α−1∆−1

k )∥sk,1∥2. (24)

Let ∥dk∥∞ ⩽ (κ−1
mdc − 1)α−1∆−1

k , which is equivalent to νk =
1

∥dk∥∞ + α−1∆−1
k

⩾ κmdcα∆k. Since

κmdc ∈ (0, 1), we have
(1 − κmdc)

1
2ν

−1
k ⩾ 1

2 (ν
−1
k − α−1∆−1

k ).

By multiplying by ∥sk,1∥2 and recalling that ξcp(∆k; xk,νk) ⩾
1
2ν

−1
k ∥sk,1∥2, we get

(1 − κmdc)ξcp(∆k; xk,νk) ⩾ (1 − κmdc)
1
2ν

−1
k ∥sk,1∥2 ⩾ 1

2 (ν
−1
k − α−1∆−1

k )∥sk,1∥2,

so that (24) is satisfied.

We can always choose κmdc small enough to ensure that ∥dk∥∞ does not have to be too close
to zero if ∆k does not grow unbounded. Whenever Algorithm 1 generates infinitely many very
successful iterations, we could define a ∆max from which we stop increasing ∆k. We point out
that Proposition 2 only gives a sufficient condition for (22b) to be satisfied, but it is not necessary.
Therefore, for the rest of this paper, we base our analysis on (22b) rather that on (23).

Under Step Assumption 5.1, we can apply directly Aravkin et al.’s convergence properties.
Proposition 3 (3, Theorem 3.4). Let Step Assumption 5.1 be satisfied and

∆succ :=
κmdc(1 − η2)

2κmαβ
2 > 0.

If xk is not first-order stationary and ∆k ⩽ ∆succ, iteration k is very successful and ∆k+1 > ∆k.

Without further assumptions, the following result also holds.
Proposition 4 (3, Theorem 3.5). Let Step Assumption 5.1 be satisfied and assume Algorithm 1 generates a
finite number of successful iterations. Then xk = x⋆ for all sufficiently large k. If (1) satisfies the constraint
qualification at xk and (15) satisfies it at s = 0, x⋆ is first-order critical.
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We continue to follow the analysis of [3] and note that ∆k ⩾ ∆min for all k ∈ N, where
∆min := min(∆0, γ1∆succ). Aravkin et al. [3] establish that ξcp(·; xk,νk) is increasing, and there-

fore, ξcp(∆k; xk,νk) ⩾ ξcp(∆min; xk,νk). In addition, they show that ν−1/2
k ξcp(∆k; xk,νk)

1/2 is an
appropriate criticality measure. Let 0 < ϵ < 1, and

I(ϵ) := {k ∈ N | ν
−1/2
k ξcp(∆k; xk,νk)

1/2 > ϵ},

S(ϵ) := {k ∈ I(ϵ) | ρk ⩾ η1},

U(ϵ) := {k ∈ I(ϵ) | ρk < η1},

be the set of iterations, successful iterations, and unsuccessful iterations until the criticality measure
drops below ϵ, respectively.

We now derive bounds on |I(ϵ)| using the analysis of [3] specialized to Algorithm 1 under the
assumption that {Dk} is bounded. We make the following assumption.
Assumption 1. There exists dmax > 0 such that ∥dk∥∞ ⩽ dmax for all k ∈ N.

In Algorithm 1, it is not difficult to ensure satisfaction of Assumption 1. For instance, one may
prescribe a value dmax > 0 and reset each dk componentwise to min(max(dk,−dmax),dmax). We
point out that Assumption 1 holds if (23) in Proposition 2 is satisfied for all k, because, in this case,
∥dk∥∞ ⩽ dmax := (κ−1

mdc − 1)α−1∆−1
min.

Under Assumption 1, the choice of νk in Algorithm 1 guarantees that

νk ⩾ νmin := 1/(dmax + α
−1∆−1

min) > 0.

The following result establishes that |S(ϵ)| is O(ϵ−2).
Proposition 5 (3, Lemma 3.6). Let Step Assumption 5.1 and Assumption 1 be satisfied. Assume that
Algorithm 1 generates infinitely many successful iterations and that there exists (f + h)low ∈ R such that
(f+ h)(xk) ⩾ (f+ h)low for all k ∈ N. Let ϵ ∈ (0, 1). Then,

|S(ϵ)| ⩽
(f+ h)(x0) − (f+ h)low

η1κmdcνminϵ
2 .

The next result establishes that |U(ϵ)| is also O(ϵ−2).
Proposition 6 (3, Lemma 3.7). Under the assumptions of Proposition 5,

|U(ϵ)| ⩽ logγ2
(∆min/∆0) + |S(ϵ)| | logγ2

(γ4)|.

The direct consequence of Propositions 5 and 6 is that |I(ϵ)| is also O(ϵ−2). Because ϵ ∈ (0, 1) is
arbitrary, we conclude that lim infν−1/2

k ξcp(∆k; xk,νk)
1/2 = 0.

