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Les textes publiés dans la série des rapports de recherche Les Cahiers
du GERAD n’engagent que la responsabilité de leurs auteurs. Les
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Abstract : Historically, the training of deep artificial neural networks has relied on parallel computing
to achieve practical effectiveness. However, with the increasing size of neural networks, they may no
longer fit into the memory of a single computational unit. To address this issue, researchers are
exploring techniques to distribute the training process on powerful computational grids or less capable
edge devices. In computer vision, multiclass classification neural networks commonly use loss functions
depending non-linearly on all class raw scores, making it impossible to compute independently partial
derivatives of weight subsets during training. In this work, we propose a novel approach for distributing
neural network training computations using a master(s)-workers setup and a partially-separable loss
function, which is a sum of element loss functions. Each element loss only depends on a specific subset
of variables, corresponding to a subpart of the neural network, whose derivatives can be computed
independently. It makes it possible to distribute every element loss and its corresponding neural
network subpart across multiple workers, coordinated by one or several masters. The master(s) will
then aggregate worker contributions and will perform the optimization procedure before updating the
workers. To ensure that each element loss is parameterized by a small fraction of the neural network’s
weights, the architecture must be adapted, which is why we propose separable layers. Numerical
results show the viability of partitioned neural networks considering a partially-separable loss function
using state-of-the-art optimizers. Finally, we discuss the flexibility of a partitioned neural network
architecture and how other deep learning techniques may reflect on it. In particular, in a federated
learning context, it can preserve worker privacy, as each worker possesses only a fragment of the
network, and reduce communication.
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1 Introduction

The proliferation of deep neural network applications in our society is ongoing, with architecture

playing a pivotal role in practical advancements. Notably, larger architectures often lead to enhanced

results, as exemplified by studies such as (Cireşan, 2010). Subsequently, training computational expen-

sive deep neural networks in reasonable time requires parallel optimization methods scaling to adequate

computational resources. In the context of supervised learning, the sheer size of training datasets pre-

cludes their simultaneous evaluation. Consider computer vision, the relatively modest MNIST dataset

comprises 70,000 labelled images (LeCun et al., 2010), while the vast ImageNet dataset contains over

14 million images (Russakovsky, 2015). As a result, training datasets must be subdivided into smaller

minibatches, each containing a fraction of the original dataset. To parallel computations, the couples

observation-label of a minibatch may be distributed over GPU, enabling a data parallelism (Cireşan,

2010; Raina et al., 2009; Dean, 2012).

Nevertheless, with the continuous expansion of neural network sizes, a solitary hardware compo-

nent might prove insufficient for storing or training a neural network in isolation (Dean, 2012). This

realization naturally paved the way for the concept of fragmenting neural network training, giving rise

to a multitude of schemes and implementations. In the pursuit of training neural network subparts

across multiple workers, two additional schemes dominate: model parallelism and tensor parallelism.

In the context of model parallelism (Harlap, 2018; Huang, 2019), each worker is tasked with storing a

specific neural layer. To compute the loss function and its derivatives, both forward pass and reverse

passes are adapted to transfer layer computation outputs to the worker related with the subsequent

layer. Conversely, tensor parallelism (Lepikhin, 2020; Bian, 2021) operates by assigning each worker

a slice of one or several layers. Once all workers have computed the slices pertaining to a given layer,

the results are shared among the workers to enable the next layer evaluation. Both approaches effec-

tively fragment neural network training by incorporating communication among workers. However, in

an unfavorable setup, communication costs can significantly impair practical performance (Ben-Nun

and Hoefler, 2019). Hybrid parallelism integrates all previous strategies to propose techniques that

enhance practical efficiency. For instance, both model parallelism and tensor parallelism can harness

data parallelism by appropriately managing minibatches. Adapting model parallelism is straightfor-

ward, but for tensor parallelism, the same minibatch must be loaded onto multiple workers. Moreover,

the workload can be shared among workers based on the computational intensity of layers. To achieve

competitive performance, implementations prioritize maintaining a balanced workload across workers

(Ben-Nun and Hoefler, 2019).

We introduce a novel approach to fragment deep neural network training, presenting two key con-

tributions. The first contribution focuses on the significance of the employed loss function guiding the

neural network training to compute derivatives. This holds particularly true when the loss function

exhibits partial separability, manifested as a sum of non-linear element loss functions of smaller di-

mension. Partial separability leads to structured derivatives aggregating contributions from element

loss partial derivatives computed independently. This approach lends itself to parallelization within

a master(s)-workers framework by assigning one or several element functions to each worker. Unlike

model parallelism or tensor parallelism, it does not necessitate communication between layers, solely

requiring the aggregation of element loss contributions. Consequently, it can seamlessly integrate the

parallelism schemes introduced earlier.

Effectively exploiting the advantages of partial separability during neural network training rests

on the neural network’s architecture. Particularly, most conventional architectures fail to exploit

proficiently partial separability due to their loss element function dimensions being closely align with

the overall neural network dimension. Hence, the second contribution introduces separable layers,

designed to reduce loss function dimensions in comparison to the total neural network dimension.

As a consequence, a partitioned neural network (i.e. stacking separable layers) can be trained over

several workers containing only a subpart of the neural network. Empirical evidences combining both

contributions indicates that partitioned architectures and partially separable loss functions can rival
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the performance of standard architectures paired with a conventional loss function, while enabling a

new distribution of computation.

The two contributions lay the foundation for a new parallelism scheme. Due to its inherent flexi-

bility, this scheme can be applied across various contexts, spanning from grid computing to federated

learning. The latter, in particular, can capitalize on the partially separable training to enhance worker

privacy and reduce the need for certain communications, which remain up to now open challenges.

It takes advantage of the element loss being parametrized solely by a relatively small neural network

subpart to reduce the workload of edge workers, which are typically less powerful devices. Before con-

cluding, we expose how various deep learning techniques may also be integrated within the partitioned

architecture.

2 Notation table

Notation Definition

(x, y) a pair observation-label
(X,Y ) collection of observation-label pairs

ex: a dataset, a minibatch
w the weights parametrizing a neural network

cj(x;w) compute the raw score of the j-th class
L a loss function, ex: LNLL (2), LPSL (6a)
hk,j an element function of LPSL

□̂ refer to □ of most reduced dimension usually
parametrized by U□ ∈ Rn×n□ with n□ < n

if □ a function then □(w) = □̂(U□w)
ex: cj(x;w) = ĉj(x;Ujw)

3 Supervised learning for multiclass classification neural network

Multiclass classification neural networks have the objective of categorizing inputs into C distinct classes.

To accomplish this, they calculate a score cj for each class. The neural network determines the

class involves by selecting the highest score argmaxj=1,...,C cj . The neural network architecture is

parametrized by n weights. Consequently, a neural network can be conceptualized as a function
c : Rn → RC , applicable to any input that conforms to its architectural specifications. In the context

of supervised training, the provided dataset is split into two segments: the training dataset and the test

dataset. A dataset consists of a collection of observations denoted asX, paired with their corresponding

labels Y . Here, each x ∈ X represents an individual observation, and its corresponding label y ∈ Y is

characterized by 1 ≤ y ≤ C, y ∈ N. A dataset containing L pairs of observation-label is represented

as {(x(l), y(l))}Ll=1.

In conjunction with the architecture that generates the function c, the training problem necessitates

an assessment of the veracity of its predictions. This role is fulfilled by the loss function L(x, y;w),
which gauges the appropriateness of the neural network’s predictions for each observation-label pair

(x, y). When the loss function is applied to a minibatch (X,Y ) ⊂ (X,Y) of size L, it means the loss

of each observation-label:

L(X,Y ;w) =
1

L

L∑
l=1

L(x(l), y(l);w). (1)



Les Cahiers du GERAD G–2023–36 3

For the context of multiclass classification, the most popular loss function combines softmax layer and

negative log-likelihood:

LNLL(x(l), y(l);w) = − log

(
exp(cy(l)(x(l);w))∑C
i=1 exp(ci(x

(l);w))

)
︸ ︷︷ ︸

softmax

, (2)

where exp(cy(l)) corresponds to the score of the expected result y(l) for the input x(l). The denominator

of the softmax layer in LNLL involves all the scores generated by the neural network. As a result, LNLL

is parameterized by all weights w. Consequently, calculating ∂LNLL

∂wi
during the backward pass requires

knowledge of ∂LNLL

∂wj
, where j > i corresponds to weights closer to the output than wi. In essence,

partial derivative computations of such loss function adhere to a layer-based order. In situations

where the neural network’s size exceeds the capacity of a single hardware unit, model parallelism and

tensor parallelism necessitates communication between workers dealing with successive layer during

the backward (and forward) pass. As far as our knowledge extends, there is no technique capable of

computing partial derivatives of the loss function independently and without communication for only

a subset of weights distributed across all layers.