5.2 A variant saving proximal operator computations

We present a variant of Algorithm 1 in which we set

νk := 1/(∥dk∥∞ + α−1) (25)

in line 5, we do not compute sk,1 in line 7, and we leave ∆k unchanged in line 8, thus saving a
proximal operator computation at each iteration. Under Assumption 1, this choice of νk leads to a
new νmin

νk ⩾ νmin := 1/(dmax + α
−1) > 0. (26)

We use the criticality measure
ν
−1/2
k ξ(∆k; xk,Dk)

1/2, (27)
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and modify the definition of I(ϵ), S(ϵ) and U(ϵ) accordingly. To establish the same convergence
properties as those of Algorithm 1, we need Step Assumption 5.1 to hold for our algorithmic variant.
The following assumption summarizes our requirements.
Step Assumption 5.2. There exists κm > 0 and κmdc ∈ (0, 1) such that for all k,

|f(xk + sk) + h(xk + sk) − (φ(sk; xk,Dk) +ψ(sk; xk))| ⩽ κm∥sk∥2
2, (28a)

ξ(∆k; xk,Dk) ⩾ κmdcξcp(∆k; xk;νk), (28b)

where νk = 1/(∥dk∥∞ + α−1) in line 5 and sk is computed without changing ∆k in line 8 of Algorithm 1.

Even though Step Assumption 5.2 involves ξcp(∆k; xk,νk), we do not need to compute it in practice.
Conveniently, if {Dk} is bounded, ∇f is Lipschitz continuous, and we select ψ(s; xk) = h(xk+ s), (28a)
is still satisfied. The following proposition, analogous to Proposition 2, shows that (29) is a sufficient
condition for (28b) to hold.
Proposition 7. If

∥dk∥∞ ⩽ (κ−1
mdc − 1)α−1, (29)

then (28b) is satisfied for Algorithm 1 with νk = 1/(∥dk∥∞ + α−1) in line 5, sk,1 is not computed in line 7,
and ∆k is unchanged in line 8.

Proof. The proof is identical to that of Proposition 2 if we use (25).

Whenever (28b) holds, we have

ν
−1/2
k ξ(∆k; xk,νk)

1/2 ⩾ κ1/2
mdcν

−1/2
k ξcp(∆k; xk,νk)

1/2 ⩾ κ1/2
mdcν

−1
k ∥sk,1∥, (30)

which ensures that ν−1/2
k ξ(∆k; xk,νk)

1/2 → 0 implies ∥sk,1∥ → 0, and that ν−1/2
k ξ(∆k; xk,νk)

1/2

is an appropriate criticality measure. We emphasize that there is no need to compute sk,1 and
ξcp(∆k; xk,νk); (30) is only used as a theoretical justification for the choice of our criticality measure.

We now establish convergence properties similar to those of Section 5.1, and follow the analysis of
Cartis et al. [13, Chapter 2.3].
Proposition 8. Let Assumption 1 and Step Assumption 5.2 be satisfied. Let νmin be as defined in (26). If

∆k ⩽

√
νmin(1 − η2)

κm
ν
−1/2
k ξ(∆k; xk,Dk)

1/2 (31)

and xk is not first-order stationary, iteration k is very successful and ∆k+1 > ∆k.

Proof. Using Step Assumption 5.2 and ∥sk∥ ⩽ ∆k, we have

|ρk − 1| =
∣∣∣∣f(xk + sk) + h(xk + sk) −m(sk; xk,Dk)

m(0; xk,Dk) −m(sk; xk,Dk)

∣∣∣∣
⩽

κm∥sk∥2

ξ(∆k; xk,Dk)

⩽
κm∆

2
k

ξ(∆k; xk,Dk)
.

Assumption 1 and (26) lead to

|ρk − 1| ⩽
κmν

−1
min∆

2
k

ν−1
k ξ(∆k; xk,Dk)

.

Whenever (31) holds, we have ρk ⩾ η2, implying that iteration k is very successful and ∆k+1 ⩾ ∆k.
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The following lemma is inspired by Conn et al. [14, Theorem 6.4.3] and Cartis et al. [13,
Lemma 2.3.4].
Lemma 1. Let Step Assumption 5.2 be satisfied. Then, for all k ⩾ 0,

∆k > γ1

√
νmin(1 − η2)

κm
min

1,∆0

√
κmν

−1
min

ν
−1/2
0 ξ(∆0; x0,D0)

1/2

 min
i∈[0,k]

ν
−1/2
i ξ(∆i; xi,Di)

1/2. (32)

Proof. We proceed as in Cartis et al. [13, Lemma 2.3.4]. The bound certainly holds for k = 0, because

∆0 > γ1

√
1 − η2∆0.

Now, we proceed by contradiction and assume that k ⩾ 1 is the first iteration such that (32) is not
verified.

∆k ⩽ γ1

√
νmin(1 − η2)

κm
min

1,∆0

√
κmν

−1
min

ν
−1/2
0 ξ(∆0; x0,D0)

1/2

 min
i∈[0,k]

ν
−1/2
i ξ(∆i; xi,Di)

1/2

⩽ γ1

√
νmin(1 − η2)

κm
ν
−1/2
k−1 ξ(∆k−1; xk−1,Dk−1)

1/2.

We have γ1∆k−1 ⩽ ∆k because of the updating rules of ∆k in Algorithm 1, which implies that

∆k−1 ⩽

√
νmin(1 − η2)

κm
ν
−1/2
k−1 ξ(∆k−1; xk−1,Dk−1)

1/2.

Using Proposition 8, this results in iteration k− 1 being very successful and ∆k > ∆k−1. Therefore,

∆k−1 < ∆k ⩽ γ1

√
νmin(1 − η2)

κm
min

1,∆0

√
κmν

−1
min

ν
−1/2
0 ξ(∆0; x0,D0)

1/2

 min
i∈[0,k]

ν
−1/2
i ξ(∆i; xi,Di)

1/2

⩽ γ1

√
νmin(1 − η2)

κm
min

1,∆0

√
κmν

−1
min

ν
−1/2
0 ξ(∆0; x0,D0)

1/2

 min
i∈[0,k−1]

ν
−1/2
i ξ(∆i; xi,Di)

1/2,

which is a contradiction with iteration k being the first to violate (32).