4 Partially-separable loss function

Diverging from the majority of loss functions that exhibit non-linear dependence on all scores, we

investigate on partially separable loss functions. This concept, originating in the early 1980s, finds its

historical roots in the partial differential equation discretized problems (Griewank and Toint, 1982;

Conn et al., 1990). Subsequently, this structure has been exploited in numerous optimization areas :

quasi-Newton methods (Griewank and Toint, 1982; Conn et al., 1990; Cao and Yao, 2016), derivative-

free methods (Bouzarkouna et al., 2011; Price and Toint, 2006) or evolutionary methods (Durand and

Alliot, 1998). A partially separable function is described as:

f(w) =

N∑
i=1

f̂i(Uiw), Ui ∈ Rni×n, w ∈ Rn. (3)

f sums element functions of smaller dimensions, denoted as f̂i : Rni → R, where ni < n. The variables

that parameterize each f̂i are selects by the linear application Ui. Essentially, partial separability leads

to partitioned derivatives, as illustrated by the gradient:

∇f(x) =

N∑
i=1

U⊤
i ∇f̂i(Uix), ∇f̂i ∈ Rni , (4)

where individual element gradients ∇f̂i are aggregated through linear transformations U⊤
i to yield the

gradient ∇f . Suppose f(w) = f̂1(w1, w2, w3) + f̂2(w3, w4, w5) + f̂3(w1, w3, w5) then ∇f accumulates

the small contributions from f̂j , 1 ≤ j ≤ 3:

∇f(x) =


∇f̂1

+

∇f̂2

+

∇f̂3

 =


 . (5)

This characteristic generates straightforward schemes for parallelizing computations inherent to various

optimization procedures (Lescrenier, 1988; Porcelli and Toint, 2022). In an adequate setup, each

element function is distributed to a specific workers in a scalable manner.
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It’s important to note that despite the summation in (1), LNLL(X,Y ;w) is not partially separable.

Specifically, LNLL(x, y;w) does not fulfill the criteria of an element function, as its dimension matches

that of LNLL(X,Y ;w), i.e., LNLL(x, y;w) : RnNLL → R, n = nNLL ≮ n.

To define an element loss of smaller dimension, it must depend on a subset of the scores cj , which

structurally rely on a subset of weights, i.e. ĉj : Rnj → R parametized by Uj (Figure 1 and Figure 3).

Our proposal introduces a partially separable loss (PSL), where each element loss function is formulated

from a pair of scores:

LPSL(X,Y ;w) :=
1

L

L∑
l=1

C∑
j=1

e
cj(x

(l);w)−c
y(l) (x

(l);w)
, (6a)

=

C∑
k=1

C∑
j=1̸=k

hk,j(X,Y ;w), (6b)

hk,j(X,Y ;w) :=
1

L

L∑
l=1

δk,j(y
(l)) ecj(x

(l);w)−ck(x
(l);w), (6c)

where δk,j(y
(l)) = 1 if y(l) = k, and 0 otherwise. The element function hk,j relies solely on the weights

that parametrize the two scores ck and cj :

hk,j(X,Y ;w) = ĥk,j(X,Y ;Uk,jw), Uk,j ∈ Rnk,j×n. (7)

Uk,j is the linear operator combining the weights selectioned by both Uk and Uj . As a consequence,

nk,j ≤ nk + nj and nk,j ≤ n. Structurally, nk,j = nk + nj when the is no weights overlap between cj
and ck, and nk,j = n only if C = 2. If the neural network gets a maximum score cj different from cy(l)

for a given input x(l), e
cj(x

(l);w)−c
y(l) (x

(l);w)
will return a large value.

The LPSL loss sums N = C2 − C element functions ĥk,j , each of which calculates a loss between

every distinct class pair ci and cj (i ̸= j). In cases where the neural network is symmetric, there

exists a common weights set on which every element function depends (though this set could be

empty). Furthermore, all element losses perform the same computation, but with different weights as

parameters—ni1,j1 = ni2,j2 while Ui1,j1 ̸= Ui2,j2 , for all (i1, j1) ̸= (i2, j2). The specific dimensions of

each ĥk,j depends upon the layers composing the neural network architecture. The subsequent section

will develop deeper this subject and introduce the concept of a separable layer to make nk,j a smaller

fraction of n.

5 Separable layer and partitioned architecture

5.1 The issue of standard architectures

As previously discussed, partially separable loss functions can be employed with any type of multiclass

classification neural network. For instance, Figure 1 showcases the weight dependencies of each score

within an overly simplified LeNet (Lecun, 1998) architecture. This architecture incorporates two

convolutional layers, consisting of two and three kernels respectively. Subsequently, two dense layers

are applied. The setup is tailored for a vectorized input of size four, generating C = 3 class scores.

Distinct colors—blue, yellow, and red—represent weights that exclusively parameterize a single score.

Meanwhile, common weights shared among all scores are indicated in green. In this example, the

distinct colors are solely utilized to differentiate weights pertaining to the last layer (pre-softmax (2)).

All weights beneath this layer are common weights (in green). In general, when a dense layer or a

convolutional layer is applied to all output neurons of a given layer, the variables preceding it in the

forward pass are common for all scores cj . As a result, any neural networks terminated by a dense layer

generates scores depending on the vast majority of the network, i.e., nj ≈ n, 1 ≤ j ≤ C. Consequently,

nk,j tends to approach n.
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c1 c2 c3

Figure 1: Weight dependency of LeNet’s scores

5.2 Separable layer

Figure 2: A separable layer, 9 x 6, considering C = 3 groups

To mitigate the nj size in comparison to n, we introduce the concept of separable layers, depicted

in Figure 2. This layer divides the neurons from two consecutive layers into C groups, with each

group being fully connected to its counterpart in the subsequent layer. A separable layer employs

C times fewer weights than a fully connected layer. Structurally, it propagates the group weight

dependencies from one layer to its corresponding group in the next layer, to which are added the

corresponding weights partition of the separable layer itself. Unlike dense or convolutional layers,

it avoids distributing weight dependencies of the precedent layer across all output neurons of the

subsequent layer. Relevant practical considerations include:

• If a layer’s reliance non-linearly on all the outputs from a stack of separable layers, then the

partitioned structure introduced by the stack vanishes.

• The output dimension of the layer preceding the initial separable layer must be a multiple of C.

Consequently, dense layers will necessitate a ∗C neurons, while convolutional layers will require

a∗C kernels, where a ∈ N∗. Each group within a separable layer in based on the output of either

a neurons or a kernels.

5.3 Partitioned architecture

When multiple separable layers are successively stacked, they form a highly structured neural network

which will be referred as a partitioned architecture, or more succinctly as PSNet. Figure 3 visualizes an

architecture comprised of the same two convolutional layers as depicted in Figure 1, followed by three

separable layers. Input and output configurations remain consistent Figure 1. By concentrating weight

overlaps within the foundational layer, both nj and nk,j become proportionally smaller in relation to n.

The LPSL(X,Y ;w) loss function achieves minimal overlap when all layers beyond the first are

separable. In this ideal scenario, Uk1,j1U
⊤
k2,j2

= 0 holds true whenever k2 ̸= k1 ̸= j2 and k2 ̸= j1 ̸= j2.

Moreover, each score and element loss function are parametrized respectively by n
C and 2n

C variables,

representing the smallest fractions they can attain. As the number of classes grows, the count of

element loss functions N = C2 − C increases while n
C and 2n

C decrease if the architecture favours

separable layers. Additional insights of our new architecture PSNet, can be found in the numerical

results section (e.g. nj and nk,j).
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c1 c2 c3

Figure 3: Weight dependency of PSNet’s scores

5.4 Parallel partitioned architecture computations

In order to efficiently distribute the computation of a partitioned neural network training using a

partially-separable loss function, we outline a scalable strategy. A straightforward approach is to

allocate a single element function ĥk,j to each available worker. Since LPSL consists of N element

functions (6a), it ideally requires N workers. Each worker needs memory proportional to Θ(nk,j) to

store its respective element function, which could be significantly smaller than n if separable layers are

employed. During the forward pass, a worker computes ĥk,j , and during the reverse pass, it computes

∇ĥk,j . Subsequently, the worker sends its computed contributions to the master node(s). The master

node(s) maintain a vector g of size n, which is initially zeroed and accumulates worker contributions.