Now, we show analogous properties to Proposition 5 and Proposition 6 for our variant.
Lemma 2. Let Step Assumption 5.2 and Assumption 1 be satisfied. Assume that Algorithm 1 with νk as
in (25) in line 5, without line 7, and with ∆k unchanged in line 8 generates infinitely many successful iterations
and that there exists (f+ h)low ∈ R such that (f+ h)(xk) ⩾ (f+ h)low for all k ∈ N. Let ϵ ∈ (0, 1). Then,

|S(ϵ)| ⩽
(f+ h)(x0) − (f+ h)low

η1νminϵ
2 .

Proof. For k ∈ S(ϵ), we have

f(xk) + h(xk) − f(xk + sk) − h(xk + sk) ⩾ η1(m(0; xk,Dk) −m(sk; xk,Dk))

= η1ξ(∆k; xk,Dk)

⩾ η1νkϵ
2

⩾ η1νminϵ
2.
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As (f+ h)(xk) ⩾ (f+ h)low, we sum the above inequalities for k ∈ S(ϵ) and get

(f+ h)(x0) − (f+ h)low ⩾
∑
k∈S(ϵ)

(f+ h)(xk) − (f+ h)(xk+1) ⩾ |S(ϵ)|η1ϵ
2νmin.

Lemma 3. Under the assumptions of Lemma 2,

|U(ϵ)| = O(ϵ−2).

Proof. Let k < k(ϵ). Because
ν
−1/2
k ξ(∆k; xk,Dk)

1/2 > ϵ,

and
ν
−1/2
k(ϵ) ξ(∆k(ϵ); xk(ϵ),Dk(ϵ))

1/2 ⩽ ϵ,

we have with Lemma 1

∆k(ϵ)−1 > γ1

√
νmin(1 − η2)

κm
min

1,∆0

√
κmν

−1
min

ν
−1/2
0 ξ(∆0; x0,D0)

1/2

 min
i∈[0,k]

ν−1
i ξ(∆i; xi,Di)

> γ1

√
νmin(1 − η2)

κm
min

1,∆0

√
κmν

−1
min

ν
−1/2
0 ξ(∆0; x0,D0)

1/2

 ϵ.

For each successful iteration, ∆k+1 ⩽ γ4∆k, and for each unsuccessful iteration, ∆k+1 ⩽ γ2∆k, which
implies

∆k(ϵ)−1 ⩽ ∆0γ
|U(ϵ)|
2 γ

|S(ϵ)|
4 .

By taking the natural logarithm of the above inequality, we have

|U(ϵ)| log(γ2) + |S(ϵ)| log(γ4) ⩾ log(∆k(ϵ)−1/∆0)

⩾ log

γ1

√
νmin(1 − η2)

κm
min

∆−1
0 ,

√
κmν

−1
min

ν
−1/2
0 ξ(∆0; x0,D0)

1/2

 ϵ
 ,

so that, using the previous inequalities and Lemma 2

|U(ϵ)| ⩽ logγ2

γ1

√
νmin(1 − η2)

κm
min

∆−1
0 ,

√
κmν

−1
min

ν
−1/2
0 ξ(∆0; x0,D0)

1/2

 ϵ
+ |S(ϵ)|| logγ2

(γ4)|

⩽ O(| logγ2
(ϵ)|) +O(ϵ−2)

= O(ϵ−2).

Lemma 2 and Lemma 3 also indicate that I(ϵ) is O(ϵ−2), and lim infν−1/2
k ξ(∆k; xk,Dk)

1/2 = 0.
With (28b) in Step Assumption 5.2, we also have lim infν−1/2

k ξcp(∆k; xk,νk)
1/2 = 0.

Finally, we emphasize the changes made in this section to Algorithm 1:

• in line 5, νk = 1/(∥dk∥∞ + α−1∆−1
k ) became νk = 1/(∥dk∥∞ + α−1),

• line 7 of Algorithm 1 was removed,
• ∆k was left unchanged in line 8 of Algorithm 1,
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• we used ν−1/2
k ξ(∆k; xk,Dk)

1/2 as a criticality measure, instead of ν−1/2
k ξcp(∆k; xk,νk), however,

when (28a) holds, (30) indicates that if the new criticality measure is small, then the criticality
measure of Section 5.1 is also small,

• in Proposition 8, there is no ∆min > 0 independent of k as in Proposition 3,
• under the assumptions of Lemma 2, which are similar to those of Proposition 5, the complexity

bound is still in O(ϵ−2), and lim infν−1/2
k ξ(∆k; xk,Dk)

1/2 = lim infν−1/2
k ξcp(∆k; xk,νk)

1/2 = 0.

6 Implementation and numerical experiments

Our Julia implementation of Algorithm 1 is available from our RegularizedOptimization package [5]
under the name TRDH. The latter can be used to solve (1) directly, or as subproblem solver in TR [3,
Algorithm 3.1], instead of R2 [3, Algorithm 6.1]. Below, we use the notation TR-R2 and TR-TRDH to
denote the application of TR to solve (1) with R2 or TRDH as subproblem solver, respectively.