Each worker’s contribution, with size nk,j , is scattered across g based on Uk,j . If the total network’s size

n is too large to be accommodated by a single hardware unit, the vector g can be managed by multiple

master nodes. For instance, C +1 master nodes can be utilized, with one storing the common weights

to all scores and the remaining C nodes storing the distinct weights of each score cj . Additionally,

the master nodes are responsible for executing the training optimizer and subsequently updating the

weights of the workers.

The straightforward strategy distributing every element losses might saturate the available devices

due to the quadratic growth ofN with respect to C. To address this challenge, the symmetry of element

losses provides a solution by allowing a worker to easily switch the element function it manages.

This symmetry arises from the fact that all scores cj share the same underlying function but are

parametrized by different Uj matrices. Consequently, the results of two different element losses are

governed by the same element loss function ĥk,j , while being driven by distinct Uk,j linear operators,

i.e. ĥk1,j1(X,Y, Uk1,j1w) = ĥk2,j2(X,Y, Uk1,j1w) where (k1, j1) ̸= (k2, j2). Hence, by substituting the

loaded weights Uk1,j1w with Uk2,j2w, a worker turns from ĥk1,j1 into ĥk2,j2 and can consecutively

compute several multiple element loss functions and their derivatives. This trick significantly reduces

the number of workers needed and facilitates resource utilization.

An essential point to consider is that there is no need to compute the element loss ĥk,j for obser-

vations x(l) that are not labeled as k ̸= y(l). Therefore, the data required for a worker only represents

a fraction 1
C of the entire training dataset. Additionally, several element functions may be merged, for

instance, a worker can cumulate ĥk1,j1 and ĥk2,j2 . In that case, the neural network subpart handled

by the worker may expand, and the labelled observations the worker consider will combine k1 and

k2. The only merging not augmenting the dimension is the merging of ĥk,j and ĥj,k, as these two

element functions weights completely overlap. Furthermore, when more than N workers are available,

the same element function may be duplicated across multiple workers. In this scenario, each one of
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: a worker ĥk,j

M□: a master node : communication

. . .

X
(1)
k

Y
(1)
k

X
(2)
k

Y
(2)
k

X
(m)
k

Y
(m)
k

. . .

...

. . .

...

M1M2 Mm MC+1

Figure 4: Partitioned neural network distribution

these workers evaluates disjoint subsets of data to ensure that duplicate computations are avoided.

Finally, it is possible to combine our contributions with data parallelism, model parallelism, and tensor

parallelism to further distribute computation.

Figure 4 illustrates these notions for the PSNet example from Figure 3. It denotes by Mi the

i-th master node and by (X
(i)
k , Y

(i)
k ) the i − th minibatch from the dataset subset (Xk, Yk) ⊂ (X,Y )

containing only the data labelled as k, i.e. y = k, ∀y ∈ Yk.

6 Further improvements

6.1 Dropout consequences

The introduction of techniques like dropout (Srivastava et al., 2014) can further enhance the partial

separability of the loss function. Dropout randomly deactivates some weights during the training,

affecting dynamically the loss function’s structure. In the context of partially-separable loss functions,

this impacts the subset of weights on which each element function depends. In extreme cases where

an entire layer is temporarily dropped out, the partitioned network may exhibit almost separable

behavior. In Figure 5, the impact of layer dropout on a partitioned architecture is shown. Each score

cj becomes independent of all other score cj2 (UjU
⊤
j2

= 0 for all j2 ̸= j) leading to non-overlapping

element functions; therefore Uj1,k1
U⊤
j2,k2

= 0 as long as k2 ̸= j1 ̸= j2 and k2 ̸= k1 ̸= j2. Assuming the

complete neural network can be accommodated in a single hardware, it’s feasible to simultaneously

compute the forward and reverse passes for multiple non-overlapping element functions. This approach

requires careful selection of element functions to ensure that their weight sets do not overlap.