In our experiments, TR uses either an LSR1 or an LBFGS quasi-Newton Hessian approximation
with memory 5, as implemented in the LinearOperators package [25]. The same package implements
diagonal quasi-Newton operators in TRDH using the spectral update, the PSB update (12), and the
update of Andrei [1] (14) with the modification that we scaled the weak secant equations as

s̃Tk−1Bs̃k−1 = s̃Tk−1ỹk−1 (34)

in (11) and (13), where s̃k−1 := sk−1/∥sk−1∥2, and ỹk−1 := yk−1/∥sk−1∥2, in order to alleviate
numerical issues as sk−1 approaches zero.

The indefinite proximal operators of Example 1 and Example 2 are implemented as part of the
ShiftedProximalOperators package [7].

When using TRDH as the main solver, we initialize D0 := ν−1
0 I for ν0 > 0 given below. When

using TR-TRDH with a spectral diagonal quasi-Newton approximation, denoted TR-TRDH-Spec,
we set the initial diagonal Hessian approximation in TRDH at iteration k of TR to Dk,0 := ν−1

k I (as
we would initialize R2 in TR-R2). When using TR-TRDH with the PSB or the Andrei quasi-Newton
approximations, denoted TR-TRDH-PSB and TR-TRDH-Andrei, respectively, we set Dk,0 := diag(Bk),
where Bk is the quasi-Newton Hessian approximation at iteration k of TR.

We set ψ(s; xk) := h(xk + s). We initialize ν0 = 1 for R2 and TRDH used by themselves. The
stopping criteria that we used for TR, TRDH and R2 (as subproblem solvers or main solvers) are
based on ξcp(∆k; xk,νk)

1/2. We set ∆0 = 1 for TR and for TRDH used as main solver. For TR-TRDH,
at iteration k of TR, the initial value of the TRDH trust-region radius is ∆k,0 = min(∆k,β∥sk,1∥) /
10, where ∆k is the TR trust-region radius at iteration k, and sk,1 is the first step of the k-th TR
subproblem. In other words, the initial TRDH trust-region radius to solve the k-th TR subproblem is
a tenth of the trust-region radius of this k-th subproblem.

For all solvers, the outer iterations terminate as soon as

ν
−1/2
k ξcp(∆k; xk,νk)

1/2 < ϵa + ϵrν
−1/2
0 ξcp(∆0; x0,ν0)

1/2, (35)

where ϵa > 0 and ϵr > 0 are an absolute and a relative tolerance. A round of inner iterations in
TR terminates as soon as the stationarity measure of the inner solver satisfies (35), with ϵ̃a = 10−5

for the first TR iteration, otherwise ϵ̃a = max(ϵa,i, min(10−2,ν−1/2
k ξcp(∆k; xk,νk)

1/2)), and ϵ̃r = ϵr,i,
where ϵa,i > 0 and ϵr,i > 0 are some absolute and relative inner tolerances, and sk,1 is the first iterate
of the solution of the trust-region subproblem. In the experiments below, we use ϵa,i = 10−3 and
ϵr,i = 10−6, except in Section 6.1, where we use ϵa,i = 10−5.

Additionally, we test the variant presented in Section 5.2, which is denoted “iTRDH” (indefinite
trust-region with diagonal Hessian approximations) in our results. When in use, the stopping criterion is
based on ν−1/2

k ξ(∆k; xk,Dk)
1/2, instead of ν−1/2

k ξcp(∆k; xk,νk)
1/2.
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In our results, we report

• the final f(x);
• the final h(x)/λ;
• the final stationarity measure

√
ξ/ν;

• ∥x− x⋆∥2, where x⋆ is the exact solution, if it is available;
• the number of smooth objective evaluations # f;
• the number of gradient evaluations # ∇f;
• the number of proximal operator evaluations # prox;
• the elapsed time t in seconds.

Because our implementations are not yet perfectly optimized in terms of memory allocations, we
neglect the elapsed time in our interpretations, and only report it in the tables as an indicator for the
reader.

In our test cases, available from the RegularizedProblems package [6], the computational cost of
evaluating the gradient is significantly higher than a proximal evaluation or an objective evaluation.
In all cases, except in case of failure, all solvers find similar final solutions, and we only show one for
illustration.

6.1 Basis pursuit denoise (BPDN)

Our first test case is the basis pursuit denoise (BPDN) problem [16, 28]. The stopping tolerances ϵa
and ϵr are set to 10−5. In this subsection only, when using TR, we set ϵa,i = 10−5 in order to have
accurate subproblem solves, which leads to performing fewer gradient evaluations without sacrificing
too many proximal evaluations. Let m = 200, n = 512, b = Ax⋆ + ϵ, where ϵ ∼ N(0, 0.01), A ∈ Rm×n

has orthonormal rows, and x⋆ is a vector of zeros, except for 10 of its components that are set to ±1.
We solve

minimize
x

1
2∥Ax− b∥

2
2 + h(x), (36)

where h(x) = λ∥x∥0. As in [3], we use λ = 0.1∥ATb∥∞.

Table 1: BPDN (36) statistics with h = λ∥ · ∥0. All variants of TR use an LSR1 Hessian approximation, and are given a
maximum of 100 inner iterations. The optimal objective value is f(x⋆) = 9.90e− 03.

solver f(x) h(x)/λ
√
ξ/ν ∥x− x⋆∥2 #f #∇f # prox t (s)

R2 9.44e−03 10 4.4e−03 4.7e−02 30 31 30 8.0e−03
TRDH-Spec 9.44e−03 10 4.0e−03 4.7e−02 9 9 17 1.7e−02

iTRDH-Spec 9.44e−03 10 3.4e−03 4.7e−02 10 9 9 4.0e−03
TRDH-PSB 9.44e−03 10 3.7e−03 4.7e−02 18 15 35 1.1e−02

iTRDH-PSB 9.44e−03 10 2.6e−03 4.7e−02 20 16 19 5.0e−03
TRDH-Andrei 9.44e−03 10 4.5e−03 4.7e−02 48 29 95 1.0e−02

iTRDH-Andrei 9.44e−03 10 3.7e−03 4.7e−02 59 35 58 3.1e−02
TR-R2 9.44e−03 10 1.7e−05 4.7e−02 23 23 40 1.8e−02

TR-TRDH-PSB 9.44e−03 10 1.6e−05 4.7e−02 21 21 58 6.9e−02
TR-iTRDH-PSB 9.44e−03 10 1.6e−05 4.7e−02 21 21 39 2.5e−02

TR-TRDH-Andrei 9.44e−03 10 1.6e−05 4.7e−02 20 20 127 2.5e−02
TR-iTRDH-Andrei 9.44e−03 10 1.4e−05 4.7e−02 20 20 100 3.0e−02

TR-TRDH-Spec 9.44e−03 10 1.9e−05 4.7e−02 21 21 46 1.8e−02
TR-iTRDH-Spec 9.44e−03 10 1.9e−05 4.7e−02 21 21 33 1.8e−02

Figure 3 shows the solution of (36) with TRDH-Spec. Table 1 reports the statistics for the different
solvers and shows that TRDH-Spec and TRDH-PSB perform fewer objective and gradient evaluations
than R2. TRDH-Andrei performs worse that R2 on this problem. As expected, the “iTRDH” variants
require fewer proximal operator evaluations. They result in similar numbers of objective and gradient
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Figure 3: Solution of (36) (left), and error (right) with TRDH-Spec.

evaluations in the cases of TRDH-Spec and TRDH-PSB, but require more evaluations in the case of
TRDH-Andrei.

All TR-TRDH and TR-iTRDH solvers perform fewer objective and gradient evaluations than
TR-R2.

We now solve the constrained variant

minimize
x

1
2∥Ax− b∥

2
2 + h(x) subject to x ⩾ 0, (37)

where each element in x⋆ is either 0 or 1.
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Figure 4: Solution of (37) (left), and error (right) with TR-TRDH-Spec.
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Table 2: Constrained BPDN (37) statistics with h = λ∥ · ∥0. All variants of TR use an LSR1 Hessian approximation, and
are given a maximum of 100 inner iterations. The optimal objective value is f(x⋆) = 8.98e− 03.

solver f(x) h(x)/λ
√
ξ/ν ∥x− x⋆∥2 #f #∇f # prox t (s)

R2 8.70e−03 10 3.9e−03 3.6e−02 27 28 27 1.9e−02
TRDH-Spec 8.70e−03 10 3.6e−03 3.6e−02 8 8 15 4.0e−03

iTRDH-Spec 8.70e−03 10 3.0e−03 3.6e−02 9 8 8 2.0e−03
TRDH-PSB 8.70e−03 10 3.6e−03 3.6e−02 11 11 21 3.0e−03

iTRDH-PSB 8.70e−03 10 3.7e−03 3.6e−02 12 11 11 3.0e−03
TRDH-Andrei 8.70e−03 10 4.3e−03 3.6e−02 48 29 95 1.6e−02

iTRDH-Andrei 8.70e−03 10 4.0e−03 3.6e−02 59 35 58 2.0e−02
TR-R2 8.70e−03 10 1.9e−05 3.6e−02 20 20 32 1.2e−02

TR-TRDH-PSB 8.70e−03 10 2.1e−05 3.6e−02 19 19 50 1.8e−02
TR-iTRDH-PSB 8.70e−03 10 2.1e−05 3.6e−02 19 19 34 2.5e−02

TR-TRDH-Andrei 8.70e−03 10 1.9e−05 3.6e−02 20 20 63 1.8e−02
TR-iTRDH-Andrei 8.70e−03 10 1.5e−05 3.6e−02 20 20 51 7.0e−03

TR-TRDH-Spec 8.70e−03 10 2.0e−05 3.6e−02 19 19 28 1.0e−02
TR-iTRDH-Spec 8.70e−03 10 2.0e−05 3.6e−02 19 19 23 1.2e−02

Figure 4 shows the solution of (37) with TRDH-Spec, and Table 2 reports the statistics for the
different solvers. We observe that TRDH-Spec, iTRDH-Spec, TRDH-PSB and iTRDH-PSB used as
main solvers outperform R2 in terms of number of objective and gradient evaluations. TR-TRDH and
TR-iTRDH perform similarly to TR-R2.

6.2 Sparse nonnegative matrix factorization (NNMF)

Our next test case is a variant of the NNMF problem of Kim and Park [20]. Let A ∈ Rm×n have
nonnegative entries, where each row represents a feature and each column represents an observation.
We wish to factorize A ≈ WH by separating A into k < min(m,n) clusters, where W ∈ R

m×k,
H ∈ Rk×n both have nonnegative entries and H is sparse. The problem is stated as

minimize
W,H

1
2∥A−WH∥2

F + h(H) subject to W,H ⩾ 0, (38)

where h(H) = λ∥vecH∥0 and vec stacks the columns of a matrix to form a vector. In our experiments,
each observation is generated using a mixture of Gaussians. Negative elements in the matrix A
generated are reset to zero.