6.2 Federated learning application

In a federated learning context, the edge workers responsible for training the neural network possess

limited computing capabilities. Furthermore, deploying the entire neural network on each worker risks

potential data leakage, unless specific measures are in place. The partially-separable training approach

provides a solution by allowing each worker to handle a subpart of the neural network. This not only

enhances privacy but also offers the flexibility to finely adjust workloads among workers. In this setup,

each element function and corresponding worker capture tendencies between pairs of classes. This

leaves the worker unable to get a complete grasp on how things are entangled and apprehended in

their entirety, as a complete neural network would do. Only master nodes may witness some trends,
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after aggregating worker contributions. Furthermore, after each update from master(s), the neural

network subparts held by workers lose their individual characteristics, enforcing worker privacy.

c1 c2 c3

Figure 5: Weight dependency of PSNet’s scores when the first convolutional layer is dropped out (dotted deactivated
weights)

7 Numerical results

This section provides comparisons between LeNet-like architectures and partitioned architectures com-

bined with either the partially-separable loss (PSL) or the negative log-likelihood loss (NLL) function.

In addition the minibatch is also tested, being either 20 or 100. All pairs of architecture and loss func-

tion are trained using the same optimizer Adam (Kingma and Ba, 2017), which employs a gradient-

based approach:

w(k+1) = w(k) + α(k)∇L(X,Y ;w), α(k) ∈ Rn. (8)

Evaluating the loss function on a minibatch introduces stochastic noise to the outcomes of both the

forward and reverse passes. Consequently, optimizers that train the neural network incorporate this

stochastic nature by dynamically adapting α(k). While not aiming for an exhaustive review of all

stochastic gradient-based methods, we list some well-known approaches below. For more comprehen-

sive information, interested readers are directed to surveys on this topic (Ben-Nun and Hoefler, 2019;

Bottou et al., 2018). Among the most straightforward methods following equation (8) is stochas-

tic gradient descent (Robbins and Monro, 1951; Lecun, 1998) . This was subsequently followed by

the introduction of momentum by (Nesterov, 1983), and more recent methods like AdaGrad (Duchi

et al., 2011), RMSProp (Hinton., 2012), and Adam (Kingma and Ba, 2017). The latter amalgamates

AdaGrad and RMSProp to adjust α(k) based on estimates of the first and second gradient moments.

The subsequent results serve as a proof of concept to demonstrate the effectiveness of the partitioned

network and partially-separable loss. During the submission period, our resources and expertise did not

extend to testing this partitioned structure within an extensive distributed framework. Consequently,

the training are run on Nvidia A100 Tensor Core GPU and involve relatively small architectures.

Our near future plans entail the implementation of a distributed training version once we establish

collaboration with an interested industrial partner.

Our focus centers on two specific datasets: MNIST (LeCun et al., 2010) and CIFAR10 (Krizhevsky,

2009), both encompassing ten distinct classes (C = 10). MNIST comprises grayscale images of hand-

written digits, each having dimensions of 28× 28 pixels. Conversely, CIFAR10 consists of color images

(i.e. three channel inputs) with dimensions of 32 × 32 pixels. For generating numerical results, the

code is implemented using Julia programming language (Bezanson, 2017). The architectures pre-

sented in both figures are constructed using Knet.jl (Yuret, 2020), while the datasets are sourced
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from MLDatasets.jl (L. and S., 2016). The code producing these numerical results is publicly available

at https://github.com/JuliaSmoothOptimizers/KnetNLPModels.jl/ on the branch pr-AAAI24-scripts.

Both Figure 6 and Figure 7 compile the trainings of architecture-loss pairs: PSNET-NLL, PSNET-PS,

LeNet-NLL and LeNet-PS. The curves display the mean of 10 trainings and are surrounded by their

respective standard deviation errors.

Figure 6: LeNet and PSNet training accuracies over epochs on MNIST. The left (resp. right) figure considers minibatch
of size 20 (resp. 100).

In Figure 6, both architectures are tailored for the MNIST dataset. The LeNet architecture com-

prises two convolutional layers followed by three dense layers. Both convolutional layers employ 5× 5

kernels and incorporate average pooling. The first convolutional layer employs 6 kernels, while the

second employs 16 kernels. The subsequent fully connected layers contain 120, 84, and 10 neurons

respectively.