Table 3: NNMF (38) statistics with h = λ∥ · ∥0. All variants of TR use an LSR1 Hessian approximation, and are given a
maximum of 100 inner iterations.

solver f(x) h(x)/λ
√
ξ/ν #f #∇f # prox t (s)

R2 2.84e+03 0 2.2e−04 2 2 2 0.0e+00
TRDH-Spec 1.25e+02 50 7.7e−02 47 29 93 5.0e−03

iTRDH-Spec 1.25e+02 50 6.5e−02 48 29 47 4.0e−03
TRDH-PSB 1.70e+02 62 5.7e+00 501 352 1000 5.6e−02

iTRDH-PSB 1.70e+02 62 8.4e+00 501 352 500 5.5e−02
TRDH-Andrei 2.73e+02 54 5.9e+00 501 283 1000 5.9e−02

iTRDH-Andrei 2.73e+02 54 7.0e+00 501 283 500 5.6e−02
TR-R2 1.25e+02 50 5.0e−03 212 115 4983 2.4e−01

TR-TRDH-PSB 1.25e+02 50 7.2e−03 197 104 9826 7.3e−01
TR-iTRDH-PSB 1.25e+02 50 6.4e−03 129 71 3759 4.8e−01

TR-TRDH-Andrei 1.25e+02 50 2.9e−03 170 91 8746 6.1e−01
TR-iTRDH-Andrei 1.25e+02 50 6.8e−03 152 83 4809 6.1e−01

TR-TRDH-Spec 1.25e+02 50 4.8e−03 126 69 4793 3.6e−01
TR-iTRDH-Spec 1.25e+02 50 3.6e−03 162 82 2503 3.5e−01

We set m = 100, n = 50, k = 5, λ = 10−1. The stopping tolerances ϵa and ϵr are set to 10−5.
Figure 5 shows the solution of (38) with TR-TRDH-PSB. The statistics are reported in Table 3. We
observe that R2 is trapped in a spurious stationary point, and that all TRDH and iTRDH solvers
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Figure 5: Solution of (38) with TR-TRDH-PSB.

except TRDH-Spec and iTRDH-Spec reach their maximum number of iterations. All solvers using TR
perform well with fewer objective and gradient evaluations than TR-R2. The number of proximal
operator calls is lower for all TR-iTRDH variants.

6.3 Nonlinear support vector machine (SVM)

We now consider the nonlinear SVM described by [2] to classify digits of the MNIST dataset as either
1 or 7—the other digits are removed. Let m be the number of images and n the vectorized image size.
The problem reads

minimize
x

1
2∥1 − tanh(b⊙ (ATx))∥2 + h(x), (39)

where A ∈ Rm×n is the data matrix, b is the vector of labels with values ±1 for all its components, ⊙
denotes the elementwise product between two vectors, and h(x) = λ∥x∥1. We use n = 784, m = 13007
in the training set, m = 2163 in the testing set, λ = 0.1 and we initialize the problem at x = e, the
vector of ones. We set the absolute and relative stopping tolerances ϵa and ϵr to 10−4.

The solution map of (39) representing the most important pixels to classify the images between
1 and 7 is shown in Figure 6 for the solver TR-TRDH-Spec, along with a few sample digits. We
observe that the mid-height pixels are selected as the most important ones, which is consistent
with the fact that the images show the digits sideways. The statistics are reported in Table 4, and



Les Cahiers du GERAD G–2023–37 20

show that TRDH-PSB, iTRDH-PSB, TRDH-Andrei and iTRDH-Andrei as main solvers exceed the
maximum number of iterations. R2, TRDH-Spec and iTRDH-Spec are the most efficient and perform
similar number of objective and gradient evaluations, with R2 terminating with a slightly higher
criticality measure. TR-TRDH-PSB, TR-iTRDH-Andrei and TR-TRDH-Spec perform fewer objective
and gradient evaluations, but more proximal operator evaluations than TR-R2.

Table 4: SVM (39) statistics with h = λ∥ · ∥1. All variants of TR use an LBFGS Hessian approximation, and are given a
maximum of 100 inner iterations. The train and test accuracies are the percentage of images correctly classified, computed

by counting the number of elements of the residual 1− tanh(b⊙ (ATx)) that are lower than 1 for the train and test
problems respectively.

solver f(x) h(x)/λ
√
ξ/ν (Train, Test) #f #∇f # prox t (s)

R2 2.18e+02 2.4e+03 1.2e−01 (99.3, 98.8) 265 199 265 3.7e+00
TRDH-Spec 2.18e+02 2.4e+03 5.9e−02 (99.3, 98.9) 306 191 611 4.4e+00

iTRDH-Spec 2.18e+02 2.4e+03 5.9e−02 (99.3, 98.9) 307 191 306 3.9e+00
TRDH-PSB 2.38e+02 2.4e+03 4.5e−01 (99.1, 98.8) 1001 686 2000 1.3e+01

iTRDH-PSB 2.38e+02 2.4e+03 4.3e−01 (99.1, 98.8) 1001 686 1000 1.3e+01
TRDH-Andrei 3.00e+02 2.9e+03 1.2e+00 (99.1, 99.0) 1001 418 2000 9.1e+00

iTRDH-Andrei 3.00e+02 2.9e+03 2.7e+00 (99.1, 99.0) 1001 418 1000 8.8e+00
TR-R2 2.18e+02 2.4e+03 4.7e−03 (99.3, 98.8) 361 361 1512 5.3e+00

TR-TRDH-PSB 2.18e+02 2.4e+03 4.7e−03 (99.3, 98.8) 316 316 3882 6.5e+00
TR-iTRDH-PSB 2.18e+02 2.4e+03 4.7e−03 (99.3, 98.8) 377 377 2242 7.8e+00

TR-TRDH-Andrei 2.18e+02 2.4e+03 4.7e−03 (99.3, 98.9) 396 396 27155 1.4e+01
TR-iTRDH-Andrei 2.18e+02 2.4e+03 4.5e−03 (99.3, 98.9) 283 283 11418 1.2e+01

TR-TRDH-Spec 2.18e+02 2.4e+03 4.7e−03 (99.3, 98.8) 333 333 3390 7.5e+00
TR-iTRDH-Spec 2.18e+02 2.4e+03 4.7e−03 (99.3, 98.8) 472 472 1791 9.3e+00
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Figure 6: Solution map of (39) with TR-TRDH-Spec (left), and sample 1’s (right, top row) and 7’s (right, bottom row)
rotated digits from the MNIST dataset.

6.4 FitzHugh-Nagumo inverse problem

Let v(x) = (v1(x), . . . , vn+1(x)) and w(x) = (w1(x), . . . ,wn+1(x)) be sampled values of V(t; x) and
W(t; x) for x ∈ R5 satisfying the FitzHugh [18] and Nagumo et al. [23] model for neuron activation

dV
dt

= (V − V3/3 −W + x1)x
−1
2 ,

dW
dt

= x2(x3V − x4W + x5). (40)

The samples are generated using a discretization of the time interval t ∈ [0, 20] with initial conditions
(V(0),W(0)) = (2, 0). We define a target solution that corresponds to a simulation of the van der Pol
[29] oscillator by generating solutions (v̄(x), w̄(x)) of (40) with x̄ = (0, 0.2, 1, 0, 0), and we solve

minimize
x

1
2∥(v(x) − v̄(x̄),w(x) − w̄(x̄))∥

2
2 + h(x), (41)
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where h(x) = λ∥x∥0 with n = 100. The stopping tolerances ϵa and ϵr are set to 10−4. We report
the statistics of the solution of (41) with λ = 10 in Table 5. TRDH as main solver results in many
objective and gradient evaluations compared to TR. Moreover, TR-TRDH-PSB, TR-iTRDH-PSB,
TR-TRDH-Andrei and TR-iTRDH-Andrei perform fewer objective and gradient evaluations than
TR-R2. TR-TRDH-Spec is the least efficient.

Table 5: FH (41) statistics with h = λ∥ · ∥0. All variants of TR use an LBFGS Hessian approximation, and are given a
maximum of 200 inner iterations. The optimal objective value is f(x⋆) = 1.03e+ 00.

solver f(x) h(x)/λ
√
ξ/ν ∥x− x⋆∥2 #f #∇f # prox t (s)

TRDH-Spec 3.21e+01 5 7.0e+00 9.8e−01 501 351 1000 2.1e+00
iTRDH-Spec 3.21e+01 5 5.9e+00 9.8e−01 501 351 500 2.5e+00

TRDH-PSB 1.12e+00 2 2.7e+00 1.3e−01 501 401 1000 4.7e+00
iTRDH-PSB 1.12e+00 2 2.4e+00 1.3e−01 501 401 500 4.7e+00

TRDH-Andrei 1.15e+00 2 1.6e+00 1.5e−01 501 372 1000 4.2e+00
iTRDH-Andrei 1.15e+00 2 2.8e+00 1.5e−01 501 372 500 5.3e+00

TR-R2 1.02e+00 2 5.0e−03 6.3e−03 327 236 36274 6.7e+00
TR-TRDH-PSB 1.02e+00 2 5.7e−03 6.1e−03 183 149 56042 3.8e+00

TR-iTRDH-PSB 1.02e+00 2 6.3e−03 6.2e−03 211 179 33452 3.7e+00
TR-TRDH-Andrei 1.02e+00 2 5.6e−03 6.5e−03 185 138 49311 2.9e+00

TR-iTRDH-Andrei 1.02e+00 2 6.4e−03 6.1e−03 168 151 23655 2.9e+00
TR-TRDH-Spec 1.04e+00 2 1.0e+00 7.3e−02 501 428 109750 9.0e+00

TR-iTRDH-Spec 1.02e+00 2 4.6e−03 1.1e−02 383 337 40354 6.1e+00

The left half of Table 6 reports the final solution identified by each solver. The solution of (41)
with TR-TRDH-PSB and the sampled values of V and W are displayed in Figure 7. We do not show
results with R2 because it encountered numerical issues when solving the problem.