On the other hand, the partitioned network, denoted as PSNet, also consists of two convolutional

layers followed by three separable layers. Both convolutional layers use 5×5 kernels and include average

pooling. The first convolutional layer employs 40 kernels, while the second employs 30 kernels. As a

result, the separable layers consist of 240, 150, and 10 neurons respectively. The LeNet architecture is

parameterized by 44426 weights, while the PSNet architecture is parameterized by 53780 weights. In

PSNet, each score (resp. element loss) relies on 6340 (resp. 11588) weights. All scores share a common

foundation of 1092 weights at the root of the neural network.

Figure 7: LeNet and PSNet training accuracies over epochs on CIFAR10. The left (resp. right) figure considers minibatch
of size 20 (resp. 100).

In Figure 7, the architectures depicted in the first figure have been modified to accommodate input

sizes suitable for the CIFAR10 dataset. Both LeNet and PSNet have adjusted their first convolutional

layers to handle three-channelled images. Additionally, the three dense layers of LeNet have been

adapted to consist of 200, 100, and 10 neurons, respectively. In the case of PSNet, the number of

kernels in the first convolutional layer has been increased from 40 to 60. Furthermore, the separable

https://github.com/JuliaSmoothOptimizers/KnetNLPModels.jl/
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layers have been adjusted to be parameterized by 350, 150, and 10 neurons. With these adaptations, the

modified LeNet and PSNet architectures are parameterized by 103882 and 81750 weights, respectively.

In PSNet, each score (resp. element loss) depends on 12279 (resp. 19998) weights. In that case, the

element loss function share 4560 common weights.

The comparison results presented in Figure 6 showcase the accuracy of the loss function PSL or

NLL to train LeNet and PSNet onto the MNIST dataset. Regardless of the architecture employed,

any training using the partially-separable loss (PSL) starts off slower compared to the negative log-

likelihood (NLL) loss, especially when using small minibatch sizes like 20. However, over time, PSL

training tends to catch up with NLL training and approaches asymptotically similar performances.

The standard deviation of training results is higher for PSL compared to NLL, a pattern that is

consistent across both datasets, as demonstrated in Figure 7. Figure 7 displays the same comparisons

for the CIFAR10 dataset. While the ranking between loss functions remains consistent, architecture

changes play a more significant role than the choice of loss function. This phenomenon is noticeable

for minibatch sizes of 100 and is particularly evident for minibatch sizes of 20. When considering

minibatches size of 20, the training of LeNet-PSL exhibits high standard deviation errors. Raw results

indicate consistent drops in accuracy (down to 20%), the accuracy tends to be regained after a few

epochs, recovering a stable 50%. Investigating this behavior is a topic for future research.

Given that PSNet is composed of fewer weights than LeNet (81750 vs. 103882), it is surprising

to witness PSNet architecture dominate the adapted LeNet. This difference can be attributed to

the use of separable layers in PSNet instead of dense layers, significantly reducing the number of

weights required to accommodate PSNet to the CIFAR10 dataset. Hence, to compare fairly LeNet

with a PSNet architectures having similar amount of weights, we added kernels on the convolutional

layers building PSNet to compensate the dimension growth of LeNet. Kernels are cornerstones of the

computer vision current success. As a consequence, we believe their multiplication in the adapted

PSNet are likely to overcome LeNet performances.

8 Conclusion

We have introduced a novel parallelization approach exploiting partially-separable loss functions ap-

plied to partitioned neural networks. This method offers flexibility and scalability, complementing

existing deep learning distributed computing techniques. In distributed learning scenarios, it reduces

the dimensionality of worker’s computation without increasing communication. The structure of each
worker’s neural network subpart helps to preserve the privacy of edge device data. Moreover, the

promising numerical results could be further improved by incorporating adaptations of other deep

learning techniques such as dropout or quasi-Newton training. In future research, we plan to imple-

ment partially-separable training within distributed frameworks and explore asynchronous training,

which lead to structured communication patterns among workers. Additionally, we intend to investi-

gate the unexpected behavior of PSNet-NLL and its potential connections to gradient propagation.
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