Table 6: FH (41) (left) and constrained FH (42) (right) solutions identified by the solvers tested. The unconstrained
solution is (0, 0.2, 1, 0, 0).

x1 x2 x3 x4 x5 x1 x2 x3 x4 x5

TRDH-Spec 0.32 0.43 0.83 0.77 0.44 0.00 0.50 0.54 0.00 0.00
iTRDH-Spec 0.32 0.43 0.83 0.77 0.44 0.00 0.50 0.54 0.00 0.00

TRDH-PSB 0.00 0.24 0.87 0.00 0.00 0.00 0.50 0.54 0.00 0.00
iTRDH-PSB 0.00 0.24 0.87 0.00 0.00 0.00 0.50 0.54 0.00 0.00

TRDH-Andrei 0.00 0.25 0.86 0.00 0.00 0.00 0.50 0.54 0.00 0.00
iTRDH-Andrei 0.00 0.25 0.86 0.00 0.00 0.00 0.50 0.54 0.00 0.00

TR-R2 0.00 0.20 1.01 0.00 0.00 0.00 0.50 0.54 0.00 0.00
TR-TRDH-PSB 0.00 0.20 1.01 0.00 0.00 0.00 0.50 0.54 0.00 0.00

TR-iTRDH-PSB 0.00 0.20 1.01 0.00 0.00 0.00 0.50 0.54 0.00 0.00
TR-TRDH-Andrei 0.00 0.20 1.01 0.00 0.00 0.00 0.50 0.54 0.00 0.00

TR-iTRDH-Andrei 0.00 0.20 1.01 0.00 0.00 0.00 0.50 0.54 0.00 0.00
TR-TRDH-Spec 0.00 0.18 1.07 0.00 0.00 0.00 0.50 0.54 0.00 0.00

TR-iTRDH-Spec 0.00 0.20 1.01 0.00 0.00 0.00 0.50 0.54 0.00 0.00

We also solve the constrained variant

minimize
x

1
2∥(v(x) − v̄(x̄),w(x) − w̄(x̄))∥

2
2 + h(x), subject to x2 ⩾ 0.5, (42)

and we keep all parameters the same, except for λ that we set to 40 to further enforce sparsity.

The right half of Table 6 reports the solution and Table 7 the statistics of the solve of (42) with the
tested solvers. Note that all solvers identify the same solution. We observe that all TR-TRDH and
TR-iTRDH solvers perform fewer objective and gradient evaluations than TR-R2. However, TR-R2 has
the lowest number of proximal operator calls out of all solvers using TR. The right plot of Figure 7
shows that the W part of the solution of (42) with TR-TRDH-PSB does not match the data as tightly
as that of (41) in the left half of Figure 7. That is a consequence of enforcing x2 ⩾ 0.5, since the
unconstrained solution verifies x2 = 0.2.
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Figure 7: Solution of (41) (left) and of (42) (right) with TR-TRDH-PSB and sampled values of V and W.

Table 7: Constrained FH (42) statistics with h = λ∥ · ∥1. All variants of TR use an LBFGS Hessian approximation, and are
given a maximum of 200 inner iterations.

solver f(x) h(x)/λ ξ ∥x− x⋆∥2 #f #∇f # prox t (s)

TRDH-Spec 4.43e+00 1.0e+00 1.2e−02 5.5e−01 327 226 653 2.6e+00
iTRDH-Spec 4.43e+00 1.0e+00 1.1e−02 5.5e−01 328 226 327 2.4e+00

TRDH-PSB 4.43e+00 1.0e+00 8.2e−03 5.5e−01 331 237 661 2.6e+00
iTRDH-PSB 4.43e+00 1.0e+00 7.7e−03 5.5e−01 332 237 331 2.2e+00

TRDH-Andrei 4.43e+00 1.0e+00 7.1e−03 5.5e−01 223 155 445 1.4e+00
iTRDH-Andrei 4.43e+00 1.0e+00 7.1e−03 5.5e−01 224 155 223 1.6e+00

TR-R2 4.43e+00 1.0e+00 4.9e−03 5.5e−01 47 31 3057 4.4e−01
TR-TRDH-PSB 4.43e+00 1.0e+00 2.7e−04 5.5e−01 38 29 6725 3.1e−01

TR-iTRDH-PSB 4.43e+00 1.0e+00 7.9e−05 5.5e−01 36 27 3326 3.3e−01
TR-TRDH-Andrei 4.43e+00 1.0e+00 8.7e−05 5.5e−01 39 30 7438 3.8e−01

TR-iTRDH-Andrei 4.43e+00 1.0e+00 1.6e−03 5.5e−01 36 27 3117 3.4e−01
TR-TRDH-Spec 4.43e+00 1.0e+00 4.1e−03 5.5e−01 36 27 5467 3.9e−01

TR-iTRDH-Spec 4.43e+00 1.0e+00 1.8e−03 5.5e−01 38 25 3347 2.5e−01

7 Discussion and future work

The ℓ0- and ℓ1-norm regularizers are standard choices to promote sparsity. It is possible to derive the
iprox of other useful separable regularizers, including ℓp pseudonorms to the p-th power, i.e.,

h(x) = ∥x∥pp =

n∑
i=1

|xi|
p (0 < p < 1),

and those are also useful to promote sparsity [12]. Much remains to be done, however, including
deriving the iprox of relevant non-separable regularizers, and studying other diagonal Hessian
approximations than the ones considered above, including new diagonal quasi-Cauchy updates.

TRDH performs well on the problems tested and is promising, but we were surprised to see
the spectral gradient update often perform better than more sophisticated diagonal quasi-Newton
updates, especially when using TRDH as main solver. Future research should seek to provide
an explanation for that observation. In several instances, the variant of TRDH denoted “iTRDH”
performs better than the basic version, which indicates that both algorithms are relevant.

Finally, other solvers would likely benefit from using TRDH as a subproblem solver, including the
methods for least-squares f of Aravkin et al. [2].
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